
4

Dynamic Upsampling of Smoke through Dictionary-based Learning

KAI BAI and WEI LI, ShanghaiTech University/SIMIT/UCAS

MATHIEU DESBRUN, Caltech/ShanghaiTech University

XIAOPEI LIU, ShanghaiTech University

Fig. 1. Fine smoke animations from low-resolution simulation inputs. We present a versatile method for dynamic upsampling of smoke flows from

low-resolution inputs (shown here as insets), which handles a variety of animation contexts: (a) super-resolution, where a spatially downsampled animation

(here, a smoke pu� on a dragon obstacle) is upsampled, even if our neural network was only trained on a flow over a simple ball; (b) generalized upsampling,

where a few pairs of low-res and high-res simulations were used as a training set (here, a smoke simulation with a single ball obstacle, and another one with

five balls arranged in a vertical plane), from which one can synthesize a high-res simulation from any coarse input (here, five balls at a 45◦ angle compared

to the second training simulation); (c) restricted upsampling, where the training set contains only a few sequences (here, four simulations with various inlet

sizes), leading to faster training and more predictive synthesis results (the input uses an inlet size not present in the training set); and (d) re-simulation,

where the training set consists of only one simulation, from which we can quickly “re-simulate” the original flow very realistically for small variations of

the original animation (here, vortex rings colliding). Depending on the chosen context, our synthesized smoke animations either e�iciently add visually

plausible details or reconstruct physically based fine structures close to the associated fine simulation—but an order of magnitude faster.

Simulating turbulent smoke �ows with �ne details is computationally in-

tensive. For iterative editing or simply faster generation, e�ciently up-

sampling a low-resolution numerical simulation is an attractive alterna-

tive. We propose a novel learning approach to the dynamic upsampling

of smoke �ows based on a training set of �ows at coarse and �ne resolu-

tions. Our multiscale neural network turns an input coarse animation into

a sparse linear combination of small velocity patches present in a precom-

puted over-complete dictionary. These sparse coe�cients are then used to

Thisworkwas supported by the Young Scientists Fund of theNational Natural Science
Foundation of China (Grant No. 61502305) and a startup funding from ShanghaiTech
University.
Authors’ addresses: K. Bai, W. Li, and X. Liu, School of Information Science
and Technology (Shanghai Engineering Research Center of Intelligent Vision and
Imaging) of ShanghaiTech University, Shanghai, China; emails: {baikai, liwei, li-
uxp}@shanghaitech.edu.cn; K. Bai and W. Li are also a�liated with the Shanghai In-
stitute of Microsystem and Information Technology (SIMIT) and the University of the
Chinese Academy of Sciences (UCAS); M. Desbrun, California Institute of Technol-
ogy, Pasadena (CA), USA, on sabbatical at SIST in ShanghaiTech University, Shanghai,
China; email: mathieu@cms.caltech.edu.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0730-0301/2020/09-ART4 $15.00
https://doi.org/10.1145/3412360

generate a high-resolution smoke animation sequence by blending the �ne

counterparts of the coarse patches. Our network is initially trained from a

sequence of example simulations to both construct the dictionary of cor-

responding coarse and �ne patches and allow for the fast evaluation of a

sparse patch encoding of any coarse input. The resulting network provides

an accurate upsampling when the coarse input simulation is well approx-

imated by patches present in the training set (e.g., for re-simulation), or

simply visually plausible upsampling when input and training sets di�er

signi�cantly. We show a variety of examples to ascertain the strengths and

limitations of our approach and o�er comparisons to existing approaches

to demonstrate its quality and e�ectiveness.

CCS Concepts: • Computing methodologies → Physical simulation;

Neural networks;

Additional Key Words and Phrases: Fluid simulation, dictionary learning,

neural networks, smoke animation

ACM Reference format:

Kai Bai, Wei Li, Mathieu Desbrun, and Xiaopei Liu. 2020. Dynamic Upsam-

pling of Smoke through Dictionary-based Learning. ACM Trans. Graph. 40,

1, Article 4 (September 2020), 19 pages.

https://doi.org/10.1145/3412360

1 INTRODUCTION

Visual simulation of smoke is notoriously di�cult due to its highly

turbulent nature, resulting in vortices spanning a vast range of

space and time scales. As a consequence, simulating the dynamic

ACM Transactions on Graphics, Vol. 40, No. 1, Article 4. Publication date: September 2020.

mailto:permissions@acm.org
https://doi.org/10.1145/3412360
https://doi.org/10.1145/3412360

4:2 • K. Bai et al.

Fig. 2. Coarse vs. fine smoke simulations. A smoke simulation com-

puted using a low (top: 50 × 75 × 50) vs. a high resolution (bo�om: 200 ×

300 × 200), respectively, for the same Reynolds number (5,000). Flow struc-

tures are visually quite distinct, since di�erent resolutions resolve di�erent

physical scales, thus producing quite di�erent instabilities.

behavior of smoke realistically requires not only sophisticated

non-dissipative numerical solvers [Li et al. 2020; Mullen et al. 2009;

Qu et al. 2019; Zhang et al. 2015], but also a spatial discretization

with su�ciently high resolution to capture �ne-scale structures,

either uniformly [Kim et al. 2008b; Zehnder et al. 2018] or adap-

tively [Losasso et al. 2004; Weißmann and Pinkall 2010a; Zhang

et al. 2016]. This inevitably makes such direct numerical simula-

tions computationally intensive.

To compromise between e�ciency and visual realism for large-

scale scenes, the general concept of physics-inspired upsampling

of dynamics [Kavan et al. 2011] can be leveraged: Low-resolution

simulations can be computed �rst, from which a highly detailed

�ow is synthesized using fast procedural models that are only

loosely related with the underlying �uid dynamics, e.g., noise-

based [Bridson et al. 2007; Kim et al. 2008a] or simpli�ed turbu-

lence models [Pfa� et al. 2010; Schechter and Bridson 2008]. Very

recently, machine learning has even been proposed as a means to

upsample a coarse �ow simulation [Chu and Thuerey 2017] (or

even a downsampled �ow simulation [Werhahn et al. 2019; Xie

et al. 2018]) to obtain �ner and more visually pleasing results in-

ferred from a training set of actual simulations. However, while

current upsampling methods can certainly add visual complexity

to a coarse input, the synthesized high-resolution �uid �ow of-

ten fails to exhibit the type of structures that the original physi-

cal equations are expected to give rise to: The inability to inject

physically consistent small-scale vortical structures leads to visual

artifacts, making the resulting �ow simulations less realistic.

Synthesizing a high-resolution �ow from a low-resolution

input is fundamentally di�cult, because both their local and

global structures may di�er signi�cantly (see Figure 2 for an

example). Discrepancy between low-res and high-res numerical

simulations is not only due to discretization errors, but also to

�ow instabilities becoming more pronounced for high Reynolds

number turbulent �ows. However, one could hope that many of

the details of the �ow can be inferred by comparing local patches

of the input coarse �ow to a catalog of existing low-res/high-res

pairs of numerical simulations: A proper local encoding of

existing upsampled sequences could help predict the appearance

and evolution of �ne structures from existing coarse input

simulations—in essence, learning how the natural shedding of

small vortices appears from the corresponding coarse simulation.

In this article, we propose to upsample smoke motions through

dictionary learning [Garcia-Cardona and Wohlberg 2018] (a com-

mon approach in image upsampling [Yang et al. 2010]) based on

the observation that although turbulent �ows look complex, local

structures and their evolution do not di�er signi�cantly, as they

adhere to the self-advection process prescribed by the �uid equa-

tions: Local learning through sparse coding followed by synthesis

through a dictionary-based neural network is thus more appro-

priate than global learning methods such as convolutional neural

networks [Tompson et al. 2017].

1.1 Related Work

Smoke animation has been widely studied for more than two

decades in computer graphics. We review previous work relevant

to our contributions, covering both traditional simulation of smoke

and data-driven approaches to smoke animation.

Numerical smoke simulation. Smoke animation has relied most

frequently on numerical simulation of �uids in the past. Fast

�uid solvers [Stam 1999], and their higher-order [Kim et al. 2005;

Selle et al. 2008], momentum-preserving [Lentine et al. 2010] or

advection-re�ection [Zehnder et al. 2018] variants, can e�ciently

simulate smoke �ows on uniform grids. However, creating com-

plex smoke animations requires relatively high resolutions to cap-

ture �ne details. Unstructured grids [Ando et al. 2013; de Goes et al.

2015; Klingner et al. 2006; Mullen et al. 2009] and adaptive meth-

ods, where higher resolutions are used in regions of interest and/or

with more �uctuations [Losasso et al. 2004; Setaluri et al. 2014;

Zhu et al. 2013] have been proposed to o�er increased e�ciency—

but the presence of smoke turbulence in the entire domain of-

ten prevents computational savings in practice. However, particle

methods, e.g, smoothed particle hydrodynamics [Akinci et al. 2012;

Becker and Teschner 2007; Desbrun andGascuel 1996; Ihmsen et al.

2014; Peer et al. 2015; Solenthaler and Pajarola 2009; Winchenbach

et al. 2017] and power particles [de Goes et al. 2015] can easily

handle adaptive simulations. However, a large number of particles

are necessary to obtain realistic smoke animations to avoid poor

numerical accuracy for turbulent �ows. Hybrid methods [Jiang

et al. 2015; Raveendran et al. 2011; Zhang and Bridson 2014; Zhang

et al. 2016; Zhu and Bridson 2005], which combine both particles

and grids, can be substantially faster, but particle-grid interpola-

tions usually produce strong dissipation unless polynomial basis

functions are used for improved numerics [Fu et al. 2017]. These

methods remain very costly in the context of turbulent smoke sim-

ulation. Another set of approaches that can simulate smoke �ow

details e�ciently are vortex methods [Golas et al. 2012; Park and

Kim 2005]; in particular, vortex �laments [Weißmann and Pinkall

2010b] and vortex sheets [Brochu et al. 2012; Pfa� et al. 2012] are

both e�ective ways to simulate turbulent �ows for small num-

bers of degrees of freedom, and good scalability can be achieved

with fast summation techniques [Zhang and Bridson 2014]. How-

ever, no existing approach has been proposed to upsample low-

resolution vortex-based simulations to full-blown high-resolution

ACM Transactions on Graphics, Vol. 40, No. 1, Article 4. Publication date: September 2020.

Dynamic Upsampling of Smoke through Dictionary-based Learning • 4:3

�ows to further accelerate �uid motion generation.We note �nally

that a series of other numerical methods have been developed to

o�er e�ciency through the use of non-conventional �uid mod-

els [Chern et al. 2016] or of massively parallelizable mesoscopic

models like the lattice Boltzmann method [Chen and Doolen 1998;

De Rosis 2017; d’Humières 2002; Geier et al. 2006; Li et al. 2019,

2020; Liu et al. 2014; Lycett-Brown et al. 2014], but here again, the

ability to run only a coarse simulation to quickly generate a high-

resolution �uid motion has not been investigated.

Early upsampling attempts. Over the years, various authors

have explored ways to remediate the shortcomings induced by

numerical simulation on overly coarse grids in the hope of re-

covering high-resolution results. Reinjecting �ne details through

vorticity con�nement [Fedkiw et al. 2001; John Steinho� 1994],

Kolmogorov-driven noise [Bridson et al. 2007; Kim et al. 2008b],

vorticity correction [Zhang et al. 2015], smoke style transfer [Sato

et al. 2018] or modi�ed turbulence models [Pfa� et al. 2010;

Schechter and Bridson 2008] partially helps, but visually important

vortical structures are often lost: None of these approaches pro-

vides a reliable way to increase the resolution substantially with-

out clearly deviating from the corresponding simulation on a �ne

computational grid.

