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Abstract

Set-valued information systems are important type of data tables in many real applications, where the attribute val-
ues are described by sets to characterize uncertain and incomplete information. However, in some real situations,
set-values may be depicted by probability distributions, which results in that the traditional tolerance relation based
on intersection operation could not reasonably describe the indiscernibility relation of objects. To address this issue,
we introduce the concept of probabilistic set-valued information systems (PSvIS), and present the extended variable
precision rough set model (VPRS) based on theλ-tolerance relation in terms of Bhattacharyya distance. Considering
the features of information systems will evolve over time ina dynamic data environment, it will lead to the change of
information granulation and approximation structures. A matrix representation of rough approximation is presented
based on two matrix operators and two vector functions in PSvIS. Then incremental mechanisms by the utilization
of previously learned approximation results and region relation matrices for updating rough approximations are pro-
posed, and the corresponding algorithms are developed and analyzed. Experimental results show that the proposed
algorithms outperform the static algorithms and related incremental algorithms while inserting into or removing from
attributes in PSvIS.

Keywords: Set-valued information systems, Incremental learning, Rough sets, Matrix operators.

1. Introduction

Rough set theory (RST), originated by Pawlak, has become an effective mathematical tool for dealing with un-
certain or inconsistent information [1]. Since the equivalence relation in RST is too restrictive to be employed in
practical applications, various extended rough set modelsbased on different binary relations have been developed in
recent two decades [2, 3, 4, 5, 6, 7]. Nowadays, RST has been widely applied in machine learning, data mining,
pattern recognition and knowledge discovery [8, 9, 10, 11, 12].

Set-valued information systems (SvIS) are important generalized models of single-valued information systems, in
which sets are used to characterize the imprecise and missing information. Orlowska et al. studied SvIS based on
non-deterministic information and introduced the conceptof non-deterministic information system [13]. Yao et al.
explicitly introduced SvIS and presented some set-based operations for set-valued data [14]. Guan et al. presented
three different relative reducts via the maximal tolerance relation in SvIS [15]. Dai et al. constructed a fuzzy rough set
model for set-valued data and presented corresponding method for attribute reduction [16]. Wei et al. presented two
different fuzzy rough set models based on the fuzzy similarity class and the fuzzy similar degree, respectively [17].
Considering the queuing problems in the presence of multiple criteria, Qian et al. presented two set-valued ordered
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information systems in terms of disjunctive and conjunctive semantics and constructed two extended dominance-based
rough set models [18]. Zhang et al. combined quantitative rough sets and dominance-based rough sets for dealing
with feature selection and approximate reasoning in large-scale set-valued decision systems [19]. Although SvIS have
been investigated extensively, no previous study has specifically focused on that set values of SvIS are described by
probability distributions. There are many research work oninterval-valued data with continuous distribution, which
could not be directly applied in the set-valued data with probability distribution due to its distribution is discrete [20,
21, 22]. Set-valued data with discrete distribution exist in many real world situations. For example, in a language-test
information system, a set value{German,Polish} under the test attribute of spoken language indicates that acandidate
can speak German and Polish in terms of conjunctive semantic[18]. However, in reality, the candidate may speak
German fluently, but a little Polish. In order to describe this phenomenon more accurately, we distinguish the ability
of spoken language by characterizing the set value with a discrete probability distribution, such as{German,Polish}

{0.99,0.01} . The
information systems with such probability distribution ofdata are suggested as Probabilistic Set-valued Information
Systems (PSvIS) in our study. Moreover, the traditional tolerance relation based on intersection operation in SvIS
could not be applied directly in PSvIS. For instance, two candidates with set values{German,Polish}

{0.99,0.01} and {German,Polish}
{0.01,0.99}

under the attribute “speaking a language” are indiscernible according to the tolerance relation. However, it is not
reasonable in terms of the probability distributions, i.e., two people where one speaks well in German and only a
little Polish and the other is reverse are in the same tolerance class. Furthermore, considering that the classical
rough set model is sensitive to misclassified and noisy data,Ziarko presented a robust model, e.g., variable precision
rough set model (VPRS), which allows some degree of partial classification by introducing the majority inclusion
degree [23]. VPRS has been widely applied in various fields, such as water demand prediction [23], economic and
financial prediction [24, 25], medical decision making [26,27, 28], and so on. Motivated by these considerations, this
paper presents theλ-tolerance relation based on Bhattacharyya distance and the extended VPRS approach for PSvIS.

Another important issue inspiring this work is that the datawill continuously update due to the new data are added
and the outdated data are discarded in a dynamic informationsystem. This paper focus on the variation of attributes,
which is a common case in a dynamic data environment. For example, patient symptoms in clinical trials [29], tex-
ture features in image processing [30], geographic attributes in environmental monitoring [31]. For the emergence
of a novel attribute set or the disappearance of an outdated attribute set in an information system, the static learning
approach needs to retrain the whole model on the entire updated data, which is time-consuming or even infeasible
for real-time decision making. To improve the computational efficiency with the variations of attributes, incremental
learning incorporating with RST has been explored by utilizing the accumulated knowledge for analyzing the newly
updated data [32, 33, 34]. Li et al. presented incremental strategies for computing approximations with respect to
the characteristic relation in the incomplete informationsystems [35]. Luo et al. developed matrix-based incremental
approach for updating approximations in set-valued ordered information systems [36]. Yang et al. proposed incre-
mental algorithms for maintaining multigranulation roughapproximations under dynamic granulation [37]. Wang et
al. investigated incremental mechanisms based on three different information entropies for attribution reduction [38].
Shu et al. introduced incremental approaches of calculating the positive region and tolerance classes for positive
region-based attribute reduction [39]. Since calculationof approximations is a necessary step for attribute reduction
and knowledge discovery in RST [40, 41], this study aims at investigation of the incremental mechanisms to speed up
the calculation of rough approximations when evolving features in PSvIS.

Since the matrix form is benefit for intuitive description, simplifying calculation and easy maintainability, it has
been widely employed for rough data analysis [42, 43, 44]. Zhang et al. presented four cut matrices for constructing
rough approximations and developed incremental algorithms to update approximations under attribute generalization
in SvIS [45]. Wang et al. introduced Boolean matrices for representing covering approximation operators and de-
veloped a corresponding decomposition algorithm [46]. Tanet al. presented matrix-based approaches for calculating
set approximations and reducts in a covering decision information system [47]. Luo et al. investigated the matrix
representation of probabilistic rough approximations anddesigned dynamic algorithms for updating approximations
when adding or deleting objects [48]. Inspired by these advantages of matrix, this paper presents a matrix-based
method for dynamic maintenance approximations in PSvIS. Firstly, we present a matrix characterization of rough
approximations based on the relation matrix and two vector functions associated with multiplication and dot divide
operators. Considering that attributes will evolve over time in a dynamic PSvIS, which will result in the changes of
information granulation and approximation structures. Hence, we develop incremental mechanisms for maintenance
of approximations by utilizing previously accumulated approximation results and region relation matrices. Finally,a
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series of comparative experiments are conducted to demonstrate the effectiveness of proposed incremental methods.
The main contributions include: (i) we proposed an extension of SvIS, viz., PSvIS, which depict set-valued ob-

jects with probability distribution. (ii) Bhattacharyya distance is adopted to measure the similarity degree of objects
in PSvIS, and VPRS is extended by the introduction ofλ−tolerance relation. (iii) two matrix operators and two vec-
tor functions are designed to characterize the matrix representation of rough approximations. (iv) two incremental
mechanisms of updating approximations are presented underthe variation of attributes in PSvIS. Theoretical and
experimental results demonstrated the efficiency of the proposed method compared with the static and existing incre-
mental approaches. The rest of this paper is organized as follows. In Section 2, some preliminary concepts of RST
and VPRS are briefly reviewed. Then the concept of PSvIS and the extended VPRS based onλ-tolerance relation is
presented. In Section 3, we construct rough approximationsbased on matrix approaches and discuss the related prop-
erties. In Section 4, by introducing the concept of region matrices, incremental mechanisms for maintaining rough
approximations are presented with respect to the variationof attributes. Incremental algorithms are presented for up-
dating rough approximations in Section 5. Section 6 reportsexperimental results, and the conclusions are presented
in Section 7.

2. Preliminaries

In this section, we review some basic concepts and notationsof classical rough set model and VPRS. More details
can be found in [1, 23]. Then we introduce the basic concept ofPSvIS and presentλ-tolerance relation in terms of
Bhattacharyya distance for extending VPRS model in PSvIS.

Definition 2.1. [1] Let S = {U,AT = C
⋃

D,V, f } be an information system, where U is a non-empty finite set of
objects, called the universe; AT is a non-empty finite set of attributes including condition attributes C and decision
attributes D; V=

⋃

a∈AT Va and Va is a domain of attribute a; f: U × AT → V is an information function such that
f (x, a) ∈ Va for every a∈ AT, x∈ U. ∀X ⊆ U and B⊆ A, the lower and upper approximations of X with respect to
the equivalence relation RB are respectively defined as:

RB(X) = {x|[x]RB ⊆ X} (1)

RB(X) = {x|[x]RB ∩ X , ∅} (2)

where[x]RB = {y|(x, y) ∈ RB} is the equivalence class determined by the equivalence relation RB = {(x, y) ∈ U ×
U | f (x, b) = f (y, b),∀b ∈ B}.

