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Abstract

Set-valued information systems are important type of datées in many real applications, where the attribute val-
ues are described by sets to characterize uncertain anchjilete information. However, in some real situations,
set-values may be depicted by probability distributionkicl results in that the traditional tolerance relationdehs
on intersection operation could not reasonably describéntthiscernibility relation of objects. To address thisiess

we introduce the concept of probabilistic set-valued infation systems (PSvIS), and present the extended variable
precision rough set model (VPRS) based onthelerance relation in terms of Bhattacharyya distancensiitering

the features of information systems will evolve over timaidynamic data environment, it will lead to the change of
information granulation and approximation structures. Atnix representation of rough approximation is presented
based on two matrix operators and two vector functions inl®Svhen incremental mechanisms by the utilization
of previously learned approximation results and regioatieh matrices for updating rough approximations are pro-
posed, and the corresponding algorithms are developedraigzad. Experimental results show that the proposed
algorithms outperform the static algorithms and relatedémental algorithms while inserting into or removing from
attributes in PSvIS.

Keywords: Set-valued information systems, Incremental learningidRcsets, Matrix operators.

1. Introduction

Rough set theory (RST), originated by Pawlak, has becomedfaatige mathematical tool for dealing with un-
certain or inconsistent information [1]. Since the equavale relation in RST is too restrictive to be employed in
practical applications, various extended rough set mdubded on dferent binary relations have been developed in
recent two decades [2, 3, 4, 5, 6, 7]. Nowadays, RST has begglywéapplied in machine learning, data mining,
pattern recognition and knowledge discovery [8, 9, 10, 2], 1

Set-valued information systems (SvIS) are important gaized models of single-valued information systems, in
which sets are used to characterize the imprecise and misgiormation. Orlowska et al. studied SvIS based on
non-deterministic information and introduced the conea#pton-deterministic information system [13]. Yao et al.
explicitly introduced SvIS and presented some set-basedatipns for set-valued data [14]. Guan et al. presented
three diferent relative reducts via the maximal tolerance relatid®JlS [15]. Dai et al. constructed a fuzzy rough set
model for set-valued data and presented correspondingoehétin attribute reduction [16]. Wei et al. presented two
different fuzzy rough set models based on the fuzzy similardgschnd the fuzzy similar degree, respectively [17].
Considering the queuing problems in the presence of meltipteria, Qian et al. presented two set-valued ordered
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information systems in terms of disjunctive and conjuretigmantics and constructed two extended dominance-based
rough set models [18]. Zhang et al. combined quantitativghosets and dominance-based rough sets for dealing
with feature selection and approximate reasoning in laae set-valued decision systems [19]. Although SvIS have
been investigated extensively, no previous study has figedbi focused on that set values of SvIS are described by
probability distributions. There are many research worknerval-valued data with continuous distribution, which
could not be directly applied in the set-valued data withoaitlity distribution due to its distribution is discret2(

21, 22]. Set-valued data with discrete distribution exighiany real world situations. For example, in a language-tes
information system, a set valy@&ermanPolish under the test attribute of spoken language indicates ttatdidate

can speak German and Polish in terms of conjunctive sem@i®jc However, in reality, the candidate may speak
German fluently, but a little Polish. In order to describe thiienomenon more accurately, we distinguish the ability
of spoken language by characterizing the set value withaetis probability distribution, such W. The
information systems with such probability distributiondsta are suggested as Probabilistic Set-valued Informatio
Systems (PSvIS) in our study. Moreover, the traditionatr@hce relation based on intersection operation in SvIS
could not be applied directly in PSvIS. For instance, twodidates with set valuef*STefasht and (Cermasore!
under the attribute “speaking a language” are indiscegréigicording to the tolerance relation. However, it is not
reasonable in terms of the probability distributions,, iteco people where one speaks well in German and only a
little Polish and the other is reverse are in the same toteratass. Furthermore, considering that the classical
rough set model is sensitive to misclassified and noisy daalko presented a robust model, e.g., variable precision
rough set model (VPRS), which allows some degree of pad@asistfication by introducing the majority inclusion
degree [23]. VPRS has been widely applied in various fieldsh @s water demand prediction [23], economic and
financial prediction [24, 25], medical decision making [28, 28], and so on. Motivated by these considerations, this
paper presents thetolerance relation based on Bhattacharyya distance aneitiended VPRS approach for PSvIS.

Another important issue inspiring this work is that the daifacontinuously update due to the new data are added
and the outdated data are discarded in a dynamic informsyistem. This paper focus on the variation of attributes,
which is a common case in a dynamic data environment. For pbeapatient symptoms in clinical trials [29], tex-
ture features in image processing [30], geographic atgibin environmental monitoring [31]. For the emergence
of a novel attribute set or the disappearance of an outddtiéolide set in an information system, the static learning
approach needs to retrain the whole model on the entire egdtdta, which is time-consuming or even infeasible
for real-time decision making. To improve the computati@tficiency with the variations of attributes, incremental
learning incorporating with RST has been explored by uiizhe accumulated knowledge for analyzing the newly
updated data [32, 33, 34]. Li et al. presented incrementaegies for computing approximations with respect to
the characteristic relation in the incomplete informasgystems [35]. Luo et al. developed matrix-based increnhenta
approach for updating approximations in set-valued odier®ormation systems [36]. Yang et al. proposed incre-
mental algorithms for maintaining multigranulation rowsproximations under dynamic granulation [37]. Wang et
al. investigated incremental mechanisms based on thfiszatit information entropies for attribution reduction][38
Shu et al. introduced incremental approaches of calcigldtie positive region and tolerance classes for positive
region-based attribute reduction [39]. Since calculatibapproximations is a necessary step for attribute redncti
and knowledge discovery in RST [40, 41], this study aims\astigation of the incremental mechanisms to speed up
the calculation of rough approximations when evolvingdeas in PSvIS.

Since the matrix form is benefit for intuitive descriptioimplifying calculation and easy maintainability, it has
been widely employed for rough data analysis [42, 43, 44hrghet al. presented four cut matrices for constructing
rough approximations and developed incremental algostttupdate approximations under attribute generalization
in SvIS [45]. Wang et al. introduced Boolean matrices forespnting covering approximation operators and de-
veloped a corresponding decomposition algorithm [46]. §ieal. presented matrix-based approaches for calculating
set approximations and reducts in a covering decision mm&bion system [47]. Luo et al. investigated the matrix
representation of probabilistic rough approximations designed dynamic algorithms for updating approximations
when adding or deleting objects [48]. Inspired by these athges of matrix, this paper presents a matrix-based
method for dynamic maintenance approximations in PSvI&tlii we present a matrix characterization of rough
approximations based on the relation matrix and two veetoctions associated with multiplication and dot divide
operators. Considering that attributes will evolve overdiin a dynamic PSvIS, which will result in the changes of
information granulation and approximation structuresnéte we develop incremental mechanisms for maintenance
of approximations by utilizing previously accumulated epgmation results and region relation matrices. Finally,
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series of comparative experiments are conducted to deratatte &ectiveness of proposed incremental methods.

The main contributions include: (i) we proposed an extamsioSvIS, viz., PSvIS, which depict set-valued ob-
jects with probability distribution. (ii) Bhattacharyyasthnce is adopted to measure the similarity degree of tdbjec
in PSvIS, and VPRS is extended by the introduction-efolerance relation. (iii) two matrix operators and two vec-
tor functions are designed to characterize the matrix sgpration of rough approximations. (iv) two incremental
mechanisms of updating approximations are presented uhderariation of attributes in PSvIS. Theoretical and
experimental results demonstrated tifieceency of the proposed method compared with the static aistirexincre-
mental approaches. The rest of this paper is organizedlasvfol In Section 2, some preliminary concepts of RST
and VPRS are briefly reviewed. Then the concept of PSvIS améxtended VPRS based artolerance relation is
presented. In Section 3, we construct rough approximabased on matrix approaches and discuss the related prop-
erties. In Section 4, by introducing the concept of regiortriv@s, incremental mechanisms for maintaining rough
approximations are presented with respect to the variati@ttributes. Incremental algorithms are presented fer up
dating rough approximations in Section 5. Section 6 repotperimental results, and the conclusions are presented
in Section 7.

2. Preliminaries

In this section, we review some basic concepts and notatibeiassical rough set model and VPRS. More details
can be found in [1, 23]. Then we introduce the basic conceS¥S and presemt-tolerance relation in terms of
Bhattacharyya distance for extending VPRS model in PSvIS.

