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Abstract: The compensation of LTI systems and the evaluation of the according uncertainty 

is of growing interest in metrology. Uncertainty evaluation in metrology ought to follow 

specific guidelines, and recently two corresponding uncertainty evaluation schemes have 

been proposed for FIR and IIR filtering. We employ these schemes to compare an FIR and 

an IIR approach for compensating a second-order LTI system which has relevance in 

metrology. Our results suggest that the FIR approach is superior in the sense that it yields 

significantly smaller uncertainties when real-time evaluation of uncertainties is desired. 
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1. Introduction 

Various important types of sensors like accelerometers or load cells can be modeled by a  

mass-spring system resulting in a second-order model of the kind: 
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where 0S ,   and 00 2 f   denote static gain, damping and resonance frequency, see [1-4]. When 

such sensors are applied for the measurement of according signals with significant frequency content 

near the resonance frequency the sensor output signal contains time-dependent distortions such as 

ringing. Analogue and digital filtering are appropriate tools to reduce these dynamic errors by 
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compensating the dynamic response of the sensor, and techniques for the construction of compensation 

filters are well-known in digital signal processing (DSP), see, for instance, [1-3,5-8]. 

The model parameters in (1) are usually not known from the start, but need to be determined by 

system identification using calibration measurements, see [4,9] for the example of an accelerometer 

identification. Due to the uncertainty of the calibration measurements, the identified system is also 

uncertain to some extent. For a complete assessment of the compensation quality this uncertainty may 

not always be ignored. The treatment of this uncertainty and the deconvolution of uncertain systems is 

a broad topic in DSP, mainly in the field of robust filtering and control [10-12]. 

Metrology is another field with a recently growing interest in the compensation of uncertain 

dynamic systems [13-21]. As metrology is concerned with the establishment of measurement units, the 

realization of measurement standards and the transfer of traceability from these standards to industry, 

measurements at the highest level of accuracy are aimed at. Furthermore, a standardized assessment of 

the uncertainty associated with the measurement result is important. The uncertainty needs to include 

all relevant influences, and in the context of dynamic measurements the uncertainty of a designed 

compensation filter (caused by the uncertain knowledge of the underlying dynamic system) has to be 

accounted for. The basis for the standardized treatment of measurement uncertainty in metrology is the 

internationally accepted Guide to the Expression of Uncertainty in Measurement (GUM) [22,23] which 

allows both, random and systematic errors, to be treated consistently. However, the GUM is not 

directly applicable to the analysis of dynamic measurements. Therefore, several approaches have been 

made in recent years to extent uncertainty evaluation in line with the GUM to the case of dynamic 

measurements [13-21]. While these approaches mainly resort to techniques from DSP, they also differ 

from them to some extent accounting for the particular requirements of uncertainty evaluation guide 

lines in metrology [18,21]. One of the differences is that according to supplement 1 to the GUM [23] 

the uncertainty is obtained as the standard deviation of a (degree-of-belief) probability density function 

(PDF) for the measurand, rather than as an estimate of a standard deviation of a sampling distribution. 

This point of view enables to consistently include also the treatment of systematic influences which, in 

metrology, are often most important. 

For the particular model (1) recently two approaches have been proposed for the compensation of 

dynamic effects in terms of an IIR [1] and an FIR [14] compensation filter. The FIR approach uses 

numerical means to design a digital filter with compensation in the passband and attenuation in the 

stop band. The IIR approach simply inverts model (1) and accompanies this by an appropriate 

analogue IIR-type low-pass filter (here discretized for discrete-time processing). For both types of 

digital filters real-time capable schemes for the evaluation of uncertainty in line with the GUM have 

been proposed recently [15,17,19]. The uncertainty evaluation approach for the IIR compensation filter 

is based on linearization and employs a state-space representation while the approach for the FIR filter 

does not require linearization and can be implemented in terms of a digital filter.  

The goal of this paper is to compare the performance of the two particular approaches [1,14] for 

dynamic error compensation in terms of the resulting uncertainty. The comparison is made by using 

simulations which allow for the assessment of the various uncertainty sources. The construction and 

application of an FIR compensation filter typically requires more effort compared to the considered 

IIR filter approach. On the other hand, for IIR filters [1] the phase response of the compensated system 

usually is nonlinear [24] which may result in compensation errors. Our main conclusion is that both 
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approaches may well be applied but that the uncertainty of the IIR filter approach is larger due to 

compensation errors. 