According to the lower and upper approximations, the positive, negative and boundary regions ofX are easy to
obtain as follows.



























The positive region:POSB(X) = RB(X)

The negative region:NEGB(X) = U − RB(X)

The boundary region:BNDB(X) = RB(X) − RB(X)

(3)

Although classical rough set model has been applied in various fields, it is not robust for dealing with the data
with misclassification and noise in real applications. To efficiently address this issue, Ziarko presented the VPRS by
introducing a threshold parameterβ for controlling the degree of misclassification [23].

Definition 2.2. [23] Let S = {U,AT = A
⋃

D,V, f } be an information system. The parameter with respect to the
proportion of correct classification is denoted asβ and β ∈ (0.5, 1]. ∀X ⊆ U and B ⊆ A, the lower and upper
approximations of VPRS model are respectively defined as:

RB
β(X) = {x|P(X|[x]RB) ≥ β} (4)

RB
β
(X) = {x|P(X|[x]RB) > 1− β} (5)

where P(X|[x]RB) =
|X

⋂

[x]RB |
|[x]RB |

, where| • | denotes the cardinality of a set.
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Definition 2.3. A PSvIS is a sextuple(U,AT = A
⋃

D,V = VA
⋃

VD, f , σ,P), where U= {xi |i ∈ {1, 2, · · · , n}} is a non-
empty finite set of objects, called the universe. AT is a non-empty finite set of attributes, where A is a non-empty finite
set of condition attributes and D is a decision attribute setwith A

⋂

D = ∅. V = VA
⋃

VD is the domain of attributes
set AT, where VA is the set of condition attribute values, VD is the set of decision attribute values. f: U × A→ 2VA is
a set-valued mapping, and f: U × D→ VD is an information function such that f(x, d) ∈ Vd for every d∈ D, x ∈ U.
σ is a sigma-algebra in VA, which satisfies three properties in [49]. P is the probability distribution defined onσ,
such that P( fi(x, a)) ≥ 0 and

∑

i
P( fi(x, a)) = 1, where fi(x, a) ∈ f (x, a),∀x ∈ U and∀a ∈ A.

Example 2.1. Table 1 shows a PSvIS S= (U,AT = A
⋃

D,V = VA
⋃

VD, f , σ,P) w.r.t. the election information,
where U= {xi |i ∈ {1, 2, · · · , 14}}denotes fourteen different districts, A= {Economic construction,Social construction,
Cultural construction} indicates three different measure indexes of the candidate of governing capability, D is a de-
cision attribute, VA = {Dissatisfaction,Neutrality,Satisfaction} = {−1, 0, 1} and VD = {Yes,No} = {Y,N}. In Table 1,
f (x1, a1) =

{−1,0,1}
(0.23,0.45,0.32) denotes the attribute value of the object x1 under a1 is set-valued{-1,0,1} with probability

distribution{0.23,0.45,0.32}. Other notations are defined in a similar way.

Table 1: A probabilistic set-valued information system

U a1 a2 a3 D U a1 a2 a3 D

x1
{-1,0,1}

(0.23,0.45,0.32)
{-1,0,1}

(0.10,0.40,0.50)
{0,1}

(0.40,0.60) Y x8
{-1,0,1}

(0.81,0.14,0.05)
{-1,0,1}

(0.03,0.77,0.20)
{-1,0,1}

(0.82,0.11,0.07) Y

x2
{-1,0,1}

(0.20,0.43,0.37)
{-1,0,1}

(0.12,0.38,0.5)
{0,1}

(0.43,0.57) Y x9
{0,1}

(0.32,0.68)
{0,1}

(0.33,0.67)
{-1,0,1}

(0.44,0.32,0.24) N

x3
{-1,0,1}

(0.25,0.42,0.33)
{-1,0,1}

(0.13,0.39,0.48)
{0,1}

(0.44,0.56) N x10
{0,1}

(0.34,0.66)
{0,1}

(0.34,0.66)
{-1,0,1}

(0.43,0.33,0.24) N

x4
{-1,0,1}

(0.24,0.44,0.32)
{-1,0,1}

(0.12,0.41,0.47)
{-1,0,1}

(0.38,0.52,0.10) Y x11
{-1,0,1}

(0.82,0.12,0.06)
{-1,0,1}

(0.02,0.78,0.20)
{-1,0}

(0.90,0.10) N

x5
{-1,0,1}

(0.22,0.41,0.37)
{-1,0,1}

(0.11,0.42,0.47)
{-1,0,1}

(0.41,0.53,0.06) N x12
{0,1}

(0.34,0.66)
{0,1}

(0.35,0.65)
{1}
(1) Y

x6
{-1,0,1}

(0.24,0.42,0.34)
{-1,0,1}

(0.10,0.44,0.46)
{-1,0,1}

(0.40,0.52,0.08) N x13
{-1,0}

(0.80,0.20)
{-1,0,1}

(0.24,0.29,0.47)
{-1,0,1}

(0.47,0.52,0.01) Y

x7
{-1,0,1}

(0.82,0.12,0.06)
{-1,0,1}

(0.02,0.76,0.22)
{-1,0,1}

(0.81,0.10,0.09) Y x14
{1}
(1)

{-1,0,1}
(0.30,0.54,0.16)

{0,1}
(0.30,0.70) N

Since the equivalence relation is limited to categorical data, it could not be employed to PSvIS. In addition, the
traditional tolerance relationTa = {(x, y)| f (x, a)

⋂

f (y, a) , ∅, a ∈ A} in SvIS [15] aims to discriminate the objects
according to whether there are the same attribute set-value, which does not take the distribution of set values into
account. For example, the samplesx7 and x14 are indiscernible in terms of the traditional tolerance relation with
respect to the condition attributea1 in Table 1. However, it is unreasonable that the objectsx7 andx14 belong to the
same tolerance class according to the corresponding probability distribution. Hence, the traditional tolerance relation
also could not be applied in PSvIS directly.

To more appropriately characterize the relation of objectsin PSvIS, in what follows, we present theλ-tolerance
relation based on Bhattacharyya distance which can quantify the distance of objects with probability distribution and
extended VPRS model.

Definition 2.4. Let S= (U,AT = A
⋃

D,V = VA
⋃

VD, f , σ,P) be a PSvIS and the thresholdλa ≥ 0. Theλ−tolerance
relation BDλa with regard to the attribute a∈ A can be defined as follows.

BDλa = {(x, y) ∈ U × U |BDa(x, y) ≤ λa} (6)

where BDa(x, y) = − ln

(

K
∑

k=1

√

P( fk(x, a))P( fk(y, a))

)

is the Bhattacharyya distance which measures the similarity of

two discrete probability distributions [50], and P( fk(x, a)) denotes the probability distribution of x under the attribute
a. Then∀B ⊆ A, theλ−tolerance relation BDλB is defined by

BDλB = {(x, y) ∈ U × U |BDb(x, y) ≤ λb,∀b ∈ B} =
⋂

b∈B

BDλb (7)
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The parameterλb with respect to the attributeb ranges from 0 to+∞, and the lowerλb indicates the more similarity
between two objects. According to the prior knowledge or thespecific requirements of each attribute distribution, we
can set different parameter values ofλb in different practical applications. In the present paper, we onlydiscuss the
fixed parameter for all condition attributes.

Proposition 2.1. λ-tolerance relation is reflexive and symmetric, but not transitive.

Proposition 2.2. Let B1 ⊆ B2 ⊆ A, then BDλB2
⊆ BDλB1

.

Proposition 2.3. For λ1 ≤ λ2, BDλ1
B ⊆ BDλ2

B .

Proof. For λ1 ≤ λ2, it is obvious thatBDλ1

b ⊆ BDλ2

b by Equation 6. Then according to Equation 7, we haveBDλ1
B ⊆

BDλ2
B .

Note that PSvIS degenerate to disjunctive SvIS when the probability distribution of set values are zero-one distri-
bution, i.e.,P( fi(x, a)) = 1 andP( f j(x, a)) = 0(i , j)(i, j ∈ {1, 2, . . . ,K}). Furthermore, if setλ = 0, theλ-tolerance
relation will generalize to the traditional tolerance relation in SvIS.

Definition 2.5. Given a PSvIS S= (U,AT = A
⋃

D,V = VA
⋃

VD, f , σ,P), ∀X ⊆ U and B⊆ A, thenβ lower and
upper approximations with regard to theλ−tolerance relation BDλB are defined as follows, respectively.

RB
(β,λ)(X) = {x|P(X|[x]BDλB

) ≥ β} (8)

RB
(β,λ)

(X) = {x|P(X|[x]BDλB
) > 1− β} (9)

where[x]BDλB
= {y|(x, y) ∈ BDλB}, β ∈ (0.5, 1] andλ ≥ 0.

Then the positive regionPOS(β,λ)
B (X) = RB

(β,λ)(X), negative regionNEG(β,λ)
B (X) = U − RB

(β,λ)
(X) and boundary

region BND(β,λ)
B (X) = RB

(β,λ)
(X) − RB

(β,λ)(X) can be obtained according to the lower and upper approximations,
respectively.

