
Dynamic View Synthesis from Dynamic Monocular Video

Chen Gao

Virginia Tech

chengao@vt.edu

Ayush Saraf

Facebook

ayush29feb@fb.com

Johannes Kopf

Facebook

jkopf@fb.com

Jia-Bin Huang

Virginia Tech

jbhuang@vt.edu

https://free-view-video.github.io

...

...

...
tim
e

view

t0 t1

tN
. . .

(a) Input: monocular video (b) Output: free-viewpoint rendering

Figure 1. Dynamic view synthesis from dynamic monocular video. Our method takes a monocular video as input (a). Each frame in the

video is taken at a unique time step and from a different view (e.g., the yellow and blue frames). Our goal is to synthesize photorealistic

novel views of a dynamic scene at arbitrary camera viewpoints and time steps (red frames). Such a system enables free-viewpoint video,

providing immersive and almost life-like viewing experiences for users.

Abstract

We present an algorithm for generating novel views at

arbitrary viewpoints and any input time step given a monoc-

ular video of a dynamic scene. Our work builds upon re-

cent advances in neural implicit representation and uses

continuous and differentiable functions for modeling the

time-varying structure and the appearance of the scene.

We jointly train a time-invariant static NeRF and a time-

varying dynamic NeRF, and learn how to blend the results

in an unsupervised manner. However, learning this implicit

function from a single video is highly ill-posed (with in-

finitely many solutions that match the input video). To re-

solve the ambiguity, we introduce regularization losses to

encourage a more physically plausible solution. We show

extensive quantitative and qualitative results of dynamic

view synthesis from casually captured videos.

1. Introduction

Video provides a window into another part of the real

world. In traditional videos, however, the viewer observes

the action from a fixed viewpoint and cannot navigate the

scene. Dynamic view synthesis comes to the rescue. These

techniques aim at creating photorealistic novel views of a

dynamic scene at arbitrary camera viewpoints and time,

which enables free-viewpoint video and stereo rendering,

and provides an immersive and almost life-like viewing ex-

perience. It facilitates applications such as replaying profes-

sional sports events in 3D [7], creating cinematic effects like

freeze-frame bullet-time (from the movie “The Matrix”),

virtual reality [11, 5], and virtual 3D teleportation [37].

Systems for dynamic view synthesis need to overcome

challenging problems related to video capture, reconstruc-

tion, compression, and rendering. Most of the existing

methods rely on laborious and expensive setups such as cus-

tom fixed multi-camera video capture rigs [8, 61, 11, 37, 5].

While recent work relaxes some constraints and can han-

dle unstructured video input (e.g., from hand-held cam-

5712

eras) [3, 4], many methods still require synchronous capture

from multiple cameras, which is impractical for most peo-

ple. Few methods produce dynamic view synthesis from

a single stereo or even RGB camera, but they are limited

to specific domains such as human performance capture

[12, 19]. Recent work on depth estimation from monocular

videos of dynamic scenes shows promising results [27, 58].

Yoon et al. [58] use estimated depth maps to warp and blend

multiple images to synthesize an unseen target viewpoint.

However, the method uses a local representation (i.e., per-

frame depth maps) and processes each novel view indepen-

dently. Consequently, the synthesized views are not consis-

tent and may exhibit abrupt changes.

This paper presents a new algorithm for dynamic view

synthesis from a dynamic video that overcomes this limita-

tion using a global representation. More specifically, we use

an implicit neural representation to model the time-varying

volume density and appearance of the events in the video.

We jointly train a time-invariant static neural radiance field

(NeRF) [32] and a time-varying dynamic NeRF, and learn

how to blend the results in an unsupervised manner. How-

ever, it is challenging for the dynamic NeRF to learn plausi-

ble 3D geometry because we have just one and only one 2D

image observation at each time step. There are infinitely

many solutions that can correctly render the given input

video, yet only one is physically correct for generating pho-

torealistic novel views. Our work focuses on resolving this

ambiguity by introducing regularization losses to encourage

plausible reconstruction. We validate our method’s perfor-

mance on the Dynamic multi-view dynamic scenes dataset

by Yoon et al. [58].

