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Abstract
In this paper we present a continuous-time network loading procedure based on Lighthill-Whitham-
Richards model proposed by Lighthill and Whitham (1955); Richards (1956). A system of dif-
ferential algebraic equations (DAEs) is proposed for describing traffic flow propagation, travel
delay and route choices. We employ a novel numerical apparatus to reformulate the scalar con-
servation law as a flow-based PDE, which is then solved semi-analytically with Lax-Hopf for-
mula. This approach allows for an efficient computational scheme for large-scale applications.
We will embed this network loading procedure into the dynamic user equilibrium (DUE) model
proposed by Friesz et al. (1993). The DUE is solved as a differential variational inequality (DVI)
and with the fixed-point algorithm. Several numerical examples of DUE on networks of varying
sizes will be presented, including the Sioux Falls network with a significant number of paths and
origin-destination pairs.

The DUE model presented in this article can be formulated as a variational inequality (VI)
as reported in Friesz et al. (1993). We will present the Kuhn-Tucker (KT) conditions for the
VI, which is systematically formulated as a linear system. In order to solve the system with
reasonable time and memory usage, we present a decomposition of the linear system that allows
for the efficient computation of the dual variables. The numerical solutions of DUE obtained
from the fixed-point iterations will be tested against the KT condition and validated to be in fact
the solutions to the VIs.
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1. Introduction

Dynamic traffic assignment (DTA) models determine departure rates, departure times and
route choices over a given planning horizon. It seeks to describe the dynamic evolution of traffic
in networks in a fashion consistent with the fundamental notions of traffic flow and travel demand.
This paper is concerned with a specific type of dynamic traffic assignment known as the dynamic
user equilibrium (DUE) for which generalized travel cost is identical for route and departure time
choices associated with any given origin-destination (O-D) pair.

IThis work is partially supported by NSF through grant EFRI-1024707, “A theory of complex transportation network
design”, and by the NSF Graduate Research Fellowship under Grant No. DGE-0750756.
∗Corresponding author
Email addresses: tfriesz@psu.edu (Terry L. Friesz), kxh323@psu.edu (Ke Han), pan144@psu.edu (Pedro A.

Neto), axm512@psu.edu (Amir Meimand), tyy1@engr.psu.edu (Tao Yao)
Preprint submitted to Transportation Research Part B May 1, 2013



1.1. Dynamic user equilibrium (DUE): a brief review
DUE is the primary form of DTA that this paper will focus on. The last two decades have seen

many efforts to develop a theoretically sound formulation of dynamic network user equilibrium
that is also in a canonical form acceptable to scholars and practitioners alike. The DUE models
tend to be comprised of four essential sub-problems:

1. a model of path delay;
2. flow dynamics;
3. flow propagation constraints; and
4. a route and departure-time choice model.

Furthermore, there are two major components within the analytical DUE: (a) the mathemati-
cal expression of Nash-like equilibrium conditions; and (b) a network performance model which
is an embedded dynamic network loading (DNL) problem. In the DNL procedure arc-specific
volumes, arc-specific exit rates and experienced path delay are determined when departure rates
are known for each path, see Friesz et al. (2011). It is the embedded dynamic network loading
(DNL) problem that makes DUE so difficult. An unfortunate and yet popular misconception
is that devising a separate algorithm for the DNL problem means one has chosen a sequential
approach to DUE, whereby one first solves the DNL problem then solves the DUE problem,
without requiring or attaining consistency. Such a perspective is not even remotely correct. In-
stead, the DNL process should be understood as the embodiment of the state operator introduced
in Friesz et al. (2011) and Friesz (2010) and not as some sort of approximation.1

Some early analytical DUE models were greatly influenced by the dynamic system optimal
models presented in Merchant and Nemhauser (1978a) and Merchant and Nemhauser (1978b) as
well as a desire to find an equivalent optimization problem. In Friesz et al. (1989), and later in
Ran et al. (1993), a Beckmann-type objective function is employed to create an optimal control
problem whose solutions are of the DUE type. Friesz et al. (1993) showed a variational inequal-
ity may be used to represent dynamic user equilibrium when there are both route and departure
time decisions. Following suit, Ran and Boyce (1996) suggested other variational inequality
(VI) formulations of DUE with somewhat unusual flow propagation constraints that are meant to
avoid the imposition of state constraints while also assuring physically realistic flows; unfortu-
nately their constraints do not reflect the contraction and expansion of vehicle platoons and are
intrinsically inconsistent with other aspects of their model as pointed out by Friesz et al. (2011).
In contrast Friesz et al. (2011) utilized flow propagation constraints that involved both state and
control variables as well as state-dependent time shifts to account for expansion and contraction
of platoons while also maintaining model consistency. A dual-time-scale formulation of DUE
with demand evolution was also presented in Friesz et al. (2011) where a differential variational
inequality (DVI) formulation was used to model dynamic user equilibrium. The authors imple-
mented a fixed-point algorithm to solve the DVI. The DNL phase of DUE is expressed in Friesz
et al. (2011) as a system of differential algebraic equations (DAE) and approximated as a system

1Note that, by referring to the network loading procedure, we are neither employing nor suggesting a sequential
approach to the study and computation of DUE. Rather a subset of the equations and inequalities comprising a complete
DUE model may be grouped in a way that identifies a traffic assignment subproblem and a network loading subproblem.
Such a grouping and choice of names is merely a matter of convenient language that avoids repetitive reference to the
same mathematical expressions. Use of such language does not alter the need to solve both the assignment and loading
problems consistently and, thus, simultaneously. A careful reading of the mathematical presentation made in subsequent
sections makes this assertion quite clear.
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of ordinary differential equations (ODEs). Moreover, Friesz et al. (2011) also showed the com-
patibility of the proposed DUE formulation with the CTM proposed in Daganzo (1994, 1995).
The papers Wu et al. (1998) and Xu et al. (1999) developed algorithms for the model introduced
in Friesz et al. (1993) based upon the gradient projection method without any proof of conver-
gence. The CTM was employed by Lo and Szeto (2002) to create link dynamics as well as a
path travel time extraction procedure. Their procedure allows the CTM to subsume the role of
the effective path delay operator as originally articulated by Friesz et al. (1993).

Zhu and Marcotte (2000) showed that when departure rates have uniform upper bounds, a
solution exists for the continuous-time user equilibrium with route choices. Recently in Han
et al. (submitted for publication), the existence of a simultaneous route-and-departure choice
DUE has been established without assuming a priori bounds on the path flows. In that paper, the
authors used the generalized Vickrey’s model developed in Han et al. (in press,i) for the embedded
DNL sub-problem.

1.2. Dynamic traffic flow models

An essential component of many DTA models is the DNL procedure, which aims at describ-
ing and predicting the time evolution of system states by introducing dynamics to the traffic flows
throughout the network. The accurate and efficient computation of the DNL sub-problem is cru-
cial to the overall performance of the DTA model. The primary purpose of the DNL procedure
within the DUE model is to numerically evaluate the so-called effective delay operator introduced
by Friesz et al. (1993), which is not available in closed-form. The DNL procedure determines
path-specific travel times given a set of known routing and departure time choices. The outcome
of the DNL sub-problem relies heavily on the type of link model and junction model chosen. In
this section, we will review a few macroscopic traffic flow models most commonly used in the
current literature, leading up to the Lighthill-Whitham-Richards (LWR) model of Lighthill and
Whitham (1955) and Richards (1956) that we will consider in this paper.

1.2.1. Macroscopic link models
We start our discussion with single link loading. Depending on the ways of specifying flow

propagation, we distinguish between delay-function models and the exit-flow function models.
The former is described and solved based on an explicit travel delay function given exogenous
parameters that are typically estimated by fitting functions to real-world data. One example is the
link delay model (LDM); see Friesz et al. (1993), Wu et al. (1998) and Xu et al. (1999). In con-
trast, exit-flow function models are based on explicitly modeling the underlying flow dynamics
as demonstrated by the M-N model of Merchant and Nemhauser (1978a,b), the cell transmission
model (CTM) of Daganzo (1994, 1995) and Vickrey’s model (VM) of Vickrey (1969).

Among these link models mentioned above, the CTM is the most widely used model in the
realm of DNL primarily because: (1) it is based on simple rules for the propagation of traffic
states over discrete cells; (2) it is easy to extend to a network; and (3) it captures several key
phenomena of the real-world traffic such as shock waves and spillback. It has been shown in
Daganzo (1994) that the CTM is the discrete version of LWR model on a single arc, given the
trapezoidal density-flow relation. One limitation of the CTM lies in the computational ineffi-
ciency as the algorithm stores and updates traffic quantities in a two-dimensional cell. In Nie and
Zhang (2005), where a comparative study of various link models was conducted, the CTM was
shown to be computationally demanding in terms of solution time and memory consumption.
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1.2.2. LWR network model
The LWR model is another macroscopic link model that describes traffic dynamics in terms of

the formation, propagation and interaction of kinematic waves. It has received increased attention
in the field of traffic flow theory in the past several decades due to its capability of capturing key
features of vehicular traffic such as shock waves and spillback. The primary mathematical form
of LWR model is a partial differential equation (PDE) describing the temporal-spatial evolution
of average density and flow. The PDE described in equation (1.1) is based on conservation of
vehicles and an explicit density-flow relation known as the fundamental diagram.