Definition 2.1. [1] Let S = {U,AT = C|JD,V, f} be an information system, where U is a non-empty finite set of
objects, called the universe; AT is a non-empty finite settabates including condition attributes C and decision
attributes D; V= Jaeat Va @and 4 is a domain of attribute a; £ U x AT — V is an information function such that
f(x, a) € V, for every ae AT, xe U. YX C U and BC A, the lower and upper approximations of X with respect to
the equivalence relationdRare respectively defined as:

Re(X) = {X|[X]r, € X} 1)

Rg(X) = {X[X]r, N X # 0} )
where[X]r, = {Yl(X,y) € Rg} is the equivalence class determined by the equivalencéarl® = {(x,y) € U x
Ulf(x,b) = f(y,b),¥b e B}.

According to the lower and upper approximations, the pesithegative and boundary regionsXofire easy to
obtain as follows.
The positive regionPOSg(X) = Rg(X)

The negative regioMEGg(X) = U — Rg(X) (3)
The boundary regiorBN Dg(X) = Rg(X) — Ra(X)

Although classical rough set model has been applied in vari@lds, it is not robust for dealing with the data
with misclassification and noise in real applications. Teceently address this issue, Ziarko presented the VPRS by
introducing a threshold paramefgfor controlling the degree of misclassification [23].

Definition 2.2. [23] Let S = {U, AT = AUD,V, f} be an information system. The parameter with respect to the
proportion of correct classification is denoted gsandg € (0.5,1]. YX ¢ U and B c A, the lower and upper
approximations of VPRS model are respectively defined as:

Re”(X) = (XIP(X|[X]r,) 2 5} @)
Re (X) = (XP(XI[Xw) > 1) )

where RX|[X]gr,) = |X|R][X]TB| , Where| o | denotes the cardinality of a set.
Rg
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Definition 2.3. APSvISis asextup(®, AT = AUD,V =ValJ Vp, f, 0, P), where U= {xli € {1,2,--- ,n}}isanon-
empty finite set of objects, called the universe. AT is a moptgfinite set of attributes, where Ais a non empty finite
set of condition attributes and D is a decision attributewgh A\ D = 0. V = Va J Vp is the domain of attributes
set AT, where Yis the set of condition attribute values, ¥ the set of decision attribute values: B x A — 2V is
a set-valued mapping, and:fU x D — Vp is an information function such tha(x, d) € V4 for every de D, x € U.
o is a sigma-algebra in ¥, which satisfies three properties in [49]. P is the probahililistribution defined owr,
such that Rfi(x,a)) > 0and ¥, P(fi(x, @)) = 1, where {(x, a) € f(x,a),Vxe U andVa e A.

|

Example 2.1. Table 1 shows a PSvIS S (U,AT = AUD,V = ValUJ Vb, f,o, P) w.r.t. the election information,
where U= {xli € {1,2,-- -, 14}} denotes fourteen glerent districts, A= {Economic constructigrsocial construction
Cultural constructioh indicates three gferent measure indexes of the candidate of governing capalil is a de-

cision attribute, \{ = {DissatisfactionNeutrality, Satisfactioh = {-1,0,1} and \p = {YesNo} = {Y,N}. In Table 1,

f(x1,a1) = @2‘3:3"7[(1)’5’1()"3,2) denotes the attribute value of the objegtunder g is set-valued-1,0,1} with probability

distribution{0.23,0.45,0.3R Other notations are defined in a similar way.

Table 1: A probabilistic set-valued information system

U ar ap as D U a1 ap az D
x (1,03 (10,3 0.1 Y | % (1,03 (1,03 (1,0.3 Y
1 (023045032  (0.10,0.40,0.50) (0:40,0.60) (0810.14005 (0.030.77020) (0.820.110.07)

{1,0,3 £1,0,3 0,3 0,3 0,3 {1,0,3

X2 (020043037 (01203805 (043057 Y | X (0.320.69 (0:330.67) (0.440.320.24) N
+1,0,3 1,0,3 0,1 0,1 0,1 +1,0,3

X3 (025042033 (013039049 (0.44,0.56) N | X0 (0.34,0.66) (0:34,0.66) (0.430.330.24) N
£1,0,3 £1,0,3 £1,0,3 £1,0,3 £1,0,3 1,0

X4 (24044039 (012041047 (038052010 Y | X (0.820.120.06)  (0.020.780.20) (0:900.10) N
{£1,0,3 £1,0,3 £1,0,3 0,3 0,3 it}

X5 (022041037 (011042047 (041053006 N | X2 (0.34,0.66) (0.350.65 [@) Y
Xe (o.zﬁ{t_éfg'z]}o.34) (0.1(‘)_ (1).'22130.46) (0.4(‘)_ (1).'2'2]’0.08) N | X3 (o.z‘a_é gzo) (0.2:3?551}047) (0.4%.?'2]}0.01) Y
+1,0,3 +1,0,3 +1,0,3 0] +1,0,3 0,3
X7 082012006 (002076022 (08L0.10009 Y | Xua [@) (0.30,0.54,0.16) (0.30,0.70) N

Since the equivalence relation is limited to categoricaada could not be employed to PSvIS. In addition, the
traditional tolerance relatiom, = {(x,y)If(x,a) (N f(y,a) # 0,a € A} in SvIS [15] aims to discriminate the objects
according to whether there are the same attribute set-vafuieh does not take the distribution of set values into
account. For example, the sampbesand x4 are indiscernible in terms of the traditional tolerancetieh with
respect to the condition attribugg in Table 1. However, it is unreasonable that the objegtandx;4 belong to the
same tolerance class according to the corresponding pilibpdistribution. Hence, the traditional tolerance it
also could not be applied in PSvIS directly.

To more appropriately characterize the relation of objectBSvIS, in what follows, we present thetolerance
relation based on Bhattacharyya distance which can qyahgfdistance of objects with probability distribution and
extended VPRS model.

Definition 2.4. Let S= (U,AT = AUD,V =Val Vp, f, o, P) be a PSvIS and the thresholg > 0. Thed-tolerance
relation BD! with regard to the attribute & A can be defined as follows.

={(xy) € UxUIBDa(x,y) < Aa} (6)

where BR(X,y) = In(z VP(fi(x, a))P(fi(y, a))) is the Bhattacharyya distance which measures the simjlaxfit

two discrete probability distributions [50], and(f(x, a)) denotes the probability distribution of x under the attitiéou
a. ThenvYB C A, thed—tolerance relation B is defined by

BDZ = {(X.Y) € U X U|BDp(X,Y) < Ap, Vb € B} = ﬂBDg @
beB
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The parametety, with respect to the attributeranges from 0 te-c0, and the lowen,, indicates the more similarity
between two objects. According to the prior knowledge orgpecific requirements of each attribute distribution, we
can set dferent parameter values @f in different practical applications. In the present paper, we disiguss the
fixed parameter for all condition attributes.

Proposition 2.1. A-tolerance relation is reflexive and symmetric, but not sitive.

Proposition 2.2. Let B; € B, C A, then BO, < BD} .

Proposition 2.3. For A1 < A, BD{ € BDY.

Proof. ForA; < A, it is obvious thalBDg1 - BDg2 by Equation 6. Then according to Equation 7, we hBﬁ}gl c
BD2.

Note that PSvIS degenerate to disjunctive SvIS when thegiibty distribution of set values are zero-one distri-
bution, i.e.,P(fi(x,a)) = 1 andP(fj(x,a)) = 0@ # j)(i,j € {1,2,...,K}). Furthermore, if set = 0, theA-tolerance
relation will generalize to the traditional tolerance teda in SvIS.

Definition 2.5. Given a PSvIS S (U, AT = AJD,V = VAU Vp, f,0,P), YX C U and BC A, theng lower and
upper approximations with regard to thie-tolerance relation B} are defined as follows, respectively.

Re#(X) = {x] P(XI[Xlspy) > B} ®
R_B(B’A)(X) = {XP(X|[X]gpy) > 1 -5} ©

where[x]gp; = {Yl(x,y) € BDg}, 8 € (0.5,1] and1 > O.