The key points of our contribution can be summarized as

follows:

• We present a method for modeling dynamic radiance

fields by jointly training a time-invariant model and a

time-varying model, and learn how to blend the results

in an unsupervised manner.

• We design regularization losses for resolving the am-

biguities when learning the dynamic radiance fields.

• Our model leads to favorable results compared to

the state-of-the-art algorithms on the Dynamic Scenes

Dataset.

2. Related Work

View synthesis from images. View synthesis aims to gen-

erate new views of a scene from multiple posed images [47].

Light fields [25] or Lumigraph [18] synthesize realistic ap-

pearance but require capturing and storing many views. Us-

ing explicit geometric proxies allows high-quality synthesis

from relatively fewer input images [6]. However, estimat-

ing accurate scene geometry is challenging due to untex-

tured regions, highlights, reflections, and repetitive patterns.

Prior work addresses this via local warps [9], operating in

the gradient domain [23], soft 3D reconstruction [41], and

learning-based approaches [21, 15, 14, 20, 44]. Recently,

neural implicit representation methods have shown promis-

ing view synthesis results by modeling the continuous vol-

umetric scene density and color with a multilayer percep-

tron [32, 34, 57, 59].

Several methods tackle novel view synthesis from one

single input image. These methods differ in their underlying

scene representation, including depth [35, 53], multiplane

images [52], or layered depth images [46, 24]. Compared

with existing view synthesis methods that focus on static

objects or scenes, our work aims to achieve view synthesis

of dynamic scenes from one single video.

View synthesis for videos. Free viewpoint video offers im-

mersive viewing experiences and creates freeze-frame (bul-

let time) visual effects [28]. Compared to view synthe-

sis techniques for images, capturing, reconstructing, com-

pressing, and rendering dynamic contents in videos is sig-

nificantly more challenging. Many existing methods ei-

ther focus on specific domains (e.g., humans) [8, 12, 19]

or transitions between input views only [3]. Several sys-

tems have been proposed to support interactive viewpoint

control watching videos of generic scenes [61, 11, 37, 4, 5,

1]. However, these methods require either omnidirectional

stereo camera [1], specialized hardware setup (e.g., custom

camera rigs) [61, 11, 5, 37], or synchronous video captures

from multiple cameras [4]. Recently, Yoon et al. [58] show

that one can leverage depth-based warping and blending

techniques in image-based rendering for synthesizing novel

views of a dynamic scene from a single camera. Similar to

[58], our method also synthesizes novel views of a dynamic

scene. In contrast to using explicit depth estimation [58],

our implicit neural representation based approach facilitates

geometrically accurate rendering and smoother view inter-

polation.

Implicit neural representations. Continuous and dif-

ferentiable functions parameterized by fully-connected net-

works (also known as multilayer perceptron, or MLPs) have

been successfully applied as compact, implicit representa-

tions for modeling 3D shapes [10, 55, 38, 17, 16], object

appearances [36, 34], 3D scenes [48, 32, 40]. These meth-

ods train MLPs to regress input coordinates (e.g., points

in 3D space) to the desired quantities such as occupancy

value [30, 45, 40], signed distance [38, 2, 31], volume den-

sity [32], color [36, 48, 45, 32]. Leveraging differentiable

rendering [50, 22], several recent works have shown train-

ing these MLPs with multiview 2D images (without using

direct 3D supervision) [34, 56, 32].

Most of the existing methods deal with static scenes. Di-

rectly extending the MLPs to encode the additional time di-

mension does not work well due to 3D shape and motion

5713

density

σs ∈ R

embedding

vs ∈ R
256

color

c
s ∈ R

3

scene flow

[sfw, sbw] ∈ R
6

blending

b ∈ [0, 1]
density

σd ∈ R

color

c
d ∈ R

3

θd

θs

θbase
s

3D position

r(uk) = (x, y, z)

Time t

Viewing direction

d = (dx, dy, dz)

P.E.

