
Dynamic Underactuated Nonprehensile Manipulation

Kevin M. Lynch1

Biorobotics Division
Mechanical Engineering Laboratory

Namiki 1-2, Tsukuba, 305 Japan

Matthew T. Mason
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213 USA

Abstract
By exploiting centrifugal and Coriolis forces, simple, low-
degree-of-freedom robots can control objects with more
degrees-of-freedom. For example, by allowing the object
to roll and slip, a one-degree-of-freedom revolute robot can
take a planar object to a full-dimensional subset of its state
space. We present a dynamic manipulationplanner that finds
manipulator trajectories to move an object from one state to
another without grasping it. The trajectories have been suc-
cessfully implemented on a one-degree-of-freedom direct-
drive arm to perform dynamic tasks such as snatching an ob-
ject from a table, rolling an object on the surface of the arm,
and throwing and catching.

1 Introduction
The utility of a manipulator is measured by the set of tasks
it is capable of accomplishing. To determine the capability
of a robot, we must consider both properties of the robot and
the mechanics laws mapping the robot’s actions to changes
in the task state.

For parts transfer problems, a particularly useful simpli-
fying assumption is that the part is grasped and follows the
end-effector as it moves. With this assumption about the me-
chanics, we can focus on properties of the robot such as its
payload capacity, accuracy, speed, and the geometry of its
workspace. In particular, a general positioning manipulator
requires at least six degrees-of-freedom, and much work has
been invested in the design and construction of sophisticated
positioning devices.

Surprisingly, however, little effort has been made to un-
derstand the manipulation capabilities of even the simplest
robots under more complete mechanics models. By exploit-
ing mechanics, a simple robot may be able to solve the same
tasks as a more complex robot. For example, by allowing the
manipulated object to roll and slip, a low-degree-of-freedom
robot can control more degrees-of-freedom of an object. Be-
cause the robot has fewer freedoms, the manipulation is un-
deractuated; because the object is not firmly grasped, the
contact is nonprehensile. With underactuated nonprehensile
manipulation, some of the complexity of the robot system is
transferred from hardware (joints and actuators) to planning
and control.

Our previous work on underactuated nonprehensile ma-
nipulation has focused on quasistatic pushing. By analyzing
the mechanics of pushing, we have shown

1This research was conducted while the first author was a Ph.D. student
at the Robotics Institute, Carnegie Mellon University.

� A two-degree-of-freedom robot (a point translating in
the plane) can push an object arbitrarily closely along
any path in the object’s three-dimensional configuration
space, unless the object is a frictionless disk centered at
its center of mass (Lynch and Mason [18]).

� A single revolute joint, operating above a fixed-speed
conveyor, can move any polygon from any initial con-
figuration on the conveyor to a single goal configuration
by using pushing and conveyor drift (Akella et al. [3]).

In this paper we study underactuated nonprehensile ma-
nipulation using a dynamic model. In Section 4 we show
how a one-degree-of-freedom revolute robot, with just a two-
dimensional state space, can take a planar object to a six-
dimensional subset of its six-dimensional state space. Sec-
tion 5 studies the dynamic pick-and-place problem of plan-
ning a manipulator trajectory to take an object from one state
to another using nonprehensile contact and friction and dy-
namic forces. Finally, Section 6 presents experiments with a
one-degree-of-freedom direct-drive arm. The arm automat-
ically executes dynamic tasks such as snatching an object
from a table, rolling an object on the surface of the arm, and
throwing and catching.

This paper summarizes work presented in (Lynch [17]).

2 Related Work
This research has been inspired by industrial parts feeders
using dynamic nonprehensile manipulation, such as bowl
feeders and the APOS system (Hitakawa [14]). Related re-
search includes dynamic parts orienting on a vibrating plate
(Böhringer et al. [7], Swanson et al. [24]). Other forms
of nonprehensile manipulation are parts orienting by tray-
tilting (Erdmann and Mason [11]), tumbling (Sawasaki et
al. [21]), pivoting (Aiyama et al. [2]), tapping (Higuchi [13],
Huang et al. [15]), two pin manipulation (Abell and Erd-
mann [1]), and two palm manipulation (Erdmann [10],
Zumel and Erdmann [27]).