Then the positive regioROSE™(X) = Re®?(X), negative regioNEGE)(X) = U - R_B(N)(X) and boundary

region BN D(Ef’”(X) = R_B(N)(X) - @(N)(X) can be obtained according to the lower and upper approidnst

respectively.
Example 2.2. (Continuation of Example 2.1) Lgt= 0.6, A = 0.55, B = {a3, ax} and X = {X1, X2, X4, X7, Xg, X12, X13}.
Then we have the lower and upper approximations in termseof-tolerance relation BB: @(B’*)(X) = {X7, Xg, X11,

=64
Xiz}h, Rg™ " (X) = {X1, X2, X3, X4, X5, X6, X7, Xg, X11, X13}.

3. Matrix-based representation of approximations in PSvIS

In this section, we presenttolerance relation matrix and two vector functions for swacting the lower and
upper approximations by two matrix operators in PSvIS. Iditimh, we discuss the related properties of matrix,
which are benefit for dynamic updating approximations inIBSv

Definition 3.1. Let S= (U,AT = AUD,V = ValJ Vb, f, 0, P) be a PSvIS, where & {x1, Xp,---, X}. Let BC A

and BI% be ai-tolerance relation on U. Then thetolerance relation matrix NIPs = (myj)nxn With regard to BIZg is
defined as follows:

1, (x,X;) e BD}

mjz{ (X, x;) € BDg (10)

0, otherwise

Proposition 3.1. The A-tolerance relation matrix N is symmetric, and the elements of primary diagonal-m
1i=1,...,n).



Example 3.1. (Continuation of Example 2.1) LetB{a;, a;} andA = 0.55. We can compute thetolerance relation
matrix MBP: with respect to B) according to Definition 3.1 as follows:

MBDs —

QOOFrRPROORPFPOOOOOO
OQOOFrRPROORRFRPROOOOOO
OCOPFrRPORPFRPOOOOOOOO
OQOPFrRPORPFPOOOOOOOO
QOOFrRPROORRFRPROOOOOO
OQCOPFrRPORPFRPOOOOOOOO
el NeololololololololoNoNoNe)
) o W e W W o W o WY o T o W o WY o Y o WY o W o W o WY )

[cNoloNoNoNoNoRNol i ol ol ol
QOO0 OCO0OOO0ORRRREER
[cNeoloNoNoNoNoRNel i i ol ol
[cNeololoNoNoNoRNol i ol ol ol
QOO0 OCO0OOO0ORRRRERER
[cNeoloNolNoNoNoRol i ol il ol

Obviously, thet-tolerance relation matriik BD: js symmetric andn; = 1(i = 1,...,n) from Example 3.1.

Definition 3.2. YX C U, the characteristic function (X) with respect to X in PSvIS is defined as:

1, xeX

.
G(X) = ,where g = 11
) =(0.92....00 ) g{o,wx (11)

where “T” denotes the transpose operation.

Example 3.2. (Continuation of Example 2.1) Let X {X1, X2, X4, X7, X8, X12, X13}. Then the characteristic function
G(X) can be obtained by Definition 3.2:(®) = (1,1,0,1,0,0,1,1,0,0,0,1,1,0)".

Definition 3.3. Let Y= (y1,Y2,- -+, Yn)" be a column vector. The vector piece-wise functi¥)lwith respect tg is
defined as follows:

:ﬁ()h) 1, Y
b =| 22 | wherep =1 0, 1-p<yi<p (12)
o -1, yi<1-p8
15(5m)

whereg € (0.5, 1].

Proposition 3.2. Let Q. £ MBP: x G(X) and @ £ MBP: x |, where “x” represents matrix multiplication and
| =(1,1,---,1)". Then we have (i) = |[Xi]BDg N X| and Q(i) = |[xi]BDé|, where Q(i) and (i) denote thdth
element of @and @, respectively.

Example 3.3. (Continuation of Examples 3.1 and 3.2) According to thelts@f Examples 3.1 and 3.2, we can calcu-
late the intermediate vectors;@nd @ by Proposition 3.2: @ = MBDs % G(X)=(3,3,3,3,3,3,2,2,1,1,2,1,1,0),
Q.= MBP: x| =(6,6,6,6,6,6,3,3,3,3,3,3,1,1)T.

Theorem 3.1. Given a PSvIS &= (U,AT = AUD,V = VAUVp, f,,P), U = {Xg, X2, -+, X}. YX C U, let
Q3 £ Q1/.Q», where “/” denotes matrix dot divide. Then the positive, negative badndary regions with respect
to B C A can be obtained from(Qz3) as follows:

POSE(X) ={xl15(Qs(i)) = 1}
NEGED(X) =(xlls(Qa(i)) = ~1) (13)
BNDE(X) =(xll5(Qs(i)) = O}
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—(.b’)

Then the lower approxmatlonEP? D(X) = POS(g ‘)(X) and the upper approximatioR X)=U - NEG(“)(X)

xTgps N
Proof. According to Definition 3.3 and Proposition 3.2J4{Qs(i)) = 1, namely,T > B = P(XI[X]gpy) = B,

thenx; € POSS A)(X). The negative and boundary regions can be obtained in &asivweay.

Example 3.4. (Continuation of Example 3.3) Lgt= 0.6. Thenwe have Q= Q1/ Q, = (3,3,3,3,1,1,2, 21 1 2
1 0)" based on the dot divide operator ang{@s) = (0,0,0,0,0,0,1,1,-1,-1,1,-1,1,-1)T in terms of Def-
|n|t|on 3.3. According to Theorem 3.1, the positive, negatnd boundary regions can be obtained as follows:
POS‘§ ”(X) {X7, X8, X11, X13}, NEdé”)(X) {Xo, X10, X12, X14} @S well as BN[‘é”)(X) {X1, X2, X3, X4, X5, X6}
Furthermore we have the lower approxmaﬂ@@%‘)(X) = {X7, X8, X11, X13} and upper approxmatioR_B(B'A)(X) =

{X1, X2, X3, X4, X5, X, X7, X8, X11, X13}.

4. Matrix-based approach for incremental updating approximations under the variation of attributes in PSvIS

The variation of attributes, including the addition andatieln of attributes, are incurred by the demand of real ap-
plications, which will lead to the variation of knowledgestture in dynamic PSvIS. To address this issue, we present
incremental mechanisms based on matrix for computing tverl@nd upper approximations. More specifically, the
incremental mechanisms mainly include three aspectsgipnematrices are constructed, i.e., the positive, negativ
and boundary relation matrices are extracted from the whadderance relation matrix; i) these three region relatio
matrices are updated by the previous matrix information; ianthe lower and upper approximations are computed
according to the accumulated approximations results andpldated region matrices.

4.1. Dynamic updating approximations with the addition tfibutes

In this section, we introduce the approach for dynamic upd@tapproximations in a PSvIS with the addition
of attributes. LetS! = (U,AT = A'{JD,V = Va U Vp, f,o, P) be a PSvIS at timg whereU = {Xg, X2, - - , Xn}.
At time t + 1, the new attribute setA is added to the conditional attribute s&t i.e., the PSvISS! is altered as
St = (U,ATH! = AL D, V¥t = VL Vp, T2, oL, P*Y), where A = Al|J AA. To utilize the accumu-
lated information, we denote the positive, negative anchidawy regions of Pawlak rough set modelRGSa (X),
NEGat(X) andBNDa:(X) at timet, respectively.

Definition 4.1. Let M®Px denote thel-tolerance relation matrix with respect to' A the PSvIS S at time t. The
positive region relation matrix Wbs = (mi POS) the negative region relation matrix Mg = (mi ECG) and the boundary

region relation matrix Mnp = (ME"°) are defined as follows, respectively.