P.E.

P.E.

P.E.

(a) Static NeRF (Section 3.2) (b) Dynamic NeRF (Section 3.3)

Figure 2. Method overview. We propose to use two different models to represent the (a) static and (b) dynamic scene components.(a)

Static NeRF: For static components, we train a NeRF model following [32], but excluding all the pixels marked as dynamic. This allows

us to reconstruct the background’s structure and appearance without conflicting the moving objects. (b) Dynamic NeRF: Modeling a

dynamic scene from a single video is highly ill-posed. To resolve the ambiguity, we leverage the multi-view constraints as follow: Our

Dynamic NeRF takes both r(uk) and t as input to predict 3D scene flow from time t to t + 1 (sfw) and from time t to t − 1 (sbw). Using

the predicted scene flow, we can create a warped radiance field by resampling the radiance field modeled at the adjacent time instances and

apply temporal consistency. Thus, at each instance, we can have multiple views associated with different time t to train the model.

entanglement. The method in [29] extends NeRF for han-

dling crowdsourced photos that contain lighting variations

and transient objects. Our use of static/dynamic NeRF is

similar to [29], but we focus on modeling the dynamic ob-

jects (as opposed to static scene in [29]). The work that

most related to ours is [33], which learns a continuous mo-

tion field over space and time. Our work is similar in that

we also disentangle the shape/appearance and the motion

for dynamic scene elements. Unlike [33], our method mod-

els the shape and appearance of a dynamic scene from a

casually captured video without accessing ground truth 3D

information for training.

Concurrent work on dynamic view synthesis. Very re-

cently, several methods concurrently to ours have been pro-

posed to extend NeRF for handling dynamic scenes [54, 26,

51, 39, 42]. These methods either disentangle the dynamic

scenes into a canonical template and deformation fields for

each frame [51, 42, 39] or directly estimate dynamic (4D

spatiotemporal) radiance fields [54, 26]. Our work adopts

the 4D radiance fields approach due to its capability of mod-

eling large scene dynamics. In particular, our approach

shares high-level similarity with [26] in that we also reg-

ularize the dynamic NeRF through scene flow estimation.

Our method differs in several important technical details,

including scene flow based 3D temporal consistency loss,

sparsity regularization, and the rigidity regularization of the

scene flow prediction. For completeness, we include exper-

imental comparison with one template-based method [51]

and one 4D radiance field approach [26].

3. Method

3.1. Overview

Our method takes as input (1) monocular video

{I0, I1, . . . , IN−1} with N frames, and (2) a binary mask

M of the foreground object for each frame. The mask can

be obtained automatically via segmentation or motion seg-

mentation algorithms or semi-automatically via interactive

methods such as rotoscoping. Our goal is to learn a global

representation that facilitates free-viewpoint rendering at ar-

bitrary views and input time steps.

Specifically, we build on neural radiance fields

(NeRFs) [32] as our base representation. NeRF models

the scene implicitly with a continuous and differentiable

function (i.e., an MLP) that regresses an input 3D posi-

tion x = (x, y, z) and the normalized viewing direction

d = (dx, dy, dz) to the corresponding volume density σ and

color c = (r, g, b). Such representations have demonstrated

high-quality view synthesis results when trained with mul-

tiple images of a scene. However, NeRF assumes that the

scene is static (with constant density and radiance). This

assumption does not hold for casually captured videos of

dynamic scenes.