Example 2.2. (Continuation of Example 2.1) Letβ = 0.6, λ = 0.55, B = {a1, a2} and X= {x1, x2, x4, x7, x8, x12, x13}.
Then we have the lower and upper approximations in terms of theλ-tolerance relation BDλB: RB

(β,λ)(X) = {x7, x8, x11,

x13}, RB
(β,λ)

(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x11, x13}.

3. Matrix-based representation of approximations in PSvIS

In this section, we presentλ-tolerance relation matrix and two vector functions for constructing the lower and
upper approximations by two matrix operators in PSvIS. In addition, we discuss the related properties of matrix,
which are benefit for dynamic updating approximations in PSvIS.

Definition 3.1. Let S = (U,AT = A
⋃

D,V = VA
⋃

VD, f , σ,P) be a PSvIS, where U= {x1, x2, · · · , xn}. Let B⊆ A
and BDλB be aλ-tolerance relation on U. Then theλ-tolerance relation matrix MBDλB = (mi j )n×n with regard to BDλB is
defined as follows:

mi j =















1, (xi , x j) ∈ BDλB
0, otherwise

(10)

Proposition 3.1. Theλ-tolerance relation matrix MBDλB is symmetric, and the elements of primary diagonal mii =

1(i = 1, . . . , n).
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Example 3.1. (Continuation of Example 2.1) Let B= {a1, a2} andλ = 0.55. We can compute theλ-tolerance relation
matrix MBDλB with respect to BDλB according to Definition 3.1 as follows:

MBDλB =

























































































































1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

























































































































Obviously, theλ-tolerance relation matrixMBDλB is symmetric andmii = 1(i = 1, . . . , n) from Example 3.1.

Definition 3.2. ∀X ⊆ U, the characteristic function G(X) with respect to X in PSvIS is defined as:

G(X) =
(

g1, g2, . . . , gn

)T
,where gi =















1, xi ∈ X

0, xi < X
(11)

where “T” denotes the transpose operation.

Example 3.2. (Continuation of Example 2.1) Let X= {x1, x2, x4, x7, x8, x12, x13}. Then the characteristic function
G(X) can be obtained by Definition 3.2: G(X) = (1, 1, 0, 1, 0, 0, 1,1,0,0, 0, 1, 1, 0)T.

Definition 3.3. Let Y= (y1, y2, · · · , yn)T be a column vector. The vector piece-wise function lβ(Y) with respect toβ is
defined as follows:

lβ(Y) =











































lβ(y1)

lβ(y2)

. . .

lβ(yn)











































,where lβ(yi) =



























1, yi ≥ β

0, 1− β < yi < β

−1, yi ≤ 1− β

(12)

whereβ ∈ (0.5, 1].

Proposition 3.2. Let Q1 , MBDλB × G(X) and Q2 , MBDλB × I, where “×” represents matrix multiplication and
I = (1, 1, · · · , 1)T. Then we have Q1(i) = |[xi]BDλB

⋂

X| and Q2(i) = |[xi ]BDλB
|, where Q1(i) and Q2(i) denote theith

element of Q1 and Q2, respectively.

Example 3.3. (Continuation of Examples 3.1 and 3.2) According to the results of Examples 3.1 and 3.2, we can calcu-
late the intermediate vectors Q1 and Q2 by Proposition 3.2: Q1 = MBDλB ×G(X) = (3, 3, 3, 3, 3, 3, 2,2,1,1,2, 1, 1, 0)T,
Q2 = MBDλB × I = (6, 6, 6, 6, 6, 6, 3,3, 3, 3, 3, 3, 1,1)T.

Theorem 3.1. Given a PSvIS S= (U,AT = A
⋃

D,V = VA
⋃

VD, f , σ,P), U = {x1, x2, · · · , xn}. ∀X ⊆ U, let
Q3 , Q1/.Q2, where “/.” denotes matrix dot divide. Then the positive, negative andboundary regions with respect
to B⊆ A can be obtained from lβ(Q3) as follows:

POS(β,λ)
B (X) ={xi |lβ(Q3(i)) = 1}

NEG(β,λ)
B (X) ={xi |lβ(Q3(i)) = −1}

BND(β,λ)
B (X) ={xi |lβ(Q3(i)) = 0}

(13)
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Then the lower approximation RB
(β,λ)(X) = POS(β,λ)

B (X) and the upper approximationRB
(β,λ)

(X) = U − NEG(β,λ)
B (X).

Proof. According to Definition 3.3 and Proposition 3.2, iflβ(Q3(i)) = 1, namely,
|[xi ]BDλB

⋂

X|

|[xi ]BDλB
|
≥ β = P(X|[x]BDλB

) ≥ β,

thenxi ∈ POS(β,λ)
B (X). The negative and boundary regions can be obtained in a similar way.

Example 3.4. (Continuation of Example 3.3) Letβ = 0.6. Then we have Q3 = Q1/.Q2 = ( 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

2
3 ,

2
3 ,

1
3 ,

1
3 ,

2
3 ,

1
3 , 1, 0)T based on the dot divide operator and lβ(Q3) = (0, 0, 0, 0, 0, 0, 1, 1,−1,−1, 1,−1, 1,−1)T in terms of Def-
inition 3.3. According to Theorem 3.1, the positive, negative and boundary regions can be obtained as follows:
POS(β,λ)

B (X) = {x7, x8, x11, x13}, NEG(β,λ)
B (X) = {x9, x10, x12, x14} as well as BND(β,λ)B (X) = {x1, x2, x3, x4, x5, x6}.

Furthermore we have the lower approximation RB
(β,λ)(X) = {x7, x8, x11, x13} and upper approximationRB

(β,λ)
(X) =

{x1, x2, x3, x4, x5, x6, x7, x8, x11, x13}.

4. Matrix-based approach for incremental updating approximations under the variation of attributes in PSvIS

The variation of attributes, including the addition and deletion of attributes, are incurred by the demand of real ap-
plications, which will lead to the variation of knowledge structure in dynamic PSvIS. To address this issue, we present
incremental mechanisms based on matrix for computing the lower and upper approximations. More specifically, the
incremental mechanisms mainly include three aspects: i) region matrices are constructed, i.e., the positive, negative
and boundary relation matrices are extracted from the wholeλ-tolerance relation matrix; ii) these three region relation
matrices are updated by the previous matrix information; and iii) the lower and upper approximations are computed
according to the accumulated approximations results and the updated region matrices.

4.1. Dynamic updating approximations with the addition of attributes

In this section, we introduce the approach for dynamic update of approximations in a PSvIS with the addition
of attributes. LetSt

= (U,AT = At ⋃ D,V = VAt
⋃

VD, f , σ,P) be a PSvIS at timet, whereU = {x1, x2, · · · , xn}.
At time t + 1, the new attribute set∆A is added to the conditional attribute setAt, i.e., the PSvISSt is altered as
St+1

= (U,ATt+1
= At+1 ⋃

D,Vt+1
= Vt+1

A

⋃

VD, f t+1, σt+1,Pt+1), whereAt+1
= At ⋃

∆A. To utilize the accumu-
lated information, we denote the positive, negative and boundary regions of Pawlak rough set model asPOSAt (X),
NEGAt (X) andBNDAt (X) at timet, respectively.

Definition 4.1. Let MBDλ
At denote theλ-tolerance relation matrix with respect to At in the PSvIS S at time t. The

positive region relation matrix MPOS = (mPOS
i j ), the negative region relation matrix MNEG = (mNEG

i j ) and the boundary

region relation matrix MBND = (mBND
i j ) are defined as follows, respectively.

mPOS
i j =















1, (xi , x j) ∈ BDλAt , xi ∈ POSAt (X), x j ∈ U

0, otherwise
(14)

mNEG
i j =















1, (xi , x j) ∈ BDλAt , xi ∈ NEGAt (X), x j ∈ U

0, otherwise
(15)

mBND
i j =















1, (xi , x j) ∈ BDλAt , xi ∈ BNDAt (X), x j ∈ U

0, otherwise
(16)

Example 4.1. (Continuation of Examples 2.2 and 3.1) According to Definition 2.1, we have the positive, negative and
boundary regions of X with respect to the classical rough setmodel as follows: POSB(X) = {x13}, NEGB(X) = {x14},
BNDB(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12}. Then the positive, negative and boundary region relation
matrices MPOS, MNEG and MBND can be obtained in terms of the result of Example 3.1 as follows.

MPOS =
(

0 0 0 0 0 0 0 0 0 0 0 0 1 0
)

MNEG =
(

0 0 0 0 0 0 0 0 0 0 0 0 0 1
)
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MBND =





































































































1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 0 0





































































































According to Definition 4.1, we only need to update the regionrelation matrix, rather than the whole relation ma-
trix under the variation of attributes. More precisely, theboundary relation matrix is updated when adding attributes,
and the positive and negative relation matrices are updatedwhen deleting attributes. It will improve the efficiency of
our incremental method since the size of region relation matrix is smaller than that of whole relation matrix.