Data-driven approaches. Given the computational complexity

of smoke animation through numerical simulation, data-driven

approaches have started to emerge in recent years as a promising

alternative. Some techniques proposed generating a �ow �eld en-

tirely based on a trained network, completely avoiding numerical

simulation for �uid �ows. Guo et al. [2016], Kim et al. [2019], and

Jeong et al. [2015] proposed a regression forest–based approach

for learning SPH simulation. Tompson et al. [2017] trained a

neural network to predict pressure without solving a Poisson

equation, while Umetani and Bickel [2018] proposed to predict

aerodynamic forces and velocity/pressure �elds from an in�ow

direction and a 3D shape. A few data-driven approaches directly

synthesized �ow details for smoke and liquid animations from

low-resolution simulations instead: e.g., Chu and Thuerey [2017],

Werhahn et al. [2019], and Xie et al. [2018] created high-frequency

smoke details based on neural networks, while Um et al. [2018]

modeled �ne-detail splashes for liquid simulations from existing

data. Yet, these recent data-driven upsampling approaches do not

generate turbulent smoke �ows that are faithful to their physical

simulations using similar boundary conditions: The upsampling

of a coarse motion often fails to reconstruct visually expected

details such as leapfrogging in vortex ring dynamics, even if

the coarse motion input is quite similar to exemplars from the

training set. Our work focuses on addressing this de�ciency via a

novel neural network based on dictionary learning.

1.2 Overview

Although smoke �ows exhibit intricate structures as a whole, the

short-term evolution of a local patch of smoke only follows a re-

stricted gamut of behaviors, and the complexity of high-resolution

turbulent �ow �elds emerges from the rich combination of these

local motions. This patch-based view of the motion motivates the

idea of dictionary learning, as used in image upsampling, to achieve

physically driven upsampling for coarse smoke �ows.

However, existing dictionary learning methods for image up-

sampling cannot be directly used for �ow synthesis. First and fore-

most, we have to learn structures from vector �elds (or vortex

�elds) instead of scalar �elds, a much richer set than typical im-

age upsampling methods are designed for. Second, we are dealing

with a dynamical system instead of a static image, so we must also

adapt the actual upsampling process appropriately.

In this article, we propose a novel neural network structure

for dictionary learning of smoke �ow upsampling, where the mo-

tion of �ne �uid �ow patches is learned from their coarse ver-

sions. We ensure good spatial and temporal coherence by di-

rectly learning from the high-resolution residuals between coarse

motion predictions and actual �ne motion counterparts. Plausi-

ble high-resolution �ows can then be quickly synthesized from

low-resolution simulations, providing much richer dynamics and

higher e�ciency (often an order of magnitude faster) than exist-

ing data-driven methods. We demonstrate that our approach pro-

duces visually complex upsampling of coarse smoke �ow simu-

lation through local and physically driven interpolation between

(and to a certain extent, extrapolation from) the training examples.

In particular, we show that our results o�er a better approximation

to the real �ne-scale dynamics if the coarse input does not devi-

ate too much from the training set as in the case of re-simulation;

if the coarse input is far from the exemplars in the training set,

our upsampling technique produces a visually plausible (but not

physically accurate) high-resolution �ow capturing the �ne mo-

tion better than the state-of-the art methods. Figure 1 shows ex-

amples of animation results generated from our upsampling with

four di�erent types of training sets based on our dictionary learn-

ing approach, where coarse simulations are upsampled by a factor

of 64 (4 × 4 × 4), exhibiting vortex structures that a (signi�cantly

more) costly �ne simulation would typically exhibit. We also eval-

uate our results in terms of visual quality, energy spectrum, and

synthesis error compared to �ne simulations, as well as computing

performance to thoroughly validate the advantages of our method.

2 BACKGROUND ON DICTIONARY LEARNING

We �rst review traditional dictionary learning for image up-

sampling, as its foundations and algorithms will be key to our con-

tributions once properly adapted to our animation context.

2.1 Foundations

In image upsampling, a high-resolution image is synthesized from

a low-resolution image with a learned dictionary of local patches,

as summarized in Figure 3: The input low-resolution image is �rst

written as a sparse weighted sum of local “coarse” patches; then

the resulting high-resolution image is written as theweighted sum,

with exactly the sameweights, of the corresponding “�ne” (upsam-

pled) patches, when each corresponding pair of coarse and �ne

patches comes from a training set of upsampled examples. One

thus needs to �nd a dictionary of patch pairs and a way to write

any low-resolution image as a linear combination of coarse dictio-

nary patches.

Role of a dictionary. A dictionary for image upsampling is a

set of upsampled low-resolution local patches {dli }i of all the

same size and their associated high-resolution local patches {dhi }i

ACM Transactions on Graphics, Vol. 40, No. 1, Article 4. Publication date: September 2020.

4:4 • K. Bai et al.

Fig. 3. Dictionary learning for image upsampling. To synthesize high-

resolution images, one prepares a training set of local patch pairs (yi
l
and

yi
h
) from low- and high-resolution images, respectively (le�), from which

we can learn two dictionaries (Dl and Dh). Given a low-resolution image,

each coarse patch is then used to predict a set of sparse coe�icients w

such that the corresponding patch in the high-resolution image can be

synthesized using Dh and the same sparse coe�icients w.

(for instance, all of the size 5 × 5 pixels). By storing the dictio-

nary patches as vectors, any upsampled coarse patch yl can be

approximated by a patch ỹl that is a sparse linear combination

of coarse dictionary patches, i.e., ỹl =
∑
i wid

i
l
with a sparse set of

coe�cientswi . An upsampled patch ỹh corresponding to the input

upsampled coarse patch yl can then be expressed as ỹh =
∑
i wid

i
h
.

For convenience, we will denote by Dl = (d1
l
. . . dN

l
) the matrix

storing all the coarse dictionary patches (where each patch is

stored as a vector), and similarly for all the high-resolution

dictionary patches using Dh—such that a patch ỹl (respectively,

ỹh) can be concisely computed as Dlw (respectively, Dhw) where

w= (w1, . . . ,wN).

Finding a dictionary. For a given training set of coarse and �ne

image pairs, we can �nd a dictionary with N patch elements by

making sure that it not only captures all coarse patches well, but

its high-resolution synthesis also best matches the input �ne im-

ages. If we denote by Yl the vector storing all the coarse patches

yl available from the training set and by Yh the vector of their cor-

responding �ne patches yh , the dictionaries as well as the sparse

weights are found through a minimization [Yang et al. 2010]:

argmin
Dl ,Dh,w

1

2
�
�
�
Yl − Ỹl (Dl)

�
�
�

2

2
+
�
�
�
Yh − Ỹh (Dh)

�
�
�

2

2
+ λ‖w‖1, (1)

which evaluates the representative power of the coarse dictionary

patches (through the �rst term) and the resulting upsampling qual-

ity (using the ℓ2 di�erence between the upsampled patches Ỹh and

their ground-truth counterparts Yh) while penalizing non-sparse

weights via an ℓ1 norm ofw times a regularization factor λ. Solving

for the dictionary patches minimizing this functional is achieved

using the K-SVD method [Aharon et al. 2006].

Upsampling process. Once the optimization stage has returned

a dictionary, upsampling a low-resolution input image is done

by �nding a sparse linear combination of the coarse dictionary

patches for each local patch of the input. The method of orthog-

onal matching pursuit (OMP) is typically used to �nd the appro-

priate (sparse) weights that best reproduce a local patch based on

the dictionaries (other pursuit methods used in graphics can po-

tentially be used, too [Teng et al. 2015; Von Tycowicz et al. 2013],

from which the high-resolution patch is directly reconstructed us-

ing these weights, now applied to the high-resolution dictionary

Fig. 4. Original LISTA network. Illustration of feed-forward LISTA neu-

ral network [Gregor and LeCun 2010] with T layers.

patches. The �nal high-resolution image is generated by blending

all locally synthesized high-resolution patches together.

2.2 Scalable Solver to Find Sparse Linear Combinations

Looking ahead at our task at hand, the fact that we will have

to deal with 3D vector-based �elds will make the dimension of

the vectors yl quite larger than what is typically used in image

upsampling. In this case, the OMP-based optimization required to

perform upsampling will become extremely slow and may even

return poor results, as shown in Figure 5(b). Thus, a more e�cient

method to compute w given a low-resolution patch is required.

One scalable approach is the LISTA neural network proposed by

Gregor and LeCun [2010]: It is a learning-based formulation de-

rived from the iterative shrinkage thresholding algorithm (ISTA)

[Daubechies et al. 2004] using the following iteration process:

wt+1 = β (Swt + BY ; λ), (2)

where B = hDT , S = I − BD (I being the identity matrix) with

D = [Dl ;Dh]
T the matrix concatenating the coarse and �ne

dictionary patches, Y = [Yl ;Yh]
T , h is the iteration step size, and

β (· ; ·) is a vector function constructed to favor the sparsity of w:

βi (x ; λ) = sgn(xi) max{|xi | − λ, 0}, (3)

where βi denotes the ith component of the output vector from the

vector function β and xi represents the ith component of vector x.

This immediately corresponds to a feed-forward neural network

with T layers (see Figure 4), where t in Equation (2) denotes the

t th layer in the network, and β is the activation function of the

network.

In the original LISTA algorithm, to enable better prediction of

the �nal w, B and S are both updated during learning while λ re-

mains �xed. The number of layers in the network corresponds to

the total number of iterations in Equation (2), withmore layers typ-

ically leading to more accurate prediction. The network is trained

using a set of pairs {(yi ,wi), i = 1, 2, . . . ,k .}, whose weights are

computed using the OMP method on a given learned dictionary D

and with a loss function for the network de�ned as:

LT (Θ) =
1

k

k∑

i=1

‖wT (yi ;Θ) −wi ‖
2
2 , (4)

whereT is the index of the output layer, andΘ is the vector assem-

bled from all parameters (including B, S, and λ from Equation (2)).

After training, we can use the learned Θ to predict w from an in-

put yl by going through the whole network. This LISTA-based

solver provides much higher e�ciency than the traditional OMP

approach.

ACM Transactions on Graphics, Vol. 40, No. 1, Article 4. Publication date: September 2020.

Dynamic Upsampling of Smoke through Dictionary-based Learning • 4:5

Fig. 5. Strategies for upsampling. From an input low-resolution simulation in (a) (its fine simulation counterpart is shown as inset), the most straight-

forward method to upsample it is to use the traditional dictionary learning from image up-sampling, this time in 3D, using either the OMP method (b) or

a LISTA network (c)—but because of how di�erent low- and high-resolution simulations look, they both produce poor synthesis results; reformulating the

problem as a dictionary learning reconstruction, we can obtain much be�er result in (d), although it tends to be slightly noisy; with our novel network and

by representing each local patch with velocities only (e), the results exhibit spatial and temporal incoherence; when adding to each local patch spatial and

time codes (f), a coherent synthesis can be obtained, looking quite close to the fine simulation counterpart.

2.3 Inadequacy of Direct Upsampling
on Coarse Simulation

While the idea of upsampling a coarse smoke motion in a frame-

by-frame fashion through a direct application of the image up-

sampling approach presented above sounds attractive, it is bound

to fail for a number of reasons. First, the issue of coherency over

time is not addressed at all: The weights used for a given spatial

region over two successive frames have no reasons to bear any re-

semblance to each other, thus potentially creating motion �icker-

ing. Second, one major di�erence between the image upsampling

problem and our smoke upsampling target is that the coarse and

�ne simulations can di�er widely due to the chaotic changes that

turbulence naturally exhibits (Figure 2). Indeed, image upsampling

relies on an energy (Equation (1)) that puts coarse approximation

and �ne approximation errors on equal footing, and the LISTA ap-

proach based on the iterative optimization of Equation (2) may also

fail to converge to the right OMP solution if yl and yh di�er sig-

ni�cantly in structure, since it performs essentially a local search

(see Figure 5(c) for such an experiment). This suggests a change of

both the objective for smoke upsampling and the LISTA network

formulation. We present our approach next based on the idea that

the coarse simulation can be used as a predictor of the local motion,

from which the correction needed to get a high-resolution frame is

found through dictionary learning.