∂

∂t
ρ(t, x) +

∂

∂x
f
(
ρ(t, x)

)
= 0 (1.1)

Where ρ(t, x) denotes the local vehicle density and f
(
ρ(t, x)

)
is the flow. The fundamental

diagram f (·) is a continuous and concave function defined on [0, ρ jam] where ρ jam is the jam
density. The fundamental diagram encodes the speed-density relation and is calibrated using
empirical data. Classical mathematical results on the first-order PDEs of the form (1.1) can be
found in Bressan (2000). For a detailed discussion of numerical schemes of conservation laws,
we refer the readers to Godunov (1959); LeVeque (1992).

The extension of LWR model to network has been studied extensively in the literature, a
list of selected references include Coclite et al. (2005); Daganzo (1994, 1995); Garavello and
Piccoli (2006); Holden and Risebro (1995); Jin (2010); Jin and Zhang (2003); Lebacque (1996);
Lebacque and Khoshyaran (1999). A detailed survey can also be found in Zhang (2001).

The primary difficulty in the LWR-based network loading problem stems from the complex
boundary conditions at a junction of arbitrary topology. In one line, Holden and Risebro (1995)
were among the first to propose an analytical framework to derive the weak entropy solution of
conservation laws at the junction. In particular, they extended the notion of weak solution to a
single conservation law to several conservation laws with coupling boundary conditions. In order
to isolate a unique solution at the junction, an entropy condition was introduced which amounts
to optimizing some abstract objective function. In Coclite et al. (2005), the notion of entropy
condition was instantiated by maximizing the flux through the junction over all possible boundary
fluxed of links instance to the junction. They solved the Riemann problems at junctions with
fixed vehicle turning percentages. However these conditions are insufficient to isolate a unique
solution in the case where the number of incoming links exceeds that of outgoing links. To
overcome this difficulty the authors introduced a right-of-way parameter specifying the priority
of incoming vehicles.

In another line, the complex boundary conditions can be relatively easily analyzed using
demand-supply functions proposed in Lebacque (1996) and Lebacque and Khoshyaran (1999).
In this framework, local traffic demand (sending flow) and supply (receiving flow) are defined
as functions of traffic states on the links immediately adjacent to the junction. Depending on the
topology of the junction and specific traffic controls and policies, the boundary fluxes through
the junction can be expressed in various ways in terms of demand of upstream links and supply
of downstream links. The demand-supply functions are often used with CTM. Such a discrete
network model is based on simple releasing rules and conform to physical intuition. Therefore,
it is a popular choice for numerically computing traffic flows through networks.

There are primarily three classes of numerical schemes for PDE (1.1), given complex bound-
ary conditions including initial, upstream boundary, downstream boundary and even internal
boundary conditions. The three classes are:
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1. finite difference schemes, e.g. Daganzo (1994); Godunov (1959); LeVeque (1992);
2. wave-front tracking method, e.g. Bressan (2000); Dafermos (1972, 2010); Garavello and

Piccoli (2006); Holden and Risebro (2002); and
3. variational method, e.g. Aubin et al. (2008); Claudel and Bayen (2010a,b); Daganzo (2005,

2006); Evans (2010); Lax (1957, 1973); Le Floch (1988).

The finite difference schemes mainly require a two-dimensional grid on the temporal-spatial
domain. Modelers implementing such type of schemes need to ensure that the Courant-Friedrchs-
Lewy condition is satisfied in order to guarantee that solutions are numerically stable; see Courant
et al. (1928). Furthermore, the solutions tend to exhibit numerical viscosity in which shock waves
or contact discontinuities are misrepresented as smooth variations. The wave-front tracking is an
event-based computational method that resolves the discontinuities (shocks) exactly. The method
was originally proposed in Dafermos (1972) for the study of existence and uniqueness of solution
to the initial value problem. The wave-front tracking method is built within a class of piecewise
constant boundary conditions and a piecewise affine flux function. It has also been applied to
system of conservation laws as well as traffic network models, for example, see Coclite et al.
(2005) and Holden and Risebro (1995).

The variational method was initially developed in Lax (1957, 1973) (Lax-Oleinik formula)
for the scalar conservation laws, using the method of characteristics. This method was also devel-
oped for a Hamilton-Jacobi equation using calculus of variations (Lax-Hopf formula). The Lax-
type formula expresses the weak entropy solution (viscosity solution) to the conservation laws
(H-J equations) semi-analytically as the solution of a minimization problem. Generalizations of
this method are made in Aubin et al. (2008); Daganzo (2005, 2006); Le Floch (1988). The ap-
plication of this method to fluid-based models such as traffic flows were recently investigated in
Bressan and Han (2011a,b); Claudel and Bayen (2010a,b); Han et al. (submitted for publication).
In contrast to finite difference schemes, the variational method has the distinct advantage of not
requiring a two-dimensional grid in the sense that the solution at one point in space-time does not
require intermediate computation on other points in the domain. The variational methods also
yields solutions with arguably better precision than finite difference schemes. For example, dis-
continuities in the solution are more accurately obtained by the variational method, see Claudel
and Bayen (2010a,b) and LeVeque (1992).

1.2.3. An LWR-based network loading procedure
This paper presents a new dynamic network loading procedure employing the LWR-PDE

(1.1). The procedure is fundamentally based upon the Lax-Hopf formula to solve the PDE. In
particular, we will introduce a flow-based conservation law instead of density-based conservation
law (1.1). This enables us to transform a boundary value problem into an initial value problem.
Such a formulation allows us to apply the Lax-Hopf formula directly and obtain a closed-form
solution for a single link. Then we will extend the framework to a general network when the
vehicle paths and departure rates are given. In order to find the network delay we will invoke an
approach similar to that shown by Newell (1993). That is, the implicit travel time defined via
the horizontal difference between cumulative vehicle counts. The novelty of our network load-
ing procedure is the utilization of a flow-based conservation law and a grid-free computational
method. With these techniques the upstream boundary value problems for a single link can be
solved efficiency and accurately. Furthermore, we will show in Section 2.2 that our approach
will work for very general flow profiles in which the cumulative vehicle count may not be Lip-
schitz continuous or not continuous at all. In these cases, the flows can be unbounded and even
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distributions. Our procedure has the ability to capture the following several key network traffic
phenomena:

1. Queues and delay;
2. Density-velocity relationship;
3. First-in-first-out (FIFO); and
4. Route information.

The analytical solution to the PDE allows us to represent the network loading procedure as a
system of differential algebraic equations (DAE) instead of partial differential algebraic equa-
tions (PDAE). Our method also has the key distinction of not relying upon the use of a spatial grid
for numerical computation. Therefore, large-scale dynamic traffic assignment network problems
can be solved with sufficient accuracy and computational efficiency. Contributions of our work
include

1. Derivation of an explicit formula for single link loading procedure based on the LWR
model with boundary value conditions. To do this, we propose a flow-based scalar con-
servation law and transform a boundary value problem into an initial value problem. We
then apply the Lax-Hopf formula. The resulting explicit formula is proved to hold for very
general inflow profiles such as unboundedness and distributions.

2. Formulation of a DAE system for network loading procedure, based on the model men-
tioned in 1. In particular, the DAE system encodes merging and diverging junction models,
route information and travel delay.

3. Implementation the devised DNL procedure within the context of DUE while demonstrat-
ing the ability of the DAE system to handle very complex network topology and rout-
ing information. We demonstrate the computational efficiency of our proposed procedure
through a numerical example of the Sioux Falls network with significant number of origin-
destination pairs and paths. The numerical performance will be compared with other DNL
procedures such as CTM and Link Delay Model.

4. Articulation of the Kuhn-Tucker conditions for the variational inequality formulation of
DUE proposed in Friesz et al. (2011). Our numerical solutions of DUE will be verified
against the KT necessary conditions. This is the first effort in current literature to validate
the solutions of the DUE using KT conditions.

1.3. Organization

The rest of the article is organized as follows. In Section 2, we discuss in detail the sin-
gle link loading problem using Lax-Hopf formula. We then extend the framework to a general
network, with specific discussion on merging and diverging of vehicle flows as well as forma-
tion and dissipation of traffic queues. Furthermore, a DAE system formulation of the network
loading procedure will be presented at the end of Section 2. In section 3, we will briefly review
various formulations of the simultaneous route-and-departure choice DUE. For completeness of
our presentation we will include the fixed-point algorithm for computing the DUE formulated as
a differential variational inequality. The Kuhn-Tucker condition for the finite dimensional VI is
presented and will be used later to verify that the DUE solutions we obtain is indeed the solution
to the VIs. Section 4 discusses several numerical examples of the DUE on networks of varying
sizes, including the well-known Sioux Falls network.
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2. LWR model and dynamic network loading

The aim of this section is to systematically derive the dynamic network loading procedure
employing the LWR model within the DUE framework presented in Friesz et al. (2011). We will
first introduce the well-known LWR-PDE of Lighthill and Whitham (1955) and Richards (1956)
for the dynamics of a single arc, then transform that PDE into a flow-based conservation law
under the assumption of no spillback. This novel approach enables us to apply the Lax-Hopf
formula and represent the solution of a single arc in closed form. Furthermore, we will discuss
how the phenomenon of bottlenecking and queuing can be captured by the Lax-Hopf formula.
We discuss an implicit travel time function based on cumulative vehicle counts and extend the
single link model to a general network incorporating the different routing and departure time
choices. The use of a solution representation independent of spatial variables allows us to remove
the PDE constraints from the PDAE system and thus derive a DAE system in its place.

2.1. Generic network model
We first start by introducing the network model and briefly mention the dynamics on each

link and interactions of links at junctions. The detailed discussion of network loading procedure
will be postponed to Section 2.2 - 2.6. The notion of a vehicular network is made precise using
a directed graph.