Dynamic underactuated manipulation is similar to the
control of underactuated manipulators, except the unactuated
freedoms are controlled through unilateral frictional con-
tacts. Research on underactuated manipulators includes that
of Orioloand Nakamura [20] and Arai and Tachi [5]. In work
related to ours, Arai and Khatib [4] demonstrated rolling of a
cube on a paddle held by a PUMA. Their motion strategy was
hand-crafted with the assumption of infinite friction at the
rolling contact. In this paper, we automatically find motion
strategies which account for finite friction. Our approach to
motion planning uses nonlinear optimization, which has also

Figure 1: A one-degree-of-freedom frictionless revolute robot ma-
nipulating a rod. The robot can control the rod to a six-dimensional
subset of its state space. A frictionless prismatic joint cannot.

been used by Witkin and Kass [25], Yen and Nagurka [26],
and Chen [8] to find motion strategies for fully-actuated sys-
tems. Gradient descent approaches to motion planning for
underactuated systems have also been proposed by Divelbiss
and Wen [9], Fernandes et al. [12], and Sussmann [23].

See (Lynch [17]) for other related work.

3 Assumptions

All problems considered in this paper are planar, and the non-
prehensile contact between the object and the manipulator is
always either a point or line contact. Objects are polygonal.
Coulomb friction acts between the robot and the object.

4 Accessibility

The state of a one-degree-of-freedom revolute robot (Fig-
ure 1) is given by its angle and angular velocity (�; _�). The
state space of the robot link is a two-dimensional subset
of the six-dimensional planar state space, where the four
state equality constraints are that the pivot’s position can-
not change and its linear velocity must be zero. The natural
question is whether these constraints on the state of the robot
translate to equality constraints on the state (x; y; �; _x; _y; _�)
of the object it is manipulating. In most cases, the answer
is no. In other words, by exploiting dynamics, the robot
can take the object to a six-dimensional subset of its six-
dimensional planar state space.

To show this, we can examine the Lie algebra of vec-
tor fields describing the possible motions of the object as a
function of the current state and the manipulator control (see
Lynch [17]). A one-degree-of-freedom revolute robot can
exploit Coriolis and centrifugal forces to achieve control of
the object’s six state variables, even with frictionless con-
tact. A one-degree-of-freedom frictionless prismatic robot
cannot.

In this paper we describe an intuitive approach to control-
ling the degrees-of-freedom of the object using algorithmic
control, which is the basis of the planner described in Sec-
tion 5. The idea behind algorithmic control is to control only
a subset of the state variables at any given time, but to switch
between subsets such that the goal state is reached. For ex-
ample, a unicycle can be driven to the zero state by first re-
orienting it so that it points toward the origin, then driving
it to the origin, and finally reorienting it to the goal angle.
In general, we must account for the possibility of drift in the
variables that are not being directly controlled.

Figure 2: Manipulation phases: dynamic grasp, slip, roll, and free
flight.

In the context of dynamic nonprehensile manipulation, we
can define the following control phases (Figure 2):

1. Dynamic grasp (Mason and Lynch [19]). An object is
in a dynamic grasp if it makes line contact with the ma-
nipulator and the manipulator accelerates such that the
object remains fixed against it. With a dynamic grasp,
up to min(2n; 6) of the object’s state variables can be
directly controlled by an n-joint manipulator.

2. Slip. Controlled slip provides control of two state vari-
ables, the slipping distance and the slipping velocity.

3. Roll. Rollingprovidescontrol of two state variables, the
rolling angle and angular velocity.

4. Slip and roll. Slip and roll occur simultaneously, giving
control of up to four state variables.

5. Free flight. After the object is released, it follows a one-
dimensional path through its state space, parameterized
by its time of flight.

A control algorithm can sequence these phases. The dimen-
sion of the accessible state space is the sum of the indepen-
dent freedoms of each phase, up to a maximum of six.

Example. An n-degree-of-freedom manipulator carries an
object with a dynamic grasp, allows it to begin rolling, and
then releases it. The dimension of the accessible state space
of the object is upper-bounded by min(2n + 2 + 1; 6).
Roughly speaking, the “controls” are the state of the object
at the onset of rolling, the roll angle and velocity at release,
and the time of flight (assuming the arrival time at the goal
state is unimportant).

5 Planning

For a given initial state of the object and the manipulator, the
planning problem is to find a manipulator trajectory to take
the object to the goal state using frictional, gravitational, and
dynamic forces. We are especially interested in the following
dynamic tasks:

1. Snatch: transfer an object initially at rest on a table to
rest on the manipulator. The manipulator accelerates
into the object, transferring control of the object from
the table to the manipulator.