One straightforward extension of the NeRF model would

be to include time as an additional dimension as input, e.g.,

using 4D position (x, y, z, t) input where t denotes the in-

dex of the frame. While this model theoretically can rep-

resent the time-varying structure and appearance of a dy-

namic scene, the model training is highly ill-posed, given

that we only have one single 2D image observation at each

time step. There exist infinitely many possible solutions that

match the input video exactly. Empirically, we find that di-

rectly training the “NeRF + time” model leads to low visual

5714

(a) NeRF (b) NeRF + time (c) Static NeRF (Ours)

Figure 3. Why static NeRF? NeRF [32] assumes that the scene is entirely static. (a) Directly training a NeRF model on a dynamic

scene inevitably results in blurry reconstruction (even for the static regions of the scene). (b) One straightforward extension is to include

time as an additional input dimension (NeRF + time). However, such a method suffers from ambiguity because the input video can be

explained either with time-varying geometry or appearance or both. The representation reconstructs the input frames well but produces

visual artifacts at novel views. (c) To tackle this issue, we model the static components of the scene using a static NeRF. We exclude all the

pixels marked as “dynamic” from training the model. This allows us to accurately reconstruct the background’s structure and appearance

without conflicting the moving objects.

quality.

The key contribution of our paper lies in resolving this

ambiguity for modeling the time-varying radiance fields. To

this end, we propose to use different models to represent

static or dynamic scene components using the user-provided

dynamic masks.

For static components of the scene, we apply the orig-

inal NeRF model [32], but exclude all “dynamic” pixels

from training the model. This allows us to reconstruct the

background’s structure and appearance without conflicting

reconstruction losses from moving objects. We refer to this

model as “Static NeRF” (Figure 3).

For dynamic components of the scene (e.g., moving ob-

jects), we train an MLP that takes a 3D position and time

(x, y, z, t) as input to model the volume density and color

of the dynamic objects at each time instance. To leverage

the multi-view geometry, we use the same MLP to predict

the additional three-dimensional scene flow from time t to

the previous and next time instance. Using the predicted

forward and backward scene flow, we create a warped ra-

diance field (similar to the backward warping 2D optical

flow) by resampling the radiance fields implicitly modeled

at time t+ 1 and t− 1. For each 3D position, we then have

up to three multi-view observations to train our model. We

refer to this model as “Dynamic NeRF” (Figure 4). Addi-

tionally, our Dynamic NeRF predicts a blending weight and

learns how to blend the results from both the static NeRF

and dynamic NeRF in an unsupervised manner. In the fol-

lowing, we discuss the detailed formulation of the proposed

static and dynamic NeRF models and the training losses for

optimizing the weights for the implicit functions.

3.2. Static NeRF

Formulation. Our static NeRF follows closely the formu-

lation in [32] and is represented by a fully-connected neural

network. Consider a ray from the camera center o through a

given pixel on the image plane as r(uk) = o+ukd, where d

is the normalized viewing direction, our static NeRF maps a

3D position r(uk) and viewing direction d to volume den-

sity σs and color cs:

(σs, cs) = MLPθ (r(uk)) , (1)

where MLPθ stands for two cascaded MLP, detailed in Fig-

ure 2. We can compute the color of the pixel (corresponding

the ray r(uk)) using numerical quadrature for approximat-

ing the volume rendering interval [13]:

C
s(r) =

K
∑

k=1

T s(uk)α
s(σs(uk) δk) c

s(uk), (2)

T s(uk) = exp

(

−
k−1
∑

k′=1

σs(uk) δk

)

, (3)

where α(x) = 1 − exp(−x) and δk = uk+1 − uk is the

distance between two quadrature points. The K quadrature

points {uk}
K
k=1

are drawn uniformly between un and uf
[32]. T s(uk) indicates the accumulated transmittance from

un to uk.

Static rendering photometric loss. To train the weights θs
of the static NeRF model, we first construct the camera rays

using all the pixels for all the video frames (using the asso-

ciated intrinsic and extrinsic camera poses for each frame).

