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Abstract

By exploiting centrifugal and Coriolis forces, simple, low-
degree-of-freedom robots can control objects with more
degrees-of-freedom. For example, by allowing the object
toroll and dip, a one-degree-of-freedom revol ute robot can
take a planar object to a full-dimensional subset of its state
space. Wepresent a dynamic mani pulationplanner that finds
manipulator trajectoriesto move an object fromone stateto
another without grasping it. Thetrajectories have been suc-
cessfully implemented on a one-degree-of-freedom direct-
drivearmto performdynamic tasks such as snatching an ob-
ject fromatable, rolling an object on the surface of thearm,
and throwing and catching.

1 Introduction

The utility of a manipulator is measured by the set of tasks
it is capable of accomplishing. To determine the capability
of arobot, we must consider both properties of the robot and
the mechanics laws mapping the robot’s actions to changes
in thetask state.

For parts transfer problems, a particularly useful simpli-
fying assumption is that the part is grasped and follows the
end-effector asit moves. With thisassumption about the me-
chanics, we can focus on properties of the robot such as its
payload capacity, accuracy, speed, and the geometry of its
workspace. In particular, a genera positioning manipulator
requiresat least six degrees-of-freedom, and much work has
been invested in the design and construction of sophisticated
positioning devices.

Surprisingly, however, little effort has been made to un-
derstand the manipulation capabilities of even the simplest
robots under more compl ete mechanics models. By exploit-
ing mechanics, a simple robot may be able to solve the same
tasksas amore complex robot. For example, by allowingthe
manipulated object to roll and dlip, alow-degree-of-freedom
robot can control more degrees-of-freedom of an object. Be-
cause the robot has fewer freedoms, the manipulation isun-
deractuated; because the object is not firmly grasped, the
contact is nonprehensile. With underactuated nonprehensile
mani pulation, some of the complexity of therobot systemis
transferred from hardware (jointsand actuators) to planning
and control.

Our previous work on underactuated nonprehensile ma-
nipul ation has focused on quasi static pushing. By analyzing
the mechanics of pushing, we have shown
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e A two-degree-of-freedom robot (a point trandating in
the plane) can push an object arbitrarily closely along
any path inthe object’ sthree-dimensional configuration
space, unlessthe object isafrictionlessdisk centered at
its center of mass (Lynch and Mason [18]).

e A single revolute joint, operating above a fixed-speed
conveyor, can move any polygon from any initial con-
figurationonthe conveyor to asinglegoal configuration
by using pushing and conveyor drift (Akellaet al. [3]).

In this paper we study underactuated nonprehensile ma-
nipulation using a dynamic model. In Section 4 we show
how aone-degree-of -freedom revol uterobot, with just atwo-
dimensiona state space, can take a planar object to a six-
dimensional subset of its six-dimensiona state space. Sec-
tion 5 studies the dynamic pick-and-place problem of plan-
ning a manipulator trajectory to take an object from one state
to another using nonprehensile contact and friction and dy-
namic forces. Finaly, Section 6 presents experimentswith a
one-degree-of-freedom direct-drive arm. The arm automat-
ically executes dynamic tasks such as snatching an object
from atable, rolling an object on the surface of the arm, and
throwing and catching.

This paper summarizes work presented in (Lynch [17]).

2 Redated Work

This research has been inspired by industrial parts feeders
using dynamic nonprehensile manipulation, such as bowl
feeders and the APOS system (Hitakawa [14]). Related re-
search includes dynamic parts orienting on a vibrating plate
(Bohringer et al. [7], Swanson et al. [24]). Other forms
of nonprehensile manipulation are parts orienting by tray-
tilting (Erdmann and Mason [11]), tumbling (Sawasaki et
al. [21]), pivoting (Aiyamaet al. [2]), tapping (Higuchi [13],
Huang et al. [15]), two pin manipulation (Abell and Erd-
mann [1]), and two pam manipulation (Erdmann [10],
Zumel and Erdmann [27]).