2. Throw: throw the object to a desired goal state. The ob-
ject is carried with a dynamic grasp and released instan-
taneously (no slipping or rolling) at a point where the
free-flight dynamics will take the object to the goal state
(possibly a catch).

3. Roll: roll a polygonal object sitting on the manipulator
from one statically stable edge to another statically sta-
ble edge.

4. Rolling throw: allow the object to begin rolling before
throwing it. By controlling the roll angle and velocity
before the release, the dimension of the object’s acces-
sible state space is increased by two.

The manipulation phases in these tasks are dynamic grasp,
roll, and free flight. Slipping contact is not used.

To solve these problems we cast trajectory planning as a
constrained nonlinear optimization problem, where the sys-
tem’s initial state and goal state (or state manifold) are spec-
ified as constraints to the optimization. The trajectory is
also subject to a set of nonlinear equality and inequality con-
straints arising from constraints on the manipulator motion
and the dynamics governing the object’s motion relative to
the manipulator. Because dynamic nonprehensile manipula-
tion relies on friction between the object and the manipula-
tor, and friction coefficients are often uncertain and varying,
the optimization is usually asked to minimize the required
frictioncoefficient for successful manipulation. Unlike other
work on optimizing the time or energy of a robot’s motion,
we are more concerned with making the manipulation max-
imally robust to variations in the friction coefficient.

5.1 Problem Specification
Every task is assumed to consist of a sequence of manipula-
tion phases made up of one or more of the following: a (dy-
namic) grasp phase g, a roll phase r, and a flight phase f .
With this notation, a throw (as defined above) is denoted gf ,
a roll is denoted grg, and a rolling throw is denoted grf . A
snatch can be either g or rg. We assume that there is no re-
boundfrom the impact at the end of a roll (the transition from
r to g). The instant the new edge contacts, if the dynamic
grasp conditions are met, then the object is assumed to be in
a dynamic grasp.

The times of the manipulation phases are tg1 for the first
dynamic grasp phase g, troll for the rolling phase r, tg2 for
the second g phase, and tflight for the flight phase f . If a
phase is omitted, its corresponding time duration is zero. We
also define the running times Tg1 = tg1; Troll = Tg1 +
troll ; Tg2 = Troll + tg2; Tflight = Tg2 + tflight. Finally,
we define T = Tg2, where T is the total time the manipula-
tor is in contact with the object during the manipulation.

The primitive manipulations—the snatch, the roll, the
throw, and the rolling throw—can be composed or “glued to-
gether” to form more complex manipulations. The glue be-
tween primitives is a static equilibrium carry of the object.

In the next three subsections we describe the three funda-
mental elements of the nonlinear program: the design vari-
ables, the constraints, and the objective function.

5.1.1 Design Variables
The design variables consist of the variables x specifying
the trajectory of the manipulator over the interval [0; T]; the
times of each phase of the manipulation, tg1, troll , tg2, and
tflight (some subset of these will be applicable based on the

t
0 T

x

x

x

x

x

x x

x

x

0

1

−1

2

3

4 5

6

7

segment 0
segment 5

δ

t
1

t2 t3 t4 t5

Figure 3: A cubic B-spline joint trajectory with nine knot points
and six segments.

problem specification); and the required friction coefficient
� between the manipulator and the object. These variables
are not independent; the trajectory of the manipulator implic-
itly defines the time of each phase. However, the problem
formulation is much simpler if we make each of these vari-
ables explicit and constrain them to be dynamically consis-
tent. Although we cannot control the friction coefficient �, it
is convenient to represent � as a design variable and explic-
itly enforce the resulting friction constraints.

Many different finite parameterizations of manipulator
trajectories have been explored, including polynomials,
Fourier bases, summed Fourier and polynomial functions,
splines, and piecewise constant acceleration segments. Af-
ter some experimentation, we decided to represent trajecto-
ries as uniform cubic B-splines (Bartels [6], Chen [8]).