Definition 2.1. (Network definition) A traffic network is a directed graph (A, V) where each
arc e ∈ A corresponds to a homogeneous road, each vertex v ∈ V represents the junction. In
addition, we assume

1. For each arc e ∈ A, define the free-flow speed ve
0, the jam density ρe

jam, the flow capacity
Me and the length Le. Each arc is mapped onto a spatial interval [ae, be] with be−ae = Le;

2. Each road e ∈ A possesses a queue with zero physical size (point queue), which is located
at the vertex in front of the road, i.e. at x = ae;

3. Denote for each v ∈ V the set of incoming (upstream) arcs by Iv, the set of outgoing
(downstream) arcs by Ov. In the case |Ov| > 1, we call node v dispersive and use the
allocation rates (turning percentage) Av, e(t) to denote the proportion of total flow coming
from ê ∈ Iv that goes to the queue of downstream arc e.

For each e ∈ A, let ρe(t, x) be the vehicle density at time t and location x ∈ [ae, be], qe(t) de-
notes the queue volume. The well-known LWR model describes the evolution of vehicle density
using a scalar conservation law

∂tρ
e + ∂x

(
ρe ve(ρe)

)
= 0 (2.2)

where the dependence on (t, x) is dropped for brevity. The function ve(·) : [0, ρe
jam] → [0, ve

0]
expresses the vehicle velocity as a function of local density and defines the fundamental diagram
f e(ρe) .= ρe ve(ρe). Throughout this article, we assume the following for the fundamental diagram

(A1) The fundamental diagram f e(·) : [0, ρe
jam] → [0, Me] is continuous and concave, with

a unique ρe,∗ such that f e(ρe,∗) = Me

Now the dynamics of the network can be described by a system of coupling PDEs and ODEs,
i.e. for e ∈ Ov, ∂tρ

e(t, x) + ∂x f e(ρe(t, x)
)

= 0, (t, x) ∈ [t0, t f ] × [ae, be]
ρe(0, x) = 0, x ∈ [ae, be]

(2.3)
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d
dt

qe(t) = Av, e(t)
∑
ê∈Iv

f ê(ρê(t, bê)
)
− f e(ρe(t, ae)

)
(2.4)

f e(ρe(t, ae)
)

=


min

{
Av, e(t)

∑
ê∈Iv

f ê(ρê(t, bê)
)
, Me

}
, qe(t) = 0

Me, qe(t) > 0
(2.5)

where f e(ρe(t, ae)
)

is the service rate, i.e., rate at which cars in the queue enters the road in front,
and the rule for the service rate is described as follows: if the queue is empty, the service rate
will be the portion of the demand allowed by the capacity; if the queue is non-empty, the service
rate remains maximum, see (2.5).

The above PDAE system describes the flow/density propagation on each road and at junc-
tions, but it is incomplete in the sense that a travel time operator needs to be defined and the
turning percentage Av, e(t) needs to be extracted from the routing information. In the following
section, we will insert details to this PDAE system (2.3)-(2.5) and in fact replace it with a DAE
system.

2.2. A flow-based conservation law
In consistency with the assumption of dynamic network loading, we assume the network is

initially empty. Consider a homogeneous arc e ∈ A in the network characterized by the free-flow
speed v0, the jam density ρ jam, the flow capacity M and the length L. The superscript e is dropped
here for brevity. Denote the right hand side of (2.5) by u(t), the conservation law (2.3) is in fact
a problem with initial and boundary values:

∂tρ(t, x) + ∂x f
(
ρ(t, x)

)
= 0 (t, x) ∈ [t0, t f ] × [a, b];

ρ(t0, x) = 0;
f
(
ρ(t, a)

)
= u(t).

(2.6)

In view of the boundary condition above and in (2.4)-(2.5), which are all prescribed in terms of
flow, it would be convenient to modify the density-based conservation law and derive a new one
whose primary variable is the flow. To this end, denote the vehicle flow by u(t, x) and consider
the function g(·) defined by

φ(u) = inf
ρ∈[0, ρ jam]

{
f (ρ) = u

}
(2.7)

In other words, φ(·) is the inverse of f (·) on [0, ρ∗], where ρ∗ is the unique density such that
f (ρ∗) = M. By assumption (A1), φ(·) is continuous, convex and strictly increasing, see Figure 1.

ρ*

ρ*

0 0ρ

ρ

u

u

M

Mρjam

Figure 1: Left: an example of the fundamental diagram f (·). Right: the function φ(·) defined by (2.7)
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Remark 2.2. By choosing the part of the fundamental diagram with only positive wave speed,
we are making the following important modeling assumption; we do not consider backward
propagation of traffic densities nor spillback. This assumption can be reflected also in equations
(2.3)-(2.5) where the queues (complete jam) will not affect previous arcs.

In order to apply the classical Lax-Hopf formula, it is convenient to transform the ini-
tial/boundary value problem (2.6) into a Cauchy problem, i.e. an initial value problem. To
do so, we will next derive a flow-based conservation law and rigorously show its equivalence to
(2.6). Let us introduce the notion of a weak solution and entropy admissible solution. For more
details on the theory of hyperbolic PDEs, we refer the readers to Bressan (2000).

Definition 2.3. (Weak solution for (2.6)) Assume u ∈ L1([t0, t f ]). A function ρ : [t0, t f ] ×
[a, b] → [0, ρ jam] is a weak solution to the initial/boundary value problem (2.6) if for every
continuously differentiable test function v(·) with compact support contained in [t0, t f ] × [a, b],
the following holds∫ t f

t0

∫ b

a
{ρ · vt + f (ρ) · vx} dxdt +

∫ t f

t0
u(t) · v(t, a) dt = 0 (2.8)

Definition 2.4. (Entropy admissible solution) A weak solution ρ = ρ(t, x) to the scalar conser-
vation law (2.6) satisfies the Kruzkov entropy admissibility condition if∫ t f

t0

∫ b

a

{
|ρ − k| vt + sign(ρ − k)

(
f (ρ) − f (k)

)
vx

}
dxdt ≥ 0 (2.9)

for every k ∈ [0, ρ jam] and every continuously differentiable v ≥ 0 with compact support in
[t0, t f ] × [a, b].

The boundary value problem (2.6) can now be equivalently written as a conservation law in
the variable u = f (ρ):

Proposition 2.5. (Flow-based conservation law) Given any concave function f (·) : [0, ρ jam]→
[0, M] and function u(·) ∈ L1([t0, t f ]

)
: [t0, t f ] → [0, M], define φ(·) : [0, M] → [0, ρ∗] as in

(2.7). Then the boundary value problem (2.6) is equivalent to the following Cauchy problem∂xu(t, x) + ∂t φ
(
u(t, x)

)
= 0 (x, t) ∈ [a, b] × [t0, t f ];

u(t, a) = u(t).
(2.10)

where u(t, x) = f
(
ρ(t, x)

)
.

Remark 2.6. (2.10) can be viewed as an initial value problem by switching the roles of variables
t and x. The flow-based PDE is easy to work with in terms of boundary conditions (2.4)-(2.5),
and the initial value problem (2.10) immediately leads to the application of the Lax formula
discussed in Evans (2010); Lax (1957).

Proof. The proof is carried out by showing that ρ(t, x) is the entropy admissible weak solution
of (2.6) if and only if u(t, x) .= f (ρ(t, x)) is the entropy admissible weak solution of (2.10).

1. “only if ” part. We begin by arguing that the weak entropy solution ρ(t, x) of (2.6)
satisfies ρ(t, x) ∈ [0, ρ∗], where ρ∗ is the unique density such that f (ρ∗) = M. This is because
the characteristics emitting from the left boundary x = a must have non-negative wave speed in
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order to influence the interior of the domain [t0, t f ] × [a, b]. Otherwise, if there exists (t̂, x̂) ∈
(t0, t f ] × (a, b) which is connected to the left boundary [t0, t f ] × {a} by a characteristic line with
negative speed, then ρ(t̂, x̂) is influenced by the boundary condition at a time > t̂, this contradicts
the causality principle.

Let ρ(·, ·) be the weak entropy solution satisfying (2.8)-(2.9). By previous argument, there
holds u = f (ρ), ρ = φ(u). Then we readily deduce

0 =

∫ t f

t0

∫ b

a
{ρ · vt + f (ρ) · vx} dxdt +

∫ t f

t0
u(t) · v(t, a) dt

=

∫ t f

t0

∫ b

a
{φ(u) · vt + u · vx} dxdt +

∫ t f

t0
u(t) · v(t, a) dt

for any continuously differentiable v with compact support. This shows that u(t, x) is the weak
solution to the initial value problem (2.10). In addition, let us fix arbitrary v(t, x) ≥ 0 which is
continuously differentiable and compactly supported, for every s ∈ [0, M], denote k = φ(s) ∈
[0, ρ∗]. By the entropy condition (2.9),

0 ≤
∫ t f

t0

∫ b

a

{
|ρ − k| vt + sign(ρ − k)

(
f (ρ) − f (k)

)
vx

}
dxdt

=

∫ t f

t0

∫ b

a

{
|φ(u) − φ(s)| vt + sign(φ(u) − φ(s)) (u − s) vx

}
dxdt

=

∫ t f

t0

∫ b

a

{
|u − s| vx + sign(u − s)

(
φ(u) − φ(s)

)
vt
}

dxdt

this implies u(·, ·) is the entropy admissible solution to (2.10). Notice that the last equality above
is by observing that φ(·) is strictly increasing, thus

|φ(u) − φ(s)| = sign(u − s)
(
φ(u) − φ(s)

)
, |u − s| = sign

(
φ(u) − φ(s)

)
(u − s)

2. “if” part. The converse is completely similar, the key point is that ρ(t, x) ≤ ρ∗, therefore
f (ρ) = u, ρ = φ(u). The rest of the verification is straightforward.