Dynamic underactuated manipulation is similar to the
control of underactuated manipulators, except the unactuated
freedoms are controlled through unilatera frictional con-
tacts. Research on underactuated manipulatorsincludes that
of Orioloand Nakamura[20] and Arai and Tachi [5]. Inwork
related to ours, Arai and Khatib [4] demonstrated rolling of a
cubeon apaddieheldby aPUMA. Their motion strategy was
hand-crafted with the assumption of infinite friction at the
rolling contact. In this paper, we automatically find motion
strategies which account for finite friction. Our approach to
motion planning uses nonlinear optimization, which hasa so



Figurel: A one-degree-of-freedomfrictionless revolute robot ma-
nipulating arod. Therobot can control the rod to asix-dimensional
subset of its state space. A frictionless prismatic joint cannot.

been used by Witkin and Kass [25], Yen and Nagurka [26],
and Chen[8] to find motion strategiesfor fully-actuated sys-
tems. Gradient descent approaches to motion planning for
underactuated systems have al so been proposed by Divelbiss
and Wen [9], Fernandes et al. [12], and Sussmann [23].

See (Lynch [17]) for other related work.

3 Assumptions

All problemsconsidered inthispaper are planar, and the non-
prehensile contact between the object and the manipulator is
always either a point or line contact. Objects are polygonal.
Coulomb friction acts between the robot and the object.

4 Accessbility

The state of a one-degree-of-freedom revolute robot (Fig-
ure 1) is given by itsangle and angular velocity (¢, 6). The
state space of the robot link is a two-dimensional subset
of the six-dimensional planar state space, where the four
state equality constraints are that the pivot’s position can-
not change and its linear velocity must be zero. The natural
questioniswhether these constraints on the state of the robot
trandaeto equality constraints on the state (z, y, ¢, &, ¥, ¢)
of the object it is manipulating. In most cases, the answer
is no. In other words, by exploiting dynamics, the robot
can take the object to a six-dimensional subset of its six-
dimensional planar state space.

To show this, we can examine the Lie agebra of vec-
tor fields describing the possible motions of the object as a
functionof the current state and the manipulator control (see
Lynch [17]). A one-degree-of-freedom revolute robot can
exploit Coriolisand centrifugal forces to achieve control of
the object’s six state variables, even with frictionless con-
tact. A one-degree-of-freedom frictionless prismatic robot
cannot.

In this paper we describe an intuitive approach to control -
ling the degrees-of-freedom of the object using algorithmic
control, which is the basis of the planner described in Sec-
tion 5. Theideabehind algorithmic control isto control only
asubset of the state variablesat any giventime, but to switch
between subsets such that the goa state is reached. For ex-
ample, aunicycle can be driven to the zero state by first re-
orienting it so that it points toward the origin, then driving
it to the origin, and finally reorienting it to the goa angle.
In genera, we must account for the possibility of driftinthe
variablesthat are not being directly controlled.

Figure2: Manipulation phases: dynamic grasp, slip, roll, and free
flight.

In the context of dynamic nonprehensile manipulation, we
can define the following control phases (Figure 2):

1. Dynamic grasp (Mason and Lynch [19]). An object is
inadynamic grasp if it makes line contact with the ma-
nipulator and the manipulator accel erates such that the
object remains fixed against it. With a dynamic grasp,
up to min(2n, 6) of the object’s state variables can be
directly controlled by an n-joint manipulator.

2. Sip. Controlleddip provides control of two state vari-
ables, the dlipping distance and the slipping velocity.

3. Roall. Rollingprovidescontrol of two statevariables, the
rolling angle and angular velocity.

4. Sipandroll. Slipand roll occur simultaneously, giving
control of up to four state variables.

5. Freeflight. After theobject isreleased, it followsaone-
dimensional path throughitsstate space, parameterized
by itstime of flight.

A control agorithm can sequence these phases. The dimen-
sion of the accessible state space is the sum of the indepen-
dent freedoms of each phase, up to a maximum of six.