For an n-joint robot, x = (x1;x2; : : : xn), where xi is
the vector of knot points for the cubic B-spline position his-
tory of joint i. The time of each knot point xij is given by tj,
and the knot points are evenly spaced in time. The position
of the joint passes near the knot points; the actual position at
each time is obtained by taking a weighted sum of the four
knot points which are closest in time. The weighting basis
functions are cubic polynomials of time. Therefore, the posi-
tion isC2 and piecewise cubic, the velocity isC1 and piece-
wise quadratic, and the acceleration isC0 and piecewise lin-
ear (constant jerk segments). See Figure 3.

5.1.2 Constraints
Constraints arise from limitations on the motion of the ma-
nipulatorand constraints on the motion of the object. The lat-
ter are determined by the inequality constraints of Coulomb
friction and the equality constraints of Newton’s laws. To
simplify the notation, the dependencies of the constraints on
the design variables is omitted.

Manipulator constraints

1. Position constraints t 2 [0; T]

p(�(t)) � 0;

where � is the arm configuration and p is a vector-
valued function representing joint limits and obstacles.

2. Joint velocity constraints t 2 [0; T]

_�min � _�(t) � _�max

3. Joint torque constraints t 2 [0; T]

�min � � (t) � �max;

where � (t) is the torque to move the arm and object
along the trajectory.

4. Initial state constraints

�(0) = �0; _�(0) = _�0

Object constraints During a dynamic grasp or rolling
phase, contact friction constraints must be enforced to pre-
vent slipping or breaking contact. These force constraints
encode the unilateral nature of contact (forces can only be
applied into the object) and the finite friction coefficient �.

To maintain a dynamic grasp, the sum of the negated
gravitational vector �g and the manipulator’s acceleration,
measured in the object frame, must fall inside an accelera-
tion cone A. The cone A is determined by the line contact
and the the friction coefficient �, and it lives in the three-
dimensional space of body-centered accelerations (two lin-
ear components and one angular component). The cone is
bounded by four edges, a1; a2; a3; a4, numbered so that the
interior of the cone lies to the left as we move from a1 to
a2, etc. (These edges correspond to the accelerations of the
object from forces through the endpoints of the line contact
and on the boundaries of the friction cone.) The magnitude
of these vectors is not important, but for simplicity assume
they are unit vectors. We now form the 3� 4 matrix

Ag = (a2 � a1 j a3 � a2 j a4 � a3 j a1 � a4);

where each column of Ag is an outward-pointing normal to
a face of the acceleration cone A. The acceleration of the
manipulator must have a nonpositive dot product with each
column vector of Ag.

1. Dynamic grasp constraints (dynamic grasp phase)

AT
gi (_Jgi(�(t)) _�(t) + Jgi(�(t)) ��(t) � g) � 0

where i is 1 or 2, depending on the current dynamic
grasp phase. During a dynamic grasp phase, Jgi and
_Jgi, the manipulator Jacobian and its time derivative,
are measured at the center of mass of the object, so that
all accelerations can be represented in the object frame.

During rolling contact, a single point of the object is in
contact with the manipulator, so A is a planar acceleration
cone (now measured in the world frame), bounded by the two
edgesal and ar (from forces on the left and right edges of the
friction cone, respectively). Define the vector a? normal to
the plane of this cone: a? = ar � al. We form the matrix
Ar = (a? � al j ar � a?), where each column of Ar lies
in the (al; ar) plane and is an outward-pointing normal to an
edge of the acceleration cone. The acceleration of the object
must have a nonpositive dot product with each column vec-
tor of Ar .

The object acceleration aroll = (aroll;x ; aroll;y ; �roll)
T

(measured at its center of mass) required to maintain the
rolling contact is determined by assuming a pin joint at
the contact and finding the object acceleration consistent
with the motion of the manipulator. The acceleration a =
(ax; ay; �)

T of the contact point on the robot (including
negated gravity) is given by

a = _Jr(�(t)) _�(t) + Jr(�(t)) ��(t)� g;

whereJr and _Jr are measured at the contact point on the ma-
nipulator. The constraint that the linear acceleration (ax; ay)
matches the acceleration of the contact point on the object is
expressed

(ax; ay) = �!2r+ (�ry�roll ; rx�roll) + (aroll;x; aroll;y);

where ! is the angular velocity of the object, r = (rx; ry) is
the vector from the CM of the object to the contact point in
the world frame. This gives us two constraints on the object
acceleration aroll ; the third is that aroll must result from a
force through the contact point:

�roll =
1

�2
(rxaroll;y � ryaroll;x);

where � is the object’s radius of gyration. After a little ma-
nipulation, we get

aroll;x =
ax(�2 + r2x) + ayrxry + rx!