2. Compensation Task and Considered Digital Compensation Filters 

We consider the following measurement task: a continuous-time input signal )(tx  (the  

time-dependent physical quantity to be measured) acts as input to a sensor with system model (1). The 

corresponding continuous-time output signal )(ty  is discretized by an analogue-to-digital converter. 

We model discretization (and possible further) errors as additive stationary white noise ][n  with 

known variance, resulting in the available data ][)(][ˆ nnTyny S  , where SS Tf /1  denotes the 

chosen sampling frequency. Estimates ][ˆ nx  of the discrete-time input signal ][nx  are calculated by 

applying a digital deconvolution filter, see Figure 1. 

Figure 1. Measurement task of sensor compensation by digital filtering. 

 

We consider the two recently proposed approaches [1] and [14] for the construction of the 

deconvolution filter. The first directly inverts the continuous model (1) and results in an analogue IIR 

filter (here subsequently discretized) while the second employs a linear least squares fit in the 

frequency domain yielding a digital FIR filter from the start. Note that the considered FIR approach 

requires an additional time sample delay. 

3. Uncertainty Evaluation Methods 

We describe uncertainty evaluation in line with the GUM and briefly recall the two considered 

uncertainty evaluation methods for FIR and IIR filtering. 

We assume that the characterization of the sensor in terms of calibration measurements provides 

parameter estimates ̂ , 0̂ , 0Ŝ  for the system (1) with an uncertainty matrix )ˆ,ˆ,ˆ( 00 SU  , see [14]. 

This uncertainty matrix can be interpreted as the covariance matrix of a joint Gaussian PDF, cf. [23]. 

In order to calculate the uncertainty caused by the uncertainty of the system, this uncertainty has to be 

propagated through the filter design. This results in the uncertainty matrix 
θ

U ˆ  of the filter coefficient 

vector, where θ  stands for the filter coefficients of the deconvolution filter, see [23]. Once the 

uncertainty matrix 
θ

U ˆ  has been derived its contribution to the uncertainty of the corresponding 

estimate ][ˆ nx  of the input signal can be utilized as described below.  

In addition to 
θ

U ˆ , signal noise and non-perfect compensation influence the resulting uncertainty 

associated with ][ˆ nx . The contribution of signal noise is calculated by propagating the covariance of 

the noise through the compensation filter, see [15,17]. The non-perfect compensation due to 

regularization or non-perfect construction of the deconvolution filter results in remaining  

dynamic errors: 
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][][][ 0comp nxnnyn   
(2)  

between the output of the compensation filter ])[(][comp nygny   and the actual, unknown input of 

the sensor; 
0n  denotes a possible known time sample delay. Utilizing the well-known inequality for the 

Fourier transform ( )F   of a function ( )f t : 

| ( ) | | ( ) |f t F d



    (3)  

we can derive an upper bound on the dynamic error ][n  by assuming knowledge about an upper 

bound |)(| X  on the continuous-time input signal magnitude spectrum |)(||)(|  XjX , where 

Sf  with Sf  denoting the chosen sampling frequency. The resulting bound is given by: 
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where )(
/ Sfj

eG


 denotes the frequency response of the compensation filter (realized by either an FIR 

or IIR filter), see [18,19]. Note that the upper bound   is time-independent, and it is similar to a 

corresponding continuous-time result given in [13].  

In order to determine the contribution of the dynamic errors to the uncertainty ])[ˆ( nxu , a PDF is 

assigned which encodes the available knowledge about the dynamic errors. According to the 

supplement 1 to the GUM [23] a uniform PDF within the interval ],[   results in our case, where   

denotes the upper bound (4). The resulting standard uncertainty, obtained as the standard deviation of 

this PDF, is given by: 

3
)(


u  (5)  

The overall dynamic uncertainty is then evaluated according to: 

 
3

)(
])[(var])[ˆ(

2

0

2 
 nygnnxu  (6)  

where the variance on the right-hand side takes into account the uncertainty of the filter coefficients of 

)(zg  and the variance of the noise. 