Example. An n-degree-of-freedom manipulator carries an
object with a dynamic grasp, alowsit to begin rolling, and
then releases it. The dimension of the accessible state space
of the object is upper-bounded by min(2n + 2 + 1,6).
Roughly spesking, the “controls’ are the state of the object
at the onset of rolling, the roll angle and velocity at release,
and the time of flight (assuming the arrival time at the goa
state is unimportant).

5 Planning

For agiveninitia state of the object and the manipulator, the
planning problem is to find a manipulator trajectory to take
the object to thegoa state using frictional, gravitational, and
dynamicforces. Weareespecially interested inthefollowing
dynamic tasks:

1. Snatch: transfer an object initialy at rest on atable to
rest on the manipulator. The manipulator accelerates
into the object, transferring control of the object from
the table to the manipulator.

2. Throw: throw the object to adesired goal state. The ob-
jectiscarried withadynamic grasp and rel eased instan-
taneously (no dlipping or rolling) a a point where the
free-flight dynamicswill takethe object tothegoal state
(possibly a catch).



3. Roll: roll apolygona object sitting on the manipul ator
from one statically stable edge to another statically sta
ble edge.

4. Rolling throw: alow the object to begin rolling before
throwing it. By controlling the roll angle and velocity
before the rel ease, the dimension of the object’s acces
sible state space isincreased by two.

The manipulation phases in these tasks are dynamic grasp,
roll, and free flight. Slipping contact is not used.

To solve these problems we cast trgjectory planning as a
constrained nonlinear optimization problem, where the sys-
tem’sinitia state and god state (or state manifold) are spec-
ified as constraints to the optimization. The trgjectory is
al so subject to aset of nonlinear equality and inequality con-
straints arising from constraints on the manipulator motion
and the dynamics governing the object’s motion relative to
the manipulator. Because dynamic nonprehensile manipula-
tion relies on friction between the object and the manipula-
tor, and friction coefficients are often uncertain and varying,
the optimization is usually asked to minimize the required
friction coefficient for successful manipulation. Unlikeother
work on optimizing the time or energy of arobot’s motion,
we are more concerned with making the manipul ation max-
imally robust to variationsin the friction coefficient.

5.1 Problem Specification

Every task isassumed to consist of a sequence of manipula
tion phases made up of one or more of the following: a (dy-
namic) grasp phase ¢, aroll phase r, and a flight phase f.
Withthis notation, a throw (as defined above) is denoted ¢f,
aroll isdenoted grg, and arolling throw is denoted grf. A
snatch can be either ¢ or rg. We assume that thereis no re-
boundfrom theimpact at theend of aroll (thetransitionfrom
r to g). The ingtant the new edge contacts, if the dynamic
grasp conditionsare met, then the object isassumed to bein
a dynamic grasp.

The times of the manipulation phases are t,; for the first
dynamic grasp phase g, ¢, for the rolling phase r, ¢,4- for
the second ¢ phase, and ¢ 5, for the flight phase f. If a
phaseisomitted, its corresponding timedurationiszero. We
aso define the running times 71 = t,1,70n = 141 +
trott, Tgo = Drott + ty2, Titight = Tyo + trrigne. Findly,
we define " = Tj5, where T' is the total time the manipula-
tor isin contact with the object during the manipulation.

The primitive manipulations—the snatch, the roll, the
throw, and therolling throw—can be composed or “ glued to-
gether” to form more complex manipulations. The glue be-
tween primitivesis a static equilibrium carry of the object.

Inthe next three subsections we describe the three funda-
mental e ements of the nonlinear program: the design vari-
ables, the constraints, and the objective function.