2(�2 + r2x + r2y)

�2 + r2x + r2y

aroll;y =
ay(�2 + r2y) + axrxry + ry!

2(�2 + r2x + r2y)

�2 + r2x + r2y

�roll =
rxaroll;y � ryaroll;x

�2
:

Now we can write the rolling friction constraints.

2. Rolling friction constraints (rolling phase only)

AT
r aroll � 0

3. Roll angle constraints (rolling phase only)

 min � (t) � max;

where is the angle of the object relative to the manip-
ulator. This constraint prevents the object from pene-
trating the manipulator during the rolling phase.

4. Roll completed constraint (for rolls only)

 (Troll) = goal

5. Release state constraints (for throws only)

s(q; _q; tflight) = 0

These constraints specify that the object reaches the
goal submanifold by free flight, where (q; _q) is the re-
lease state and tflight is the time of flight. The goal
submanifold is usually specified by goal values of some
subset of the state variables.

In principle, the manipulator constraints (1)–(3) and ob-
ject constraints (1)–(3) should be satisfied at all times dur-
ing their domain of applicability. In practice, the optimiza-
tion can only handle a finite number of constraints. For
this reason, the constraints are only enforced at p uniformly-
sampled points during each manipulation phase. In the ex-
amples here, p is chosen between 20 and 50.

5.1.3 Objective Function
In most of our problems, we minimize the required friction
coefficient � between the object and manipulator.

5.2 Sequential Quadratic Programming
Sequential quadratic programming (SQP) is used to solve
the nonlinear program. SQP is a generalization of New-
ton’s method for unconstrained optimization in that it finds a
step away from the current iterate by minimizing a quadratic
model of the problem. At each iteration, SQP determines the
direction to step by solving a quadratic subprogram, where
the objectivefunction is a quadratic approximationat the cur-
rent point and nonlinear constraints are linearized.

The constrained nonlinear program can be written

min f(x)

subject to ci(x) � 0; i 2 I

ci(x) = 0; i 2 E

wherex 2 Rm is the iterate, f is the objective function, each
ci is a constraint mapping Rm to R, and I and E are index
sets for inequality and equality constraints, respectively. The
Lagrangian function is defined

L(x; �) = f(x) +
X

i2I[E

�ici(x)

where the �i are the Lagrange multipliers. At each iterate,
the direction of the step is computed by a quadratic program-
ming subproblem of the form

minrf(xk)
T d+

1

2
dTHkd

subject to ci(xk) +rci(xk)
Td � 0; i 2 I

ci(xk) +rci(xk)
Td = 0; i 2 E

wherexk is the current iterate, the constraints ci are local lin-
ear approximations, and Hk is a positive definite estimate of
the Hessian of the Lagrangian (r2

xxL(xk; �k)). The solution
dk to this subproblem defines the direction of descent. The
distance moved in the step direction is determined by a line
search to minimize a merit function consisting of the objec-
tive function and a penalty function based on the violation of
the constraints.

To solve SQP problems, we used CFSQP (C code for
Feasible Sequential Quadratic Programming, Lawrence et
al. [16]) using QLD (Schittkowski [22]) to solve each
quadratic programming subproblem. CFSQP is a variant of
the general approach described above, and it is unique in

x

y

gravity θ

Figure 4: The NSK direct-drive arm.

that it maintains “feasible” iterates during the optimization—
once an iterate is found that satisfies all linear constraints
and nonlinear inequality constraints, all subsequent iterates
will also satisfy these constraints. For problems without an
rg subsequence, this property assures that each iterate in the
solution process corresponds to a physically valid motion,
though the goal state may not be achieved.

As with all iterative gradient-based optimization routines,
SQP finds a local optimum which is not necessarily the
global optimum. In addition, the finite-dimensional parame-
terization of the manipulator trajectory artificially limits the
space of possible trajectories. The particular local optimum
achieved by SQP depends on the shape of the feasible space
and the initial guess. This problem can be alleviated by solv-
ing with many different initial guesses and choosing the best
solution.