3 SMOKE UPSAMPLING VIA DICTIONARY LEARNING

We now delve into our approach for smoke upsampling. We pro-

vide the intuition behind our general approach before detailing

the new neural network. Finally, we discuss how we augment the

patch representation to o�er a spatially and temporally coherent

upsampling of smoke �ows and provide a simple method to have

a better training of our upsampling network.

3.1 Our Approach at a Glance

Based on the relevance of dictionary learning to the upsampling of

smoke �ows, but given the inadequacy of the current techniques to

the task at hand, we propose a series of changes in the formulation

of the upsampling problem.

Prediction/correction. In our dynamical context, it is often ben-

e�cial to consider a motion as a succession of changes in time.

We thus formulate the upsampling of a coarse patch yl as a patch

ỹh =up(yl) + ∆h , where up(·) corresponds to a straightforward

spatial upsampling through direct enlargement of the coarse patch,

and ∆h is a residual high-resolution patch. This amounts to a

predictor-corrector upsampling, where the coarse patch is �rst up-

sampled straightforwardly by up(·) before details are added. The

residual patches should not be expected to only have small magni-

tudes, though: As we discussed earlier, di�erences between coarse

and �ne simulations can be large in turbulent regions of the �ow.

Since wewill use a dictionary of these high-frequency details, their

magnitude has no negative in�uence—only their diversity matters.

Residual dictionary. Since a smoke �ow locally follows the

Navier-Stokes equations, we can expect that the residuals can be

well expressed by a �ne dictionary Dh . This is indeed con�rmed

numerically: If one uses K-SVD to solve for a high-resolution dic-

tionary (of 400 patches) with around 3M training patches from a

single �ne simulation, the dictionary-based reconstruction is al-

most visually perfect (albeit a little noisier), as demonstrated in

Figure 5(d), con�rming that the local diversity of motion is, in

fact, limited. We thus expect a residual ∆h in our approach to be

ACM Transactions on Graphics, Vol. 40, No. 1, Article 4. Publication date: September 2020.

4:6 • K. Bai et al.

Fig. 6. Our dictionary-based neural network. We modify the original

LISTA network of Figure 4 by adding layer-specific matrices St , regular-

ization parameters λt , as well as the residual dictionary as parameters to

learn.

well approximated by a sparse linear combination of elements of

a (high-resolution) dictionary Dh , i.e., a residual is nearly of the

form ∆h ≈Dhw. Just like in the case of image upsampling, sparsity

of the weights is preferable, as it avoids the unnecessary blurring

introduced by the linear combination of too many patches.

Variational formulation. For e�ciency reasons, we discussed

in Section 2.3 that using a LISTA-based evaluation of the sparse

weights is highly preferable to the use of OMP. This means that

we need to train a network to learn to compute, based on a

coarse input yl , the sparse weights w(yl). Thus, in essence, we

wish to modify the traditional upsampling minimization of Equa-

tion (1) to insteadminimize the errors in reconstruction of the type
�
�yh − up(yl) − Dhw(yl)

�
�
2
2 on a large series of training patches

(with control over the sparsity of w) while also training a LISTA-

like network for the weights. Other notions of reconstruction errors,

based on the vorticity, the di�erence of gradients, or even the di-

vergence of the upsampled patches, would also be good to incor-

porate to o�er more user control over the upsampling process.

Based on these assumptions, we introduce a newneural network

design, where learning a (high-resolution residual) dictionary and

training a network to e�ciently compute sparse linear coe�cients

are done simultaneously, thus requiring a single optimization.

3.2 Neural Network Design

Our proposed neural network follows mostly the structure of the

LISTA network for sparse coding [Gregor and LeCun 2010], in the

sense that it is also composed of several layers representing an

iterative approximation of the sparse weights. Two key di�erences

are introduced: First, we add more �exibility to the network by

letting each of the T layers not only have its own regularization

parameter λt , but also its ownmatrix St ; second, while the original

LISTA network refers to the sparse weights w computed by the

OMPmethod to de�ne the loss, our loss will be measured based on

the quality of the reconstruction engendered by the �nal weights

and the dictionary Dh (the loss will be explicitly provided next in

Section 3.3). Our fast approximation of sparse coding is achieved

through the following modi�ed LISTA-like iteration:

wt+1 = β (Stwt + By ; λt), (5)

where β is the same activation function as in Equation (3) to en-

force sparsity of w. Our novel neural network, summarized in

Figure 6, can optimize all its network parameters (i.e., the resid-

ual dictionaryDh , mapping matrices St , regularization parameters

λt , and the matrix B) by the standard back-propagation procedure

through the T di�erent layers during learning, as we will go over

later.

3.3 Loss Function Design

To successfully guide our network during training, an important

factor is the choice of loss function. Unlike the LISTA network for

which the loss function from Equation (4) requires a set of sparse

coe�cientsw, we construct our loss function directly based on the

quality of synthesis results of our network.

ℓ2 synthesis error. Onemeasure for our loss function is the di�er-

ence between an upsampled patch ỹi
h
found from a low-resolution

patch yi
l
and the ground-truth high-resolution patch yi

h
from a

training set containing K patches:

Eℓ =

K∑

i=1

�
�
�
yi
h
− (yi

l
+ DhwT (y

i
l
;Θ))

�
�
�

2

2
, (6)

where wT contains the �nal approximation of the weights, since

T is the last layer of our network, and the vector Θ stores all our

network parameters (Dh , B, St , and λt for t =1 . . .T).

Sobolev synthesis error. However, using the ℓ2 norm measure

alone in the loss function is not su�cient to correctly di�erentiate

high-frequency structures. Thus, we also employ the ℓ2 norm of

the gradient error between synthesized patches and ground-truth

patches:

Eд =

K∑

i=1

�
�
�
∇[yi

h
] − ∇[yi

l
+ DhwT (y

i
l
;Θ)]

�
�
�

2

2
, (7)

where ∇[·] is a component-wise gradient operator de�ned as

∇[x] = [∇x1,∇x2, . . . ,∇xn]
T .

Divergence synthesis error. Since we are synthesizing incom-

pressible �uid �ows, it also makes sense to include in the loss func-

tion a measure of the divergence error between synthesized and

ground-truth patches.While ground-truth patches are divergence-

free if a patch representation purely based on the local vector �eld

is used, we will argue that other �elds (e.g., vorticity) can be used

as well; hence for generality, we use:

Ed =

K∑

i=1

�
�
�
∇ · (yi

h
) − ∇ · (yi

l
+ DhwT (y

i
l
;Θ))

�
�
�

2

2
. (8)

Final form of our loss function. We express our loss function as:

LT (Θ) = αlEl + αдEд + αdEd + αΘ ‖Θ‖
2
2 , (9)

where the last ℓ2 norm on the network parameters helps avoiding

over-�tting during learning. The parameters αl , αд , αd , and αΘ
help balance between training and test losses, and we set them to

αl =1, αд =0.05, αd =0.05, and αΘ=0.5 in all our training experi-

ments. One may notice that these values di�er signi�cantly, espe-

cially for the terms involving gradients; this is because although in-

put velocities are normalized, the gradient values may have much

larger ranges, which should be given smaller parameter values.

3.4 Augmented Patch Encoding

Until now, we have not discussed what is exactly encoded in a local

patch. Since we are trying to upsample a vector �eld to visualize

the �ne behavior of a smoke sequence, an obvious encoding of the

local coarse �ow is to use a small patch of coarse velocities, storing

the velocities from an nc×nc×nc neighborhood into a vector yl of

ACM Transactions on Graphics, Vol. 40, No. 1, Article 4. Publication date: September 2020.

Dynamic Upsampling of Smoke through Dictionary-based Learning • 4:7

Fig. 7. Augmented patch through space-time encoding. We can use

an augmented patch representation to improve spatial and temporal co-

herence: In addition to the velocity field, we add Morton code of the patch

center, the time code of simulation time step the patch comes from, as well

as any other relevant codes involved in the simulation, such as inlet size

and position, to form our new patch representation vector.

length N =3n3c in this case; a high-resolution patch is similarly en-

coded, involving a �ner subgrid of size nf ×nf ×nf representing

the same or smaller spatial neighborhood as the coarse patch—to

make sure the coarse patch serves as a good predictor for the �ne

one. Using our network with such an encoding already performs

reasonably well, as Figure 5(e) demonstrates, but the results are

not fully spatially and temporally coherent, at times creating vi-

sual artifacts. Fortunately, we designed our approach to be general

so a number of improvements can be made to remedy this situa-

tion. Of course, growing the size nc of the local patch itself would

be one solution, but it would come at the cost of a dramatic in-

crease in computational complexity and learning time, defeating

the very purpose of our e�ort. We can, instead, keep the same spa-

tial patch size nc , but augment the patch with extra data to further

improve spatio-temporal coherence by making the prediction of

our residual dictionary less myopic: Increasing N o�ers more dy-

namic context for both learning and synthesis of smoke �ows.

Space-time encoding. For very contrived examples where there

are no signi�cant changes in the scene to upsample compared to

the learning examples, we can add space and time encoding to the

patch by augmenting each input patch vector with spatial and tem-

poral components, as sketched in Figure 7. To encode the patch po-

sition, Morton codes [Karras 2012] can be used, as they have nice

locality properties compared to a simple 3D o�set vector. For each

local patch, the Morton code corresponding to its center is simply

added to the representation vector of that patch. For temporal en-

coding, the time step normalized by the maximum number of time

steps of the simulation sequence can also be added to the represen-

tation vector. In addition, to support variation of �ow conditions,

the various simulation parameters (such as di�erent inlet sizes and

positions) can be taken as extra codes to be added to the represen-

tation vector. Knowledge of the position and time as well as the

system parameters that a patch in the training set is coming from

obviously guide the synthesis tremendously, as their relevance to

a similar simulation is directly encoded into the patch representa-

tion. However, this brute-force encoding is very rigid and should

only be employed for scenarios where the animation sequence to

be upsampled and simulation parameters are quite similar to the

training simulations. Figures 5(f), 19, and 20 show how exceed-

ingly well the results of this approach can perform, providing a

very e�cient exploration through learning of motions near a given

set of animation sequences.

Phase-space encoding. However, space-time encoding prevents

more universal generality: If a simulation sequence to be upsam-

pled is markedly di�erent from any of the training simulation se-

quences, adding space and time information to the patches can in

fact degrade the results, as it implicitly guides the network to use

patches in similar places and at similar times even if it is absolutely

not appropriate in the new simulation. Instead, we wish to aug-

ment patch data with more information about the local dynamical

behavior of the �ow. One simple idea is to use phase space infor-

mation: Instead of using only the local vector �eld stored as yl ,

we can encode the patch with the time history of this local patch:

[yt
l
, yt−1

l
, . . . , yt−τ

l
], where τ is the maximum number of previous

time steps to use. Note that just picking τ =2 corresponds in fact to

the typical input of a full-blown integrator: Knowing both the cur-

rent and previous local vector �elds is enough to know both veloc-

ity and acceleration of the �ow locally. Our upsampling approach

using this τ =2 case can thus really be understood as a learned

predictor-corrector integrator of the �ne motion based on the two

previous coarse motions: The coarse simulation serves, once di-

rectly upsampled to a higher-resolution grid, as a prediction, to

which a correction is added via learned dynamic behaviors from

coarse-�ne animation pairs. Figures 1(a) and 17 show the results

of such a phase-space representation, with which a variety of syn-

thesis results can be obtained.

Comparing the results of the new patch encoding with the one

containing only the velocity �eld in Figure 5(e), we see that the

augmented representation captures much improved coherent vor-

tical structures without obvious noise. While the synthesis re-

sults using a phase-space encoding may be slightly worse than the

space-time encoded ones in terms of capturing the small-scale vor-

tical structures of the corresponding high-resolution simulations,

this signi�cantly more general encoding can handle much larger

di�erences (such as translations of inlets, rotations of obstacles, or

even longer simulations than the training examples) in animation

inputs.