5.1.1 Design Variables

The design variables consist of the variables x specifying
the trgjectory of the manipulator over theinterval [0, T; the
times of each phase of the manipulation, ¢41, {11, {42, and
t 115451 (SOMe subset of these will be applicable based on the

segment O

Figure 3: A cubic B-spline joint trajectory with nine knot points
and six segments.

problem specification); and the required friction coefficient
1 between the manipulator and the object. These variables
arenot independent; thetrajectory of the manipul ator implic-
itly defines the time of each phase. However, the problem
formulation is much simpler if we make each of these vari-
ables explicit and constrain them to be dynamically consis-
tent. Althoughwe cannot control thefriction coefficient g, it
is convenient to represent ;. as adesign variable and explic-
itly enforce the resulting friction constraints.

Many different finite parameterizations of manipulator
trgjectories have been explored, including polynomials,
Fourier bases, summed Fourier and polynomial functions,
splines, and piecewise constant acceleration segments. Af-
ter some experimentation, we decided to represent trgjecto-
ries as uniform cubic B-splines (Bartels[6], Chen [8]).

For an n-joint robot, x = (x*,x?, ... x"), wherex’ is
the vector of knot pointsfor the cubic B-spline position his-
tory of joint ¢. Thetime of each knot point z; isgivenby ¢;,
and the knot points are evenly spaced in time. The position
of thejoint passes near the knot points; the actual position at
each time is obtained by taking a weighted sum of the four
knot points which are closest in time. The weighting basis
functionsare cubic polynomiasof time. Therefore, theposi-
tionisC? and piecewise cubic, thevelocity isC'! and piece-
wise quadratic, and the acceleration is C'° and piecewise lin-
ear (constant jerk segments). See Figure 3.

5.1.2 Constraints

Constraints arise from limitations on the motion of the ma-
ni pulator and constrai ntson themotion of the object. Thelat-
ter are determined by the inequality constraints of Coulomb
friction and the equality constraints of Newton's laws. To
simplify the notation, the dependencies of the constraints on
the design variablesis omitted.

Manipulator constraints

1. Positioncongtraints ¢ € [0, 7]

p(O(1)) <0,

where © is the arm configuration and p is a vector-
valued function representing joint limits and obstacles.

2. Joint velocity constraints ¢ € [0, 7]

emin S @(t) S émax



3. Joint torqueconstraints ¢ € [0, 7]

Tmin S T(t) S Tmazx

where 7(¢) is the torque to move the arm and object
along the trgjectory.

4, Initial state constraints

0(0) = 8y, O(0) = 6,

Object constraints During a dynamic grasp or rolling
phase, contact friction constraints must be enforced to pre-
vent dipping or breaking contact. These force constraints
encode the unilateral nature of contact (forces can only be
applied into the object) and the finitefriction coefficient .

To maintain a dynamic grasp, the sum of the negated
gravitational vector —g and the manipulator’s acceleration,
mesasured in the object frame, must fall inside an accelera-
tion cone .A. The cone A is determined by the line contact
and the the friction coefficient 1, and it lives in the three-
dimensional space of body-centered accelerations (two lin-
ear components and one angular component). The cone is
bounded by four edges, a;, a-, a3, a4, numbered so that the
interior of the cone lies to the left as we move from a; to
ay, etc. (These edges correspond to the accelerations of the
object from forces through the endpoints of the line contact
and on the boundaries of the friction cone.) The magnitude
of these vectors is not important, but for simplicity assume
they are unit vectors. We now form the 3 x 4 matrix

Ag:(azxal|a3xa2|a4xa3|alxa4),

where each column of A, isan outward-pointing normal to
a face of the acceleration cone .A. The acceleration of the
manipulator must have a nonpositive dot product with each
column vector of A ;.

1. Dynamic grasp constraints (dynamic grasp phase)

AG (Ji(0(1)) O(t) + 3,:(0()) (1) — ) <0

where 7 is 1 or 2, depending on the current dynamic
grasp phase. During a dynamic grasp phase, J,; and
J4;, the manipulator Jacobian and its time derivative,
are measured at the center of mass of the object, so that
all accelerations can be represented in the object frame.