Here we denote rij as the rays passing through the pixel j

on image i with rij(u) = oi+(u)dij . We can then optimize

θs by minimizing the static rendering photometric loss for

all the color pixels C(rij) in frame i ∈ {0, . . . , N−1} in

the static regions (where M(rij) = 0):

Lstatic =
∑

ij

∥(Cs(rij)−C
gt(rij)) · (1−M(rij))∥

2

2

(4)

5715

N
o
v
el

v
ie

w
R

ec
o

n
st

ru
ct

io
n

(a) NeRF + time (b) Ours

Figure 4. Why dynamic NeRF? (Top) Since the training objec-

tive is to minimize the image reconstruction loss on the input video

frames, NeRF + time explains the input frames very well. (Bottom)

However, there are infinitely many solutions that can correctly ren-

der the given input video, yet only one of them is physically cor-

rect for generating photorealistic novel views. NeRF + time tries

to disentangle view from time using time as additional input. How-

ever, the problem becomes under-constrained and leads to artifacts

in both static and dynamic regions. Our dynamic NeRF produces

plausible view synthesis results for moving objects.

3.3. Dynamic NeRF

In this section, we introduce our core contribution

to modeling time-varying radiance fields using dynamic

NeRF. The challenge lies in that we only have one single

2D image observation at each time instance t. So the train-

ing lacks multi-view constraints. To resolve this training

difficulty, we predict the forward and backward scene flow

and use them to create a warped radiance field by resam-

pling the radiance fields implicitly modeled at time t + 1
and t − 1. For each 3D position at time t, we then have

up to three 2D image observations. This multi-view con-

straint effectively constrains the dynamic NeRF to produce

temporally consistent radiance fields.

Formulation. Our dynamic NeRF takes a 4D-tuple

(r(uk), t) as input and predict 3D scene flow vectors sfw,

sbw, volume density σd, color cd and blending weight b:
(

sfw, sbw, σ
d
t , c

d
t , b
)

= MLPθd (r(uk), t) (5)

Using the predicted scene flow sfw and sbw, we obtain the

scene flow neighbors r(uk) + sfw and r(uk) + sbw. We also

use the predicted scene flow to warp the radiance fields from

the neighboring time instance to the current time. For every

3D position at time t, we obtain the occupancy σd and color

c
d through querying the same MLP model at r(uk)+s:

(

σd
t+1, c

d
t+1

)

= MLPθd(r(uk) + sfw, t+ 1) (6)
(

σd
t−1, c

d
t−1

)

= MLPθd(r(uk) + sbw, t− 1) (7)

For computing the color of a dynamic pixel at time t′,

(a) Input (b) Induced flow (c) Estimated flow

Figure 5. Scene flow induced optical flow. We supervise the pre-

dicted scene flow by minimizing the endpoint error between the es-

timated optical flow [49] and our scene flow induced optical flow.

Since we jointly train our model with both photometric loss and

motion matching loss, our learned volume density helps render

a more accurate flow than the estimated flow (e.g., the complex

structures of the fence on the right).

we use the following approximation of volume rendering

integral:

C
d
t′(r) =

K
∑

k=1

T d
t′(uk)α

d(σd
t′(uk) δk) c

d
t′(uk) (8)

Dynamic rendering photometric loss. Similar to the

static rendering loss, we train the dynamic NeRF model by

minimizing the reconstruction loss:

Ldyn =
∑

t′∈{t, t−1, t+1}

∑

ij

∥

∥(Cd
t′(rij)−C

gt(rij))
∥

∥

2

2
(9)

3.4. Regularization Losses for Dynamic NeRF

While leveraging the multi-view constraint in the dy-

namic NeRF model reduces the amount of ambiguity, the

model training remains ill-posed without proper regulariza-

tion. To this end, we design several regularization losses to

constrain the Dynamic NeRF.

Motion matching loss. As we do not have direct 3D su-

pervision for the predicted scene flow from the motion MLP

model, we use 2D optical flow (estimated from input image

pairs using [49]) as indirect supervision. For each 3D point

at time t, we first use the estimated scene flow to obtain the

corresponding 3D point in the reference frame. We then

project this 3D point onto the reference camera so we can

compute the scene flow induced optical flow and enforce it

to match the estimated optical flow (Figure 5). Since we

jointly train our model with both photometric loss and mo-

tion matching loss, the learned volume density helps render

a more accurate flow than the estimated flow. Thus, we do

not suffer from inaccurate optical flow supervision.