It is well-established that a full LWR-based network model requires boundary conditions on
both ends of the link, which account for the propagation of upstream/downstream information.
In our simplified model, in the absence of influence from downstream, the PDE for the link is
constrained by just upstream boundary condition which must admit non-negative wave speeds
due to the causality principle.

We remind the reader that so far we’ve been dealing with the PDE (2.3) with boundary con-
dition u(t) given by (2.5). Such a boundary condition depends on the queue q(t) and the upstream
flow profiles in a tricky way: (2.5) induces a discontinuous dependence of the ODE (2.4) on the
variable q(t). In general, an ODE with discontinuous right hand side is difficult to deal with both
theoretically and computationally. For example, the existence of the ODE is not guaranteed. In
terms of computation, a finite difference scheme, whether forward or backward, could result in
non-physical solutions such as negative queue and negative flow. To overcome the aforemen-
tioned difficulties, we propose in the following a Hamilton-Jacobi equation corresponding to the
flow-based conservation law (2.10), and a modified Lax-Hopf formula which provides solution
to (2.3)-(2.5).
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2.3. Hamilton-Jacobi equation and Lax-Hopf formula for a homogeneous link

In this section, we will first introduce the Hamilton-Jacobi equation and the Lax formula for
general Cauchy problems, then apply this to the flow-based conservation law (2.10) to obtain a
semi-analytical characterization of the dynamics for a homogeneous link.

Initially introduced in Lax (1957, 1973), then extended in Aubin et al. (2008); Bardi and
Capuzzo-Dolcetta (1997); Le Floch (1988), and applied to traffic theory in Claudel and Bayen
(2010a); Daganzo (2005, 2006), the Lax-Hopf formula provides a new characterization of the
solution to the hyperbolic conservation law and Hamilton-Jacobi equation. The Lax formula
is derived from the characteristics equations associated with the Hamilton-Jacobi PDE, which
arise in the classical calculus of variations and in mechanics, see Evans (2010) for a complete
discussion.

Consider the initial value problem for the Hamilton-Jacobi equation∂tN(t, x) +H
(
∂xN(t, x)

)
= 0 (t, x) ∈ (0, ∞) × R

N(0, x) = g(x) x ∈ R
(2.11)

where N : [0, +∞) × R→ R is the unknown, andH : R→ R is the Hamiltonian.

Theorem 2.7. (Lax-Hopf formula) Suppose H is continuous and convex, g(·) : R → R is
Lipschitz continuous, then

N(t, x) = inf
y∈R

{
tL

( x − y
t

)
+ g(y)

}
(2.12)

is the unique viscosity solution to the initial-value problem (2.11). Where L is the Legendre
transformation ofH:

L(q) = inf
p

{
H(p) − qp

}
(2.13)

Proof. See Evans (2010).

The Lax-Hopf formula expresses the viscosity solution of the Cauchy problem (2.11) as an
optimization problem. In order to transform the flow-based PDE (2.10) into the form (2.11), let
us proceed as follows. Denote the cumulative vehicle count U(t, x), U(t) by

U(t, x) =

∫ t

t0
u(s, x) ds, U(t) =

∫ t

t0
u(s) ds (2.14)

U(t, x) measures the cumulative count of vehicles that have passed the point x by time t, and
U(t) measures the vehicle count that have entered the link. . In addition, we denote by Q(t) the
count of vehicles that have arrived at the entrance of the link (possibly first joining a queue) by
time t. In mathematical terms, if the arc is represented by the spatial interval [a, b], then

Q(t) = U(t, a−), U(t) = U(t, a+)

Notice that by definition, U(·) must be Lipschitz continuous with constant M, this is because the
rate at which cars enter the link is bounded above by the flow capacity, i.e., ū(t) ≤ M. Regarding
Q(·), we assume the following

(A2) Q(·) is non-decreasing, left continuous with possibly countably many upward jumps.
11



Remark 2.8. In most traffic literature, the function which represent flow is usually assumed to be
Lebesgue integrable. Consequently, the cumulative vehicle count – the anti-derivative of flow – is
absolutely continuous. Therefore (A2) generalizes such assumption by allowing the cumulative
count to be discontinuous. This corresponds to the situation where a positive amount of cars
enter the network at the same time. Although such circumstance is unlikely to happen in reality,
it does arise in a mathematical context and demands proper treatment. See Bressan and Han
(2011a) for an example where a discontinuity in the cumulative vehicle count is present in the
DUE solution in continuous-time.

According to the rule (2.5), the relation between Q(·) and U(·) can be expressed by the fol-
lowing identity

U(t) = inf
τ≤t

{
Q(τ) + M(t − τ)

}
(2.15)

by virtue of (2.15), U(t) ≤ Q(t) and the difference measure the queue volume; notice that (2.16)
is precisely the integral form of (2.4) under the assumption that q(0) = 0.

q(t) = Q(t) − U(t) (2.16)

We now introduce the integral form of (2.10), which is following Hamilton-Jacobi equation:
∂xU(t, x) + φ

(
∂t U(t, x)

)
= 0 (x, t) ∈ [a, b] × [t0, t f ];

U(t, a) = U(t)

(2.17)

Note that (2.17) is in the form of a general Cauchy problem for H-J equation in one dimen-
sion, i.e. (2.11). The only difference is the notation in which the roles of t and x are switched.
With that in mind, we will next proceed to the Lax formula and derive analytical solutions to
(2.17). Recall the following Legendre transformation:

Definition 2.9. (Legendre transformation) The Legendre (convex) transformation of convex
function φ(·) : [0, M]→ [0, ρ∗] is

ψ(u) .
= max

p

{
pu − φ(p)

}
(2.18)

It is easy to verify that the Legendre transform ψ(·) is convex and Lipschitz continuous with
Lipschitz constant M. Next, we adapt the Lax-Hopf formula (2.12) to the Cauchy problem (2.17)
and readily derive the following

Proposition 2.10. (Lax-Hopf formula) Given convex function φ(·) and its Legendre transform
ψ(·), the viscosity solution U(t, x) to (2.17) satisfies

U(t, x) = min
τ∈R

{
U(τ) + (x − a)ψ

( t − τ
x − a

)}
, x ∈ [a, b] (2.19)

In particular, the cumulative count of vehicles exiting the arc is given by

U(t, b) = min
τ∈R

{
U(τ) + Lψ

( t − τ
L

)}
(2.20)

Proof. Adjust the proof in Evans (2010) to the Cauchy problem (2.17).
12



Remark 2.11. The original Lax-Hopf formula used infimum instead of minimum, but since all
flows that we consider here are compactly supported in [t0, t f ], the infimum can be achieved
within this compact set. Therefore from now on, we will use “min” instead of “inf”.

As mentioned before, in a general network, the quantity Q(t) is easy to be recovered from
upstream flow profiles. However, one cannot immediately apply formula (2.19) or (2.20) because
U(·) is not explicitly given. One way to resolve this issue is to utilize identity (2.15), but this
would require additional computational effort. Fortunately, the following lemma asserts that this
is not necessary and replacing U(·) with Q(·) will yield the same solution.

Proposition 2.12. Given Lipschitz continuous function U(·) and function Q(·) satisfying assump-
tion (A2), then the solution U(t, b) satisfies

U(t, b) = min
τ

{
U(τ) + Lψ

( t − τ
L

)}
= min

τ

{
Q(τ) + Lψ

( t − τ
L

)}
(2.21)

Proof. Introduce the function
κ(s) .

= − Lψ
(−s

L

)
(2.22)

Then one can easily verify that κ(·) is a concave and Lipschitz continuous function with Lipschitz
constant M. From the formula (2.20) it now follows

U(t, b) = min
τ

{
U(τ) − κ(τ − t)

}
(2.23)

Fix any t ∈ [t0, t f ], denote

τ0 = inf
{
τ∗ : U(τ∗) − κ(τ∗ − t) = min

τ

{
U(τ) − κ(τ − t)

}}
(2.24)

clearly τ0 exists and satisfies U(τ0) − κ(τ0 − t) = minτ
{
U(τ) − κ(τ − t)

}
. Next we claim that

Q(τ0) = U(τ0)

Otherwise if Q(τ0) > U(τ0), by left-continuity of Q(·), one must have Q(τ) > U(τ) for a small
neighborhood τ ∈ [τ0 − δ, τ0]. Thus from (2.5) we deduce that d

dτU(τ) = M. By Lipschitz
continuity of κ(·), for τ ∈ [τ0 − δ, τ0]

U(τ) − κ(τ − t) −
(
U(τ0) − κ(τ0 − t)

)
≤ 0

contradicting (2.24). Thereby the claim is substantiated. The claim implies

min
τ

{
Q(τ) − κ(τ − t)

}
≤ Q(τ0) − κ(τ0 − t) = min

τ

{
U(τ) − κ(τ − t)

}
(2.25)

To show (2.25) with reversed inequality, one only has to notice Q(·) ≥ U(·).

Remark 2.13. Using the notation in the proof, the Lax formula (2.20) asserts that the solution
U(t, b) is the amount by which we can shift upward the graph of κ(·−t) before hitting the graph of
U(·). What Proposition 2.12 says is that such amount of shift does not change if U(·) is replaced
by Q(·). See Figure 2 for a graphical representation.
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κ(τ−t)

_
U

τ

U(t, b)

Q

Figure 2: Constructing the profile t 7→ U(t, b) using the Lax formula. Since κ is Lipschitz continuous with
constant M, the amount of shift in (2.21) does not change if U(·) is replaced by Q(·).

