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Abstract

Symbolic algebraic analysis techniques are applied to
the landing gear subsystem in the new Swedish fighter
aircraft, JAS 39 Gripen. Our methods are based on
polynomials over finite fields (with Boolean algebra and
propositional logic as special cases). Polynomials are
used to represent the basic dynamic equations for the
processes (controller and plant) as well as static prop-
erties of these. Temporal algebra (or temporal logic)
is used to represent specifications of system behavior.
These specifications are verified both on a model of the
landing gear controller, and a model of the closed loop
behavior of the landing gear controller connected to a
plant. The model of the landing gear controller is made
from the actual implementation in Pascal. The tools
used are developed by the authors in Mathematica and
uses an efficient implementation of binary decision di-
agrams (BDDs).

1 Introduction

We have modeled and analyzed an existing discrete
subsystem of a modern fighter aircraft, the landing gear
system on the JAS 39 Gripen. This system was de-
signed and implemented without any formal methods
or tools.We have built a mathematical model of this
system and analyzed its behavior w.r.t. to its specifi-
cation. The main focus has not been on the specific
system, but rather on the general methods that can be
applied to discrete dynamic systems of industrial size,
e.g. the process is fairly complex, with some hundred
variables, of which 66 are Boolean. This paper de-
scribes the second part of the project, where the focus
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is on analysis. The objective of the first part of this
project was to build a mathematical model of the be-
havior of the landing gear controller (LGC). This was
done by the development of a compiler that translates
Pascal code to a model of polynomial relations. Further
information of this work can be found in [4, 7, 9].

1.1 The Polynomial Framework

Quantities and relations in DES are of a finite nature
and can therefore be represented by finite relations.
These relations can in turn be represented mathemat-
ically by polynomials over finite fields Fq [Z], i.e. poly-
nomials of variables in the set Z with coefficients from a
finite field Fy. By further restricting the class of poly-
nomials we construct a quotient polynomial ring (see
[3] or the tutorial [5]) that gives a one to one corre-
spondence between polynomials and relations as well
as a compact representation of the relations. (Similar
results can be found in [8].) The computational frame-
work used for manipulating polynomials is based on
binary decision diagrams (BDD) [1], which give a pow-
erful representation as well as fast computations which
allow us to manipulate rather complex systems.

1.2 Modeling of the LGC

The purpose of the LGC is to perform maneuvers of
the landing gears and the corresponding doors which
enclose the gears in retracted position. The LGC is a
software process that interacts with 5 binary actuators,
30 binary landing gear sensors, 2 binary pilot signals,
and 5 integer mode signals from other subsystems in
the aircraft. The state of the LGC is represented by 26
Boolean variables. The only formal description of the
controller available to use was the actual implemented
1200 line Pascal code. See [4] for further details.

In the modeling part of the project the implemented
Pascal code of the LGC was compiled to a polynomial
model. The Pascal code is first parsed to a intermediate
code called MPascal which essentially is the same Pas-
cal code written as a Mathematica expression. This
code is then processed by a compiler, also written in
Mathematica. The result from the compiler is a poly-
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Figure 1: Landing gear model.

nomial model, denoted C(z,z"), represented as a BDD,
where all static and dynamic relations between input
variables and output variables are stored whereas tem-
porary variables in the code are removed. See [4, 7] for
details.

2 Closed Loop Verification

Having a polynomial model for the LGC, C(z,z"), we
need a model for the plant, i.e., the physical landing
gear. The sensors of the landing gear system deter-
mine if the gears are retracted, extended or in between.
Therefore we use the three state automata in figure 1
as an illustration for the plant model P(z,z*). This
model has two input signals In and Out that are con-
trolled by the LGC when connected into closed loop.
The input signal Man is an auxiliary signal for verifi-
cation purpose. The plant model stays in the middle
state until Man becomes false. The outputs in this
model correspond to the sensors in the physical plant,
but are not shown in figure 1.

By connecting the LGC model, C(z,z") and the plant
model P(z,z") we get the closed loop model

G(z,z"):=C(z,z") AP(z,z").

To verify the behavior of the closed loop model we use
temporal logic (CTL) [2] to formally represent the spec-
ification of the behavior. See table 1 for a subset of
temporal operators. If we want to verify the following
specification: “The gear should always reach the ex-
tended state Gear(ext) in finite time, when pilot com-
mand is extension Pilot(ext).” we can search if there
exists behavior not fulfilling the statement above by
using the temporal expression

F(z) := EG[—~(Pilot(ext) — Gear(ext)) A—Man].

By adding “Man to the temporal expression we spec-
ify that the plant model will reach the extended state
in arbitrary but finite time if the LGC command Out
is true long enough. This shows that temporal logic
can be powerful for modeling complex behavior in a
compact way.

Temporal Algebra | Natural Language

Q(z) Q(z) holds in the initial state.
EX[Q(2)] Q(Z) can hold in the next
time step.

Qi(z) will hold for finitely

EU[Q1(z), Q2(2)] many steps and then Q2(z)

can hold.
EF[Q(2)] ?(Z) can hold at some future
ime.
Q(z) can hold at all future
EGIQ(2)] times, i.e. from this point
onwards.

Table 1: Temporal algebra constructs.

The verification is performed by tools developed by the
authors in Mathematica as

S(z) := BDDTLEvaluate[G(z,z"),F(z)].

The result is S(z) # false which means that there
exists behaviors where the specification above is not
true. From S(z) we can analyze why this is the case and
build a more detailed specification, i.e., we get a more
complete F(z). We have also used more complex plant
models where sensor errors are added to the behavior.
The result of the verification proves that the behavior
of the controller code is correct even for sensor failures
of the plant. See [6] for details.

The project has showed that it is possible to do dy-
namic analysis of complex systems (>100 boolean vari-
ables for G(z,z"1)) by using formal symbolic techniques.
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