17 9 B E POS X P’y i U

n.ﬁOS _ (X, Xj) € BDy, X € a(X), Xj € (14)
0, otherwise
1, (x,X%;) € BDY, x € NEGy(X), xj e U

mj=¢ = i ’ (15)
0, otherwise
1 BD!,, BNDa(X), xj € U

meNe = (%, Xj) € BDy, X € a(X), Xj € (16)
0, otherwise

Example 4.1. (Continuation of Examples 2.2 and 3.1) According to Defini2.1, we have the positive, negative and
boundary regions of X with respect to the classical rougmsedel as follows: POX) = {xi3}, NEG(X) = {X14},
BNDg(X) = {X1, X2, X3, X4, Xs5, X, X7, X8, X9, X10, X11, X12}. Then the positive, negative and boundary region relation
matrices Mos, Mneg and Mgy p can be obtained in terms of the result of Example 3.1 as fallow

Mposz(oooooooooooou) MNEez(ooooooooooooo;
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Mgnp =

OFRPOORRFRPROOOO0OOO
OFRPROORRFRPROOOO0OOO
POPRPPOOOOOOOO
PORPPOOOOOOO0OO
OFRPOORFRFRPROOOO0OO0OO
POPRPPOOOOOOOO
ejeoloolololololololoNe]
= W e W W e W W o W W e W e W o W o W —,

eolololoNoNoN N i ol ol ol
[ololoNoNoNol il il ol ol o
[olololoNoNol N i ol ol ol o
[eolololoNoNol N i ol ol ol
ejeolololoNal N N ol o
OCOO0COO0OOrRFRFRPRFRRERE

According to Definition 4.1, we only need to update the regglation matrix, rather than the whole relation ma-
trix under the variation of attributes. More precisely, Hwindary relation matrix is updated when adding attributes
and the positive and negative relation matrices are updaet deleting attributes. It will improve théheiency of
our incremental method since the size of region relatiorrisnit smaller than that of whole relation matrix.

Theorem 4.1. Given a PSvIS S= (U,AT = A'JD,V = VaUVp. f,onP), U = {X;, X2, , Xa}. Let Mgy =
(mBND) denote the boundary relation matrix when the attribute/sitis added to Aat time t+ 1. Then it can be
updated by the following mechanisms.

(1) IfmENP = 0, then n?ND = miN®;

(2) If mBND 1and % € [x{]gpy, then n‘FND = miN®;

(3) If mBND 1and % ¢ [x{]gpy, then n‘FND =0.

Proof. If m3NP = 0, namelyx; ¢ [Xilgoy, . itis clear thati ¢ [X{lspy, s when adding the attribute s&A to A'. Then
we havemiBND =miNP = 0. If mENP = 1, thatis,x; € [Xilepy, - In addition, ifx; € [Xj]gp:  WhenAAis added toA!,

it is obvious that € [Xj]lgpr  , i.€. mﬁND = miNP = 1; otherwise; ¢ [XJ]BW e miEJzND -0
Ay an’

It can be seen from Theorem 4.1 that we only update the eIesmérhloundary relation matrix according to the
case 3, which can enhance the performance of updating proeed

Theorem 4.2. Assume intermediate vectors €@ MgnpxG(X) and @ £ Mgypx| attime t. LetQ = Mgnp XG(X)
and @, = Mgyp X | when the boundary relation matrix y has been updated at time+t1. Then we have

Q) = Q) - ¥ ]n (1 - mBNO)mENOG (j) and Gy(i) = Qafi) - 3. ]“ (1— mENT o,

Proof. According to the definition of matrix multiplication, we ha@, (i) = Z miBNDG(J) Obviously, the element
=

mpNP is updated according to Theorem 4.1, th@igi) = Qu(i) whenmiN® keeps unchanged, otherwis@, (i) =

Qu(i) - j: ( rrﬁND )r’rﬁNDG (j) whenm"P updates from 1 to 0. The proof &,(i) is similar.

Theorem 4.3. Let G, = Mgyp X G(X), Q, = Mgynp X I, Q5 = Q;/.Q; and [; = 15(Qy). ThenvX ¢ U, the positive
region PO§+l (X) and the negative region N I';‘@?(X) attime t+ 1 are updated as follows.

(1) POSED(X) = POSK (X) Utxill(Qy(0)) = 1

At+1
(2) NEGED(X) = NEGx (X) Utxill(Qy(0) = -1}
Then we can compute the lower approximatigrf&9(X) = POS(/ﬁfl)(X) and the upper approximatiorﬁs\Hl(B'A)(X) =
U - NEGE(X).



Proof. Forthe first case, according to Definition 2.5, the positdaga'mnPOS(B ”(X) POSx+(X) LA x.|P(X|[x.]Bw )

At+1
> B, % € BNDy:1(X)}. When the attribute setA is appended td\, the positive regiofPOSy.1(X) of Pawlak rough

sets is divided into two parts, namely, ond?i®Sx (X), the other |SX,|[X,]BD/1 C X, X € BNDa(X)}. Furthermore,

we haveBNDuu1(X) € BNDx(X) whenAt ¢ AL, Evidently, we havePOS(Aﬁtj)(X) = POSx(X) Utxil[x]eor,

X, € BNDa (X)) UXIP(XI[Xlepr, ) = B, % € BNDxa(X)} = POSx(X) UXIP(XI[X]sps, ) = B.% € BN Da(X)).

Finally, according to Definition 4.1 and Theorem 3.1, we hR@S(/ﬁj)(X) = POSx(X) U{xi|I'B(Q/3(i)) = 1}. The
second case can be obtained in a similar way.

Example 4.2. (Continuation of Example 2.1) Let A& B = {a;, a,} at time t andAA = {as} is appended to at

time t+ 1. Based on the result of Example 4.1, we can update the boymdiation matrix Myyy according to
Theorem 4.1.

Mgnp =

[eleleXeXeXe Lalalall=l(e][e}]
o000 ook RrIololo
oPoorro0oo0oeoO
0 Coorro00O0OOO
o0 . ooo0o0000O0
0o, . .ocpo000000
oo
o CPcoono009o

OO0 O0OOOCOIoIIOR R, -
OO0 OOI0IOIO R -
OO0O0O0 OO0 R Rk I
coooook kRrioolo
Rroldldoo o000
oooooooooOOO

where only the underlined elements are updated gy

Then, according to Theorem 4.2, we have=)2,2,2,1,1,1,2,2,0,0,0,1)", Q, = (3,3,3,3,3,3,2,2,2,2,1,1)"
and G = (5,5.4,1.2.3.1,1,0,0,0,1)". Finally, the positive and negative regions can be updatgdrbeo-
rem 4.3 as follows: POSY(X) = {x13} U{X1, Xe, Xa, X7, X, X12} = {X1, Xa. Xa, X7, Xe., X12, 13} and NEG)(X) =
{X14} U{Xa, X5, X, X9, X10, X11} = {Xa, X5, X6, X0, X10, X11, X14}. HENCE, the Iowerapproximatic@w")(x) = POS(ABJB(X)
and the upper approximatidﬁ?w'i)(X) U — NEGAV(X) = {xq, X, X, X7, X, X12, X13}-

At+1
Obviously, the computing overhead of incremental updajmgroximations can beffciently reduced by locally

updating boundary relation matrix and utilizing the accuatad positive and negative regions information, not rathe
updating the whole relation matrix and computing the apprations from scratch.

4.2. Dynamic updating approximations with the deletionttilautes

In this section, we introduce the approach for dynamic updatpproximations in a PSvIS with the deletion of
attributes. Analogously, l68' = (U,AT = AL JD,V = VAol Vp, f, o, P) be a PSvIS at timg whereA' = A[J AA.
At time t + 1, the attribute sehA is deleted from the condition attribute saf, i.e., the PSvISS! is updated as
St+l (U ATt+l At+l U D Vt+l Vt+l U V ft+l’ 0_t+l’ PHl), WhereA”l = A
Theorem 4.4. Let Mg = (nf]?), My = (mi ) denote the region relation matrix at time t anel tl, respectively. When

the attribute setAA is deleted from A the region relation matrix M = (r’rﬁ) is updated as follows, where “R”
indicates “POS” or “NEG”, respectively.

(1) Ifm? = 1, then n'?/ =nf;
(2) Ifm} = 0and x ¢ [x]gp; then n'? mf;
(3) If mij = 0and x € [x]]gp; then nﬁ =1
Proof. Observe that){j]BDit c [X]’]BDiHI when A"t ¢ Al Thenifx € [XJ']BDL’ namely,miF]? = 1, we havex €
[x]eo, . that is,nﬁ’ = =1.1fx¢ [Xileoy, . Viz., m = 0, itis clear that there are two scenarios after deletiAg
from AL if x; ¢ [xilgpy, we havemﬁ’ = rrfJe =0; otherwisenﬁ/ =1.

9



It can be seen from Theorem 4.4 that we only update the elsnuérmgositive and negative relation matrices
according to the case 3, which can enhance the performangelating procedures.