Theorem 4.1. Given a PSvIS S= (U,AT = At ⋃ D,V = VAt
⋃

VD, f , σ,P), U = {x1, x2, · · · , xn}. Let MBND′ =

(mBND
′

i j ) denote the boundary relation matrix when the attribute set∆A is added to At at time t+ 1. Then it can be
updated by the following mechanisms.

(1) If mBND
i j = 0, then mBND

′

i j = mBND
i j ;

(2) If mBND
i j = 1 and xi ∈ [x j ]BDλ

∆A
then mBND

′

i j = mBND
i j ;

(3) If mBND
i j = 1 and xi < [x j ]BDλ

∆A
then mBND

′

i j = 0.

Proof. If mBND
i j = 0, namely,xi < [x j ]BDλ

At
, it is clear thatxi < [x j ]BDλ

At ⋃∆A
when adding the attribute set∆A to At. Then

we havemBND
′

i j = mBND
i j = 0. If mBND

i j = 1, that is,xi ∈ [x j ]BDλ
At

. In addition, if xi ∈ [x j ]BDλ
∆At

when∆A is added toAt,

it is obvious thatxi ∈ [x j ]BDλ
At ⋃

∆A
, i.e.,mBND

′

i j = mBND
i j = 1; otherwise,xi < [x j ]BDλ

At ⋃

∆A
, i.e.,mBND

′

i j = 0.

It can be seen from Theorem 4.1 that we only update the elements of boundary relation matrix according to the
case 3, which can enhance the performance of updating procedures.

Theorem 4.2. Assume intermediate vectors Q1 , MBND×G(X) and Q2 , MBND× I at time t. Let Q
′

1 = MBND′ ×G(X)
and Q

′

2 = MBND′ × I when the boundary relation matrix MBND′ has been updated at time t+ 1. Then we have

Q
′

1(i) = Q1(i) −
n
∑

j=1

(

1−mBND
′

i j

)

mBND
i j G ( j) and Q

′

2(i) = Q2(i) −
n
∑

j=1

(

1−mBND
′

i j

)

mBND
i j .

Proof. According to the definition of matrix multiplication, we have Q1(i) =
n
∑

j=1
mBND

i j G ( j). Obviously, the element

mBND
i j is updated according to Theorem 4.1, thusQ

′

1(i) = Q1(i) whenmBND
i j keeps unchanged, otherwise,Q

′

1(i) =

Q1(i) −
n
∑

j=1

(

1−mBND
′

i j

)

mBND
i j G ( j) whenmBND

i j updates from 1 to 0. The proof ofQ
′

2(i) is similar.

Theorem 4.3. Let Q
′

1 = MBND′ ×G(X), Q
′

2 = MBND′ × I, Q
′

3 = Q
′

1/.Q
′

2 and l
′

β
= lβ(Q

′

3). Then∀X ⊆ U, the positive

region POS(β,λ)
At+1 (X) and the negative region NEG(β,λ)

At+1 (X) at time t+ 1 are updated as follows.

(1) POS(β,λ)
At+1 (X) = POSAt (X)

⋃

{xi |l
′

β
(Q

′

3(i)) = 1};

(2) NEG(β,λ)
At+1 (X) = NEGAt (X)

⋃

{xi |l
′

β
(Q

′

3(i)) = −1}.

Then we can compute the lower approximation RAt+1
(β,λ)(X) = POS(β,λ)

At+1 (X) and the upper approximationsRAt+1
(β,λ)

(X) =

U − NEG(β,λ)
At+1 (X).
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Proof. For the first case, according to Definition 2.5, the positive regionPOS(β,λ)
At+1 (X) = POSAt+1(X)

⋃

{xi |P(X|[xi]BDλ
At+1

)

≥ β, xi ∈ BNDAt+1(X)}. When the attribute set∆A is appended toA, the positive regionPOSAt+1(X) of Pawlak rough
sets is divided into two parts, namely, one isPOSAt (X), the other is{xi |[xi ]BDλ

At+1
⊆ X, xi ∈ BNDAt (X)}. Furthermore,

we haveBNDAt+1(X) ⊆ BNDAt (X) whenAt ⊆ At+1. Evidently, we havePOS(β,λ)
At+1 (X) = POSAt (X)

⋃

{xi |[xi ]BDλ
At+1
⊆

X, xi ∈ BNDAt (X)}
⋃

{xi |P(X|[xi]BDλ
At+1

) ≥ β, xi ∈ BNDAt+1(X)} = POSAt (X)
⋃

{xi |P(X|[xi]BDλ
At+1

) ≥ β, xi ∈ BNDAt (X)}.

Finally, according to Definition 4.1 and Theorem 3.1, we havePOS(β,λ)
At+1 (X) = POSAt (X)

⋃

{xi |l
′

β
(Q

′

3(i)) = 1}. The
second case can be obtained in a similar way.

Example 4.2. (Continuation of Example 2.1) Let At
= B = {a1, a2} at time t and∆A = {a3} is appended to At at

time t+ 1. Based on the result of Example 4.1, we can update the boundary relation matrix MBND′ according to
Theorem 4.1.

MBND′ =





































































































1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 00 0 0 0
0 0 0 0 0 0 1 1 0 00 0 0 0
0 0 0 0 0 0 0 0 1 1 00 0 0
0 0 0 0 0 0 0 0 1 1 00 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0





































































































,

where only the underlined elements are updated in MBND.
Then, according to Theorem 4.2, we have Q

′

1 = (2, 2, 2, 1, 1, 1, 2,2,0,0, 0, 1)T, Q
′

2 = (3, 3, 3, 3, 3, 3, 2,2,2,2,1, 1)T

and Q
′

3 = ( 2
3 ,

2
3 ,

2
3 ,

1
3 ,

1
3 ,

1
3 , 1, 1, 0, 0, 0, 1)T. Finally, the positive and negative regions can be updated by Theo-

rem 4.3 as follows: POS(β,λ)
At+1 (X) = {x13}

⋃

{x1, x2, x3, x7, x8, x12} = {x1, x2, x3, x7, x8, x12, x13} and NEG(β,λ)
At+1 (X) =

{x14}
⋃

{x4, x5, x6, x9, x10, x11} = {x4, x5, x6, x9, x10, x11, x14}. Hence, the lower approximation RAt+1
(β,λ)(X) = POS(β,λ)

At+1 (X)

and the upper approximationRAt+1
(β,λ)

(X) = U − NEG(β,λ)
At+1 (X) = {x1, x2, x3, x7, x8, x12, x13}.

Obviously, the computing overhead of incremental updatingapproximations can be efficiently reduced by locally
updating boundary relation matrix and utilizing the accumulated positive and negative regions information, not rather
updating the whole relation matrix and computing the approximations from scratch.

4.2. Dynamic updating approximations with the deletion of attributes
In this section, we introduce the approach for dynamic update of approximations in a PSvIS with the deletion of

attributes. Analogously, letSt
= (U,AT = At ⋃ D,V = VA

⋃

VD, f , σ,P) be a PSvIS at timet, whereAt
= A

⋃

∆A.
At time t + 1, the attribute set∆A is deleted from the condition attribute setAt, i.e., the PSvISSt is updated as
St+1
= (U,ATt+1

= At+1 ⋃

D,Vt+1
= Vt+1

A

⋃

VD, f t+1, σt+1,Pt+1), whereAt+1
= A.

Theorem 4.4. Let MR = (mR
i j ), MR′ = (mR

′

i j ) denote the region relation matrix at time t and t+ 1, respectively. When

the attribute set∆A is deleted from At, the region relation matrix MR′ = (mR
′

i j ) is updated as follows, where “R”
indicates “POS” or “NEG”, respectively.

(1) If mR
i j = 1, then mR

′

i j = mR
i j ;

(2) If mR
i j = 0 and xi < [x j ]BDλA

then mR
′

i j = mR
i j ;

(3) If mR
i j = 0 and xi ∈ [x j ]BDλA

then mR
′

i j = 1.

Proof. Observe that [x j ]BDλ
At
⊆ [x j]BDλ

At+1
when At+1 ⊆ At. Then if xi ∈ [x j ]BDλ

At
, namely,mR

i j = 1, we havexi ∈

[x j]BDλ
At+1

, that is,mR
′

i j = mR
i j = 1. If xi < [x j ]BDλ

At
, viz., mR

i j = 0, it is clear that there are two scenarios after deleting∆A

from At, if xi < [x j ]BDλA
, we havemR

′

i j = mR
i j = 0; otherwise,mR

′

i j = 1.
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It can be seen from Theorem 4.4 that we only update the elements of positive and negative relation matrices
according to the case 3, which can enhance the performance ofupdating procedures.

Considering that the positive and negative regions of Pawlak rough sets will decrease, but the boundary region will
increase when removing the attribute set∆A from At, we setPOSAt (BND) , {xi |P(X|[xi]BDλ

At+1
) ≥ β, xi ∈ BNDAt (X)}

andNEGAt (BND) , {xi |P(X|[xi]BDλ
At+1

) ≤ 1 − β, xi ∈ BNDAt (X)} for saving part of boundary region information.

∀X ⊆ U, let Q1POS = MPOS×G(X), Q2POS = MPOS× I , Q3POS = Q1POS/.Q2POS, Q1NEG = MNEG×G(X), Q2NEG = MNEG× I
andQ3NEG = Q1NEG/.Q2NEG. Then, the intermediate vectors are updated as follows.