3.1. Uncertainty evaluation for IIR filtering 

For the evaluation of the uncertainty ])[ˆ( nxu  associated with ][ˆ nx  calculated by IIR filtering of the 

noisy sensor output signal ][ˆ ny  according to: 
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an explicit expression for the variance on the right-hand side of (6) has been derived in [17] utilizing a 

state-space form. The resulting uncertainty in (6) is then given by: 

3
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(8)  

where ][rg  denotes the impulse response of the compensation filter )(zg  and the expression: 
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denotes the vector of first order derivatives of the estimate with respect to the elements of the filter 

coefficient vector. The calculation scheme (8) is real-time capable as for (9) a corresponding update 

relation is available, cf. [17]. 

3.2. Uncertainty evaluation for FIR filtering 

For an uncertainty evaluation in the context of FIR filtering the variance term in (6) can be 

calculated in a straightforward way, see [14,15], leading to: 

3
)(][ˆ][ˆˆˆ])[ˆ(

2

ˆlowˆ
T

low

T2

lowlow




θyθy UUyUyθUθ Trnnnxu  (10)  

where Tr  denotes the trace of a square matrix and 
T

complowlowlow ])[ˆ,],[ˆ(][ˆ Nnynyn  y ; lowŷ  denotes 

the low-pass filtered sensor output signal and 
lowyU stands for the covariance matrix of ][ˆ

low ny . For 

stationary noise only the second term on the right-hand side of (10) is time-dependent and the 

uncertainty evaluation can be realized at low computational costs during the measurement. 

4. Results 

We compare the two compensation filter methods [1] and [14] in terms of the resulting uncertainties 

obtained by applying the above described uncertainty evaluation schemes for FIR and IIR filtering. To 

this end, simulations are employed using the following values of system parameters for model (1): 

 T43T

00 985.0,kHz104.29,103.8:),,(  Sfθ  (11) 

which are related to parameters of a typical accelerometer. For the construction of the compensation 

filters uncertain knowledge about the system (1) was modeled by assuming that the following 

parameter estimates including their uncertainty matrix were available: 

 T4T

00 1,kHz103,01.0:)ˆ,ˆ,ˆ(ˆ  Sfθ
 

(12a) 

 00ˆ
ˆ01.0,ˆ03.0,ˆ1.0diag Sf

θ
U  (12b) 

As input signal we chose a low-pass filtered rectangular function, where we employed low-pass 

filter cut-off frequencies of 10 kHz and 25 kHz to limit the bandwidth of the sensor input signal. The 

sensor output signal was calculated by a convolution of the chosen input signal with the LTI system 

transfer function (1) using the parameters in (11). Figures 2 and 3 show the input signal and the 

resulting sensor output signal. It can be seen that the larger input signal bandwidth results in significant 

dynamic errors due to the sensor’s resonance frequency. The output signal was thereafter disturbed by 

additive stationary noise with variances σ
2
 = 1 e−3, σ

2
 = 3 e−4, and σ

2
 = 1 e−6, respectively. As 

sampling frequency we chose 500 kHz. According to Figure 1, the measurand of this dynamic 

measurement was the band-limited sensor input signal. 
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Figure 2. Narrow-banded sensor input signal and resulting sensor output signal. 

 

 

Figure 3. Broad-banded sensor input signal and resulting sensor output signal. 

 

Figure 4. The compensated output signals resulting from the IIR and the FIR 

compensation filter for the narrow-banded sensor input signal. 
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Figure 5. The compensated output signals resulting from the IIR and the FIR 

compensation filter for thebroad-banded sensor input signal. 

 

 

The IIR deconvolution filter was derived according to [1] as a cascade of the inverse of model (1) 

with parameter vector (12a), and the second-order system:  

22
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where we chose the parameters for (13) as kHz120,2/1   TT .  

We discretized this system employing the bilinear transform with frequency pre-warping to meet 

the resonance frequency, see [24]. The resulting digital filter was employed in cascade with a digital 

order 4 Butterworth low-pass filter in order to increase noise attenuation. The low-pass cut-off 

frequency of this filter was set to 30 kHz and 53 kHz for the input signal with bandwidth of 10 kHz 

and 25 kHz, respectively. The resulting compensation filter and the frequency response of the 

compensated system are given in Figure 6. 