Remark 2.14. Although our formulation does not capture between-link congestion, as suggested
by (2.3)-(2.5), it does capture within-link congestion. In particular two sources will contribute to
the within-link congestion. The first one is the non-affine density-velocity relation, see assump-
tion (A1) and Figure 1. This means that the vehicle speed will decrease as the local density
increases. The second source of congestion is interpreted from Proposition 2.12, which says that
when the inflow of a link exceeds the flow capacity vehicles will wait in a non-physical queue
(therefore there is no spillback). The waiting time is included in the link traversal time, as we
shall see in the next section.

In this section, we provide a semi-analytical representation of the solution to (2.3)-(2.5), this
system of coupling PDEs and ODEs raises several numerical challenges such as the discontin-
uous dependence on the queue volume for ODE (2.4) and non-physical solution resulting from
finite difference discretization. By formulating the system as a Hamilton-Jacobi equation and a
modification of the Lax formula, (2.3)-(2.5) is solved by the second identity of (2.21). Next we
extend the work to networks and incorporate travel time and route information.

2.4. Link traversal time

An essential component of dynamic traffic assignment models is the travel delay operator. A
significant amount of literature has assumed a link travel time expressed explicitly as a function
of the state of the link, one example is the link delay model (LDM) studied in Friesz et al. (1993,
2011); Wu et al. (1998); Xu et al. (1999). Another approach of computing travel time is via
the exit-flow function models. This approach is based on a description of flow dynamics and
computation of the exit flow profile. Examples include M-N model of Merchant and Nemhauser
(1978a); the CTM of Daganzo (1994, 1995) and Vickrey’s model of Vickrey (1969). Notice that
neither the M-N model nor the CTM model defines the link traversal time. However, the traversal
time can be extracted from the models using flow conservation constraint and the first-in-first-out
(FIFO) assumption. For example, Newell (1993) proposed a method for computing travel time
by measuring the horizontal difference of two cumulative vehicle count curves at the entry and
exit of the link. Similar technique has been applied to CTM. Ziliaskopoulos (2000) considered
a system-optimal DTA problem in the framework of CTM. The author replaced the travel time
function with a cell-delay function in order to obtain a tractable mathematical program.
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Since our approach of network loading is based on explicit computation of the exit flow
profile, we adapt the approach similar to Newell (1993) by measuring the horizontal difference
between the cumulative curves Q(·) and W(·), which represent vehicle count at entrance and exit
of a link, respectively. This implicit travel time function is consistent with FIFO and will later be
used to construct the turning percentages Av, e(t).

Given the boundary condition Q(·), which measures the count of vehicles that have joined
the queue in front of the link, the Lax formula (2.21) uniquely determines the exit profile W(·).
The exit time tE for a car that enters the queue at tS is given implicitly by

then for a car that enters the queue at tS , its exit time tE is given implicitly by

Q(tS ) = W(tE) (2.26)

We rewrite (2.26) using a general functional D( · ; Q) : tS 7→ tE , notice that the dependence on
W(·) is dropped because W(·) can be uniquely determined by Q(·) via the Lax-Hopf formula. See
Figure 3 for a graphical illustration of this operator. Notice that the time spent waiting in the
queue is part of the link traversal time.

SD(t  ; Q)

vehicle count
Q(t)

tS tA

W(t)

time

Figure 3: The delay of vehicle departing at tS is given by the horizontal difference of two cumulative curves Q(·) and
W(·).

2.5. Diverging model

In this section we consider any node v ∈ V with more than one outgoing arcs. We need to
determine the time-varying functions Av, e(t) for each e ∈ Ov according to route information. Let
us first introduce a few notations. Let P be the set of utilized paths in the network, each path
p ∈ P is defined as a collection of directed arcs p = {e1, e2, . . . , em(p)} ⊂ A, where m(p) is the
number of arcs traversed by p. For e ∈ Iv, denotePe = {p ∈ P : e ∈ p}. For k = 1, 2, . . . , |Pe| let
qe

k(t) be the rate at which drivers in the kth group arrive at link e. Define functions ξe
k(t) according

to the following.

ξe
k(t)

|Pe |∑
l=1

qe
l (t) = qe

k(t), k = 1, 2, . . . , |Pe|. (2.27)

In other words, ξe
k(t) represents the percentage of the kth group among all groups that use arc e at

time of entry t. Similarly, we define ηe
k(t) to be the percentage of the kth group at time of exit t.

For every group of drivers k using the link e, the first-in-first-out principle implies that

ηe
k
(
t + D(t ; Qe)

)
= ξe

k(t), k = 1, 2, . . . , |Pe|. (2.28)
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With obvious meaning of notations (2.28) can be re-written as

Qe(t) =

|Pe |∑
k=1

Qe
k(t),

d
dt

Qe
k(t) = qe

k(t);

ηe
k
(
t + D(t, ; Qe)

)
=

qe
k(t)∑|Pe |

l=1 qe
l (t)

(2.29)

(2.29) says that the turning percentages at a dispersive junction can be completely determined by
Qe

k(t), k = 1, 2, . . . , |Pe|.

2.6. The DAE system
Summing up previous discussion, we present a DAE system for dynamic network loading in

this section. We start by introducing some notations

A : the set of arcs in the network;
V : the set of nodes in the network;
W : the set of origin-destination pairs in the network;
P : the set of utilized paths in the network;

p = {e1, e2, . . . , em(p)} ∈ P, ei ∈ A : a viable path represented as the collection of arcs;
hp(t) : departure rate associated with path p ∈ P;
Qe

p(t) : cumulative entering vehicle count of arc e ∈ A associated with path p ∈ P;

qe
p(t) : entry flow of arc e ∈ A associated with path p ∈ P;

We
p(t) : cumulative exiting vehicle count of arc e ∈ A associated with path p ∈ P;

we
p(t) : exit flow of arc e ∈ A associated with path p ∈ P;

Le : length of arc e ∈ A;
ψe : Legendre transformation shown in (2.18) and (2.21), associated with e ∈ A;

D(t ; Qe) : arc traversal time function of e ∈ A when the boundary datum is Qe, and entry time is t;

Qe(t) .
=

∑
e∈p

Qe
p(t), We(t) .

=
∑
e∈p

Wei
p (t).

By convention we write qe1
p (t) = hp(t), we0

p (t) = hp(t). The following DAE system (2.30)-
(2.35) summarizes our network loading procedure based on the LWR partial differential equation.

Qe(t) .
=

∑
e∈p

Qe
p(t), qe(t) .

=
∑
e∈p

qe
p(t), we(t) .

=
∑
e∈p

we
p(t); (2.30)

d
dt

Qe
p(t) = qe

p(t),
d
dt

We(t) = we(t), ∀ p ∈ P; (2.31)

qei
p (t) = wei−1

p (t), i ∈ [1, m(p)], p ∈ P; (2.32)

We(t) = min
τ

{
Qe(τ) + Leψe

( t − τ
Le

)}
, ∀ e ∈ A; (2.33)

Qe(t) = We(t + D(t; Qe)
)
, ∀e ∈ A; (2.34)

wei
p
(
t + D(t; Qei )

)
=

qei
p (t)

qei (t)
wei

(
t + D(t; Qei )

)
, i ∈ [1, m(p)], p ∈ P. (2.35)
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We note that equation (2.30) is merely definitional, i.e. the traffic on an arc is disaggregated
according to different route choices. Equation (2.32) represents the fundamental recursion, which
allows the algorithm to carry forward to the next arc in the path. Equation (2.33) is the Lax
formula. (2.34) is often referred to as the flow propagation constraint. It determines the travel
time function D(· ; Qe) in our case. (2.35) represents the diverging model in Section 2.5.

Remark 2.15. We provide some insights on the existence and uniqueness of the solution to the
above DAE system. Notice that the system does not contain any differential equations, the only
equations with differentiation (2.31) are only definitional. Moreover, the Lax-Hopf formula (2.33)
provides the unique viscosity solution to the H-J equations. In addition, all variables of interests
appear explicit on the left hand side of the equations, so that they can be solved for completely
sequentially and in a pseudo cascading fashion. Therefore, the existence and uniqueness of
solution to the DAE system is clear.

Remark 2.16. When we set out to solve the DNL submodel using a system of DAE in the present
paper, we are making a numerical approximation that can be as accurate as the modeler desires
given sufficient computational resources. However, that numerical approximation should not
be interpreted as an approximate DNL model as presented in the authors’ previously published
approaches in Friesz et al. (2011).

3. Formulation of the dynamic user equilibrium and Kuhn-Tucker conditions for the vari-
ational inequality

The dynamic network loading discussed in the previous section is viewed as the numerical
procedure for evaluating the effective delay operator, which is embedded in the definition of DUE
proposed in Friesz et al. (1993). In this section we will re-visit the formulations of DUE as a
variational inequality of Friesz et al. (1993), as a differential variational inequality of Friesz et
al. (2001) and as a fixed-point problem of Friesz and Mookherjee (2006).

The goal of this section is the following. (1) We wish to provide the readers with a compre-
hensive review of topics related to the DUE and clear guidance on how to compute the DUE. (2)
We will utilize the Kuhn-Tucker conditions for finite-dimensional VIs to verify that the numer-
ical solution we obtain is indeed the solution to the VI, and hence to the DUE problem. To the
authors’ knowledge this is the first attempt in the literature to test the numerical solutions against
necessary conditions of VIs. Thus the work in this section can serve as a valuable side reference
to future researchers who are interested in the computational aspect of DUE.