5.3 Putting It Together
A dynamic task is specified by a geometric description of the
polygonal object, along with its center of mass and radius of
gyration �; the initial state and the desired goal state; and the
sequence of manipulation phases to use (e.g., g, rg, gf , grg,
or grf). A guess is also required to initialize the search. The
motion of the object during rolling phases is simulated us-
ing fourth-order Runge-Kutta. SQP requires gradients of the
constraints with respect to the design variables, and these are
calculated using finite differences. All functions are imple-
mented in C on a Sun SPARC 20.

6 Experiments

We have built a one-degree-of-freedom arm powered by an
NSK direct-drive motor (Figure 4). The hollow aluminum
arm is centrally-mounted and 122 cm long with a 10 cm
square cross-section. It also has a “palm” mounted at a 45 de-
gree angle. The top surface of the arm and the palm are used
as manipulation surfaces. To increase friction and damping
on these surfaces, they have been covered with a soft, 5 mm
thick foam.

Because dynamic manipulation requires precise trajectory
following, we have carefully modeled the response of the
NSK motor. As a result, we obtain good open-loop track-
ing. (See (Lynch [17]) for details.) Small feedback correc-
tions are also used.

Trajectories specified by the planner are directly imple-
mented on the robot, without modification. In some cases,

however, effects that are not modeled in the planner cause the
plans to fail when implemented on the robot. For example,
the planner assumes that if the dynamic grasp constraints are
satisfied at the end of a roll (an rg sequence), then the object
is immediately in a dynamic grasp. Impact is not modeled.
Also, the planner’s rigid-body assumption is violated by the
soft foam, which has the effect of slightly rounding a rolling
vertex. When these unmodeled effects cause a plan to fail,
the problem specification can be modified to compensate.

To execute a throw, the arm is maximally decelerated at
the release point. This causes the object to be released nearly
instantaneously. If the arm is also to catch the object, it fol-
lows a bang-bang trajectory to reach the catching configura-
tion. Catches are made robust by appropriately choosing the
object’s impact state with the immobile arm.

We describe a snatch, throw, roll, and rolling throw in
Figures 5–13. The test objects are lightweight and made of
wood. More details can be found in (Lynch [17]).

7 Conclusion and Future Work
Dynamic underactuated nonprehensile manipulation ex-
ploits dynamic effects to achieve interesting behaviors with
simple robots. This paper has presented an approach to
generating open-loop controls that have been successfully
implemented on a real robot system to perform a variety of
dynamic tasks.

Future work should address feedback stabilization of dy-
namic manipulation trajectories, possibly using vision feed-
back; a more detailed analysis of the geometry of accessible
states; using repeated contacts (batting) to increase the acces-
sible state space; and tractable approaches to finding globally
optimal manipulation plans.

Acknowledgments
This work was funded by NSF under grant IRI-9114208.
Thanks to Pradeep Goel and NSK for providing the motor
used in the experiments and André Tits and Craig Lawrence
for providing the CFSQP software.

References
[1] T. Abell and M. A. Erdmann. Stably supported rotations of a pla-

nar polygon with two frictionless contacts. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 1995.

[2] Y. Aiyama, M. Inaba, and H. Inoue. Pivoting: A new method of gras-
pless manipulation of object by robot fingers. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 136–143,
Yokohama, Japan, 1993.

[3] S. Akella, W. Huang, K. M. Lynch, and M. T. Mason. Planar manip-
ulation on a conveyor with a one joint robot. In International Sympo-
sium on Robotics Research, 1995.

[4] H. Arai and O. Khatib. Experiments with dynamic skills. In 1994
Japan–USA Symposium on Flexible Automation, pages 81–84, 1994.

[5] H. Arai and S. Tachi. Position control system of a two degree of free-
dom manipulator with a passive joint. IEEE Transactions on Indus-
trial Electronics, 38(1):15–20, Feb. 1991.

[6] R. H. Bartels, J. C. Beatty, and B. A. Barsky. An Introduction to
Splines for Use in Computer Graphics and Geometric Modeling. Mor-
gan Kaufmann, 1987.

[7] K. F. Böhringer, V. Bhatt, and K. Y. Goldberg. Sensorless manipu-
lation using transverse vibrations of a plate. In IEEE International
Conference on Robotics and Automation, pages 1989–1996, 1995.

[8] Y.-C. Chen. Solving robot trajectory planning problems with uniform
cubic B-splines. Optimal Control Applications and Methods, 12:247–
262, 1991.