Considering that the positive and negative regions of Ramaiagh sets will decrease, but the boundary region will
increase when removing the attribute aétfrom A!, we setPOSx(BND) £ {x|P(X|[X]gp: 1) > 3, X € BNDa(X)}

A+
andNEGx(BND) £ {xilP(X|[xi]B,yt 1) < 1-p8,% € BNDx(X)} for saving part of boundary region information.
Al+

VX C U, letQups = MposX G(X), Qzeos = MposX |, Qauos = Qupos/-Q2eos: Quyes = MNEGXG(X), Q26 = Mg X
andQz .. = Q1ee/-Q2yes- Then, the intermediate vectors are updated as follows.

Theorem 4.5. Suppose Q__ = Mpog X G(X), Q, = Mpog x 1, Q) £ Myegg xG(X) and G, __ £ Mygg X |
when the attribute setA is removed from %at time t+ 1. Then we have

(1) Q/]_pos(i) = leos(i) + jZ:“l(l - ij)OS)nﬁOS/G (J) and (jlpos(i) = QZPOS(i) + jén“l (1 - nﬁos)nﬁog;
(2) Qi) = Quueeli) + j%1(1 - mE)mEE G () and G, () = Qaueci) + él(l - mjEG)myEC,
Proof. This proofis similar to Theorem 4.2.

Theorem 4.6. Let Q,3Pos = Q;LPOS/.Q/ZPOS’ IEOS = IB(Qépos)’ QE;NEG = Q/]-NEG/.Q,ZNEG and !";‘EG = llB(QéNEG). Then, the
positive region Poﬁﬁ)(X) and the negative region N é@f)(X) at time t+ 1 are updated as follows.

(1) POSE(X) = POSk(BND) UixIIFOS() = 1 UtxlIy=e() = 11

A+l

(2) NEGE(X) = NEGx (BND) UXIINES(i) = -1} UixlIFOS() = —1}.

A+l

Proof. Notice thatPOS{Y(X) = POSx(X) UIP(XI[xlept, ) > B.% € BNDxa(X)). After removingAA
from A!, the positive regiorPOSy.1(X) will decrease and the boundary regiBm Da.:(X) will increase. Thus
POSx4(X) = [xl[X]any,, € X X € POSx(X)} andBNDx:+(X) = BNDx () Utxllxlen, , N X # 0and klep:, | ¢
X% € POSx(X)IUxlXlgp,  NX # Oandflap, . ¢ X,x € NEGx(X)l. Then we havePOS{I(X) =
(xillx]epr , € X% € POSK(X)} UxIP(XI[x]ap ) 2 8. % € BNDx(X)) UXIP(XI[X]so: ) 2 8. % € POSx(X)} U
(4IPOXIXeny, ) = B.% € NEGx(X)). Since{xl[xlap:, € X% € POSx(Q)} € (XIP(XIIx]epy,,) = B.% €
POSx(X)}, thusPOSE)(X) = (xIP(XI[x]o, ,) = B % € BNDx(NUXIP(XI[X]aor, ,) = B, % € POS(X)} Uix|
P(X|[xi]BD(M) > B, % € NEGu(X)}. Finally, according to Definition 4.1 and Theorem 3.1, WeehB(Z)S(ﬁﬁ)(X) =
POSAI(Bl\fD) UllFOS() = 1) Uikl =(i) = 1). The proof of second case is similar.

Example 4.3. (Continuation of Example 2.1) L&A = {a3} is deleted from A= {a;, ay, ag}, i.e., A = {a;, ap} at
time t+ 1. Setg = 0.6 andA = 0.55. Then we have POS(X) = {X7, Xg, X12, X13}, NEGa:(X) = {Xo, X10, X11, X14} @and
BNDa(X) = {X1, X2, X3, X4, X5, Xg}. Firstly, we compute POS(BND) = 0 and NEG«(BND) = 0. Then Mg and
Mnee can be obtained as follows according to Theorem 4.4.

0000001100000 000000O11001000
M ~|0000001100000 M ~]0000001121001000
POST10 000000000010 POS=I00000000110100
0000000000001 0000000000001
0000000011000 00000O0OO0OO0110100
M ~|0000000011000 M ~]00000000C110100
NEGCT1I0000000000100 NEGTI00000011001000
000O00O0OOO0OOOOOO 0O0O0O0O0OOOO0OOOOOO

where only the underlined elements are updated gpdhand Myec.
Based on Definition 3.3, we can compuf€d = (1,1,-1,1)" and }*¢ = (-1,-1,1,-1)". Finally, we have

POSED(X) = {x7, %, X1, a3} and NEGLY(X) = {Xe, X10, 12, X4} according to Theorem 4.6. Furthermore, the
lower and upper approximations can be obtained by Equatn (
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It is evident that the incremental strategies for computipgroximations can reduce the computational cost by
partly updating the region relation matrices rather thandaping the whole relation matrice when attributes are
removed.

5. Dynamic algorithms for updating approximations in PSviSunder the variation of attributes

In this section, according to dynamic updating mechanisongrfaintenance of approximations in PSvIS, we
develop dynamic algorithms based on matrix for computingreximations.

5.1. The naive algorithm for updating approximations in FSv

Algorithm 1: Matrix-based static algorithm for updating approximaiamPSvIS (MSAUA)
Input:
P Apsuiss - (U, AT=CUD,V=VcUVo, f,a, P);
2. The parametersandg;
3. Anattribute seA'*! ¢ C.

Output: The lower and upper approximations of each decision claBSwIS.

1 begin
2 for1<i<ndo // Compute the A-tolerance relation matrix MBCh1 by Definition 3.1;
3 for1<j<ndo
4 if X € [x]Blyl . then
5 | mj =1;
6 else
7 | mj=0;
8 end
9 end
10 end
11 Construct the characteristic vect@(dx) for each decision clagk.
12 for1<i<ndo // Compute the intermediate vectors Qi, Qz, Qz and I3(Qx3);
n
13 QuM) = X mG(j);
i=
n
14 Q2 () = Z m;;
iz
B — Q).
15 Q3.(|) = @%v
16 l5() = 15(Qa(0));
17 end
1 SetPOSY;)(dy) = 0 andNEGL ) (d) = 0;
19 for1<i<ndo // Compute the positive, negative and boundary regions according to Theorem 3.1;
20 if 15(i) == 1then
2 | POSED(dk) = POSE(d) Utxi);
22 end
23 if 15(i) == —1then
24 | NEGE?D(dh) = NEGE(d) Uixi);
25 end
26 end
27 | retum Rya®(de) = POSE(d), Rarr " (d) = U — NEGE (dk).
28 end

Algorithm 1, which is abbreviated as MSAUA for convenientéiis paper, is a naive (non-incremental) algorithm
based on matrix for computing approximations. To convethiemalyze the time complexity of MSAUA, lgt)| = n
and |A%Y = m. Steps 2-14 are to construct thetolerance relation matri B0 according to Definition 3.1
and Proposition 3.1, whose time complexityQ¢n’m). Step 15 is to compute the character vector according to
Definition 3.2, whose time complexity 9(n). Steps 16-21 are to compute the intermediate ve@gr$€)., Qs and
15(Qs) according to Proposition 3.2 and Definition 3.3, whose taomplexity isO(n?). Steps 23-30 are to compute
the positive and negative regions according to Theoremvéhbse time complexity i©(n). Hence, the total time
complexity isO(n°m+ n + n? + n) = O(N’m+ n).
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Algorithm 2: Matrix-based dynamic algorithm for updating approximasian PSvIS when adding an attribute
set (MDAUAA)
Input:
. APSVISS = (U,AT = A'UD,V = Va U Vp, f,a, P);
. The parametersandp;
. The new added attribute s andAA N A' =
. The characteristic vect@(dx) of each decision clagk;
. The positive, negative and boundary regions of Pawlakigh setPOSx (dk), NEGa: (dk) andBN Dat(dk);
. Initial results: the boundary region relation matégnp = (mEJ.‘ND) with respect toA' at timet, Q; = Mgnp X G(dk), Q2 = Menp X |,

Qs = Q1/.Qz andlg = 15(Qa3).