Figure 6. Left: Frequency response of the sensor model (black) with system parameter 

vector (11) and the IIR compensation filter (green) designed for the available estimate 

(12a) of the system parameter vector for estimation of the broad-banded (25 kHz) input 

signal. Right: Frequency response of the actual compensated system. 
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The FIR deconvolution filter was designed according to [14] by means of a least squares fit to the 

reciprocal frequency response of model (1) with parameter vector (12a) in the frequency region from 

DC up to 60 kHz. As appropriate filter order we determined 12 with an according time sample delay  

of 6 samples. For the additional low-pass filter employed in this technique we chose an order 60 FIR 

filter, designed using the window technique with a Hamming window. The low-pass filter cut-off was 

taken as 30 kHz and 50 kHz for the input signal with bandwidth of 10 kHz and 25 kHz, respectively. 

The frequency response of the compensation filter and that of the compensated system are shown  

in Figure 7. 

Figure 7. Left: Frequency response of the sensor model (black) with system parameter 

vector (11) and the FIR compensation filter (green) designed for the available estimate 

(12a) of the system parameter vector for estimation of the broad-banded (25 kHz) input 

signal. Right: Frequency response of the actual compensated system. 

 

 

A comparison of the frequency response of the compensated systems shows that both, FIR as well 

as IIR filter, yield a good approximation to the inverse of model (1) in the relevant frequency region 

for the available knowledge about the actual model parameters. While the phase response of the 

compensated system for the IIR filter is only approximately linear, the FIR filter results in a 

compensated system with an almost perfect linear phase response that can be realized in the time 

domain by a sample shift. Thus, the corresponding error bound (4) for the IIR compensation filter is 

larger than that for the FIR filter. This can be seen in Figures 8 and 9 where the uncertainties 

associated with the estimation of the narrow-banded and broad-banded input signal are given. In all 

cases the resulting uncertainties for the IIR compensation filter are larger than those for the FIR 

compensation filter. The maximum difference between the obtained corresponding uncertainties is 

about 30%.  
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Figure 8. Left: Uncertainty associated with the FIR compensation filter result for three 

different noise values obtained for the narrow-banded input. Right: Uncertainty associated 

with the IIR compensation filter result. 

 

Figure 9. Left: Uncertainty associated with the FIR compensation filter result for three 

different noise values obtained for the broad-banded input. Right: Uncertainty associated 

with the IIR compensation filter result. 

 

 

It appears that the shape of the uncertainties for the FIR and IIR compensation are similar. As 

expected, for both filter types a larger noise variance results in an increased uncertainty of the input 

signal estimate. The influence of the model uncertainty, namely the impact of the resonance frequency 

uncertainty )( 0fu  and damping uncertainty )(u , can be seen especially in Figure 9 as the employed 

input signal has significant spectrum near the system’s resonance and thus increases. Moreover, it can 

be seen in Figure 9 that due to the larger cut-off frequencies of the low-pass filters the output signal 

noise is less attenuated than for the narrow-banded input signal shown in Figure 8. Although these 

characteristics of the uncertainty are similar for FIR and IIR compensation, the larger value of the error 

bound (4) for the IIR compensation filter causes the larger uncertainty for this filter. On the other hand, 

as can be seen in Figures 4 and 5, the time delay of the FIR filter result is significantly larger than that 

of the IIR compensation filter and hence, when speed is an issue, the IIR filter is preferable. 

It should be noted that the frequency responses of the compensated system shown in Figures 6 and 7 

are available only for a simulation, as their calculation requires knowledge about the true 
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parameters (11) of the underlying system (1). In an application, the compensated system could be 

evaluated only approximately by inserting the available parameter estimates (and not their unknown 

true values) for the system (1). In that case, the approximation of the inverse system would appear 

ideal also around the resonance frequency, and for the FIR filter the phase of the compensated system 

as perfectly linear. 

5. Conclusions 

An FIR and an IIR filter approach for the compensation of a second-order system have been 

compared in terms of resulting uncertainties. The main drawback of the considered IIR filtering 

approach is the nonlinear phase response of the compensated system which may result in significant 

enlarged uncertainties. The non-linearity could be eliminated by a bi-directional application of the 

filter, but this technique is not possible for real-time measurements. We conclude that the considered 

FIR compensation filter should be preferred as long as the time sample delay introduced for its 

construction is not critical and real-time evaluation of uncertainties is desired. 
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