[9] A. W. Divelbiss and J. Wen. Nonholonomic path planning with in-
equality constraints. In IEEE International Conference on Decision
and Control, pages 2712–2717, 1993.

[10] M. A. Erdmann. An exploration of nonprehensile two-palm manip-
ulation: Planning and execution. In International Symposium on
Robotics Research, 1995.

[11] M. A. Erdmann and M. T. Mason. An exploration of sensorlessmanip-
ulation. IEEE Transactions on Robotics and Automation, 4(4):369–
379, Aug. 1988.

[12] C. Fernandes, L. Gurvits, and Z. Li. Near-optimal nonholonomic mo-
tion planning for a system of coupled rigid bodies. IEEE Transactions
on Automatic Control, 30(3):450–463, Mar. 1994.

[13] T. Higuchi. Application of electromagnetic impulsive force to pre-
cise positioning tools in robot systems. In International Symposium
on Robotics Research, pages 281–285. Cambridge, MA: MIT Press,
1985.

[14] H. Hitakawa. Advanced parts orientation system has wide application.
Assembly Automation, 8(3):147–150, 1988.

[15] W. Huang, E. P. Krotkov, and M. T. Mason. Impulsive manipulation.
In IEEE InternationalConference on Robotics and Automation, pages
120–125, 1995.

[16] C. Lawrence, J. L. Zhou, and A. L. Tits. User’s guide for CFSQP ver-
sion 2.3. Institute for Systems Research 94-16, University of Mary-
land, 1994.

[17] K. M. Lynch. Nonprehensile Robotic Manipulation: Controllabil-
ity and Planning. PhD thesis, Carnegie Mellon University, The
Robotics Institute, Mar. 1996. Available as CMU-RI-TR-96-05 and
at http://www.cs.cmu.edu/˜mlab.

[18] K. M. Lynch and M. T. Mason. Controllability of pushing. In IEEE In-
ternational Conference on Robotics and Automation, pages 112–119,
Nagoya, Japan, 1995.

[19] M. T. Mason and K. M. Lynch. Dynamic manipulation. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
152–159, Yokohama, Japan, 1993.

[20] G. Oriolo and Y. Nakamura. Control of mechanical systems with
second-order nonholonomic constraints: Underactuated manipula-
tors. In Conference on Decision and Control, pages 2398–2403,1991.

[21] N. Sawasaki, M. Inaba, and H. Inoue. Tumbling objects using a multi-
fingered robot. In Proceedings of the 20th International Symposium
on Industrial Robots and Robot Exhibition, pages 609–616, Tokyo,
Japan, 1989.

[22] K. Schittkowski. QLD: A Fortran Code for Quadratic Programming,
User’s Guide. Mathematisches Institut, Universität Bayreuth, Ger-
many, 1986.

[23] H. Sussmann. A continuation method for nonholonomic path-finding
problems. In IEEE InternationalConferenceon Decision and Control,
pages 2718–2723, 1993.

[24] P. J. Swanson, R. R. Burridge, and D. E. Koditschek. Global asymp-
totic stability of a passive juggler: A parts feeding strategy. In IEEE
International Conference on Robotics and Automation, pages 1983–
1988, 1995.

[25] A. Witkin and M. Kass. Spacetime constraints. Computer Graphics,
22(4):159–168, 1988.

[26] V. Yen and M. L. Nagurka. A suboptimal trajectory planning problem
for robotic manipulators. ISA Transactions, 27(1):51–59, 1988.

[27] N. B. Zumel and M. A. Erdmann. Nonprehensile two palm manipula-
tion with non-equilibrium transitions between stable states. In IEEE
International Conference on Robotics and Automation, pages 3317–
3323, 1996.

 0ms 100ms 200ms

 300ms 400ms 500ms

 538ms 589ms 640ms

 691ms 742ms 754ms

ARMPOS
OBJPOS

0.2 s/div

0.
5

ra
d/

di
v

ARMVEL
OBJVEL

0.2 s/div

1
ra

d/
s/

di
v

ARMACC

0.2 s/div

10
 r

ad
/s

^2
/d

iv

roll
ends

Figure 5: Snatch: the trajectory found by the optimization. Fric-
tion is 0.609. The plots show the angle of the arm (ARMPOS) and
the angle of the object (OBJPOS) relative to it. The time between
frames is not constant, so an equal numer of frames of both phases
can be seen. The clock indicates the time of each frame, and the
previous three frames create a motion blur.