3.1. Dynamic User Equilibrium formulation

We begin by considering a planning horizon [t0, t f ] ⊂ R+. LetP be the set of paths employed
by road users. The most crucial ingredient of the DUE model is the path delay operator. Such an
operator, denoted by

Dp(t, h) ∀p ∈ P,

maps a given vector of departure rates h to the collection of travel times. Each travel time is
associated with a particular choice of route p ∈ P and departure time t ∈ [t0, t f ]. The path delay
operators usually do not take on any closed form, instead they can only be evaluated numerically
through the dynamic network loading procedure. On top of the path delay operator we introduce
the effective path delay operator which generalizes the notion of travel cost to include early or
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late arrival penalties. In this paper we consider the effective path delay operators of the following
form.

Ψp(t, h) = Dp(t, h) + F
[
t + Dp(t, h) − TA

]
∀p ∈ P (3.36)

where TA is the target arrival time. In our formulation the target time TA is allowed to depend on
the user classes. We introduce the fixed trip matrix

(
Qi j : (i, j) ∈ W

)
, where each Qi j ∈ R+ is the

fixed travel demand between origin-destination pair (i, j) ∈ W. Note that Qi j represents traffic
volume, not flow. Finally we let Pi j ⊂ P to be the set of paths connecting origin-destination pair
(i, j) ∈ W.

As mentioned earlier h is the vector of path flows h = {hp : p ∈ P}. We stipulate that each
path flow is square integrable, that is

h ∈
(
L2

+[t0, t f ]
)|P|

The set of feasible path flows is defined as

Λ0 =

h ≥ 0 :
∑
p∈Pi j

∫ t f

t0
hp (t) dt = Qi j ∀ (i, j) ∈ W

 ⊆ (
L2

+

[
t0, t f

])|P|
(3.37)

Let us also define the essential infimum of effective travel delays

vi j = essinf
[
Ψp(t, h) : p ∈ Pi j

]
∀ (i, j) ∈ W

The following definition of dynamic user equilibrium was first articulated by Friesz et al. (1993):

Definition 3.1. (Dynamic user equilibrium). A vector of departure rates (path flows) h∗ ∈ Λ0
is a dynamic user equilibrium if

h∗p (t) > 0, p ∈ Pi j =⇒ Ψp
[
t, h∗ (t)

]
= vi j

We denote this equilibrium by DUE
(
Ψ,Λ0,

[
t0, t f

])
.

Using measure theoretic arguments, Friesz et al. (1993) established that a dynamic user equi-
librium is equivalent to the following variational inequality under suitable regularity conditions:

find h∗ ∈ Λ0 such that∑
p∈P

∫ t f

t0
Ψp(t, h∗)(hp − h∗p)dt ≥ 0

∀h ∈ Λ0

 VI(Ψ,Λ0,
[
t0, t f

]
) (3.38)

It has been noted in Friesz et al. (2001) that (3.38) is equivalent to a differential variational
inequality (DVI). This is most easily seen by noting that the flow conservation constraints may
be re-stated as

dyi j

dt
=

∑
p∈Pi j

hp (t)

yi j(t0) = 0
yi j

(
t f

)
= Qi j

 ∀ (i, j) ∈ W
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which is recognized as a two point boundary value problem. As a consequence (3.38) may be
expressed as the following DVI:

find h∗ ∈ Λ such that∑
p∈P

∫ t f

t0
Ψp(t, h∗)(hp − h∗p)dt ≥ 0

∀h ∈ Λ

 DVI(Ψ,Λ,
[
t0, t f

]
) (3.39)

where

Λ =

h ≥ 0 :
dyi j

dt
=

∑
p∈Pi j

hp (t) , yi j(t0) = 0, yi j

(
t f

)
= Qi j ∀ (i, j) ∈ W

 (3.40)

Finally, we are in a position to state a result that permits the solution of the DVI (3.39) to be
obtained by solving a fixed point problem2:

Theorem 3.2. (Fixed point re-statement). Assume that Ψp(·, h) :
[
to, t f

]
−→ R+ is measurable

for all p ∈ P, h ∈ Λ. Then the fixed point problem

h∗ = PΛ

[
h∗ − αΨ (t, h∗)

]
(3.41)

is equivalent to DVI(Ψ,Λ,∆) where PΛ [·] is the minimum norm projection onto Λ and α ∈ R+.

Proof. See Friesz (2010).

3.2. Solution algorithm based on the fixed-point iterations

The fixed-point problem (3.2) can be instantiated as the following linear-quadratic optimal
control problem.

h∗ = arg min
h

{
1
2
‖h∗ − αΨ (t, h∗) − h‖ : h ∈ Λ

}
(3.42)

Then we can write the fixed point sub-problem at the kth iteration as follows.

hk+1 = arg min
h

{
1
2

∥∥∥∥hk − αΨ
(
t, hk

)
− h

∥∥∥∥2
: h ∈ Λ

}
(3.43)

That is, we seek the solution of the optimal control problem

min
h

Jk(h) =
∑

(i, j)∈W

vi j

[
Qi j − yi j(t f )

]
+

∑
(i, j)∈W

∑
p∈Pi j

∫ t f

t0

1
2

[
hk

p − αΨp (t, h) − hp

]2
(3.44)

2The fixed-point iteration scheme should not be confused with simulation-based approaches since our iterations are
merely approximations that are successively refined until convergence produces a realized system state; that is, iterations
prior to convergence have no physical meaning. This is in contrast to simulation where each iteration of a simulation
model produces a representation of a system state or scenario at a particular point in time. These states are intended to
directly map onto the physical world typically with associated performance measures.
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subject to:

dyi j

dt
=

∑
p∈Pi j

hp (t) ∀ (i, j) ∈ W (3.45)

yi j(t0) = 0 ∀ (i, j) ∈ W (3.46)
h ≥ 0 (3.47)

Finding dual variables associated with terminal time demand constraints turns out to be relatively
easy. Note that the relevant Hamiltonian for (3.44), (3.45), (3.46) and (3.47) is:

Hk =
1
2

∑
(i, j)∈W

∑
p∈Pi j

[
hk

p − αΨp

(
t, hk

)
− hp

]2
+

∑
(i, j)∈W

λi j

∑
p∈Pi j

hp (3.48)

where each λi j is an adjoint variable obeying

dλi j

dt
= (−1)

∂Hk

∂yi j
= 0 ∀(i, j) ∈ W

λi j(t f ) =
∂ vi j

[
Qi j − yi j (t)

]
∂yi j(t f )

= − vi j ∀ (i, j) ∈ W

From the above we determine that

λi j(t) ≡ − vi j ∀ t ∈ [t0, t f ], (i, j) ∈ W

The minimum principle implies for any p ∈ P,

hk+1
p (t) = arg

{
∂Hk

∂hp
= 0

}
= arg

{[(
hk

p(t) − αΨp

(
t, hk

)
− hp(t)

)]
(−1) − vi j = 0

}
Thus we obtain

hk+1
p (t) =

[
hk

p(t) − αΨp

(
t, hk

)
+ vi j

]
+

∀ (i, j) ∈ W, p ∈ Pi j (3.49)

Notice that the following flow conservation constraint applies here.∑
p∈Pi j

∫ t f

t0
hk+1

p (t) dt = Qi j ∀ (i, j) ∈ W

Consequently the dual variable vi j must satisfy∑
p∈Pi j

∫ t f

t0

[
hk

p(t) − αΨp

(
t, hk

)
+ vi j

]
+

dt = Qi j ∀(i, j) ∈ W (3.50)

Recalling that each vi j is time invariant and noticing that the equations of (3.50) are uncoupled,
we see that simple line searches will find the value of vi j satisfying the above conditions. Once
the vi j’s are determined, the new vector of path flows hk+1 for the next iteration may be computed
from (3.49).
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Remark 3.3. The fixed-point iteration (3.43) is clearly a particular instance of the abstract al-
gorithm xk+1 = M(xk) for solving the fixed point problem x∗ = M(x∗). However such algorithm
does not enjoy a theorem assuring strong convergence of {xk}, even when M(·) is non-expansive.
There are however, instances of convergence result established under various assumptions on the
delay operator. In Friesz et al. (2011), the authors showed strong convergence of a modified fixed
point algorithm with either strongly monotone or component-wise strongly pseudomonotone de-
lay operators, under minor regularity conditions. However, the delay operator associated with
the dynamic network loading procedure proposed in this paper is unlikely to satisfy either one of
the above two assumptions. And further analytical properties need to be extracted from the cur-
rent model to assist the understanding of convergence issue. This has been left as future research.
It should be noted that in all the numerical studies we present below, the fixed-point iterations
do meet the convergence criteria, that is∥∥∥hk+1 − hk

∥∥∥
L2∥∥∥hk

∥∥∥
L2

≤ ε, for some k (3.51)

where ε is some user-defined threshold.

3.3. Kuhn-Tucker condition for finite-dimensional VIs
This section focuses on the variational inequality (3.38), we point out that such formulation

of DUE problem is a mathematical abstraction and is of no use for computation as it presumes
knowledge of the solution h∗. However, a Kuhn-Tucker type necessary condition can be derived
for a discrete-time version of (3.38) and utilized to verify numerical solutions obtained from
fixed-the point algorithm (3.41).

To derive a finite-dimensional version of VI (3.38), we introduce a uniform time grid with
step size ∆t

t0 = t1 < t2 < . . . < tn = t f , (3.52)

Use notation

hp, i
.
= hp(ti) ∈ R, hp

.
= (hp, i)n

i=1 ∈ R
n, h .