Motion regularization. Unfortunately, matching the ren-

dered scene flow with 2D optical flow does not fully resolve

all ambiguity, as a 1D family of scene flow vectors pro-

duces the same 2D optical flow (Figure 6). We regularize

the scene flow to be slow and temporally smooth:

5716

(r(uk), t) (r(uk) + sfw, t+ 1)

t t+ 1

Optical

flow

Figure 6. Ambiguity of optical flow supervision. Matching the

scene flow induced optical flow with the estimated 2D optical flow

does not fully resolve the ambiguity. There exists a 1D family of

scene flow predictions that produce the same 2D optical flow.

Lslow =
∑

ij

∥sfw(rij)∥1 + ∥sbw(rij)∥1 (10)

Lsmooth =
∑

ij

∥sfw(rij) + sbw(rij)∥
2

2
(11)

We further regularize the scene flow to be spatially

smooth by minimizing the difference between neighboring

3D points’ scene flow. To regularize the consistency of the

scene flow, we have the scene flow cycle consistency regu-

larization:

Lcyc =
∑

∥sfw(r, t) + sbw(r+ sfw(r, t), t+ 1)∥
2

2

+ ∥sbw(r, t) + sfw(r+ sbw(r, t), t− 1)∥
2

2
(12)

Sparsity regularization. We render the color using princi-

ples from classical volume rendering. One can see through

a particle if it is partially transparent. However, one can not

see through the scene flow because the scene flow is not an

intrinsic property (unlike color). Thus, we minimize the en-

tropy of the rendering weights T dαd along each ray so that

few samples dominate the rendering.

Depth order loss. For a moving object, we can either in-

terpret it as an object close to the camera moving slowly or

an object far away moving fast. To resolve the ambiguity,

we leverage the state-of-the-art single-image depth estima-

tion [43] to estimate the input depth. As the depth estimates

are up to shift and scale, we cannot directly use them to su-

pervise our model. Instead, we use the robust loss as in [43]

to constrain our dynamic NeRF, and further constrain our

dynamic NeRF with our static NeRF. We additionally mini-

mize the L2 difference between D
s and D

d for all the pixels

D
ep

th
C

o
lo

r

(a) Dynamic NeRF (b) Static NeRF (c) Full model

Figure 7. Full model rendering. We compose the (a) dynamic

and (b) static NeRF model into (c) our full model and render full

frames at novel viewpoints and time steps.

in the static regions (where M(rij) = 0):

Ldepth =
∑

ij

∥

∥

∥
Dd(rij)−Dgt(rij)

∥

∥

∥

2

2
+

∥

∥(Dd(rij)−D
s(rij)) · (1−M(rij))

∥

∥

2

2
,

where D stands for the normalized depth.

3D temporal consistency loss. If an object remains un-

moved for a while, the network can not learn the correct

volume density and color of the occluded background at the

current time because those 3D positions are omitted during

volume rendering. When rendering a novel view, the model

may generate holes for the occluded region. To address this

issue, we propose the 3D temporal consistency loss before

rendering. Specifically, we enforce the volume density and

color of each 3D position to match its scene flow neigh-

bors’. The correct volume density and color will then be

propagated across time steps.

Rigidity regularization of the scene flow. Our model

prefers to explain a 3D position by the static NeRF if this

position has no motion. For static position, we want the

blending weight b to be closed to 1. For a non-rigid posi-

tion, the blending weight b should be 0. This learned blend-

ing weight can further constrain the rigidity of the predicted

scene flow by taking the product of the predicted scene flow

and (1− b). If a 3D position has no motion, the scene flow

is forced to be zero.