Output: The lower and upper approximations of each decision claBSvIS.

o U WNBE

1 begin

2 for 1 <i < |BNDa(dk)l do // Updating the boundary relation matrix Menp = (M"°);
3 forl1<j<ndo

4 if mEND == Othen // Computing the boundary relation matrix Msnp = (MZ"?) by Theorem 4.1;
5 | nﬁND 0 are constant;

6 else

7 if X € [x]BD¢ then

8 | mPNP= "1 are constant;

9 else

10 mEN® = 0

11 Ql(l)— Ql(l) G(J) // Dynamic updating Qi, Qz, Qs and I3(Qs) according to Theorem 4.2;
12 = Qi) -

13 Qs(') = Ql(')/QZ(')

14 15(i) = 15(Qa(i));

15 end

16 end

17 end

18 end

10 SetPOSY:)(di) = POSx(di) andNEGE) (d) = NEGa (di);

20 for 1<i <|BN DA1(dk)| do // Updating the positive and negative regions according to Theorem 4.3;
21 if 15(i) == 1then

2 | POSED(dk) = POSE(d) Uixi);

23 end

24 if I5(i) == —1then

2 | NEGED(d) = NEGE) (d) Utxi);

26 end

27 end

26 | retum Rua®(d) = POSE(d), Rarr " (d) = U — NEGE(dh).

end

N
©

5.2. The dynamic algorithm for updating approximations 8MPS when adding an attribute set

Algorithm 2, which is abbreviated as MDAUAA, is a dynamic alighm based on matrix for computing ap-
proximations under the addition of attributes. Steps 2+H8ta update the boundary relation matrix according to
Theorem 4.1, whose time complexity®%| gnp1|AA]), wherel gypz is the numbers of “1” in the boundary relation ma-
trix Mpnp andlgnpr < [BNDa(dk)|-n < n?, where|BN Da(dk)| denotes the numbers of boundary regBMDAa (dy) at
timet. Steps 20-27 are to update the positive and negative regamwsding to Theorem 4.3, whose time complexity
is O(IBNDai(dk)]). Thus the total time complexity ©(Ignpi|AA| + [BNDai(dk)[). Obviously, the time complexity of
algorithm MDAUAA is better than that of the static algoritttSAUA.

5.3. The dynamic algorithm for updating approximations BMPS when deleting an attribute set

Algorithm 3, which is abbreviated as MDAUAD, is a dynamicailighm based on matrix for computing approxi-
mations under the deletion of attributes. Steps 3-10 arertgpatePOSy (BN D) andNEGa (BN D) according to Def-
inition 2.5, whose time complexity ©(|BN Da:(di)[n(m—|AA])). Steps 12-28 are to update the positive relation matrix
Mpos = (r’rfj’os) according to Theorem 4.4, whose time complexit@{$poso(m— [AA])), wherel posp is the numbers
of “0” in the positive relation matridMpos andlpposy < |POSa(dk)| - n, where|POSa:(dk)| denotes the numbers of
positive regiorPOSx: (dy) at timet. Steps 29-45 are to update the negative relation mitgixs = (n}’\j‘EG) according
to Theorem 4.4, whose time complexityd$l neco(M—|AA])), wherelyeg is the numbers of “0” in the negative rela-
tion matrixMyeg andlnec < INEGa(di)| - n, wherelNEGa: (di)| denotes the numbers of negative reghdBGa: (dk)
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Algorithm 3: Matrix-based dynamic algorithm for updating approximasicn PSvIS when deleting an attribute
set (MDAUAD)

©®m N o AW N

i
o

11
12
13
14
15
16
17
18
19
20
21

22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40

41
22
43
44
45
46
47
48
49
50
51
52
53
54
55

Input:

o O wWDNE

. APSVISS = (U,AT = A'UD,V = Va U Vp, f,a, P);

. The parametersandp;

. The attribute seAA is removed fromA! and letAl*! = At — AA;

. The characteristic vect@(dx) of each decision clagk;

. The positive, negative and boundary regions of Pawlakigh setPOSx (dx), NEGa: (dk) andBN Da:(dk);

. Initial results: the positive region relation matheos = (nfjos) and the negative region relation mathyeg = (m“j‘EG) with respect toA! at

timet, Qipos = Mpos x G(dk), Qzros = Mpos X |, Qaros = Qipos/.Qzpos, |;os = 13(Qspos), Qines = Mnes X G(dk), Qanes = Mg X |,
Qanec = Qines/. Qanes and'}}‘EG = 13(QsnEG)

Output: The lower and upper approximations of each decision claBSwIS.
1 begin

end

Let POSx(BND) = ® andNEGa (BND) = 0;
for 1 <i < |BNDa(dy)| do // Computing POSx(BND) and NEGa(BND) according to Definition 2.5;
if P(dd[x]ept,,) > Bthen

| J POSN(éND) = POSx(BND) U{x};

en
if P(dkl[xi]Bolm) <1 —ﬁ then

| NEGx(BND) = NEGx(BND) Uix};
end
end

SetPOSS)(dy) = POSx (BN D) andNEGY;? (k) = NEGx (BND);
for 1 <i < |POSx(dy)| do // Updating the positive relation matrix Mpos = (r‘rfj'os) according to Theorem 4.4;

for1<j<ndo

if rrﬁos == 1then
| rrﬁos =1 are constant;
else
if % ¢ [x]BD/:H1 then
| nﬁos =0 are constant;
else
r‘q’:j'os =1; // Updating Qipos, Qapos, Qspos and IEOS according to Theorem 4.5;
Qipos(i) = Qipos(i) + G(j);
Qzpos(i) = Qapos(i) +1;
Qspos(i) = Qipos(i)/Qzpos(i);
1£95(i) = 15(Qapos((i));
end
end
end

end
for 1<i <INEGx(d)ido // Updating the negative relation matrix Mwes = (M%) according to Theorem 4.4 ;
forl1<j<ndo
if mNECG == 1then
j
| m“j‘EG = 1 are constant;
else
if X ¢ [X]gp:  then
e
| m“j‘EG = 0 are constant;
else

r’r\'}‘EG: 1; // Updating Qinec, Qonec, Qanec and IB‘EG according to Theorem 4.5;

Qunec(i) = Qunea(i) + G(j);
Qonec(i) = Qanea(i) + 15
Qanec(i) = Quinea(i)/Qanec(i);
U}‘EG(i) = lg(Qanec(i));

end

end
end
end
for 1 <i < maX|POSa(dy)l, INEGa(di)l do // Updating positive and negative regions according to Theorem 4.6;
if I;OS(i) ==1lor IE‘EG(i) == 1then
| POSED(dk) = POSE(d) Uixi);
end
if 1°95(1) == —1 or INEC(i) == ~1 then
| NEGE?(d) = NEGE(d) Uixi);

A1 A1
end

end

retumn Ry (d) = POSE(d), Ran " (dh) = U — NEGE(dk).
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at timet. Steps 46-53 are to update positive and negative regiomsding to Theorem 4.6, whose time complexity
is O(max|POSa(dy)l, INEGa:(dk)])), wheremax(,) denotes the maximum operation. Thus the total time conitglex
is O((IBNDa(d)In + Iposo + Ineco)(m — |AA]) + maxX|POSa (dy)l, INEGa(dW)])). Sincelposy < [POSa(dk)| - nand
Ineao < INEGai(di)| - n, it follows (IBN Da(di)In + lposo + Inea)(M— |AA]) < n?(m— |AA]) < i?m. Hence, the time
complexity of algorithm MDAUAD is better than that of the staalgorithm MSAUA.

6. Experimental evaluations

Since the proposed method aims at the case that the attviblutes are set-valued with probability distribution,
there are not available in any public data repositories. diditeon, the purpose of our study is to demonstrate the
performance of dynamical algorithms for addressing théalbdity set-valued data, not rather for analyzing the data
for one particular application. Hence, four data sets wiising values from the UCI Repository of Machine Learning
are generated as the probability set-valued. More spgcih# missing values are filled with the set of all possible
values of each attribute, and the corresponding probgldiigitributions are constructed by the frequencies of each
single attribute value under each attribute. In additibe, grobability distribution of each single value is oneroi
distribution, i.e., the accordant probability is one. Muwrer, two artificial data sets are generated for validatirey t
performance of dynamic algorithms. A detail descriptiosiafdata sets can be founded in Table 2.

Table 2: A detail description of data sets

Data sets Abbreviation Samples Attributes Classes Source
1 Audiology (Standardized) Audiology 226 69 24 UCl
2 Dermatology Dermatology 336 34 6 UCl
3 Congressional voting records CVR 435 16 2 ucCl
4 Mushroom Mushroom 8124 22 2 ucCl
5 Artificial data 1 AD1 1000 100 4 Data generator
6 Artificial data 2 AD2 10000 2000 10 Data generator

All concerned experiments are performed with Matlab 2012a personal computer with Intel Core i5-4200U
CPU 1.60GHZ, 4.0 GB of memaory.