Vorticity. For �ows in general and smoke in particular, the vi-

sual saliency of vorticity is well known. Unsurprisingly, we found

it bene�cial to also add the local vorticity �eld to the patch en-

coding: While this �eld is technically just a linear operator ap-

plied to the vector �eld, providing this extra information led to

improved visual results without hurting the learning rate. Con-

sequently, and except for the few �gures where space-time en-

coding is demonstrated, we always use only the last three vec-

tor �elds and last three vorticity �elds as the patch encoding, i.e.,

[yt
l
, yt−1

l
, yt−2

l
,∇×yt

l
,∇×yt−1

l
,∇×yt−2

l
].

Rotation. When synthesizing general �ows, the overall �ow �eld

may be rotated compared to the training examples, e.g., when a

coarse �ow with an inlet is rotated by 90 degrees or when an ob-

stacle is rotated by 45 degrees. In such a case, training from a set

without this rotation may not lead to accurate results due to a lack

of smoke motion in the proper direction (remember that we syn-

thesize velocity �elds, rather than density �elds). To tackle this

problem, we simply add rotated versions of each local patch to

the training set. Several rotation angles can be sampled; for in-

stance, each π/2 rotation for each coordinate direction. Figure 17

shows a result using such a phase-space patch encoding including

ACM Transactions on Graphics, Vol. 40, No. 1, Article 4. Publication date: September 2020.

4:8 • K. Bai et al.

Fig. 8. Our network-based dictionary learning approach. To synthe-

size high-resolution flow fields, we first prepare a training set of local patch

pairs (yi
l
and yi

h
) from low- and high-resolution flow simulations, respec-

tively (le�); note that the low-resolution patches are represented by our

augmented patch vector.With this training data, we learn a residual dictio-

naryDh as well as its associated predictorwT (yl). Given a low-resolution

flow field, each local patch is fed to the network to predict a set of sparse

coe�icientw such that the high-resolution patch can be synthesized using

Dh and w added to the upsampled input patch.

Fig. 9. Training convergence. Progressive vs. full-parameter (non-

progressive) training exhibits di�erent convergence rates, thus resulting

in di�erent training times and prediction accuracy.

π/2-rotations, with coarse simulations containing obstacles that

are rotated by 45 degrees in (e) and (f) along di�erent coordinate

directions. Obviously, these rotated versions of local patches are

optional, as they should not be included if the training simulations

are clearly direction-dependent, like in the case of gravity-driven

�ows. Figure 8 summarizes the overall work�ow for synthesizing

high-resolution �ow �elds with our new network and augmented

patch encoding.

3.5 Network Learning

The neural network we just described can be trained by provid-

ing a large number of training pairs of coarse and �ne simula-

tion patches (we will discuss how to judiciously select candidate

patches from a set of coarse and �ne animation pairs in a later

section): The loss function LT (Θ) has to be minimized with re-

spect to all the parameters stored inΘ; for instance, by the “Adam”

method [Kingma and Ba 2014], with full-parameter update during

optimization. However, a large number of layers and parameters

may not produce good training convergence if a large variety of

motions are present in the training set. To improve convergence—

and thus, induce better prediction results during synthesis—we can

employ a progressive learning algorithm similar to Borgerding et al.

[2017], which performs learning optimization in a cascading way,

using the learned result from the previous layer as part of the ini-

tialization for the learning of the next layer. As the learning of one

Fig. 10. Example of learned dictionary. Visualization of cross-sections

of 3D velocity patches from a portion of the dictionary set.

Fig. 11. Original vs. multiscale synthesis. From training simulations

only containing one inlet on the le� of the domain, simulating a bo�om

inlet produces an adequate, but inaccurate upsampling (a); the same sim-

ulation using our multiscale network (b) produces a result much closer to

the corresponding fine simulation (c).

single layer involves only a small fully connected network, and

because this cascading approach to learning gradually provides

better initialization than the full-parameter learning, this learning

process turns out to exhibit better convergence.

More speci�cally, we �rst initialize all variables randomly

in [−0.01, 0.01] and perform learning for the �rst layer to �nd

the optimal parameters Dh , B, S1, and λ1. We then use these

parameters as initialization for the learning phase of the second

layer, where now another set of parameters S2 and λ2 are added

(with random initial values), and this new learning results in

another set of optimal parameters for all the variables involved.

This process repeats by adding Si+1 and λi+1 into the learning

for the (i+1)-th layer, with all other parameters from previous

layers initialized to the learning result of the ith layer, until all

the layers in the network are learned. For each learning phase,

we also employ the “Adam” method [Kingma and Ba 2014]. When

using space-time encoding, we use 90% of the training patches for

learning and the remaining 10% for validation; when phase-space

encoding is used, we found it preferable to use training patches

from several simulation examples and use patches from di�erent

simulation examples for validation to better test the generalization

properties of the training. We obtain the �nal learning result

ALGORITHM 1: Pseudo-code of our progressive learning algorithm.

Set up a parameter set Θ with Dh , B, S1, λ1, and λT+1.

Initialize Θ with random numbers.

For (i = 1; i < T ; i++) // T is the maximum number of layers

Learn Θ for layer i to obtain Dh , B, λT+1, {Sj }, and {λj }, j = 1, . . . , i .

Add Si+1 and λi+1 into the parameter set Θ.

Initialize Si+1 and λi+1 with random numbers.

End For

Output learned parameters Dh , B, λT+1, {Si } and {λi }, i = 1, . . . , T .

ACM Transactions on Graphics, Vol. 40, No. 1, Article 4. Publication date: September 2020.

Dynamic Upsampling of Smoke through Dictionary-based Learning • 4:9

Fig. 12. Multiscale network. To increase the network representability, a multiscale version of our network can be employed. This network structure

subdivides the residual patch intoM multiple scales, and each scale is represented and learned by our original network. The synthesis result is obtained by

summing together all the components that each of these subnetworks synthesizes.

once we reached the T th (�nal) layer of the network. Algorithm 1

illustrates the pseudo-code for our progressive learning process

with better convergence properties.

We show in Figure 9 the evolution of the loss function during a

progressive (blue) vs. a non-progressive full-parameter (red) train-

ing, as well as the corresponding validation loss (green) during a

typical training of our network. The periodic large peaks in the

progressive learning curve indicate a transition from one layer to

the next, where a subset of the randomly initialized values are in-

serted into the learning parameters, thus increasing the loss to a

very high value; however, the loss quickly goes back down to an

even smaller value due to better initialization. Compared to full-

parameter learning, progressive learning systematically converges

to a smaller loss for both training and validation sets, thus enabling

better synthesis results.

At the end of either full-parameter or progressive learning,

we obtain all network parameters, including the dictionaries.

Figure 10 shows a partial visualization of the learned dictionaries

through small cross-sections of selected patches. It should be

noted that, although progressive learning can produce better

convergence (and thus better synthesis results), it can also end up

being slower than full-parameter learning for very large training

sets. In practice, we compromise between learning accuracy and

e�ciency: We use full-parameter learning for cases where the

diversity of the training set is relatively large, and progressive

learning otherwise (see Table 1).

3.6 Multiscale Network

If our training set has very high diversity, the design of our

network described so far may no longer be appropriate, as shown

in Figure 11(a), when rotated patches are added for training: If

the training set contains too diverse a set of physical behaviors,

Dh becomes too complex and can exceed the representability of

the network. We could further increase the depth of the network

and the size of the dictionary to increase the network capacity

to handle more complex representations, but at the expense of

signi�cantly increased training and synthesis times. Instead,

motivated by multi-resolution analysis, we decompose Dh into

multiple scales (components): Dh = D0
h
+ D1

h
+ · · · + DM

h
, where

each scale is represented by our previous LISTA-like network,

resulting in a multiscale network, as depicted in Figure 12. Even if

each sub-network is rather simple in its number of layers and dic-

tionary size (and thus limited in its complexity of representation),

the cumulative complexity of the resulting M-scale network is

signi�cantly increased. While the learning phase of this multiscale

Fig. 13. Importance sampling for training. We select our training

patches based on an importance sampling calculated from smoke density

and local strain, where darker colors indicate higher importance (hence

more selected patches); red dots show selected training patch centers.

network could still follow the same progressive optimization pro-

cess as we described above, we found it relatively slow to converge

compared to a full-parameter optimization, for only a marginal

gain in �nal loss. Thus, all of our examples based on a multiscale

network (i.e., Figures 1(a–c), 11, 16, 17, and 18) were trained

via full-parameter optimization, with M = 2, since a two-level

hierarchy proved su�cient in practice. Figure 11(b) shows the

synthesis from such a multiscale network when rotated patches

are added to the training set, indicating that much better results

can be obtained with this multiscale extension when compared to

the corresponding �ne physical simulation shown in Figure 11(c).

3.7 Assembly of Training Set

For network training, we need to prepare a large number of train-

ing pairs of corresponding low-resolution and high-resolution

patches. The patch size should be carefully chosen to tune e�-

ciency and visual coherence. Too small a size may not capture suf-

�cient structures, whereas too large a size may require a very large

dictionary and thus slower training andmore non-zero coe�cients

during synthesis, hampering the overall computational e�ciency.

In practice, we found that a low-resolution patch size of nc =3 and

a high-resolution patch size ofnf =5 o�er a good compromise, and

all our results were generated with these patch sizes. In general, these

small patches should come from a set of di�erent simulation se-

quences with di�erent boundary conditions, obstacles, or physi-

cal parameters to o�er enough diversity for our training approach

to learn from. The training patch pairs are then automatically se-

lected from these sequences. Instead of using the entire set of lo-

cal patches from all sequences, we found that proper patch sub-

selection is important for e�ciency: Getting a good diversity of

patches gives better guidance for the network training and higher

ACM Transactions on Graphics, Vol. 40, No. 1, Article 4. Publication date: September 2020.

4:10 • K. Bai et al.

Fig. 14. Patch blending. 2D illustration of our 4D convolution of over-

lapped patches: (a) patches are laid out with overlapping (regions in or-

ange); (b) for each node in the overlapped region, the overlapping space is

shown along the τ direction, where the center of coordinate in that space

is placed at the patch with no overlap (see the do�ed line in (a)).

convergence, thus producing better synthesis results. We thus em-

ploy importance sampling (as used in other learning-based �uid

simulation work, e.g., Kim and Delaney [2013]), where the patch

selection is done using the numpy library [Oliphant 2006] for a

probability distribution based on the vorticity of the �ow �eld and

the smoke density of smoke (i.e., the local number of passive trac-

ers advected in the �ow to visualize the smoke) on either low- or

high-resolution simulations: In essence, we favor regions where

smoke is likely to be or to accumulate during an animation to bet-

ter learn what is visually most relevant. Another criterion of visual

importance that we found interesting to leverage during patch se-

lection is a large local strain rate: Since turbulent �ows are par-

ticularly interesting due to their small-scale structures, targeting

predominantly these regions where wisps of smoke are likely to

be present allows the network to better synthesize these salient

features. Figure 13 shows an illustration of such an importance

sampling, where color luminosity indicates sampling importance.

3.8 High-resolution Flow Synthesis

After learning, the network automatically predicts high-resolution

patches from low-resolution input ones by evaluating the local

sparse weights that best reconstruct the dynamical surrounding

of each patch. To further improve spatial coherency, we evaluate

overlapping high-resolution patches, then blending of the over-

lapped regions (see orange regions in Figure 14(a) as an example)

is performed (in parallel) to ensure a smooth global reconstruc-

tion. Di�erent blending approaches could be used; we settled on

a convolution-based method as follows: We consider the synthe-

sized velocity u(x,τ) in overlapped regions as a 4D function sepa-

rately in 3D space (x) and an overlapping space coordinate (τ) (see

Figure 14(b)), and employ a 4D Gaussian kernelG(σx,στ) to do the

convolution, with σx and στ the standard deviations for spatial and

overlapping domains, respectively. We set σx=2.5 and στ =1.5 in

all our experiments. Since the whole convolution is separable, it

can be formulated as:

u(x,τ) ← G(στ) ∗ [G(σx) ∗ u(x,τ)] . (10)

This means that we �rst conduct a 3D convolution in the spatial

domain followed by a 1D convolution in overlapping space after

local patch prediction to obtain the �nal synthesized result for the

whole high-resolution �eld.