Theorem 4.5. Suppose Q
′

1POS
, MPOS′ ×G(X), Q

′

2POS
, MPOS′ × I, Q

′

1NEG
, MNEG′ ×G(X) and Q

′

2NEG
, MNEG′ × I

when the attribute set∆A is removed from At at time t+ 1. Then we have

(1) Q
′

1POS
(i) = Q1POS(i) +

n
∑

j=1

(

1−mPOS
i j

)

mPOS
′

i j G ( j) and Q
′

2POS
(i) = Q2POS(i) +

n
∑

j=1

(

1−mPOS
i j

)

mPOS
′

i j ;

(2) Q
′

1NEG
(i) = Q1NEG(i) +

n
∑

j=1

(

1−mNEG
i j

)

mNEG
′

i j G ( j) and Q
′

2NEG
(i) = Q2NEG(i) +

n
∑

j=1

(

1−mNEG
i j

)

mNEG
′

i j .

Proof. This proof is similar to Theorem 4.2.

Theorem 4.6. Let Q
′

3POS
= Q

′

1POS
/.Q

′

2POS
, lPOS
β
= lβ(Q

′

3POS
), Q

′

3NEG
= Q

′

1NEG
/.Q

′

2NEG
and lNEG

β
= lβ(Q

′

3NEG
). Then, the

positive region POS(β,λ)
At+1 (X) and the negative region NEG(β,λ)

At+1 (X) at time t+ 1 are updated as follows.

(1) POS(β,λ)
At+1 (X) = POSAt (BND)

⋃

{xi |lPOS
β

(i) = 1}
⋃

{xi |lNEG
β

(i) = 1};

(2) NEG(β,λ)
At+1 (X) = NEGAt (BND)

⋃

{xi |lNEG
β

(i) = −1}
⋃

{xi |lPOS
β

(i) = −1}.

Proof. Notice thatPOS(β,λ)
At+1 (X) = POSAt+1(X)

⋃

{xi |P(X|[xi]BDλ
At+1

) ≥ β, xi ∈ BNDAt+1(X)}. After removing∆A

from At, the positive regionPOSAt+1(X) will decrease and the boundary regionBNDAt+1(X) will increase. Thus
POSAt+1(X) = {xi |[xi ]BDλ

At+1
⊆ X, xi ∈ POSAt (X)} andBNDAt+1(X) = BNDAt(X)

⋃

{xi |[xi ]BDλ
At+1

⋂

X , ∅ and [xi ]BDλ
At+1

*

X, xi ∈ POSAt (X)}
⋃

{xi |[xi]BDλ
At+1

⋂

X , ∅ and [xi ]BDλ
At+1

* X, xi ∈ NEGAt (X)}. Then we havePOS(β,λ)
At+1 (X) =

{xi |[xi ]BDλ
At+1
⊆ X, xi ∈ POSAt (X)}

⋃

{xi |P(X|[xi]BDλ
At+1

) ≥ β, xi ∈ BNDAt(X)}
⋃

{xi |P(X|[xi]BDλ
At+1

) ≥ β, xi ∈ POSAt (X)}
⋃

{xi |P(X|[xi]BDλ
At+1

) ≥ β, xi ∈ NEGAt (X)}. Since{xi |[xi]BDλ
At+1
⊆ X, xi ∈ POSAt (X)} ⊆ {xi |P(X|[xi]BDλ

At+1
) ≥ β, xi ∈

POSAt (X)}, thusPOS(β,λ)
At+1 (X) = {xi |P(X|[xi]BDλ

At+1
) ≥ β, xi ∈ BNDAt (X)}

⋃

{xi |P(X|[xi]BDλ
At+1

) ≥ β, xi ∈ POSAt (X)}
⋃

{xi |

P(X|[xi]BDλ
At+1

) ≥ β, xi ∈ NEGAt (X)}. Finally, according to Definition 4.1 and Theorem 3.1, we have POS(β,λ)
At+1 (X) =

POSAt (BND)
⋃

{xi |lPOS
β

(i) = 1}
⋃

{xi |lNEG
β

(i) = 1}. The proof of second case is similar.

Example 4.3. (Continuation of Example 2.1) Let∆A = {a3} is deleted from At = {a1, a2, a3}, i.e., At+1
= {a1, a2} at

time t+ 1. Setβ = 0.6 andλ = 0.55. Then we have POSAt (X) = {x7, x8, x12, x13}, NEGAt (X) = {x9, x10, x11, x14} and
BNDAt(X) = {x1, x2, x3, x4, x5, x6}. Firstly, we compute POSAt (BND) = ∅ and NEGAt (BND) = ∅. Then MPOS′ and
MNEG′ can be obtained as follows according to Theorem 4.4.

MPOS =



























0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0



























MPOS′ =



























0 0 0 0 0 0 1 1 0 01 0 0 0
0 0 0 0 0 0 1 1 0 01 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0



























MNEG =



























0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1



























MNEG′ =



























0 0 0 0 0 0 0 0 1 1 01 0 0
0 0 0 0 0 0 0 0 1 1 01 0 0
0 0 0 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1



























where only the underlined elements are updated in MPOS and MNEG.
Based on Definition 3.3, we can compute lPOS

β
= (1, 1,−1, 1)T and lNEG

β
= (−1,−1, 1,−1)T. Finally, we have

POS(β,λ)
At+1 (X) = {x7, x8, x11, x13} and NEG(β,λ)

At+1 (X) = {x9, x10, x12, x14} according to Theorem 4.6. Furthermore, the
lower and upper approximations can be obtained by Equation (3).

10



It is evident that the incremental strategies for computingapproximations can reduce the computational cost by
partly updating the region relation matrices rather than updating the whole relation matrice when attributes are
removed.

5. Dynamic algorithms for updating approximations in PSvISunder the variation of attributes

In this section, according to dynamic updating mechanisms for maintenance of approximations in PSvIS, we
develop dynamic algorithms based on matrix for computing approximations.

5.1. The naive algorithm for updating approximations in PSvIS

Algorithm 1: Matrix-based static algorithm for updating approximations in PSvIS (MSAUA)
Input :

1. A PSvISS = (U, AT = C
⋃

D,V = VC
⋃

VD, f , σ, P);
2. The parametersλ andβ;
3. An attribute setAt+1 ⊆ C.

Output : The lower and upper approximations of each decision class in PSvIS.
1 begin
2 for 1 ≤ i ≤ n do // Compute the λ-tolerance relation matrix MBDλ

At+1 by Definition 3.1;
3 for 1 ≤ j ≤ n do
4 if xi ∈ [x]BDλ

At+1
then

5 mi j = 1;
6 else
7 mi j = 0;
8 end
9 end

10 end
11 Construct the characteristic vectorG(dk) for each decision classdk.
12 for 1 ≤ i ≤ n do // Compute the intermediate vectors Q1, Q2, Q3 and lβ(Q3);

13 Q1 (i) =
n
∑

j=1
mi jG ( j);

14 Q2 (i) =
n
∑

j=1
mi j ;

15 Q3 (i) = Q1(i)
Q2(i) ;

16 lβ(i) = lβ(Q3(i));
17 end
18 SetPOS(β,λ)

At+1 (dk) = ∅ andNEG(β,λ)
At+1 (dk) = ∅;

19 for 1 ≤ i ≤ n do // Compute the positive, negative and boundary regions according to Theorem 3.1;
20 if lβ(i) == 1 then
21 POS(β,λ)

At+1 (dk) = POS(β,λ)
At+1 (dk)

⋃

{xi};
22 end
23 if lβ(i) == −1 then
24 NEG(β,λ)

At+1 (dk) = NEG(β,λ)
At+1 (dk)

⋃

{xi};
25 end
26 end

27 return RAt+1
(β,λ)(dk) = POS(β,λ)

At+1 (dk),RAt+1
(β,λ)

(dk) = U − NEG(β,λ)
At+1 (dk).

28 end

Algorithm 1, which is abbreviated as MSAUA for convenience in this paper, is a naive (non-incremental) algorithm
based on matrix for computing approximations. To conveniently analyze the time complexity of MSAUA, let|U | = n

and |At+1| = m. Steps 2-14 are to construct theλ-tolerance relation matrixMBDλ
At+1 according to Definition 3.1

and Proposition 3.1, whose time complexity isO(n2m). Step 15 is to compute the character vector according to
Definition 3.2, whose time complexity isO(n). Steps 16-21 are to compute the intermediate vectorsQ1, Q2, Q3 and
lβ(Q3) according to Proposition 3.2 and Definition 3.3, whose timecomplexity isO(n2). Steps 23-30 are to compute
the positive and negative regions according to Theorem 3.1,whose time complexity isO(n). Hence, the total time
complexity isO(n2m+ n+ n2

+ n) = O(n2m+ n).
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Algorithm 2: Matrix-based dynamic algorithm for updating approximations in PSvIS when adding an attribute
set (MDAUAA)

Input :
1. A PSvISS = (U, AT = At ⋃ D,V = VAt

⋃

VD, f , σ, P);
2. The parametersλ andβ;
3. The new added attribute set∆A and∆A

⋂

At
= ∅;

4. The characteristic vectorG(dk) of each decision classdk;
5. The positive, negative and boundary regions of Pawlak’s rough set:POSAt (dk), NEGAt (dk) andBNDAt(dk);
6. Initial results: the boundary region relation matrixMBND = (mBND

i j ) with respect toAt at timet, Q1 = MBND ×G(dk), Q2 = MBND × I ,
Q3 = Q1/.Q2 andlβ = lβ(Q3).