To show the time fficiency of dynamical algorithms, each of data sets is dividéal ten parts of equal size.
Moreover, the first part is regarded as the 1st test set, tindioation of the first and second parts is considered as the
2nd test set, the combination of the 2nd test set and thepghitds viewed as the 3rd test set, ..., the whole data set is
regarded as the 10th data set. In what follows, these tesaseemployed to compare the running time between the
dynamic algorithm and the static algorithm, and the Zhadggamic method [45] under the variation of attributes.

6.1. The performance comparison between static and dyraguocithms under the variation of attributes

In this subsection, the computational times of static anthdyic algorithms are compared on six data sets shown
in Table 2 under the variation of attributes. In the follogjrtwo experimental results are shown by the addition of
attributes and the deletion of attributes, respectivalyaddition, we set the parameters= 1.5 andg = 0.6 in the
experiments.

6.1.1. A comparison of MSAUA and MDAUAA under the additicancéittribute set

In this subsection, we compare Algorithm MSAUA with Algdmih MDAUAA when adding an attribute set. We
take out the original and appended attribute sets from eaizhsebt, which are shown in Table 3.

The experimental results are depicted in Fig. 1, wheredtbe@ordinate pertains to the test sets, while y-coordinate
concerns the computing time of updating approximations.sii@wn in Fig. 1, the running times of MSAUA and
MDAUAA grow up with the increase of the size of data. In aduliti Algorithm MDAUAA is much faster than
Algorithm MSAUA, and the diference between them are becoming larger while the size afiniaieases.
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Table 3: A description of adding attribute set

Data sets Attributes Original attribute set Adding atttébsiet
1 Audiology 69 {a, @, , aus} {a49, @50, -+ , As0}
2 Dermatology 34 {ag, a2, , a4} {@zs, aze, - -+, A34)
3 CVR 16 {ag, @2, -+, au1} {212, @13, , e}
4 Mushroom 22 {ag, @, , aua} {aus, &6, -+ 22}
5 AD1 100 {ag, @2, , az0} {a71, @72, -+ , 100}
6 AD2 2000 {aq, @, , &1200} {21201, 21202, * * * , A2000}
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Figure 1. A comparison of computational times between MSAu MDAUAA versus the dferent test sets when

adding an attribute set.
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6.1.2. A comparison of MSAUA and MDAUAD with the deletionroétiribute set

In this subsection, we compare Algorithm MSAUA with Algdmih MDAUAD when deleting an attribute set. We
take out the original and removed attribute sets, which laogva in Table 4.

Table 4: A description of deleting attribute set

Data sets Attributes Original attribute set Deleting httté set
1 Audiology 69 {1, @, -, a0} {2ug, 50, - , Ao}
2 Dermatology 34 {a, a0, - , 34} {ags, age, - - - , Aza}
3 CVR 16 {ag, a2, , e} {212, @13, , e}
4 Mushroom 22 {a, a0, - , a0} {ass, &g, -+ , A2}
5 AD1 100 {a, @2, -+, a100} {az1, @72, -+ , 100}
6 AD2 2000 {ag, @, , @000} {21201, Q1202 * * * , A2000}

The experimental results are depicted in Fig .2, wherextbeordinate pertains to the test sets, while y-coordinate
concerns the computing time of updating approximations.sii@wn in Fig. 2, the running times of MSAUA and
MDAUAD grow up with the increasing size of data. Furthermakigorithm MDAUAD is much faster than Algorithm
MSAUA, and the diference between them are getting larger while the size ofidataases.
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Figure 2: A comparison of computational times between MSAdd MDAUAD versus the dierent test sets when
deleting an attribute set.

6.2. Comparative experiments on the variation of attrisute

In this experiment, to demonstrate the performance of copgsed incremental method, a series of comparative
experiments are carried out on six data sets under the ieariaft attributes. However, none of the existing approach
for attribute generalization is developed to process thed®Zhang et al. presented an incremental method for
dealing with the SvIS with the variation of attributes [45) order to compare with Zhang'’s method, the tolerance
relation is modified as the-tolerance relation in Zhang’s method for applicationgwgtobabilistic set-valued data.
The dynamical algorithms in Zhang's method are abbreviae@DAUAA and ZDAUAD under the addition of
attributes and the deletion of attributes, respectively.
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6.2.1. Comparison between ZDAUAA and MDAUAA when addindtabwate set

In this subsection, we compare Algorithm ZDAUAA and Algbrit MDAUAA while adding an attribute set. The
information of the adding attribute sets and test sets isdinge to Subsection 6.1.1 and we set the parameterk5
andg = 0.6 in this experiment. The experimental results are showrabiels and Fig. 3. Table 5 shows the speed-up
ratios of experiments on six data sets witffelient test sets. From Table 5, it is obviously that AlgoritdiDAUAA
is more dfective than Algorithm ZDAUAA while adding an attribute seln addition, the average speed-up ratio
dramatically fluctuates from 1.435to 221532.820. In whhld¥es, we will demonstrate that the computational time of
Algorithm MDAUAA under the variation of parametar Fig. 3 shows the running time of ZDAUAA and MDAUAA
with different test sets. Clearly, the proposed incremental afgnfit DAUAA is better than ZDAUAA. Furthermore,
the time complexity of Algorithm ZDAUAA isO(Im1|AA] + n), wherely; is the numbers of “1” in the whole relation
matrix MBPx . Evidently, the time complexity of Algorithm MDAUAA, namglO(Ignp1|AA| + |BN Dar(dk)]), is better
than that of Algorithm ZDAUAA.

Table 5: The incremental speed-up ratio between ZDAUAA amPMAA versus each test set

Data Set
Test Set Audiology Dermatology CVR Mushroom AD1 AD2
1 53.795 1.435 88.828 12884.864 1.988 2.043
2 90.906 2.917 144.446 39648.841 1.678 1.389
3 1.353 6.258 314.105 81462.002 1.845 1.306
4 2.230 12.073 529.562 133148.153 1.713 1.323
5 3.353 22.393 788.651 184619.555 1.646 1.384
6 4.707 26.862 1266.313 246917.482 1.645 1.427
7 8.326 32.913 1711.497 251633.841 1.601 1.429
8 11.085 32.748 1808.002 341957.712 1.701 1.339
9 12.149 50.092 2638.146 421947.496 1.530 1.388
10 15.764 50.846 2814.184 501108.253 1.585 1.324
average 20.367 23.854 1210.303 221532.820 1.693 1.435

6.2.2. Comparison between ZDAUAD and MDAUAD when deletmataibute set

In this subsection, we compare Algorithm ZDAUAD and Algbrit MDAUAD while removing an attribute set.
The information of the deleting attribute sets and test sethe same to Subsection 6.1.2 and set the parameters
A =15 andg = 0.6. Table 6 indicates the speed-up ratios of experimentsxodata sets with dierent test sets.
Fig. 4 shows the computing time of ZDAUAD and MDAUAD withfterent test sets. From the Table 6 and Fig. 4, it
demonstrates Algorithm MDAUAD is a little better than Algthm ZDAUAD. Furthermore, the time complexity of
ZDAUAD is O(nlyo(m — |AA]) + n), wherel o is the numbers of “0” in the whole relation matfi#®Px . According
to Imo = lposo + InEao + Ienpo @ndlgnpo > |[BN DA1(dk)|, then we havemIMo(m— |AA|) +Nn2> (|BN DA1(dk)|n + lposp +
Ineco)(M— |AA]), i.e., the time complexity of Algorithm MDAUAD is better #im that of Algorithm ZDAUAD.

6.3. The performance comparisons offatent ratios of attributes

In this section, in order to evaluate the performance of thpg@sed dynamical algorithms when updating (adding
or deleting) diferent ratios of attributes, we conduct a series of compaqgeranents between the static, dynamic and
Zhang's algorithms for computing approximations. The paeters of these Algorithms are set 1.5 andg = 0.6.