Fig. 15. Sphere-in-air-jet training set for super-resolution. From a

high-resolution simulation of a vertical jet flow hi�ing a sphere (b), a low-

resolution simulation is obtained through direct downsampling (a) to form

a training pair of simulation for super-resolution.

4 RESULTS

We now discuss the various results presented in this article. Most

of the datasets used for training the network and synthesizing our

results were collected from the kinetic �uid simulation method

of Li et al. [2019], except for the coupling example in Figure 16(c),

where the recent kinetic approach of Li et al. [2020] was used.

However, our method is not restricted to a speci�c �uid solver:

We can start from an arbitrary set of time-varying vector �elds

simulating a given physical phenomenon.

4.1 Implementation Details

While our approach can handle basically any dictionary or patch

size, we �rst discuss the di�erent choices of implementation pa-

rameters we used in our examples for reproducibility.

Training details. In our implementation, we combine all patches

that were collected for training to form a large matrix as input. The

learning process is then achieved by a series of matrix products,

which are evaluated in parallel by CUDAwith the CUBLAS library

[Nvidia 2008]. During learning, since we need to compute the gra-

dient tensor, which is extremely large, we sample 4,096 patches

for its computation. The learning rate lr involved in the parameter

matrices is dynamically changed: Initially, it is given a relatively

large value, e.g., lr =0.0001; as iterations converge with this �xed

lr , we further decrease it until �nal convergence, i.e., when further

reducing lr does not change the loss anymore.

ACM Transactions on Graphics, Vol. 40, No. 1, Article 4. Publication date: September 2020.

Dynamic Upsampling of Smoke through Dictionary-based Learning • 4:11

Table 1. Statistics. Parameters, Timings, and Memory Use per Frame for Various Smoke Animations Shown in This Article

Items Figures 1(a) & 16(a) Figure 16(b) Figure 16(c) Figure 16(d) Figures 1(b) & 17 Figures 1(c) & 18 Figures 1(d) & 20 Figure 19 Figure 24(d) Figure 24(e) Figure 24(f)

Resolution (coarse) 60×60×60 50×50×50 100×100×60 200×50×50 50×50×50 50×50×50 100×50×100 30×90×90 25×37×25 25×37×25 25×37×25
Resolution (�ne) 240×240×240 200×200×200 400×400×240 800×200×200 200×200×200 200×200×200 400×200×400 120×360×360 50×75×50 100×150×100 200×300×200

Network structurea multiscale multiscale multiscale multiscale multiscale multiscale single scale single scale single scale single scale single scale

Learning method full-parameter full-parameter full-parameter full-parameter full-parameter full-parameter progressive progressive progressive progressive progressive

Patch encoding method phase-space phase-space phase-space phase-space phase-space phase-space space-time space-time space-time space-time space-time

Dictionary size 800 800 800 800 800 800 800 800 400 400 400

Network memory size 49M 49M 49M 49M 49M 49M 22M 22M 4M 8M 9M

Training setup time 10 hours 10 hours 10 hours 10 hours 16 hours 20 hours 8 hours 6 hours 2 hours 3 hours 5 hours

Training time 18 hours 18 hours 18 hours 18 hours 72 hours 65 hours 37 hours 31 hours 15 hours 19 hours 27 hours

Time cost (coarse) 0.028 sec. 0.016 sec. 0.51 sec. 0.097 sec. 0.016 sec. 0.016 sec. 0.098 sec. 0.031 sec. 0.0032 sec. 0.0032 sec. 0.0032 sec.

Time cost (�ne) 5.92 sec. 2.87 sec. 112.8 sec. 23.62 sec. 2.87 sec. 2.87 sec. 23.6 sec. 6.84 sec. 0.025 sec. 0.33 sec. 5.15 sec.

Time (upsampling) 1.28 sec. 0.74 sec. 3.69 sec. 3.1 sec. 0.74 sec. 0.74 sec. 1.05 sec. 0.49 sec. 0.013 sec. 0.044 sec. 0.35 sec.

Speed-up 4.6 3.9 30.6 7.6 3.9 3.9 22.5 13.9 1.9 7.5 14.7

Fig. 16. Super-resolution. From a single training simulation of a sphere in a jet flow as shown in Figure 15 (where the coarse simulation is a downsampled

version of a high-resolution simulation), we can synthesize with phase-space encoding a large variety of flow simulations: (a) a vertical jet flow through

a dragon-shaped obstacle; (b) a jet flow from a tilted inlet hi�ing an ellipsoid; (c) turbulent smoke induced by the fall of a plate on the floor; or (d) a

wind-tunnel simulation of a car. In each example, we show the low-resolution input, the synthesized high-resolution result from tempoGAN network [Xie

et al. 2018], and our synthesized result, respectively. Our approach captures visually crisper flow details than tempoGAN in all these cases.

Flow synthesis. The synthesis process is also implemented by a

series of matrix products in parallel. We �rst collect all overlapped

local patches to form a large matrix as input and then go through

the network by a series of parallel matrix calculations for synthe-

sizing the high-resolution patches. A parallel convolution in over-

lapped regions is �nally performed to obtain the synthesized high-

resolution �eld, in which passive tracers can then be advected to

render the smoke. Depending on the time resolution of the coarse

inputs, we only upsample a fraction (between a third and a tenth)

of the coarse simulation time steps; this is usually enough to create

upsampled high-resolution �ow �elds that are then used to advect

smoke particles or high-resolution density �elds and render the

animation.

Libraries and memory requirements. Our learning was imple-

mented with TensorFlow [Abadi et al. 2016] on a server using

NVIDIA P40 GPUs, each with a total memory of 24GB. For large

training set (larger in size than the allowable GPU memory), we

perform out-of-core computing by evaluating the loss and gradi-

ent with several passes and data loads. The synthesis process was

implemented on a basic workstation equipped with an NVIDIA

GeForce RTX 2080 Ti GPU with 12GB memory. The �nal render-

ing is achieved with a particle smoke renderer [Zhang et al. 2015]

together with the NVIDIA OptiX ray-tracing engine [Parker et al.

2010], which usually takes about 40 seconds to render one frame of

animation for a resolution of 1,280 × 720 as the output image with

multisample anti-aliasing (3×3 samples per each output pixel), and

with a maximum number of particles equal to 15M. After learning,

the whole network (including the resulting dictionary) takes up

a total size of approximately 50 MB for the generalized synthesis

case (Figure 17), which has the highest amount of memory con-

sumption among our learning results shown in this article. Table 1

lists the network size and additional statistics of other synthesis

cases.

4.2 Examples for Various Usage Scenarios

Compared to existing learning-based methods, our proposed ap-

proach o�ers a more general framework for synthesizing high-

resolution simulations of smoke �ows from coarse simulations.We

ACM Transactions on Graphics, Vol. 40, No. 1, Article 4. Publication date: September 2020.

4:12 • K. Bai et al.

Fig. 17. Generalized upsampling. From only two simulation examples containing di�erent numbers of sphere obstacles (a), our network-based approach

can upsample coarse simulations (with phase-space encoding and an expansion ratio of 4 × 4 × 4 = 64) for di�erent obstacle shapes (b), di�erent inlet

positions and longer simulation time (c), di�erent arrangement of obstacles than the training set (d), and di�erent inclinations of the obstacles (e) & (f), to

show the generalizability of our network.

Fig. 18. Restricted upsampling. From a series of input coarse/fine animation sequences with only changes of the inlet size (a), our network-based approach

can upsample smoke simulations (with phase-space encoding and an expansion ratio of 4 × 4 × 4 = 64) with arbitrary inlet sizes in between those used in

the training set: (b) & (d) for two di�erent inlet sizes not present in the training set. Compared to the corresponding ground-truth numerical simulations

(c) & (e), our synthesized results share close resemblance.

demonstrate its generality by reviewing the four di�erent scenar-

ios that our algorithm can handle based on the choice of training

sets and inputs: super-resolution (when a downsampled animation

is provided as an input), generalized upsampling (when the input

is a coarse animation di�ering signi�cantly from the training set),

restricted upsampling (when the coarse input is close to a restricted

set of training simulations), and re-simulation (when the coarse in-

put is a small alteration of the simulation used for training). These

four scenarios lead to di�erent generalization behaviors and syn-

thesis accuracy, as we now detail.

Super-resolution. The �rst application of our dynamic up-

sampling of smoke �ows is what Xie et al. [2018] called super-

resolution, where a spatially downsampled animation needs to be

upsampled; this scenario allows for the e�cient reconstruction of

high-resolution animations that have been compressed through

downsampling. In this particular context, training pairs are

assembled from high-resolution simulations and their down-

sampled versions (see Figure 15 for an example). Since such a

training set ensures that the overall �ow structures between

the low-resolution and high-solution �ow �elds always match,

our neural network easily learns how to derive high-resolution

details from a coarse, downsampled animation, even for turbulent

�ows where the �ow structures tend to be chaotic. Figure 16

demonstrates a variety of smoke animation results synthesized

from low-resolution simulation inputs, which all purposely di�er

signi�cantly from the single training pair shown in Figure 15;

compared with tempoGAN [Xie et al. 2018] (we directly used their

trained network parameters), our approach generates �ner smoke

plumes as well as other visually obvious �ow structures. Note,

however that this scenario does not ensure that the synthesized

high-resolution �ow �eld can match their corresponding physical

simulations: It is only intended to generate visually plausible

smoke results with much �ner details than in the input.

Generalized upsampling. Arguably the most challenging task is

to generate a plausible high-resolution smoke �ow from a coarse

input that shares very little in common with the training set. This

ACM Transactions on Graphics, Vol. 40, No. 1, Article 4. Publication date: September 2020.

Dynamic Upsampling of Smoke through Dictionary-based Learning • 4:13

Fig. 19. Smoke shooting. From a low-resolution (30 × 90 × 90) simulation input (a), our synthesized smoke (b) with space-time encoding at high resolution

(120 × 360 × 360), vs. the high-resolution simulation (c) for reference. Despite a factor of 64 (4 × 4 × 4) in resolution ratio, visually important structures (e.g.,

the secondary vortex ring marked with a red box) that were not in the coarse simulation (a) but present in the fine simulation are well captured.

Fig. 20. Vortex rings colliding. From a low-resolution (100 × 50 × 100) simulation input (a), our synthesized smoke (b) with space-time encoding at high

resolution (400 × 200 × 400), vs. the high-resolution simulation (c) for reference. Despite a factor of 64 (4 × 4 × 4) in resolution ratio, we can still faithfully

capture the obviously important vortex structures (e.g., the first (red box) and secondary (blue box) vortices, with leapfrogging in the center) present in the

fine simulation.

is what we call generalized upsampling, for which the training

pairs are corresponding low- and high-resolution �ow �elds that

are both physically simulated. Intuitively, upsampling in this case

can only add physically accurate details to a coarse simulated in-

put if learning uses a very large set of patches from a variety of

training simulations so as to cover a su�cient variety of simula-

tion conditions. While guaranteeing physical accuracy is not pos-

sible in this context, we demonstrate in Figure 17 that even only

two training simulations (with, respectively, one and �ve spheres)

are enough to train our dictionary-based upsampling process to

deal with a fairly large parameter space (inlet position and diame-

ter, obstacle position and shape, size and orientation, etc.) to result

in plausible upsampling: The resulting neural network can han-

dle di�erent coarse simulations, including changing the shape of

the sphere, shifting the inlet position and increasing the simula-

tion duration, removing some of the sphere obstacles, as well as

rotating the sphere obstacles by 45 degrees (this con�guration is

also not present in the training set, since only 90-degree patch

rotations were added). Although the synthesized high-resolution

simulations do not match their corresponding �ne physical simu-

lations closely due to the typical chaotic behavior of smoke �ows

(Figure 2), our trained network generates plausible high-resolution

vortex structures far better than if only noise- or high-frequency

structures were added to the coarse simulations. This illustrates

the power of our approach: Just a few training simulations can

serve as a decent learning catalog to upsample coarse simulations.