Figure 6: Snatch: implementation on the robot.

Snatch. Using the phase sequence rg, the optimization
finds the snatching trajectory shown in Figure 5 after 200
iterations and 120 seconds. The trajectory consists of nine
knot points, and the required friction coefficient � is 0.609.
The initial guess is for the arm to remain motionless, but
the constraints of the optimization pull it toward a solution
where the palm accelerates into the wooden block. The goal
is any statically stable configuration after the roll has been
completed.

The implementation on the arm works consistently (Fig-
ure 6). If the same trajectory is slowed down too much, the
block is simply pushed off the table, and if it is sped up too
much, the block is thrown.

 0ms 200ms 400ms

 600ms 800ms 1000ms

1200ms 1400ms 1600ms

1800ms 2000ms 2407ms

ARMPOS

0.2 s/div

0.
1

ra
d/

di
v

ARMVEL

0.2 s/div

1
ra

d/
s/

di
v

0.2 s/div

10
 r

ad
/s

^2
/d

iv ARMACC

release

Figure 7: Throw: required friction is 0.156.

Figure 8: Throw: implementation on the robot.

Throw. After snatching the wooden block, the arm reori-
ents it on the palm by throwing and catching it. Using
the phase sequence gf , the optimization finds the trajectory
shown in Figures 7 and 8 after 98 iterations and 13 seconds.
The trajectory consists of seven knot points and the required
friction coefficient is 0.156. The goal is a catching configu-
ration where the block is overrotated to counteract its angular
velocity.

Interestingly, the solution is to “double pump” before
throwing. Path reversals are often necessary to minimize the
required friction.

 0ms 200ms 400ms

 600ms 800ms 1000ms

1121ms 1242ms 1364ms

1485ms 1606ms 1606ms

ARMPOS
OBJPOS

0.2 s/div

0.
5

ra
d/

di
v

ARMVEL
OBJVEL

0.2 s/div

1
ra

d/
s/

di
v

ARMACC

0.2 s/div

10
 r

ad
/s

^2
/d

iv

Figure 9: Roll: the trajectory found by the optimization.

k=0 (initial guess)
k=1

k=8
k=10

k=20k=25

k=40 k=55 (solution)

0.
2

ra
d/

di
v

0.2 sec/div

Figure 10: Roll: initial guess, solution, and intermediate iterates.

Figure 11: Roll: implementation on the robot.

Roll. The nine-knot rolling trajectory of Figures 9, 10, and
11 takes 32 seconds and 55 iterations to find. The object is
a 27 cm square frame. Note the windup before the roll. In
this example, the contact friction � is set to 1.5 and the ob-
jective is to minimize the (squared) impact velocity at the end
of the roll (Figure 9). We also limit the end angle of the arm
to make the roll experimentally robust to impact. Otherwise,
the solution is to end the roll with zero impact velocity and
the arm at -45 degrees, which is not robust.

 0ms 113ms 226ms

 339ms 452ms 566ms

 606ms 646ms 686ms

 726ms 766ms 1083ms

ARMPOS
OBJPOS

0.2 s/div

0.
5

ra
d/

di
v

ARMVEL
OBJVEL

0.2 s/div

1
ra

d/
s/

di
v

ARMACC

0.2 s/div

10
 r

ad
/s

^2
/d

iv

release

Figure 12: Rolling throw: the trajectory found by the optimization.

Figure 13: Rolling throw: implementation on the robot.

Rolling throw. In this example, a wooden cube (7.6 cm on
each side) is thrown with an angular velocity different from
that of the arm at release. This is only possible with a rolling
throw. Here the block rotates half a revolution clockwise be-
fore landing on the arm in the same position. Notice that the
block does not begin to roll when the arm is at its nadir; cen-
trifugal and gravitational forces combine to begin the roll.
The nine-knot trajectory in Figure 12 takes 54 iterations and
35 seconds to find. The required friction coefficient is 1.011.
Examining the geometry of the object, we see that the fric-
tion coefficient must be greater than 1.0 to apply a clockwise
torque to the object through the rollingvertex, indicating that
the solution is nearly optimal.

The rolling throw is the dynamic task most sensitive to tra-
jectory error, as any error in the roll is propagated to the flight
phase. The implementation is shown in Figure 13.