During rolling contact, a single point of the object isin
contact with the manipulator, so A is a planar acceleration
cone(now measured intheworldframe), bounded by thetwo
edgesa; and a, (fromforcesontheleft and right edgesof the
friction cone, respectively). Define the vector a; normal to
the plane of thiscone: a; = a, x a;. Weform the matrix
A, =(a; x a; | a, x a; ), where each columnof A, lies
inthe(ay, a, ) plane and isan outward-pointing normal to an
edge of the acceleration cone. The accel eration of the object
must have a nonpositive dot product with each column vec-
torof A,.

The Obj ect acceleration a,,;; = (aroll,x y Aroll y aroll)T
(measured at its center of mass) required to maintain the
rolling contact is determined by assuming a pin joint at
the contact and finding the object acceleration consistent
with the motion of the manipulator. The acceleration a =
(az,ay, )T of the contact point on the robot (including
negated gravity) is given by

a=J.(0(1)O(t) + 3,.(0(1) (1) — g,

where J, and J,. are measured at the contact point onthe ma
nipulator. The constraint that thelinear acceleration (a., ay )
matches the accel eration of the contact point on the object is
expressed

(axa ay) = _Wzr + (_ryarolla rxaroll) + (aroll,xa aroll,y)a

wherew istheangular velocity of theobject, r = (v, ry) is
the vector from the CM of the object to the contact point in
theworld frame. This gives us two constraints on the object
acceleration a,..;;; thethird isthat a,,; must result from a
force through the contact point:

1

Uypoll = p_z(rxaroll,y - ryaroll,x)a

where p isthe object’ sradius of gyration. After alittle ma-
nipulation, we get

az(p? +13) +ayrory + raw’(p? + 17 4 1)

Arolle = 2 2 2
pm ATty
27 .2 2 2
ay(p* + 7“5) + agrery + ryw?(p” + 17+ 1)
Qrolly = 2 2 2
pe ATy
_ Tzlpolly — TyQroll
Qpoll — B .

P
Now we can writetherolling friction constraints.

2. Rolling friction constraints (rolling phase only)

Af Aroll S 0

3. Roll angle constraints (rolling phase only)

1/)mm S 1/)(t) S 1/)maxa

where ¢ isthe angle of the object relative to the manip-
ulator. This constraint prevents the object from pene-
trating the manipulator during the rolling phase.

4. Roll completed constraint (for rollsonly)
’l/)(Troll) = 1/)goal
5. Release state constraints (for throws only)

S(qa (.latflight) =0

These constraints specify that the object reaches the
goal submanifold by free flight, where (q, q) isthere-
lease state and t 74, is the time of flight. The goal
submanifoldisusually specified by goa values of some
subset of the state variables.



In principle, the manipulator constraints (1)—(3) and ob-
ject constraints (1)—(3) should be satisfied at all times dur-
ing their domain of applicability. In practice, the optimiza-
tion can only handle a finite number of constraints. For
thisreason, the constraintsare only enforced at p uniformly-
sampled points during each manipulation phase. In the ex-
amples here, p is chosen between 20 and 50.

5.1.3 Objective Function

In most of our problems, we minimize the required friction
coefficient i between the object and manipul ator.

5.2 Sequential Quadratic Programming

Sequentia quadratic programming (SQP) is used to solve
the nonlinear program. SQP is a generalization of New-
ton’smethod for unconstrained optimizationin that it findsa
step away from the current iterate by minimizing aquadratic
model of the problem. At each iteration, SQP determinesthe
direction to step by solving a quadratic subprogram, where
theobjectivefunctionisaquadratic approxi mationat the cur-
rent point and nonlinear constraints are linearized.
The constrained nonlinear program can be written

min f(xz)
subject to ¢;(2) < 0, i€
elx) = 0, i€é&

wherexz € R™ istheiterate, f istheobjectivefunction, each
¢; isacongraint mapping R™ to R, and Z and £ are index
setsforinegquality and equality constraints, respectively. The
Lagrangian function is defined

L(z,A) = f(x)+ D> Aici(z)