Training with a larger set of simulation pairs creates a network

that can handle inputs deviating even more signi�cantly from the

training set, at the cost of more computational resources.

Restricted upsampling. If training simulations and inputs are less

varied, our approach o�ers better training and more accurate syn-

thesis. For example, for the jet �ow smoke shown in Figure 18, we

collect training patches from simulations using only four di�er-

ent inlet sizes, with phase-space encoding and with inlet size as an

additional patch code, to synthesize high-resolution simulation re-

sults from a coarse simulation with an arbitrary inlet size di�erent

from those used in the training set. The largest inlet in the training

set is nearly twice as large as the smallest one, with two additional

inlet sizes in between them to produce a total of four simulation

sequences, from which training patches are sampled. Because of

this more restricted setup, the synthesized high-resolution �ows

contain vortex structures that closely resemble the real �ne simu-

lations as shown in Figures 18(c) and (e). Similar restricted cases

where we change, e.g., the obstacles’ position or size can be per-

formed as well.

Re-simulation. An extreme case of restricted upsampling, in

which training patches are sampled from a single simulation and

ACM Transactions on Graphics, Vol. 40, No. 1, Article 4. Publication date: September 2020.

4:14 • K. Bai et al.

Fig. 21. Spectral behavior. We plot the energy spectra for a low-

resolution simulation (red), a high-resolution simulation (gray), and our

synthesized flow (blue) with respect to wavenumber k , for two types of

upsampling scenarios: (a) generalized upsampling (Figure 17(b)), and (b)

re-simulation (Figure 20). Our network produces spectra faithfully close

to the high-resolution simulation counterparts below a critical wavenum-

ber (do�ed lines).

the input is a coarse simulation close to this training simulation

with only small adjustments on initial and/or boundary condi-

tions (see Figures 19 and 20), amounts to re-simulation. This case

is much narrower in its applicability for upsampling, but can

produce near-perfect synthesis results, achieving simulations that

are very close in the vortical structures to their corresponding

physical simulations; see the secondary vortices in Figures 19

and 20, for instance. The synthesis accuracy depends of course

on the underlying Reynolds number, though: The lower the

Reynolds number, the closer the synthesized simulation to its �ne

simulation counterpart.

5 DISCUSSION

Finally, we discuss a few important aspects of our learning ap-

proach to provide additional insight on its strengths and limita-

tions.

5.1 Learning Parameters

In our approach, the dictionary size can be arbitrarily set, with

larger sizes providing more physically plausible results but slower

training. In practice, we set it to 400 for re-simulation cases shown

in Figures 24(d), (e), and (f); for other cases, we use 800, as listed

in Table 1. As a rule of thumb, we recommend larger values

for higher Reynolds numbers—and conversely, smaller values for

lower Reynolds numbers—to adapt to the complexity of the �ow.

In addition, some other network parameters should be set: For re-

simulation shown in Figures 24(d), (e), and (f), the sizes of B, S,

and Dh are 400×83, 400×400 and 400×375, respectively; for re-

simulation shown in Figures 19 and 20, the sizes of these param-

eters are 800×83, 800×800, and 800×375, respectively; for other

upsampling, the sizes of these parameters are 800×486, 800×800,

and 800×375, respectively. For generalized upsampling with large

variation of �ow conditions compared to the training simulations

(see, e.g., Figure 1(b) and Figure 17), we used 22M patches (se-

lected via importance sampling from 800 frames spread across dif-

ferent training simulations) to learn our dictionary and LISTA-like

sparse coding layers. For more restricted upsampling cases where

the variation of �ow conditions is not signi�cant, the number of

Fig. 22. Synthesis error over time steps. In (a), we plot relative L2 er-

rors for the generalized synthesis result from Figure 17(b): The solid curve

represents the error between our synthesized flow and the high-resolution

simulated flows, while the dash-do�ed curve shows the error between the

coarse and fine simulations. In (b), we plot the same error curves, this time

for the upsampling of the low-resolution simulation input (25 × 37 × 25)

used in Figure 24, for three di�erent upsampling factors.

Fig. 23. Incompressibility. To numerically verify the incompressibility of

our upsampling approach, we plot the mean (a) and variance (b) of the (ab-

solute values of the) divergence of our synthesized velocity fields over time

for super-resolution (Figure 16(c)), generalized upsampling (Figure 17(b)),

restricted upsampling (Figure 18(b)), and re-simulation (Figure 20) results.

training patches can be far lower: We used 15M for Figure 1(c) and

Figure 18, 8M patches for Figure 16, and 3M patches for Figure 1(d)

and Figures 19 and 20.

5.2 Flow Synthesis Accuracy

Aswe highlighted early on, the technique proposed in this article is

not generally intended to produce high-resolution �ow �elds that

are physically accurate. Sincewe target visually realistic smoke an-

imations for relatively high Reynolds numbers, our method only

ensures that plausible �ne vortex structures are generated from the

coarse input, without noticeable artifacts. There are several factors

that a�ect the quality of our results. The two main parameters are

the dictionary size and the number of network layers, which both

in�uence the dimensionality of the space of synthesized patches.

For �ows with higher Reynolds numbers, one should use larger

dictionary size, since the local structures tend to be more com-

plex. Another factor is how the training patches are sampled from

the input coarse-�ne animation pairs. In general, our method can

capture most high-resolution �ow structures, but our importance

sampling may miss vortices that are only active for a very short

period of time; therefore, our synthesis will not capture these very

ACM Transactions on Graphics, Vol. 40, No. 1, Article 4. Publication date: September 2020.

Dynamic Upsampling of Smoke through Dictionary-based Learning • 4:15

Fig. 24. Di�erent upsampling factors. From the low-resolution (25 × 37 × 25) smoke flow shown as an inset, the corresponding fine (top) and synthesized

(bo�om) animations (using space-time encoding) are shown at di�erent resolutions: (a/d) 50 × 75 × 50, (b/e) 100 × 150 × 100, and (c/f) 200 × 300 × 200.

transient phenomena properly by lack of training. To a certain

extent, the user may de�ne a di�erent notion of importance that

highlights the most desirable features that synthesis is expected to

recover. In addition, as discussed during the review of our results,

the way the training set is prepared also in�uences synthesis accu-

racy; e.g., if the training set is prepared through downsampling like

for the super-resolution case, our upsampling is unlikely to obtain

a high-resolution simulation close to its �ne numerical simulation

from a coarse input, even if it generates visually plausible details.

Energy spectrum. One of the important measures of accuracy,

particularly for turbulent �ows, is the energy spectrum of the

velocity �eld. Figure 21 shows the spectral behavior for the gener-

alized upsampling (a) and re-simulation (b) cases. Below a certain

critical wavenumber (indicated via a dotted line), both spectra

plots match the corresponding simulations well, indicating that

both types of �ow synthesis methods can retain large-scale vortex

structures present in the high-resolution simulations; note that

re-simulation has a higher critical wavenumber, meaning that it

captures smaller-scale vortex structures, as expected.

Synthesis error over time steps. Another way to assess the accu-

racy of our synthesis result is to compute the mean squared error

of velocity �elds normalized with respect to the numerical sim-

ulation at the same high resolution. Figure 22 plots the resulting

error variations over di�erent time steps for the generalized syn-

thesis case, as well as for di�erent resolution ratios. We also plot

the error between coarse and �ne simulations as a reference to bet-

ter illustrate our synthesis accuracy. Our synthesis error remains

relatively small and bounded over time for these test cases.

Incompressibility. Figure 23 shows the mean and variance of the

absolute values of the velocity divergence for a series of our up-

sampling results. As these values are uniformly very small for dif-

ferent types of �ow synthesis, incompressibility is well preserved

in practice.

Vortex structure preservation. While our approach can capture

detailed vortex structures close to their �ne simulation counter-

parts, our synthesis results sometimes exhibit crisper volutes, with

less apparent di�usion in the rendered smoke compared to real

physical simulations. Two reasons explain this behavior: First,

physical simulations capture smaller-scale vortices that locally dif-

fuse the smoke particles more than in the synthesized results; sec-

ond, our network does not perfectly ensure spatial and tempo-

ral coherence among patches, so small mismatch between nearby

patches can create local vorticity that attracts smoke particles

rather than di�use them. One could add a local di�usion to sim-

ply counteract this e�ect; we kept all our results as is, because a

crisper look is, in fact, visually more attractive, and we also did not

want to alter the results with post-processing in any way, which

would obfuscate the interpretation of our results. It may also be

noted that high-resolution structures are often synthesized even if

the low-resolution simulation has seemingly not even any smoke

in the area (see the trailing wisps in Figure 24 or the rising plumes

in Figure 19): As we synthesize a high-resolution velocity �eld di-

rectly rather than smoke density, low-resolution �ows can have

small velocity variations in regions where no smoke particles were

driven towards, but our network has learned that these velocity

con�gurations become, in fact, full-blown smoke structures at high

resolution.

Synthesis for di�erent resolutions. While most of our results were

using an expansion factor of 43=64, we tried upsampling up to

a ratio of 8 in each dimension and obtained reasonable synthesis

results, as demonstrated in Figure 24.

5.3 Generalizability

We showed in Section 4.2 that our approach can handle inputs

quite di�erent from the training set in the super-resolution and

generalized upsampling scenarios: From a varied set of simulation

patches, smoke �ows can be quickly generated from a coarse input

ACM Transactions on Graphics, Vol. 40, No. 1, Article 4. Publication date: September 2020.

4:16 • K. Bai et al.

Fig. 25. From downsampled to upsampled flows. From a smoke an-

imation computed from a downsampled (four times along each dimen-

sion) fine animation, tempoGAN [Xie et al. 2018] can make the smoke

look sharper (b), but fail to capture the correct dynamics of the fine sim-

ulation (d); our approach (using phase-space encoding), instead, captures

the smoke animation much more closely.

through “interpolation” and moderate “extrapolation” of the train-

ing patches to capture plausible �ne physical structures in the �ow.

Restricted upsampling and re-simulation o�er very limited gener-

alizability, as the training sets do not cover a large variety of exam-

ples; but this restriction also improves the physical accuracy of the

resulting high-resolution �ows. The examples we show in this arti-

cle were designed to showcase how our approach can generalize a

smoke �ow based on di�erent training sets, without su�ering from

over�tting issues. The generalized upsampling in Figure 17, for in-

stance, relies only on two training simulations: one using a sin-

gle sphere obstacle, and the second one using a set of �ve spheres

placed on a common vertical plane. Synthesizing upsampled �ows

from only these two sequences with signi�cant variations of the

initial conditions (e.g., by either adding/removing sphere obstacles,

changing the obstacle shape, or rotating the �ve-sphere con�gura-

tion by an angle) lead to visually plausible results. Super-resolution

allows for even stronger generalizability, as shown in Figure 16:

With only one simulation example of a jet �ow through a sphere

used for training, our network can bewidely applied to a large vari-

ation of �ow conditions, including a case with dynamic �uid-solid

coupling, while still providing plausible results. Note that even the

re-simulation examples in Figures 19 and 20 exhibit some amount

of both interpolation and extrapolation from the original simula-

tion: Recall that the training for re-simulation uses only a small

subset of all patches sampled over time and space; so a synthe-

sized re-simulation relies on linear combinations of these patches

to synthesize the high-resolution �ow instead of directly replaying

Fig. 26. Comparison with tempoGAN network. We perform upsam-

pling comparison from a low-resolution numerical simulation input (50 ×

50 × 50) between the tempoGAN network [Xie et al. 2018] and ours (us-

ing phase-space encoding), both at the resolution of 200 × 200 × 200:

(a) low-resolution numerical simulation input; (b) tempoGAN upsampling

result; (c) our network upsampling result; (d) the ground-truth fine numer-

ical simulation.

the �ne animation. It is thus clear from our demonstrated results

that our method can accommodate a large range of applications by

varying the types of training sets used.