= (hp)p∈P ∈ Rn×|P|,

Ψp, i(h) .= Ψp(ti, h), Ψp(h) .
=

(
Ψp, i(h)

)n
i=1 ∈ R

n Ψ(h) .
=

(
Ψp(h)

)
p∈P ∈ R

n×|P|

Q = (Qi j)(i, j)∈W ∈ R|W|

Apply rectangular quadrature for the approximation of integrals, then the discrete-time version
of inequality in (3.38) becomes∑

p∈P

∆tΨp(h
∗
)T (hp − h

∗

p) ≥ 0 ⇐⇒ Ψ(h
∗
)T (h − h

∗
) ≥ 0

The flow conservation constraints become∑
p∈Pi j

∆t eT hp = Qi j, ∀(i, j) ∈ W

where e ∈ Rn is the vector of ones. Introducing compact notation

α(·) : Rn×|P| −→ Rn×|P|, α(h) = − h (3.53)

β(·) : Rn×|P| −→ Rn×|P|, β(h) = A · h − Q/∆t (3.54)
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where each row of the matrix A ∈ R|W|×n|P| has ones located at the spot corresponding to O-D
pair (i, j) and zeros elsewhere. Λ0 can be rewritten as

Λ0 =
{
h ∈ Rn×|P| : α(h) ≤ 0; β(h) = 0

}
Now we are ready to state the discrete-time variational inequality VI(Ψ,Λ0, [t0, t f ]) and the

necessary condition for this finite-dimensional VI.

find h
∗
∈ Λ0 such that

Ψ(h
∗
)T (h − h

∗
) ≥ 0

∀h ∈ Λ0


VI(Ψ,Λ0,

[
t0, t f

]
) (3.55)

where
Λ0 =

{
h ∈ Rn×|P| : α(h) ≤ 0; β(h) = 0

}
(3.56)

Theorem 3.4. (Kuhn-Tucker conditions for VI(Ψ,Λ0, [t0, t f ]) )
Let

h
∗
∈ Λ0 =

{
h ∈ Rn×|P| : α(h) ≤ 0; β(h) = 0

}
be a solution of (3.55). Further assume that Ψ(·) and α(·) are continuous on Λ0, α(·) is differ-
entiable on Λ0, and β(·) is affine on Λ0. Then if the gradients ∇αi(h

∗
) for i such that gi(h

∗
) = 0

together with the gradients ∇βi(h
∗
) for i = 1, . . . , n × |P| are linearly independent, there exists

multipliers π ∈ Rn×|P| and µ ∈ Rn×|P| such that

Ψ(h
∗
) + [∇α(h

∗
)]Tπ + [∇β(h

∗
)]Tµ = 0 (3.57)

i = 1, . . . , n × |P|, πiαi(h
∗
) = 0 (3.58)
π ≥ 0 (3.59)

Proof. See Friesz (2010)

Remark 3.5. The functions α(·), β(·) clearly satisfy the assumption of the above theorem. Re-
garding the continuity of the effective delay operator Ψ(·, ·) in continuous time, we refer the
readers to Bressan and Han (submitted for publication) for a proof. The continuity of Ψ(·) in
Theorem 3.4 follows directly from the continuity of Ψ(·, ·). We further comment that the nec-
essary condition for such VI becomes sufficient if in addition the constraint functions α(·) are
convex, which is again true in our case.

Next, we will transform condition (3.57)-(3.58) into a linear system. Note

∇α(h
∗
) = − I, ∇β(h

∗
) = A

where I is the n|P| × n|P| identity matrix. Let Ω = diag(−h
∗
) ∈ Rn|P|×n|P|, (3.57)-(3.58) is

equivalent to the following linear system−I A

Ω 0


π
µ

 =

−Ψ(h
∗
)

0

 (3.60)
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In order to verify the sufficient and necessary condition (3.57)-(3.59), one needs to solve the
above system and verify that the dual variables π ≥ 0. Notice that the size of such system is
2n|P| × (n|P|+ |W|) which could be very large, for example, in the Sioux Falls network example
presented in Section 4.5. The Sioux Falls network studied in this paper has 496 O-D pairs and
1,941 paths. A chosen time grid of 100 points will lead to a 400, 000-by-200, 500 linear system.
Such a large system will cause the solution procedure to significantly slow down and even crash if
the system is not well-conditioned. We present our resolution to this issue with a decomposition
of the system (3.60) summarized in the next lemma.

Lemma 3.6. (Decomposition of the linear system) For i = 1, . . . , |W|, denote by Ψ
i
(h
∗
), πi, µi

the vectors formed by selecting the rows corresponding to the ith O-D pair of the original vectors;
denote by Ii, Ai, Ωi the submatrices formed by selecting the rows and colomns corresponding
to the ith O-D pair of the original matrices. The linear system (3.60) is then equivalent to a
collection of smaller systems−Ii Ai

Ωi 0


π

i

µi

 =

−Ψ
i
(h
∗
)

0

 , i = 1, . . . , |W| (3.61)

Proof. The conclusion follows from a simple block matrix arithmetic.

Each system in (3.61) is much smaller in size, however, one may have to solve such linear
systems as many times as the number of O-D pairs. This strategy is particularly useful when
computer memory is insufficient for large-scale computation.

4. Numerical examples

In this section, we present several numerical studies of the proposed DNL procedure formu-
lated as a DAE system (2.30)-(2.35). In particular, we consider four different vehicular networks
of varying sizes and topologies, as summarized in Table 1

Network name Arcs Nodes OD pairs Paths
Simple network 2 2 1 2
Small network 6 5 2 6

Medium network 19 13 4 4
Sioux Falls network 76 24 496 1941

Table 1: Summary of network examples

All computations of the DNL procedure and fixed-point iteration presented in this section
were coded in Matlab 2010 and performed on a 2.7 GHz 4 GB of RAM computer. Every attempt
was made to avoid the use of numerical tricks that could not be equally applied to all models. For
the numerical results of the DNL, the LWR-based DAE system presented in this paper displays
different flow propagation patterns from the LDM and CTM link performance models studied
in Friesz et al. (2011): the solutions for the latter are moving parabolic wave forms, while the
solutions of our DNL procedure displays the non-uniformity of wave speeds − a key feature of
kinematic wave models. This is best explained by the flux function φ(·) defined in (2.7), which
implies that the higher the flow, the slower it propagates, such property will be visualized in
Section 4.3.
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4.1. Numerical context
For all the numerical examples resented in this section, we will fix the time horizon [0, 20].

The effective delay takes on the following form

Ψp(t, h) = Dp(t, h) + γ ×
(
t + Dp(t, h) − TA

)2

where Dp(t, h) is the network delay operator for path p ∈ P and TA is the target arrival time.
We assume that there is a quadratic penalty for arrivals other than the desired time. The pa-
rameter γ ∈ R+ measures the network users’ perception of arrival penalties and is allowed to
depend on different user classes. As the initial iterate of the fixed-point algorithm, we utilize an
inverse parabolic-shaped initial departure rate. Note that an appropriate pre-conditioning such as
a different initial guess may improve the performance of the fixed-point algorithm, but this it is
beyond the scope of this paper. Finally, the convergence criteria of the fixed-point algorithm is
set to be (3.51).

4.2. Simple network
In this section we consider the 2-arc, 2-node network with arc parameters illustrated in Figure

4. This simple network has only one origin-destination pair W = {1, 2} and two paths p1 =

{1}, p2 = {2}.

1 2

1

2

Arc Jam density Free flow speed Length
(vehicles / km) (km / 5min) (km)

1 800 6 4
2 600 3 5

Figure 4: Topology and arc parameters of the simple network.

We assume a fixed travel demand of Q1,2 = 3300 and set the desired arrival time TA = 15. With
the DNL procedure proposed in this paper, it took the fixed-point algorithm 15 iterations to meet
the convergence criteria. The equilibrium flows are illustrated in Figure 5 where a clear flat spot
in the travel cost curve can be visualized. As the iteration goes on, more traffic volume will
switch from the second path to the first path, as shown in Figure 6, this is consistent with the
network parameters we choose.
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Figure 5: Simple network: path flows and unit costs.
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Figure 6: Path allocations during each fixed-point iteration

4.3. Small network

We consider the small network summarized in Figure 7, with 6 arcs and 5 nodes. There are
two O-D pairs

W = {(1, 3), (2, 3)}

among which the following six paths are employed:

p1 = {3, 6}, p2 = {1, 2, 6}, p3 = {1, 2, 4, 5}, p4 = {3, 4, 5},

p5 = {6}, p6 = {4, 5}

1

2

6

4

3

51

4

2

5

3

Arc Jam density Free flow speed Length
(vehicles / km) (km / 5min) (km)

1 800 6 4
2 800 6 8
3 800 8 4
4 800 8 10
5 1000 8 8
6 600 6 10

Figure 7: Topology and arc parameters of the small network.

We assume a fixed demand for O-D pair (1, 3) and (2, 3) such that Q1,3 = 3300 and Q2,3 =

1650. The target arrival times of each OD pair are set to be T(1, 3) = 10 and T(2, 3) = 14. It took the
fixed-point algorithm 12 iterations to terminate and the DUE solutions are shown in Figure 8. We
note that the curve corresponding to travel cost is flat where the departure rate is nonzero. Figure
9 shows the propagation of several path flows along each arc. As mentioned at the beginning of
this section, the LWR-based models tend to display non-uniform wave speeds, i.e. the part of the
flow profile with relatively high value will propagate more slowly than the part with low value.
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Figure 8: Small network: the six path departure rates and corresponding travel cost in the DUE solution.
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Figure 9: Small network: propagation of several path flows along each arc.