Output : The lower and upper approximations of each decision class in PSvIS.
1 begin
2 for 1 ≤ i ≤ |BNDAt(dk)| do // Updating the boundary relation matrix MBND = (mBND

i j );
3 for 1 ≤ j ≤ n do
4 if mBND

i j == 0 then // Computing the boundary relation matrix MBND = (mBND
i j ) by Theorem 4.1;

5 mBND
i j = 0 are constant;

6 else
7 if xi ∈ [x]BDλ

∆A
then

8 mBND
i j = 1 are constant;

9 else
10 mBND

i j = 0;
11 Q1(i) = Q1(i) −G( j); // Dynamic updating Q1, Q2, Q3 and lβ(Q3) according to Theorem 4.2;
12 Q2(i) = Q2(i) − 1;
13 Q3(i) = Q1(i)/Q2(i);
14 lβ(i) = lβ(Q3(i));
15 end
16 end
17 end
18 end
19 SetPOS(β,λ)

At+1 (dk) = POSAt (dk) andNEG(β,λ)
At+1 (dk) = NEGAt (dk);

20 for 1 ≤ i ≤ |BNDAt(dk)| do // Updating the positive and negative regions according to Theorem 4.3;
21 if lβ(i) == 1 then
22 POS(β,λ)

At+1 (dk) = POS(β,λ)
At+1 (dk)

⋃

{xi};
23 end
24 if lβ(i) == −1 then
25 NEG(β,λ)

At+1 (dk) = NEG(β,λ)
At+1 (dk)

⋃

{xi};
26 end
27 end

28 return RAt+1
(β,λ)(dk) = POS(β,λ)

At+1 (dk),RAt+1
(β,λ)

(dk) = U − NEG(β,λ)
At+1 (dk).

29 end

5.2. The dynamic algorithm for updating approximations in PSvIS when adding an attribute set

Algorithm 2, which is abbreviated as MDAUAA, is a dynamic algorithm based on matrix for computing ap-
proximations under the addition of attributes. Steps 2-18 are to update the boundary relation matrix according to
Theorem 4.1, whose time complexity isO(IBND1|∆A|), whereIBND1 is the numbers of “1” in the boundary relation ma-
trix MBND andIBND1 ≤ |BNDAt(dk)| ·n ≤ n2, where|BNDAt(dk)| denotes the numbers of boundary regionBNDAt (dk) at
time t. Steps 20-27 are to update the positive and negative regionsaccording to Theorem 4.3, whose time complexity
is O(|BNDAt(dk)|). Thus the total time complexity isO(IBND1|∆A| + |BNDAt(dk)|). Obviously, the time complexity of
algorithm MDAUAA is better than that of the static algorithmMSAUA.

5.3. The dynamic algorithm for updating approximations in PSvIS when deleting an attribute set

Algorithm 3, which is abbreviated as MDAUAD, is a dynamic algorithm based on matrix for computing approxi-
mations under the deletion of attributes. Steps 3-10 are to computePOSAt (BND) andNEGAt (BND) according to Def-
inition 2.5, whose time complexity isO(|BNDAt(dk)|n(m−|∆A|)). Steps 12-28 are to update the positive relation matrix
MPOS = (mPOS

i j ) according to Theorem 4.4, whose time complexity isO(IPOS0(m− |∆A|)), whereIPOS0 is the numbers
of “0” in the positive relation matrixMPOS and IPOS0 ≤ |POSAt(dk)| · n, where|POSAt (dk)| denotes the numbers of
positive regionPOSAt (dk) at timet. Steps 29-45 are to update the negative relation matrixMNEG = (mNEG

i j ) according
to Theorem 4.4, whose time complexity isO(INEG0(m− |∆A|)), whereINEG0 is the numbers of “0” in the negative rela-
tion matrixMNEG andINEG0 ≤ |NEGAt (dk)| · n, where|NEGAt (dk)| denotes the numbers of negative regionNEGAt (dk)
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Algorithm 3: Matrix-based dynamic algorithm for updating approximations in PSvIS when deleting an attribute
set (MDAUAD)

Input :
1. A PSvISS = (U, AT = At ⋃ D,V = VAt

⋃

VD, f , σ, P);
2. The parametersλ andβ;
3. The attribute set∆A is removed fromAt and letAt+1

= At − ∆A ;
4. The characteristic vectorG(dk) of each decision classdk;
5. The positive, negative and boundary regions of Pawlak’s rough set:POSAt (dk), NEGAt (dk) andBNDAt(dk);
6. Initial results: the positive region relation matrixMPOS = (mPOS

i j ) and the negative region relation matrixMNEG = (mNEG
i j ) with respect toAt at

time t, Q1POS = MPOS×G(dk), Q2POS = MPOS × I , Q3POS = Q1POS/.Q2POS, lPOS
β
= lβ(Q3POS), Q1NEG = MNEG ×G(dk), Q2NEG = MNEG × I ,

Q3NEG = Q1NEG/.Q2NEG andlNEG
β
= lβ(Q3NEG).

Output : The lower and upper approximations of each decision class in PSvIS.
1 begin
2 Let POSAt (BND) = ∅ andNEGAt (BND) = ∅;
3 for 1 ≤ i ≤ |BNDAt(dk)| do // Computing POSAt (BND) and NEGAt (BND) according to Definition 2.5;
4 if P(dk|[xi ]BDλ

At+1
) ≥ β then

5 POSAt (BND) = POSAt (BND)
⋃

{xi};
6 end
7 if P(dk|[xi ]BDλ

At+1
) ≤ 1− β then

8 NEGAt (BND) = NEGAt (BND)
⋃

{xi };
9 end

10 end
11 SetPOS(β,λ)

At+1 (dk) = POSAt (BND) andNEG(β,λ)
At+1 (dk) = NEGAt (BND);

12 for 1 ≤ i ≤ |POSAt (dk)| do // Updating the positive relation matrix MPOS = (mPOS
i j ) according to Theorem 4.4;

13 for 1 ≤ j ≤ n do
14 if mPOS

i j == 1 then
15 mPOS

i j = 1 are constant;
16 else
17 if xi < [x]BDλ

At+1
then

18 mPOS
i j = 0 are constant;

19 else
20 mPOS

i j = 1; // Updating Q1POS, Q2POS, Q3POS and lPOS
β

according to Theorem 4.5;
21 Q1POS(i) = Q1POS(i) +G( j);
22 Q2POS(i) = Q2POS(i) + 1;
23 Q3POS(i) = Q1POS(i)/Q2POS(i);
24 lPOS

β
(i) = lβ(Q3POS(i));

25 end
26 end
27 end
28 end
29 for 1 ≤ i ≤ |NEGAt (dk)| do // Updating the negative relation matrix MNEG = (mNEG

i j ) according to Theorem 4.4 ;
30 for 1 ≤ j ≤ n do
31 if mNEG

i j == 1 then
32 mNEG

i j = 1 are constant;
33 else
34 if xi < [x]BDλ

At+1
then

35 mNEG
i j = 0 are constant;

36 else
37 mNEG

i j = 1; // Updating Q1NEG, Q2NEG, Q3NEG and lNEG
β

according to Theorem 4.5;
38 Q1NEG(i) = Q1NEG(i) +G( j);
39 Q2NEG(i) = Q2NEG(i) + 1;
40 Q3NEG(i) = Q1NEG(i)/Q2NEG(i);
41 lNEG

β
(i) = lβ(Q3NEG(i));

42 end
43 end
44 end
45 end
46 for 1 ≤ i ≤ max(|POSAt (dk)|, |NEGAt (dk)| do // Updating positive and negative regions according to Theorem 4.6;
47 if lPOS

β
(i) == 1 or lNEG

β
(i) == 1 then

48 POS(β,λ)
At+1 (dk) = POS(β,λ)

At+1 (dk)
⋃

{xi};
49 end
50 if lPOS

β
(i) == −1 or lNEG

β
(i) == −1 then

51 NEG(β,λ)
At+1 (dk) = NEG(β,λ)

At+1 (dk)
⋃

{xi};
52 end
53 end

54 return RAt+1
(β,λ)(dk) = POS(β,λ)

At+1 (dk),RAt+1
(β,λ)

(dk) = U − NEG(β,λ)
At+1 (dk).

55 end
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at timet. Steps 46-53 are to update positive and negative regions according to Theorem 4.6, whose time complexity
is O(max(|POSAt(dk)|, |NEGAt(dk)|)), wheremax(, ) denotes the maximum operation. Thus the total time complexity
is O((|BNDAt(dk)|n+ IPOS0 + INEG0)(m− |∆A|) +max(|POSAt (dk)|, |NEGAt(dk)|)). SinceIPOS0 ≤ |POSAt (dk)| · n and
INEG0 ≤ |NEGAt (dk)| · n, it follows (|BNDAt(dk)|n+ IPOS0 + INEG0)(m− |∆A|) ≤ n2(m− |∆A|) ≤ n2m. Hence, the time
complexity of algorithm MDAUAD is better than that of the static algorithm MSAUA.