5.4 Comparison with Other Upsampling Approaches

There are only a few previous works that can synthesize, based on

a neural network, plausible high-resolution �ow �elds from low-

resolution simulation inputs. The most relevant approach, pro-

posed by Chu et al. [2017], used a CNN-based feature descriptor

to synthesize high-resolution smoke details, also based on a local

patch-based synthesis scheme. However, they relied on a nearest-

neighbor search during synthesis, which greatly restricts the space

of synthesized �ow structures and makes the animation results of-

ten visually unnatural: Smoke structures appear biased towards

particular directions (see Figure 12 in their paper for an example).

Another relevant recent work is the tempoGAN network of Xie

et al. [2018], which targets super-resolution. In addition to the

visual comparisons we provided for super-resolution examples

showing �ner and crisper high-resolution simulations than tem-

poGAN, Figure 25 shows yet another comparisonwith tempoGAN,

this timewith the corresponding high-resolution smoke animation

result (Figure 25(d)) provided as ground-truth. Our synthesized re-

sult is much closer to the ground-truth than tempoGAN, which

remains too similar to the low-resolution �ow. Note that we used

the same training sphere-in-air-jet example shown in Figure 15 to

synthesize the result in Figure 25(c), while we used the trained net-

work parameters of tempoGAN based on their own training sets.

Moreover, our approach is also systematically faster to generate

high-resolution �ows: tempoGAN requires around 10 seconds to

synthesize a �ow at a resolution of 200×200×200, while ours takes

merely 1 second for the same grid resolution and on the same GPU

for fairness of evaluation. In addition, tempoGAN also takes sig-

ni�cantly longer to train their network: while they need nine days

on this example, our method will only spend 18 hours. Finally, as

discussed earlier, super-resolution is only one of the scenarios our

approach can tackle: If generalized upsampling of a coarse simu-

lation is needed, our learning approach still applies and performs

well (see Figures 26(c) and (d), for instance), while tempoGAN can-

not handle this case.

ACM Transactions on Graphics, Vol. 40, No. 1, Article 4. Publication date: September 2020.

Dynamic Upsampling of Smoke through Dictionary-based Learning • 4:17

Fig. 27. Speedup.Comparison of performance under di�erent resolutions

for the upsampling example in Figure 24 with restricted synthesis; gray

curve indicates numerical simulation time at di�erent resolutions, while

red curve displays coarse simulation plus synthesis time for the same res-

olutions.

5.5 Timings and E�ective Compression

Regarding timings, training is slower for generalized upsampling

due to the larger number of training patches used to allow for

very varied inputs: The slowest training phase was 72 hours for

Figure 17 using TensorFlow with Nvidia P40 GPUs, as described

in Section 4.1. For more restricted upsampling, it takes an aver-

age of approximately 50 hours to train our network: Re-simulation

typically requires 15 hours for training, while super-resolution re-

quires 18 hours. Flow synthesis only takes around 1 second per

time step of a high-resolution simulation (200 × 200 × 200) from a

low-resolution input (50 × 50 × 50), rendering our approach much

faster (often by approximately an order ofmagnitude ormore) than

the corresponding physical simulation (see Figure 27 for perfor-

mance speed-ups at various synthesis resolutions corresponding

to Figure 24). Note that we obtain our best speed-up factor for the

coupling example of Figure 16(c), since our upsampling does not

su�er from time-step restrictions for numerical stability compared

to the actual �ne simulation. Also note that what we refer to as up-

sampling “speedup” as listed in Table 1 does not include computa-

tional times for density advection (or particle tracing) and training,

since these stages are not formally part of the upsampling process.

Memory usage is also signi�cantly reduced with our approach: a

high-resolution simulation typically requires from 1.6GB to 3.2GB

for a resolution of 200 × 200 × 200, depending on the solver; in-

stead, its low-resolution simulation only requires from 25MB to

50MB for a resolution of 50 × 50 × 50, and storing our whole net-

work requires a maximum of 50MB in the scenario requiring the

largest training set (Figure 17). Consequently, our learning-based

upsampling approach can be considered as a very e�ective spa-

tial and temporal compression scheme for both laminar and turbu-

lent �uid �ows. We leave a proper evaluation of its value to future

work.

5.6 Limitations

Our method is not without limitations, however. One cannot ex-

pect poorly chosen training sets to provide predictive upsampling,

as we now detail to help understand what to expect from our ap-

proach. First, our local patch approach cannot guarantee a perfect

spatial and temporal coherence in the results—although visual ar-

tifacts are all but impossible to notice in practice. Note that the

patch coherence is strongly related to the generalization property

Fig. 28. Potential limitations. If we train our network using a flow over

a sphere, upsampling a coarse animation of a turbulent flow over a bunny-

shaped obstacle (a) can lead to significant inaccuracy (b) compared to the

ground-truth solution (c): The training patches from the coarse simulation

are simply not diverse enough to o�er accurate prediction.

of the network. If a coarse input patch deviates signi�cantly from

the training patches, it will then be di�cult to represent as a mean-

ingful combination of training patches; the network behavior in

this case is not quite predictable, and incoherence is likely to oc-

cur. This is particularly obvious when we prepare the training sets

from coarse and �ne simulation pairs with strong turbulence. In

such a case, nearby mismatched patches may create large velocity

gradients (along with a strong vorticity) in the overlapped regions,

which will attract smoke particles and result in very thin and un-

natural smoke features—see for instance Figure 28, where we train

our network with a simple �ow simulation around a sphere (the

training pairs are sampled from simulations in Figures 26(a) and

(d)), but synthesize a fast, turbulent �ow around a bunny-shaped

obstacle. More generally, very turbulent �ows are simply di�-

cult to upsample accurately: Since they are chaotic, an arbitrary

coarse simulation may contain patches widely di�erent from even

a large sample of training patches. Moreover, the di�erence be-

tween coarse and �ne turbulent �ows may increase exponentially

over time, bringing an additional di�culty for such fast �ows.

However, if the coarse inputs are downsampled versions of �ne

simulations like it was assumed in tempoGAN [Xie et al. 2018]

and also demonstrated in our super-resolution examples, inputs

are of course much more “predictive” of the motion, even in the

case of turbulent �ows. Our approach outperforms tempoGAN in

this speci�c case, both in terms of generalizability and e�ciency.

Second, since high-frequency components are synthesized by our

network without a strict enforcement of divergence-freeness, it

also does not guarantee incompressibility; however, given that the

coarse simulation is already incompressible and that we enforce

a divergence-free dictionary, the resulting high-resolution anima-

tion remains nearly incompressible. Last, our method may require

a large amount of training patches to produce physically accurate

results, which induces longer training time, especially for gen-

eralized upsampling. While our patch sampling was designed to

keep the patch number low by promoting a diverse sampling of

patch behaviors, our importance sampling strategy could be fur-

ther re�ned to improve generalizability for a given count of train-

ing patches.

6 CONCLUSION

In this article, we proposed a dictionary-based approach to syn-

thesizing high-resolution �ows from low-resolution numerical

ACM Transactions on Graphics, Vol. 40, No. 1, Article 4. Publication date: September 2020.

4:18 • K. Bai et al.

simulations for the e�cient (possibly iterative) design of smoke

animation. In sharp contrast to previous works that only add high

frequencies through noise or fast procedural models, our approach

learns to e�ciently predict the appearance of plausible �ne details

based on the results of coarse and �ne o�ine numerical simula-

tions. A novel multiscale dictionary learning neural network is for-

mulated based on a space-time or phase-space encoding of the �ow

and then trained through a set of coarse and �ne pairs of animation

sequences. From any input coarse simulation, a high-resolution

simulation can then be approximated via a sparse representation

of the local patches of the input simulation by simply applying our

trained network per patch, followed by a sparse linear combination

of high-resolution residual patches blended into a high-resolution

grid of velocity vectors. We also highlighted the key advantages

of our method with respect to previous methods that either just

added high-frequency noise or used a very limited space of up-

sampled patches, and we provided a clear analysis of the possible

failure cases for fast and turbulent �ows.We believe that our use of

sparse combinations of patches from a well-chosen over-complete

dictionary o�ers a rich basis for future neural-network based ap-

proaches to motion generation, not limited to smoke simulations.

ACKNOWLEDGMENTS

We thank Chaoyang Lyu, Yihui Ma, Yixin Chen, Xinghao Wang,

and Wenji Liu from FLARE Lab of ShanghaiTech University for

helping with rendering and video editing. Mathieu Desbrun ac-

knowledges the hospitality of ShanghaiTech University during his

sabbatical.

REFERENCES
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je�rey Dean,

Matthieu Devin, Sanjay Ghemawat, Geo�rey Irving, Michael Isard, et al. 2016.
Tensor�ow: A system for large-scale machine learning. In Proceedings of the Op-
erating Systems Design and Implementation Conference, Vol. 16. 265–283.

Michal Aharon, Michael Elad, Alfred Bruckstein, et al. 2006. K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig.
Proc. 54, 11 (2006), 4311.

Nadir Akinci, Markus Ihmsen, Gizem Akinci, Barbara Solenthaler, and Matthias
Teschner. 2012. Versatile rigid-�uid coupling for incompressible SPH. ACM Trans.
Graph. 31, 4, Article 62 (July 2012), 8 pages.

Ryoichi Ando, Nils Thürey, and Chris Wojtan. 2013. Highly adaptive liquid simula-
tions on tetrahedral meshes. ACM Trans. Graph. 32, 4, Article 103 (July 2013), 10
pages.

Markus Becker and Matthias Teschner. 2007. Weakly compressible SPH for free sur-
face �ows. In Proceedings of the Symposium on Computer Animation. 209–217.

M. Borgerding, P. Schniter, and S. Rangan. 2017. AMP-inspired deep networks for
sparse linear inverse problems. IEEE Trans. Sig. Proc. 65, 16 (2017), 4293–4308.

Robert Bridson, Jim Houriham, and Marcus Nordenstam. 2007. Curl-noise for proce-
dural �uid �ow. ACM Trans. Graph. 26, 3 (2007), 46–es.

Tyson Brochu, Todd Keeler, and Robert Bridson. 2012. Linear-time smoke animation
with vortex sheet meshes. In Proceedings of the Symposium on Computer Anima-
tion. 87–95.

Shiyi Chen and Gary D. Doolen. 1998. Lattice Boltzmann method for �uid �ows. Ann.
Rev. Fluid Mech. 30, 1 (1998), 329–364.

Albert Chern, Felix Knöppel, Ulrich Pinkall, Peter Schröder, and Ste�en Weißmann.
2016. Schrödinger’s smoke. ACM Trans. Graph. 35, 4, Article 77 (July 2016),
13 pages.

Mengyu Chu and Nils Thuerey. 2017. Data-driven synthesis of smoke �ows with
CNN-based feature descriptors. ACM Trans. Graph. 36, 4, Article 69 (July 2017),
14 pages.

Ingrid Daubechies, Michel Defrise, and Christine De Mol. 2004. An iterative thresh-
olding algorithm for linear inverse problems with a sparsity constraint. Commun.
Pure Appl. Math. 57, 11 (2004), 1413–1457.

Fernando de Goes, CorentinWallez, Jin Huang, Dmitry Pavlov, andMathieu Desbrun.
2015. Power particles: An incompressible �uid solver based on power diagrams.
ACM Trans. Graph. 34, 4, Article 50 (July 2015), 11 pages.

Alessandro De Rosis. 2017. Nonorthogonal central-moments-based lattice Boltzmann
scheme in three dimensions. Phys. Rev. E 95, 1 (2017), 013310.

Mathieu Desbrun and Marie-Paule Gascuel. 1996. Smoothed particles: A new para-
digm for animating highly deformable bodies. In Proceedings of the Workshop on
Computer Animation and Simulation. 61–76.

Dominique d’Humières. 2002. Multiple–relaxation–time lattice Boltzmann models in
three dimensions. Philos. Trans. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. 360, 1792
(2002), 437–451.

Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. 2001. Visual simulation of smoke.
In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques. 15–22.

Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017. A
polynomial particle-in-cell method. ACM Trans. Graph. 36, 6, Article 222 (Nov.
2017), 12 pages.