4.4. Medium Network

We now consider the 19 arc 13 node network shown in Figure 10 that was also studied in
Nguyen (1984); Nie and Zhang (2008). Four O-D pairs are chosen

W = {(1, 2), (1, 3), (4, 2), (4, 3)}
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each having a fixed travel demand of Q1,2 = Q1,3 = Q4,2 = Q4,3 = 275. The target arrival times
for the four O-D pairs are T(1, 2) = T(1, 3) = T(4, 2) = T(4, 3) = 12. We employ only one path per
O-D pair. Specifically, P = {p1, p2, p3, p4} and

p1 = {1, 4, 13}, p2 = {2, 10, 17, 19}, p3 = {9, 14, 15, 16}, p4 = {9, 17, 19}
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Figure 10: The 19 arc, 13 node medium network

The primary purpose of this network example is to study the effect of bottlenecking on DUE
solutions and how the bottleneck is handled by our algorithm. To do so, we set the network
parameters in a way such that arc 9 becomes a bottleneck, i.e. it has smaller flow capacity and
free flow speed than the rest of the arcs in the network. Under this numerical setting, the DUE
solution is obtained after 10 fixed-point iterations and four path flows are shown in Figure 11.
We observe from the solution that the paths p3, p4 which pass the bottleneck, have higher peak
rates than paths p1 and p2. This observation implies that equilibrium flows tend to aggravate
congestions at bottlenecks as confirmed by Bressan and Han (2011a). Figure 12 demonstrates
the equilibrium flows through the bottleneck (arc 9) whose flow capacity is 200. We make the
following comments on Figure 12: (1) the flow capacity of arc 9 is captured by the Lax-formula
approach as shown in the lower figure; (2) a clear shock wave is represented as a sudden drop of
flow around t = 12.6; (3) the entry and exit flows of arc 9 are successfully disaggregated by the
routing information as well as our diverging model and numerical implementation.

4.5. Sioux Falls network, part I

The aim of this section is to demonstrate the ability of our DNL procedure to compute large-
scale problems. We consider the well-known Sioux Falls network (Figure 13) consisting of 76
arcs and 24 nodes. We select a total number of 496 origin-destination pairs and 1941 paths. For
each OD pair, we assume a fixed travel demand ranging from 200−2000, and target arrival time
ranging from 8−16.

The fixed-point algorithm took 17 iterations to converge. Part of the DUE solutions are pre-
sented in Figure 14-19. Figure 14 -17 show departure rates of four paths p300, p500, p850, p1902
and the corresponding unit cost. Figure 18 shows the evolution of path allocations within OD
pair (18, 20) at each fixed-point iteration. Several arc entry flows in the solution are depicted in
Figure 19. We test our numerical solution against the KT condition mentioned in Theorem 3.4,
the resulting linear system is decomposed using Lemma 3.6.
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Figure 11: Medium network: DUE departure rates and corresponding travel cost.
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Figure 12: Medium network: DUE solution at bottleneck (arc 9). Upper: path flows through bottleneck.
Lower: total flow through bottleneck.

To confirm that our numerical solution indeed solves the DUE problem on Sioux Falls net-
work, we test it against the KKT condition instantiated in Theorem 3.4 and Lemma 3.6. The
whole linear system is decomposed into smaller ones according to different O-Ds, and all the
resulting dual variables are non-negative.
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Figure 13: The Sioux Falls network

0 2 4 6 8 10 12 14 16 18 20

200

400

100

300

Departure Time

D
ep

ar
tu

re
 R

at
e

0

100

200

U
n

it
 C

o
st

Figure 14: Path 300: departure rate and cost
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Figure 15: Path 500: departure rate and cost
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Figure 16: Path 850: departure rate and cost
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Figure 17: Path 1902: departure rate and cost
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Figure 18: Evolution of path allocations for OD pair (18, 21)
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4.6. Sioux Falls network, part II

The analytical framework of this paper belongs to the class of path-based DUE models. In
other words a (partial) path enumeration is necessary for the analysis and computation of DUE
to carry forward. In the first part of the Sioux Falls study, we end up with four paths per O-D pair
on average. However, notice that many O-D pairs are nodes right next to each other (e.g. node 4
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and 5). It is considered ‘unlikely’ that users will select too many paths for such an O-D pair.
In order to further illustrate the influence of network congestion and travel demand on the

number of utilized paths, and in order to understand the limitation of insufficient path enumera-
tion, we propose this second part of numerical study of the Sioux Falls network. Under the same
link parameters as previous section, we only consider one O-D pair (1, 20) with a total of 125
paths. Although the number of paths is still small compared to the total number of viable paths,
it is sufficient to serve the purpose of this section.

We perform the computation of the DUE 19 times, each with an increased travel demand
ranging from 104 to 105. The numbers of utilized paths in the corresponding equilibrium solu-
tions are plotted in Figure 20. It is observed that as the demand is relatively low, the increase
of utilized paths is faster than when the demand is higher. When the demand is very hight, i.e.
Q12 ≥ 7 × 104, the demand needs to increase significantly for the drivers to use a new path.
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Figure 20: Number of utilized paths in the DUE against the total travel demand between (1, 20)

4.7. Performance of the network loading procedure

The fixed-point algorithm presented in this paper are implemented with several network load-
ing models. The link delay model (LDM) is based on an explicit travel time function and the cor-
responding DNL procedure was approximated by a system of ODEs in Friesz et al. (2011). The
cell transmission model (CTM) proposed in Daganzo (1994, 1995) is a widely used discrete-time
traffic network model. These two network loading procedures, together with the one presented in
this paper, are tested against different networks. The numerical performances are summarized in
Table 2. We name our procedure “LWR-LH” with “LH” standing for Lax-Hopf formula. Notice
that in Table 2, the results in Sioux Falls network is based on a choice of 10 O-D pairs and 200
paths for all three DNL procedure.

We observe from these numerical examples that the LWR-based network loading algorithm
presented here is more efficient than its opponents for large-scale network. We interpret such
result as follows: (1) the CTM model is a discrete model that requires two-dimensional space-
time grid, this could be potentially inefficient in terms of number of operations performed and
memory usage; (2) the LDM is based on solving a system of ODEs, the size of such system
grows linearly with path numbers, when dealing with large-scale networks with over 1000 paths,
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Iterations Computational time
Network LDM CTM LWR-LH LDM CTM LWR-LH

2 arc, 2 nodes 14 14 15 18 s 24 s 38 s
6 arc, 5 nodes 11 12 12 26 s 32 s 75 s

19 arc, 13 nodes 14 10 10 152 s 159 s 130 s
76 arc, 24 nodes 14 13 13 33 min 52 min 15 min

Table 2: DUE fixed point iterations and computational time by problem type.

the ODE solver could slow down dramatically; (3) the LWR-based loading algorithm we’re
presenting here is a link-based algorithm, i.e. the formula (2.33) is performed only once for each
link, in addition, the loading procedure is further accelerated by the closed-form representation
of the PDE solutions and independence of spatial variables. The fixed-point algorithm with the
proposed DNL procedure is performed on the Sioux Falls network with varying problem sizes,
see Table 3 for a summary of performance, in particular, a below-linear growth of solution time
with respect to the number of paths is reported.

Sioux Falls network Iteration Time
10 OD, 200 paths 13 15 min
20 OD, 360 paths 17 24 min

336 OD, 1371 paths 15 60 min
496 OD, 1941 paths 17 90 min

Table 3: Performance of fixed-point algorithm with LWR-based DNL procedure.

5. Conclusion

In this article, we propose a continuous-time network loading procedure based on the LWR
model and a novel solution method based on the Lax formula. The DNL sub-problem is formu-
lated as a DAE system without any partial derivatives and the solution to the PDE is expressed
semi-analytically. The DNL model captures network queuing, route and departure time choices,
as well as path delays. The proposed network loading procedure is implemented within the fixed-
point algorithm for computing the dynamic user equilibrium. The numerical performance of the
DNL procedure is tested extensively using various network examples, including the Sioux Falls
network with nearly 500 OD pairs and 2000 paths.

The variational approach for conservation laws and Hamilton-Jacobi equations has become
a recognized analytical and computational tool. It has the full potential to capture the formation
and interaction of kinematic waves within a link. One drawback of the network model discussed
in this paper is the absence of vehicle spillback. Thus the DNL procedure tends to underesti-
mate path delays when the network is heavily congested. In order to capture the interaction of
kinematic waves among links and address spillback, the analytical framework here needs to be
extended to consider both upstream and downstream boundary conditions. This is not difficult to
achieve using the Hamilton-Jacobi equation and Lax-Hopf formula. The reason is that the solu-
tion of the H-J equation with multiple boundary conditions can be viewed as the lower envelop of
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solutions that are each obtained with one boundary condition. See Aubin et al. (2008); Claudel
and Bayen (2010a); Daganzo (2005) for detailed discussion. In Han et al. (submitted for publi-
cation), the variational method has been implemented to the network model based on the above
discussion. By choosing appropriate Riemann Solvers at different junctions, the system dynamic
can be again formulated as a DAE system. In the same paper, binary variables are used to indicate
the traffic states (i.e. free-flow or congested) at beginning and end of each link. The phenomenon
of spillback is explicitly modeled by these binary variables even in continuous-time.

Further understanding of the above network loading model in terms of solution existence for
arbitrary network topology and continuity of the delay operator is the goal of future research.

References

Aubin, J.P., Bayen, A.M., Saint-Pierre, P., 2008. Dirichlet problems for some Hamilton-Jacobi equations with inequality
constraints. SIAM Journal on Control and Optimization 47 (5), 2348-2380.

Bardi, M., Capuzzo-Dolcetta, I., 1997. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,
Birkhäuser.
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