6. Experimental evaluations

Since the proposed method aims at the case that the attributevalues are set-valued with probability distribution,
there are not available in any public data repositories. In addition, the purpose of our study is to demonstrate the
performance of dynamical algorithms for addressing the probability set-valued data, not rather for analyzing the data
for one particular application. Hence, four data sets with missing values from the UCI Repository of Machine Learning
are generated as the probability set-valued. More specially, the missing values are filled with the set of all possible
values of each attribute, and the corresponding probability distributions are constructed by the frequencies of each
single attribute value under each attribute. In addition, the probability distribution of each single value is one-point
distribution, i.e., the accordant probability is one. Moreover, two artificial data sets are generated for validating the
performance of dynamic algorithms. A detail description ofsix data sets can be founded in Table 2.

Table 2: A detail description of data sets

Data sets Abbreviation Samples Attributes Classes Source

1 Audiology (Standardized) Audiology 226 69 24 UCI

2 Dermatology Dermatology 336 34 6 UCI

3 Congressional voting records CVR 435 16 2 UCI

4 Mushroom Mushroom 8124 22 2 UCI

5 Artificial data 1 AD1 1000 100 4 Data generator

6 Artificial data 2 AD2 10000 2000 10 Data generator

All concerned experiments are performed with Matlab 2012a on a personal computer with Intel Core i5-4200U
CPU 1.60GHZ, 4.0 GB of memory.

To show the time efficiency of dynamical algorithms, each of data sets is dividedinto ten parts of equal size.
Moreover, the first part is regarded as the 1st test set, the combination of the first and second parts is considered as the
2nd test set, the combination of the 2nd test set and the thirdpart is viewed as the 3rd test set, ..., the whole data set is
regarded as the 10th data set. In what follows, these test sets are employed to compare the running time between the
dynamic algorithm and the static algorithm, and the Zhang’sdynamic method [45] under the variation of attributes.

6.1. The performance comparison between static and dynamicalgorithms under the variation of attributes

In this subsection, the computational times of static and dynamic algorithms are compared on six data sets shown
in Table 2 under the variation of attributes. In the following, two experimental results are shown by the addition of
attributes and the deletion of attributes, respectively. In addition, we set the parametersλ = 1.5 andβ = 0.6 in the
experiments.

6.1.1. A comparison of MSAUA and MDAUAA under the addition ofan attribute set
In this subsection, we compare Algorithm MSAUA with Algorithm MDAUAA when adding an attribute set. We

take out the original and appended attribute sets from each data set, which are shown in Table 3.
The experimental results are depicted in Fig. 1, where thex-coordinate pertains to the test sets, while y-coordinate

concerns the computing time of updating approximations. Asshown in Fig. 1, the running times of MSAUA and
MDAUAA grow up with the increase of the size of data. In addition, Algorithm MDAUAA is much faster than
Algorithm MSAUA, and the difference between them are becoming larger while the size of data increases.
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Table 3: A description of adding attribute set

Data sets Attributes Original attribute set Adding attribute set

1 Audiology 69 {a1, a2, · · · ,a48} {a49,a50, · · · ,a69}

2 Dermatology 34 {a1, a2, · · · ,a24} {a25,a26, · · · ,a34}

3 CVR 16 {a1, a2, · · · ,a11} {a12,a13, · · · ,a16}

4 Mushroom 22 {a1, a2, · · · ,a14} {a15,a16, · · · ,a22}

5 AD1 100 {a1, a2, · · · ,a70} {a71,a72, · · · ,a100}

6 AD2 2000 {a1, a2, · · · ,a1200} {a1201,a1202, · · · ,a2000}
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Figure 1: A comparison of computational times between MSAUAand MDAUAA versus the different test sets when
adding an attribute set.
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6.1.2. A comparison of MSAUA and MDAUAD with the deletion of an attribute set
In this subsection, we compare Algorithm MSAUA with Algorithm MDAUAD when deleting an attribute set. We

take out the original and removed attribute sets, which are shown in Table 4.

Table 4: A description of deleting attribute set

Data sets Attributes Original attribute set Deleting attribute set

1 Audiology 69 {a1, a2, · · · ,a69} {a49,a50, · · · ,a69}

2 Dermatology 34 {a1, a2, · · · ,a34} {a25,a26, · · · ,a34}

3 CVR 16 {a1, a2, · · · ,a16} {a12,a13, · · · ,a16}

4 Mushroom 22 {a1, a2, · · · ,a22} {a15,a16, · · · ,a22}

5 AD1 100 {a1, a2, · · · ,a100} {a71,a72, · · · ,a100}

6 AD2 2000 {a1, a2, · · · ,a2000} {a1201,a1202, · · · ,a2000}

The experimental results are depicted in Fig .2, where thex-coordinate pertains to the test sets, while y-coordinate
concerns the computing time of updating approximations. Asshown in Fig. 2, the running times of MSAUA and
MDAUAD grow up with the increasing size of data. Furthermore, Algorithm MDAUAD is much faster than Algorithm
MSAUA, and the difference between them are getting larger while the size of dataincreases.
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Figure 2: A comparison of computational times between MSAUAand MDAUAD versus the different test sets when
deleting an attribute set.

6.2. Comparative experiments on the variation of attributes

In this experiment, to demonstrate the performance of our proposed incremental method, a series of comparative
experiments are carried out on six data sets under the variation of attributes. However, none of the existing approach
for attribute generalization is developed to process the PSvIS. Zhang et al. presented an incremental method for
dealing with the SvIS with the variation of attributes [45].In order to compare with Zhang’s method, the tolerance
relation is modified as theλ-tolerance relation in Zhang’s method for applications with probabilistic set-valued data.
The dynamical algorithms in Zhang’s method are abbreviatedas ZDAUAA and ZDAUAD under the addition of
attributes and the deletion of attributes, respectively.
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6.2.1. Comparison between ZDAUAA and MDAUAA when adding an attribute set
In this subsection, we compare Algorithm ZDAUAA and Algorithm MDAUAA while adding an attribute set. The

information of the adding attribute sets and test sets is thesame to Subsection 6.1.1 and we set the parametersλ = 1.5
andβ = 0.6 in this experiment. The experimental results are shown in Table 5 and Fig. 3. Table 5 shows the speed-up
ratios of experiments on six data sets with different test sets. From Table 5, it is obviously that AlgorithmMDAUAA
is more effective than Algorithm ZDAUAA while adding an attribute set.In addition, the average speed-up ratio
dramatically fluctuates from 1.435 to 221532.820. In what follows, we will demonstrate that the computational time of
Algorithm MDAUAA under the variation of parameterλ. Fig. 3 shows the running time of ZDAUAA and MDAUAA
with different test sets. Clearly, the proposed incremental algorithm MDAUAA is better than ZDAUAA. Furthermore,
the time complexity of Algorithm ZDAUAA isO(IM1|∆A| + n), whereIM1 is the numbers of “1” in the whole relation
matrix MBDλ

At . Evidently, the time complexity of Algorithm MDAUAA, namely, O(IBND1|∆A|+ |BNDAt(dk)|), is better
than that of Algorithm ZDAUAA.

Table 5: The incremental speed-up ratio between ZDAUAA and MDAUAA versus each test set

Data Set

Test Set Audiology Dermatology CVR Mushroom AD1 AD2

1 53.795 1.435 88.828 12884.864 1.988 2.043

2 90.906 2.917 144.446 39648.841 1.678 1.389

3 1.353 6.258 314.105 81462.002 1.845 1.306

4 2.230 12.073 529.562 133148.153 1.713 1.323

5 3.353 22.393 788.651 184619.555 1.646 1.384

6 4.707 26.862 1266.313 246917.482 1.645 1.427

7 8.326 32.913 1711.497 251633.841 1.601 1.429

8 11.085 32.748 1808.002 341957.712 1.701 1.339

9 12.149 50.092 2638.146 421947.496 1.530 1.388

10 15.764 50.846 2814.184 501108.253 1.585 1.324

average 20.367 23.854 1210.303 221532.820 1.693 1.435

6.2.2. Comparison between ZDAUAD and MDAUAD when deleting an attribute set
In this subsection, we compare Algorithm ZDAUAD and Algorithm MDAUAD while removing an attribute set.

The information of the deleting attribute sets and test setsis the same to Subsection 6.1.2 and set the parameters
λ = 1.5 andβ = 0.6. Table 6 indicates the speed-up ratios of experiments on six data sets with different test sets.
Fig. 4 shows the computing time of ZDAUAD and MDAUAD with different test sets. From the Table 6 and Fig. 4, it
demonstrates Algorithm MDAUAD is a little better than Algorithm ZDAUAD. Furthermore, the time complexity of
ZDAUAD is O(nIM0(m− |∆A|) + n), whereIM0 is the numbers of “0” in the whole relation matrixMBDλ

At . According
to IM0 = IPOS0 + INEG0 + IBND0 andIBND0 ≥ |BNDAt(dk)|, then we havenIM0(m− |∆A|)+ n ≥ (|BNDAt(dk)|n+ IPOS0 +

INEG0)(m− |∆A|), i.e., the time complexity of Algorithm MDAUAD is better than that of Algorithm ZDAUAD.