I€TUE

where the A; are the Lagrange multipliers. At each iterate,
thedirection of the step is computed by aquadratic program-
ming subproblem of the form

1
min V f(z;)"d + §dTde

subject to ci(xk)—i—Vci(xk)Td < 0, 1€
Cl(l‘k)—l—VCl(l‘k)Td = 0, i€&

wherez;, isthecurrent iterate, the constraintsc; arelocal lin-
ear approximations, and H isapositivedefinite estimate of
theHessian of theLagrangian (V2 L(z, Ax)). Thesolution
dy, to this subproblem defines the direction of descent. The
distance moved in the step direction is determined by aline
search to minimize a merit function consisting of the objec-
tivefunctionand a penalty function based on the violation of
the constraints.

To solve SQP problems, we used CFSQP (C code for
Feasible Sequential Quadratic Programming, Lawrence et
al. [16]) using QLD (Schittkowski [22]) to solve each
guadratic programming subproblem. CFSQP is a variant of
the general approach described above, and it is uniquein

gravity

Figure4: The NSK direct-drive arm.

that it maintains“feasible” iterates during the optimization—
once an iterate is found that satisfies al linear constraints
and nonlinear inequality constraints, all subsequent iterates
will also satisfy these constraints. For problems without an
rg subsequence, this property assures that each iterate in the
solution process corresponds to a physically valid motion,
though the goal state may not be achieved.

Aswith all iterative gradient-based optimization routines,
SQP finds a locad optimum which is not necessarily the
globa optimum. In addition, the finite-dimensional parame-
terization of the manipulator trajectory artificially limitsthe
space of possibletrgjectories. The particular local optimum
achieved by SQP depends on the shape of the feasible space
and theinitial guess. Thisproblem can be alleviated by solv-
ing with many different initial guesses and choosing the best
solution.

5.3 Putting It Together

A dynamictask is specified by ageometric description of the
polygonal object, along withits center of mass and radius of
gyration p; theinitial state and the desired god state; and the
sequence of manipulation phasesto use (e.g., ¢, rg, 9f, 979,
or grf). A guessisaso required toinitidizethe search. The
motion of the object during rolling phases is smulated us-
ing fourth-order Runge-Kutta. SQP requires gradientsof the
constraintswith respect to the design variables, and these are
calculated using finite differences. All functions are imple-
mented in C on a Sun SPARC 20.

6 Experiments

We have built a one-degree-of-freedom arm powered by an
NSK direct-drive motor (Figure 4). The hollow aluminum
arm is centrally-mounted and 122 cm long with a 10 cm
squarecross-section. It alsohasa“pam” mounted at a45de-
greeangle. Thetop surface of thearm and the palm are used
as manipulation surfaces. To increase friction and damping
on these surfaces, they have been covered with a soft, 5 mm
thick foam.

Because dynamic manipul ation requires precise tragjectory
following, we have carefully modeled the response of the
NSK motor. As aresult, we obtain good open-loop track-
ing. (See (Lynch [17]) for details) Small feedback correc-
tionsare also used.

Trajectories specified by the planner are directly imple-
mented on the robot, without modification. In some cases,



however, effectsthat are not model ed in the planner causethe
plansto fail when implemented on the robot. For example,
the planner assumes that if the dynamic grasp constraintsare
satisfied at theend of aroll (an g sequence), then the object
isimmediately in a dynamic grasp. Impact is not model ed.
Also, the planner’ srigid-body assumptionis violated by the
soft foam, which has the effect of dightly rounding arolling
vertex. When these unmodeled effects cause a plan to fail,
the problem specification can be modified to compensate.

To execute a throw, the arm is maximally decelerated at
therelease point. This causes theobject to bereleased nearly
instantaneoudly. If the arm is also to catch the object, it fol-
lowsa bang-bang trajectory to reach the catching configura:
tion. Catches are made robust by appropriately choosing the
object’ simpact state with the immobilearm.