C. Garcia-Cardona and B. Wohlberg. 2018. Convolutional dictionary learning: A com-
parative review and new algorithms. IEEE Trans. Comput. Imag. 4, 3 (2018), 366–
381.

M. Geier, A. Greiner, and J. G. Korvink. 2006. Cascaded digital lattice Boltzmann
automata for high Reynolds number �ow.Phys. Rev. E 73, 6.2 (2006), 066705–
066705.

Abhinav Golas, Rahul Narain, Jason Sewall, Pavel Krajcevski, Pradeep Dubey, and
Ming Lin. 2012. Large-scale �uid simulation using velocity-vorticity domain de-
composition. ACM Trans. Graph. 31, 6, Article 148 (Nov. 2012), 9 pages.

Karol Gregor and Yann LeCun. 2010. Learning fast approximations of sparse cod-
ing. In Proceedings of the International Conference on Machine Learning. 399–
406.

Xiaoxiao Guo, Wei Li, and Francesco Iorio. 2016. Convolutional neural networks for
steady �ow approximation. In Proceedings of the ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. 481–490.

Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and
Matthias Teschner. 2014. Implicit incompressible SPH. IEEE Trans. Vis. Comput.
Graph. 20, 3 (2014), 426–435.

SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, Markus Gross, et al. 2015. Data-
driven �uid simulations using regression forests. ACM Trans. Graph. 34, 6, Article
199 (Oct. 2015), 9 pages.

Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey
Stomakhin. 2015. The a�ne particle-in-cell method. ACM Trans. Graph. 34, 4, Ar-
ticle 51 (July 2015), 10 pages.

David Underhill and John Steinho�. 1994.Modi�cation of the Euler equations for “vor-
ticity con�nement”: Application to the computation of interacting vortex rings.
Phys Fluids 6 (1994), 2738–2744.

Tero Karras. 2012. Maximizing parallelism in the construction of BVHs, octrees,
and k-d trees. In Proceedings of the Conference on High-performance Graphics.
ACM/Eurographics, 33–37.

Ladislav Kavan, Dan Gerszewski, Adam Bargteil, and Peter-Pike Sloan. 2011. Physics-
inspired upsampling for cloth simulation in games. ACM Trans. Graph. 30, 4,
Article 93 (July 2011), 10 pages.

Byungsoo Kim, Vinicius C. Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and
Barbara Solenthaler. 2019. Deep �uids: A generative network for parameterized
�uid simulations. Comput. Graph. Forum 38, 2 (2019).

ByungMoon Kim, Yingjie Liu, Ignacio Llamas, and Jarek Rossignac. 2005. FlowFixer:
Using BFECC for �uid simulation. In Proceedings of the Eurographics Conference
on Natural Phenomena. 51–56.

Doyub Kim, Oh-young Song, and Hyeong-Seok Ko. 2008a. A semi-Lagrangian CIP
�uid solver without dimensional splitting. In Computer Graphics Forum, Vol. 27.
467–475.

Theodore Kim and John Delaney. 2013. Subspace �uid re-simulation. ACM Trans.
Graph. 32, 4, Article 62 (July 2013), 9 pages.

Theodore Kim, Nils Thürey, Doug James, and Markus Gross. 2008b. Wavelet turbu-
lence for �uid simulation. ACM Trans. Graph. 27, 3 (Aug. 2008), 1–6.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: Amethod for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and James F. O’Brien.
2006. Fluid animation with dynamic meshes. ACM Trans. Graph. 25, 3 (July 2006),
820–825.

Michael Lentine, Wen Zheng, and Ronald Fedkiw. 2010. A novel algorithm for incom-
pressible �ow using only a coarse grid projection.ACMTrans. Graph. 29, 4, Article
114 (July 2010), 9 pages.

Wei Li, Kai Bai, and Xiaopei Liu. 2019. Continuous-scale kinetic �uid simulation. IEEE
Trans. Vis. Comput. Graph. 25, 9 (Sept. 2019), 2694–2709.

Wei Li, Yixin Chen, Mathieu Desbrun, Changxi Zheng, and Xiaopei Liu. 2020. Fast and
scalable turbulent �ow simulation with two-way coupling. ACM Trans. Graph. 39,
4 (2020), Article 47.

Xiaopei Liu, Wai-Man Pang, Jing Qin, and Chi-Wing Fu. 2014. Turbulence simulation
by adaptivemulti-relaxation lattice Boltzmannmodeling. IEEE Trans. Vis. Comput.
Graph. 20, 2 (Feb. 2014), 289–302.

Frank Losasso, Frédéric Gibou, and Ron Fedkiw. 2004. Simulating water and smoke
with an octree data structure. ACM Trans. Graph. 23, 3 (Aug. 2004), 457–462.

ACM Transactions on Graphics, Vol. 40, No. 1, Article 4. Publication date: September 2020.

Dynamic Upsampling of Smoke through Dictionary-based Learning • 4:19

Daniel Lycett-Brown, Kai H. Luo, Ronghou Liu, and Pengmei Lv. 2014. Binary droplet
collision simulations by a multiphase cascaded lattice Boltzmann method. Phys.
Fluids 26 (2014), 023303.

Patrick Mullen, Keenan Crane, Dmitry Pavlov, Yiying Tong, and Mathieu Desbrun.
2009. Energy-preserving integrators for �uid animation. ACM Trans. Graph. 28, 3,
Article 38 (July 2009), 8 pages.

CUDA Nvidia. 2008. cuBLAS library. 15, 27 (2008), 31. NVIDIA Corporation, Santa
Clara, CA.

Travis E. Oliphant. 2006. A Guide to NumPy. Vol. 1.
Sang Il Park and Myoung Jun Kim. 2005. Vortex �uid for gaseous phenomena. In

Proceedings of the Symposium on Computer Animation. 261–270.
Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,

David Luebke, David McAllister, MorganMcGuire, Keith Morley, Austin Robison,
et al. 2010. OptiX: A general purpose ray tracing engine. ACM Trans. Graph. 29,
4, Article 66 (July 2010), 13 pages.

Andreas Peer,Markus Ihmsen, Jens Cornelis, andMatthias Teschner. 2015. An implicit
viscosity formulation for SPH �uids. ACM Trans. Graph. 34, 4, Article 114 (July
2015), 10 pages.

Tobias Pfa�, Nils Thuerey, Jonathan Cohen, Sarah Tariq, and Markus Gross. 2010.
Scalable �uid simulation using anisotropic turbulence particles. ACM Trans.
Graph. 29, 6, Article 174 (Dec. 2010), 8 pages.

Tobias Pfa�, Nils Thuerey, and Markus Gross. 2012. Lagrangian vortex sheets for an-
imating �uids. ACM Trans. Graph. 31, 4, Article 112 (July 2012), 8 pages.

Ziyin Qu, Xinxin Zhang, Ming Gao, Chenfanfu Jiang, and Baoquan Chen. 2019. E�-
cient and conservative �uids using bidirectional mapping. ACM Trans. Graph. 38,
4, Article 128 (July 2019), 12 pages.

Karthik Raveendran, Chris Wojtan, and Greg Turk. 2011. Hybrid smoothed particle
hydrodynamics. In Proceedings of the Symposium on Computer Animation. 33–42.

Syuhei Sato, Yoshinori Dobashi, Theodore Kim, and Tomoyuki Nishita. 2018.
Example-based turbulence style transfer. ACM Trans. Graph. 37, 4, Article 84 (July
2018), 9 pages.

H. Schechter and R. Bridson. 2008. Evolving sub-grid turbulence for smoke animation.
In Proceedings of the Symposium on Computer Animation. 1–7.

Andrew Selle, Ronald Fedkiw, ByungMoon Kim, Yingjie Liu, and Jarek Rossignac.
2008. An unconditionally stable MacCormack method. J. Sci. Comput. 35, 2–3
(2008), 350–371.

Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid:
A sparse paged grid structure applied to adaptive smoke simulation. ACM Trans.
Graph. 33, 6, Article 205 (Nov. 2014), 12 pages.

B. Solenthaler and R. Pajarola. 2009. Predictive-corrective incompressible SPH. ACM
Trans. Graph. 28, 3, Article 40, 6 pages.

Jos Stam. 1999. Stable �uids. In Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques. 121–128.

Yun Teng, Mark Meyer, Tony DeRose, and Theodore Kim. 2015. Subspace condensa-
tion: Full space adaptivity for subspace deformations. ACM Trans. Graph. 34, 4,
Article 76 (July 2015), 9 pages.

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. 2017.
Accelerating Eulerian �uid simulation with convolutional networks. In Pro-
ceedings of the International Conference on Machine Learning, Vol. 70. 3424–
3433.

Kiwon Um, Xiangyu Hu, and Nils Thuerey. 2018. Liquid splash modeling with neural
networks. In Computer Graphics Forum, Vol. 37. 171–182.

Nobuyuki Umetani and Bernd Bickel. 2018. Learning three-dimensional �ow for in-
teractive aerodynamic design. ACM Trans. Graph. 37, 4, Article 89 (July 2018),
10 pages.

Christoph Von Tycowicz, Christian Schulz, Hans-Peter Seidel, and Klaus Hildebrandt.
2013. An e�cient construction of reduced deformable objects. ACM Trans. Graph.
32, 6, Article 213 (Nov. 2013), 10 pages.

Ste�enWeißmann and Ulrich Pinkall. 2010a. Filament-based smoke with vortex shed-
ding and variational reconnection. ACM Trans. Graph. 29, 4, Article 115 (July
2010), 12 pages.

Ste�enWeißmann and Ulrich Pinkall. 2010b. Filament-based smoke with vortex shed-
ding and variational reconnection. ACM Trans. Graph. 29, 4, Article 115 (July
2010), 12 pages.

Maximilian Werhahn, You Xie, Mengyu Chu, and Nils Thuerey. 2019. A multi-pass
GAN for �uid �ow super-resolution. arXiv preprint arXiv:1906.01689 (2019).

Rene Winchenbach, Hendrik Hochstetter, and Andreas Kolb. 2017. In�nite continu-
ous adaptivity for incompressible SPH. ACM Trans. Graph. 36, 4, Article 102 (July
2017), 10 pages.

You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. 2018. TempoGAN: A temporally
coherent, volumetric GAN for super-resolution �uid �ow. ACM Trans. Graph. 37,
4, Article 95 (July 2018), 15 pages.

J. Yang, J. Wright, T. S. Huang, and Y. Ma. 2010. Image super-resolution via sparse
representation. IEEE Trans. Image Proc. 19, 11 (2010), 2861–2873.

Jonas Zehnder, Rahul Narain, and Bernhard Thomaszewski. 2018. An advection-
re�ection solver for detail-preserving �uid simulation. ACM Trans. Graph. 37, 4,
Article 85 (July 2018), 8 pages.

Xinxin Zhang and Robert Bridson. 2014. A PPPM fast summation method for �uids
and beyond. ACM Trans. Graph. 33, 6, Article 206 (Nov. 2014), 11 pages.

Xinxin Zhang, Robert Bridson, and Chen Greif. 2015. Restoring the missing vorticity
in advection-projection �uid solvers. ACM Trans. Graph. 34, 4, Article 52 (July
2015), 8 pages.

Xinxin Zhang, Minchen Li, and Robert Bridson. 2016. Resolving �uid boundary layers
with particle strength exchange and weak adaptivity. ACM Trans. Graph. 35, 4,
Article 76 (July 2016), 8 pages.

Bo Zhu, Wenlong Lu, Matthew Cong, Byungmoon Kim, and Ronald Fedkiw. 2013. A
new grid structure for domain extension. ACM Trans. Graph. 32, 4, Article 63 (July
2013), 12 pages.

Yongning Zhu and Robert Bridson. 2005. Animating sand as a �uid.ACMTrans. Graph.
24, 3, 965–972.

Received October 2019; revised July 2020; accepted July 2020

ACM Transactions on Graphics, Vol. 40, No. 1, Article 4. Publication date: September 2020.