6.3. The performance comparisons on different ratios of attributes

In this section, in order to evaluate the performance of the proposed dynamical algorithms when updating (adding
or deleting) different ratios of attributes, we conduct a series of compared experiments between the static, dynamic and
Zhang’s algorithms for computing approximations. The parameters of these Algorithms are setλ = 1.5 andβ = 0.6.

When adding different ratios of attributes, we take out 50% attributes of different data sets as the basic attribute
set, and gradually add 10% attributes from the rest of attributes. The comparative results are shown in Fig. 5. In
Fig. 5, thex-coordinate pertains to the ratios of added attributes and apoint in they-coordinate is the logarithm value
of the running times of Algorithm MSAUA, MDAUAA and ZDAUAA. It is shown that the computational time of
Algorithm MDAUAA is lower than those of Algorithms MSAUA andZDAUAA while inserting different updating
ratios of attributes.
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Figure 3: Running times of Algorithm ZDAUAA and Algorithm MDAUAA versus the different test sets when adding
an attribute set.

Table 6: The incremental speed-up ratio between ZDAUAD and MDAUAD versus each test set

Data Set

Test Set Audiology Dermatology CVR Mushroom AD1 AD2

1 1.548 1.182 1.024 1.266 1.198 1.122

2 1.010 1.001 1.262 1.222 1.161 1.065

3 1.492 1.330 1.001 1.278 1.064 1.076

4 1.493 1.201 1.394 1.254 1.117 1.100

5 1.031 1.124 1.375 1.301 1.156 1.105

6 1.011 1.157 1.100 1.290 1.152 1.175

7 1.148 1.130 1.156 1.280 1.117 1.109

8 1.189 1.169 1.205 1.305 1.110 1.004

9 1.269 1.093 1.052 1.307 1.099 1.102

10 1.291 1.154 1.139 1.329 1.123 1.056

average 1.248 1.154 1.171 1.283 1.130 1.091
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Figure 4: Running times of Algorithm ZDAUAD and Algorithm MDAUAD versus the different test sets when deleting
an attribute set.
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When deleting different ratios of attributes, we gradually remove 10% attributes from the original attribute set.
Fig. 6 shows the comparative results. In Fig. 6, thex-coordinate pertains to the ratios of removed attributes and a point
in they-coordinate is the logarithm value of the running times of Algorithm MSAUA, MDAUAD and ZDAUAD. It is
shown that the computational time of Algorithm MDAUAD is better than Algorithms MSAUA and ZDAUAD while
deleting different updating ratios of attributes.
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Figure 6: Running times of Algorithms MSAUA, ZDAUAD and MDAUAD when deleting different ratios of attributes.

6.4. Experiments on the parametersλ andβ

The lower and upper approximations of extended VPRS model are affected by the parametersλ andβ. In this sub-
section, to verify whether the performance of proposed dynamical algorithms are influenced by these two parameters,
we carry out experiments to evaluate the efficiency of Algorithm MDAUAA and Algorithm MDAUAD with different
λ andβ. While adding attributes, 50% of original attributes are token out as the basic attribute set, the rest attributes
are appended. While deleting attributes, 30% of attributesare removed from original attribute set.

The parameterλ is increased by 5 times from 0.03 to 58593.75. Fig. 7 shows the experimental results on six data
sets with respect to Algorithm MDAUAA when adding attributes. In Fig. 7, thex-coordinate pertains to the parameter
λ and they-coordinate pertains to the logarithm value of the running time of Algorithm MDAUAA. Obviously, the
running times of Algorithm MDAUAA in data sets Audiology, Dermatology, CVR and Mushroom fluctuate a little
with differentλ. However, the running times in data sets AD1 and AD2 raise gradually fromλ = 0.03 toλ = 18.75,
and then achieve a steady fluctuation. According to the complexity of Algorithm MDAUAA in Subsection 5.2, the
computational time of Algorithm MDAUAA is mainly affected by the numbers ofIBND1 and|BNDAt (dk)|, which are
controlled by the parameterλ. Clearly, the numbers ofIBND1 and|BNDAt (dk)| increase with the growingλ. In light
of Table 7, the numbers of boundary region in data sets Audiology, Dermatology, CVR and Mushroom do not change
with differentλ. However, in data sets AD1 and AD2, the numbers of boundary region increase fromλ = 0.03 to
λ = 18.75, and then remain unchanged after that. Hence, the change trend is consistent with the variation of the
numbers of boundary region in Fig. 7.

Fig. 8 shows the experimental results on six data sets with respect to Algorithm MDAUAD when deleting at-
tributes. In Fig. 8, thex-coordinate pertains to the parameterλ and they-coordinate pertains to the logarithm value of
the running time of Algorithm MDAUAD. According to the complexity of Algorithm MDAUAD in Subsection 5.3,
the computational time of Algorithm MDAUAD is mainly affected by the numbers ofIPOS0, INEG0 and|BNDAt(dk)|,
which are influenced by the parameterλ. In addition, the numbers of|BNDAt(dk)| increases with the growingλ. In
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Fig. 8, the running time of Algorithm MDAUAD in data sets Audiology, Dermatology, CVR and Mushroom fluctuate
a little with differentλ. It can be interpreted by Table 8, where the number of boundary region keeps invariant in these
data sets. In data sets AD1 and AD2, due to the numbers of boundary region increase gradually fromλ = 0.03 to
λ = 3.75 in Table 8, the running times fluctuate dramatically. Moreover, only a little fluctuation is observed when the
numbers of boundary region keep constant fromλ = 18.75 toλ = 58593.75.
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Figure 7: A comparison of Algorithm MDAUAA with differentλ.

Table 7: The number of boundary region with differentλ in Algorithm MDAUAA

Data Set

λ Audiology Dermatology CVR Mushroom AD1 AD2

0.03 9 0 106 8 0 0

0.15 9 0 106 8 5 14

0.75 9 0 106 8 39 191

3.75 9 0 106 8 1000 9986

18.75 9 0 106 8 1000 10000

93.75 9 0 106 8 1000 10000

468.75 9 0 106 8 1000 10000

2343.75 9 0 106 8 1000 10000

11718.75 9 0 106 8 1000 10000

58593.75 9 0 106 8 1000 10000

Let the parameterβ change from 0.6 to 1. Fig. 9 shows the variation tendency of the computational times of
Algorithm MDAUAA and MDAUAD. In Fig. 9, thex-coordinate pertains to the parameterβ and they-coordinate
pertains to the logarithm value of the running time of Algorithm MDAUAA in Fig. 9 (a) and Algorithm MDAUAD
in Fig. 9 (b), respectively. It is clear that the running times fluctuate a little with differentβ when adding or deleting
attributes, respectively. According to the complexity of Algorithms MDAUAA and MDAUAD in Subsections 5.2 and
5.3, they are almost the same with differentβ except for some random factors.
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Figure 8: A comparison of Algorithm MDAUAD with differentλ.

Table 8: The number of boundary region with differentλ in Algorithm MDAUAD

Data Set

λ Audiology Dermatology CVR Mushroom AD1 AD2

0.03 26 6 5 4 0 0

0.15 26 6 5 4 3 0

0.75 26 6 5 4 20 96

3.75 26 6 5 4 999 10000

18.75 26 6 5 4 1000 10000

93.75 26 6 5 4 1000 10000

468.75 26 6 5 4 1000 10000

2343.75 26 6 5 4 1000 10000

11718.75 26 6 5 4 1000 10000

58593.75 26 6 5 4 1000 10000
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7. Conclusions

Due to the set values with probability distributions in somereal applications, in this study, we introduced the
concept of PSvIS and presentedλ-tolerance relation based on Bhattacharyya distance for more reasonably character-
izing the relation of objects in PSvIS. In addition, an extended VPRS in terms ofλ-tolerance relation is presented for
knowledge discovery in PSvIS.

To address the computation of rough approximations in dynamic PSvIS with the variation of attributes, we firstly
presented a matrix-based method for computing approximations by utilizing theλ-tolerance relation matrix and matrix
operators. Then we presented the incremental mechanisms byusing the previous rough approximations results and
partly updating the region relation matrices, which can effectively improve the computational efficiency compared
with the static and Zhang’s approaches. Furthermore, we have designed two incremental algorithms MDAUAA
and MDAUAD for computing approximations with the addition and deletion of attributes in PSvIS, respectively.
Experimental results on four UCI data sets and two artificialdata sets have shown that the proposed incremental
algorithms can improve computational performance. In thispaper, we fixed the tolerance parameterλ for all attributes,
which may be unreasonable in some practical problems. Therefore, we will investigate how to determine the parameter
λmore realistically according to specific requirements in the future. Due to the difference of probability distributions
of each attribute in PSvIS, it will increase the uncertaintyduring decision making and classification, etc. Hence, these
uncertain problems will be further studied based on the the extended VPRS model.
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