We describe a snatch, throw, roll, and rolling throw in
Figures 5-13. The test objects are lightweight and made of
wood. More detailscan be found in (Lynch [17]).

7 Conclusion and FutureWork

Dynamic underactuated nonprehensile manipulation ex-
ploits dynamic effects to achieve interesting behaviors with
simple robots. This paper has presented an approach to
generating open-loop controls that have been successfully
implemented on areal robot system to perform a variety of
dynamic tasks.

Futurework should address feedback stabilization of dy-
namic manipulation trajectories, possibly using vision feed-
back; amore detailed anaysis of the geometry of accessible
states; using repeated contacts (batting) toincrease the acces-
siblestate space; and tractableapproachestofinding global ly
optimal manipulation plans.
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Figure5: Snatch: the trajectory found by the optimization. Fric-
tion is0.609. The plots show the angle of the arm (ARMPOS) and
the angle of the object (OBJPOS) relative to it. The time between
framesis not constant, so an equal numer of frames of both phases
can be seen. The clock indicates the time of each frame, and the
previousthree frames create amotion blur.

b b

Figure6: Snatch: implementation on the robot.

Snatch. Using the phase sequence rg, the optimization
finds the snatching trajectory shown in Figure 5 after 200
iterations and 120 seconds. The trajectory consists of nine
knot points, and the required friction coefficient x is 0.609.
The initial guess is for the arm to remain motionless, but
the congtraints of the optimization pull it toward a solution
where the palm accel erates into the wooden block. The goal
is any statically stable configuration after the roll has been
compl eted.

The implementation on the arm works consistently (Fig-
ure 6). If the same trgjectory is dowed down too much, the
block is simply pushed off thetable, and if it is sped up too
much, the block isthrown.
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Figure7: Throw: required friction is 0.156.
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Figure8: Throw: implementation on the robot.

i

Throw. After snatching the wooden block, the arm reori-
ents it on the palm by throwing and catching it. Using
the phase sequence ¢f, the optimization finds the trgjectory
shown in Figures 7 and 8 after 98 iterations and 13 seconds.
Thetrgjectory consists of seven knot pointsand the required
friction coefficient is0.156. The goal is a catching configu-
rationwheretheblock isoverrotated to counteract itsangular
velocity.

Interestingly, the solution is to “double pump” before
throwing. Peth reversals are often necessary to minimizethe
required friction.
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Figure10: Roll: initial guess, solution, and intermediate iterates.
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Figurel2: Rolling throw: thetrajectory found by the optimization.
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Figure11: Roll: implementation on the robot.

Roll. Thenine-knotrollingtrgjectory of Figures9, 10, and
11 takes 32 seconds and 55 iterationsto find. The object is
a 27 cm square frame. Note the windup before theroll. In
this example, the contact friction x is set to 1.5 and the ob-
jectiveistominimizethe (squared) impact vel ocity at theend
of theroll (Figure9). Wea so limit the end angle of thearm
to maketheroll experimentally robust to impact. Otherwise,
the solution is to end the roll with zero impact velocity and
thearm at -45 degrees, which is not robust.

Figure13: Rolling throw: implementation on the robot.

Rollingthrow. Inthisexample, awooden cube (7.6 cmon
each side) isthrown with an angular velocity different from
that of thearm at release. Thisisonly possiblewitharolling
throw. Here the block rotates half a revolution clockwise be-
forelanding on the arm in the same position. Noticethat the
block does not beginto roll when thearm isat its nadir; cen-
trifugal and gravitationa forces combine to begin the roll.
The nine-knot trajectory in Figure 12 takes 54 iterations and
35 secondsto find. Therequired friction coefficient is1.011.
Examining the geometry of the object, we see that the fric-
tion coefficient must be greater than 1.0to apply aclockwise
torqueto the object throughtherolling vertex, indicating that
the solutionis nearly optimal.

Therollingthrow isthe dynamictask most sensitivetotra-
jectory error, asany error intheroll ispropagated to theflight
phase. The implementationis shown in Figure 13.