When adding dferent ratios of attributes, we take out 50% attributes iedént data sets as the basic attribute
set, and gradually add 10% attributes from the rest of atieh The comparative results are shown in Fig. 5. In
Fig. 5, thex-coordinate pertains to the ratios of added attributes grard in they-coordinate is the logarithm value
of the running times of Algorithm MSAUA, MDAUAA and ZDAUAA. 1l is shown that the computational time of
Algorithm MDAUAA is lower than those of Algorithms MSAUA andDAUAA while inserting diferent updating
ratios of attributes.
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Figure 3: Running times of Algorithm ZDAUAA and Algorithm MEUAA versus the diferent test sets when adding

an attribute set.

Table 6: The incremental speed-up ratio between ZDAUAD amuAMAD versus each test set

Data Set

Test Set Audiology Dermatology CVR Mushroom AD1 AD2
1 1.548 1.182 1.024 1.266 1.198 1.122
2 1.010 1.001 1.262 1.222 1.161 1.065
3 1.492 1.330 1.001 1.278 1.064 1.076
4 1.493 1.201 1.394 1.254 1.117 1.100
5 1.031 1.124 1.375 1.301 1.156 1.105
6 1.011 1.157 1.100 1.290 1.152 1.175
7 1.148 1.130 1.156 1.280 1.117 1.109
8 1.189 1.169 1.205 1.305 1.110 1.004
9 1.269 1.093 1.052 1.307 1.099 1.102
10 1.291 1.154 1.139 1.329 1.123 1.056

average 1.248 1.154 1171 1.283 1.130 1.091
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Figure 4: Running times of Algorithm ZDAUAD and Algorithm MRJAD versus the diferent test sets when deleting
an attribute set.
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Figure 5: Running times of Algorithms MSAUA, ZDAUAA and MDAAA when adding diferent ratios of attributes.
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When deleting dterent ratios of attributes, we gradually remove 10% atteibdrom the original attribute set.
Fig. 6 shows the comparative results. In Fig. 6,xkfemordinate pertains to the ratios of removed attributelsesgmoint
in they-coordinate is the logarithm value of the running times aj@ithm MSAUA, MDAUAD and ZDAUAD. It is
shown that the computational time of Algorithm MDAUAD is betthan Algorithms MSAUA and ZDAUAD while
deleting diferent updating ratios of attributes.
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Figure 6: Running times of Algorithms MSAUA, ZDAUAD and MDAAD when deleting dierent ratios of attributes.

6.4. Experiments on the parametdrandj

The lower and upper approximations of extended VPRS modetiacted by the parametetsaindg. In this sub-
section, to verify whether the performance of proposed oyaal algorithms are influenced by these two parameters,
we carry out experiments to evaluate thigagency of Algorithm MDAUAA and Algorithm MDAUAD with diferent
A andg. While adding attributes, 50% of original attributes arketio out as the basic attribute set, the rest attributes
are appended. While deleting attributes, 30% of attribatesemoved from original attribute set.

The parametet is increased by 5 times from@B to 5859375. Fig. 7 shows the experimental results on six data
sets with respect to Algorithm MDAUAA when adding attribsitén Fig. 7, thex-coordinate pertains to the parameter
A and they-coordinate pertains to the logarithm value of the runninmgetof Algorithm MDAUAA. Obviously, the
running times of Algorithm MDAUAA in data sets Audiology, Deatology, CVR and Mushroom fluctuate a little
with different1. However, the running times in data sets AD1 and AD2 raisdally fromA = 0.03 toA = 1875,
and then achieve a steady fluctuation. According to the cexitglof Algorithm MDAUAA in Subsection 5.2, the
computational time of Algorithm MDAUAA is mainlyf@ected by the numbers dnp; and|BN Dat(dy)|, which are
controlled by the parametdr Clearly, the numbers dgnpr and|BNDa:(dy)| increase with the growing. In light
of Table 7, the numbers of boundary region in data sets AadiolDermatology, CVR and Mushroom do not change
with differentd. However, in data sets AD1 and AD2, the numbers of boundayipmneincrease from = 0.03 to
A = 1875, and then remain unchanged after that. Hence, the chesngeis consistent with the variation of the
numbers of boundary region in Fig. 7.

Fig. 8 shows the experimental results on six data sets withea to Algorithm MDAUAD when deleting at-
tributes. In Fig. 8, thex-coordinate pertains to the parameteand they-coordinate pertains to the logarithm value of
the running time of Algorithm MDAUAD. According to the conmglity of Algorithm MDAUAD in Subsection 5.3,
the computational time of Algorithm MDAUAD is mainlyfected by the numbers dfosy, Ineco and|BN Dat(dy)l,
which are influenced by the paramefierin addition, the numbers ¢BN Da(dk)| increases with the growing. In
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Fig. 8, the running time of Algorithm MDAUAD in data sets Awdibgy, Dermatology, CVR and Mushroom fluctuate
a little with differentd. It can be interpreted by Table 8, where the number of boyn@aion keeps invariant in these
data sets. In data sets AD1 and AD2, due to the numbers of boyinegion increase gradually from= 0.03 to

A =3.75in Table 8, the running times fluctuate dramatically. Mwe, only a little fluctuation is observed when the
numbers of boundary region keep constant ftbea 1875 to1 = 5859375.
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Figure 7: A comparison of Algorithm MDAUAA with dferentA.

Table 7: The number of boundary region wittifdirent in Algorithm MDAUAA

Data Set
A Audiology Dermatology CVR Mushroom AD1 AD2
0.03 9 0 106 8 0 0
0.15 9 0 106 8 5 14
0.75 9 0 106 8 39 191
3.75 9 0 106 8 1000 9986
18.75 9 0 106 8 1000 10000
93.75 9 0 106 8 1000 10000
468.75 9 0 106 8 1000 10000
2343.75 9 0 106 8 1000 10000
11718.75 9 0 106 8 1000 10000
58593.75 9 0 106 8 1000 10000

Let the parameteg change from @ to 1. Fig. 9 shows the variation tendency of the computatitimes of
Algorithm MDAUAA and MDAUAD. In Fig. 9, the x-coordinate pertains to the parameseand they-coordinate
pertains to the logarithm value of the running time of Alglomn MDAUAA in Fig. 9 (a) and Algorithm MDAUAD
in Fig. 9 (b), respectively. It is clear that the running terflictuate a little with dterentg when adding or deleting
attributes, respectively. According to the complexity dgérithms MDAUAA and MDAUAD in Subsections 5.2 and
5.3, they are almost the same wittifdrentB except for some random factors.
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Figure 8: A comparison of Algorithm MDAUAD with dierentA.
Table 8: The number of boundary region wittifdirent in Algorithm MDAUAD
Data Set
A Audiology Dermatology CVR Mushroom AD1 AD2
0.03 26 6 5 4 0 0
0.15 26 6 5 4 3 0
0.75 26 6 5 4 20 96
3.75 26 6 5 4 999 10000
18.75 26 6 5 4 1000 10000
93.75 26 6 5 4 1000 10000
468.75 26 6 5 4 1000 10000
2343.75 26 6 5 4 1000 10000
11718.75 26 6 5 4 1000 10000
58593.75 26 6 5 4 1000 10000
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Figure 9: A comparison of Algorithms MDAUAA and MDAUAD withitferentg.

7. Conclusions

Due to the set values with probability distributions in soreal applications, in this study, we introduced the
concept of PSvIS and presentédolerance relation based on Bhattacharyya distance foe m@asonably character-
izing the relation of objects in PSvIS. In addition, an extedt VPRS in terms of-tolerance relation is presented for
knowledge discovery in PSvIS.

To address the computation of rough approximations in dyo®8vIS with the variation of attributes, we firstly
presented a matrix-based method for computing approximsiby utilizing thel-tolerance relation matrix and matrix
operators. Then we presented the incremental mechanismsity the previous rough approximations results and
partly updating the region relation matrices, which céiieaively improve the computationaffeeiency compared
with the static and Zhang’s approaches. Furthermore, we dagigned two incremental algorithms MDAUAA
and MDAUAD for computing approximations with the additiondadeletion of attributes in PSvIS, respectively.
Experimental results on four UCI data sets and two artifideth sets have shown that the proposed incremental
algorithms can improve computational performance. Inghjser, we fixed the tolerance parametéor all attributes,
which may be unreasonable in some practical problems. Tdrereve will investigate how to determine the parameter
A more realistically according to specific requirements mfiture. Due to the dlierence of probability distributions
of each attribute in PSvIS, it will increase the uncertathiying decision making and classification, etc. Hence ghes
uncertain problems will be further studied based on the xteneled VPRS model.
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