3.5. Combined model

With both the static and dynamic NeRF model, we can

easily compose them into a complete model using the pre-

dicted blending weight b and render full color frames at

novel views and time:

C
full(r) =

K
∑

k=1

T full
(

αd(σdδk)(1− b)cd + αs(σsδk)bc
s
)

We predict the blending weight b using the dynamic NeRF

to enforce the time-dependency. Using the blending weight,

we can also render a dynamic component only frame where

5717

Table 1. Novel view synthesis results. We report the average PSNR and LPIPS results with comparisons to existing methods on Dynamic

Scene dataset [58]. The best performance is in bold and the second best is underscored.

PSNR ↑ / LPIPS ↓ Jumping Skating Truck Umbrella Balloon1 Balloon2 Playground Average

NeRF 20.58 / 0.305 23.05 / 0.316 22.61 / 0.225 21.08 / 0.441 19.07 / 0.214 24.08 / 0.098 20.86 / 0.164 21.62 / 0.252

NeRF + time 16.72 / 0.489 19.23 / 0.542 17.17 / 0.403 17.17 / 0.752 17.33 / 0.304 19.67 / 0.236 13.80 / 0.444 17.30 / 0.453

Yoon et al. [58] 20.16 / 0.148 21.75 / 0.135 23.93 / 0.109 20.35 / 0.179 18.76 / 0.178 19.89 / 0.138 15.09 / 0.183 19.99 / 0.153

Tretschk et al. [51] 19.38 / 0.295 23.29 / 0.234 19.02 / 0.453 19.26 / 0.427 16.98 / 0.353 22.23 / 0.212 14.24 / 0.336 19.20 / 0.330

Li et al. [26] 24.12 / 0.156 28.91 / 0.135 25.94 / 0.171 22.58 / 0.302 21.40 / 0.225 24.09 / 0.228 20.91 / 0.220 23.99 / 0.205

Ours 24.23 / 0.144 28.90 / 0.124 25.78 / 0.134 23.15 / 0.146 21.47 / 0.125 25.97 / 0.059 23.65 / 0.093 24.74 / 0.118

NeRF + time Yoon et al. [58] Tretschk et al. [51] Li et al. [26] Ours Ground truth

Figure 8. Novel view synthesis. Our model enables the free-viewpoint synthesis of a dynamic scene. Compared with Yoon et al. [58],

our results appear slightly blurry (because we reconstruct the entire frame as opposed to warp and blend input images), but align with the

ground truth image better and create smoother view-interpolation results. When compared to other NeRF-based methods, our results are

sharper and closer to the ground truth. Please refer to the supplementary material for video results.

the static region is transparent (Figure 7).

Full rendering photometric loss. We train the two NeRF

models jointly by applying a reconstruction loss on the com-

posite results:

Lfull =
∑

ij

∥

∥C
full(rij)−C

gt(rij)
∥

∥

2

2
(13)

4. Experimental Results

4.1. Experimental setup

Dataset. We evaluate our method on the Dynamic Scene

Dataset [58], which contains 9 video sequences. The se-

quences are captured with 12 cameras using a static cam-

era rig. All cameras simultaneously capture images at 12

different time steps {t0, t1, . . . , t11}. The input twelve-

frames monocular video {I0, I1, . . . , I11} is obtained by

sampling the image taken by the i-th camera at time ti.

Please note that a different camera is used for each frame

of the video to simulate camera motion. The frame Ii con-

tains a background that does not change in time, and a time-

varying dynamic object. Like NeRF [32], we use COLMAP

to estimate the camera poses and the near and far bounds of

the scene. We assume all the cameras share the same in-

trinsic parameter. We exclude the DynamicFace sequence

because COLMAP fails to estimate camera poses. We re-

size all the sequences to 480× 270 resolution.

4.2. Evaluation

Quantitative evaluation. To quantitatively evaluate the

synthesized novel views, we fix the view to the first camera

and change time. We show the PSNR and LPIPS [60] be-

tween the synthesized views and the corresponding ground

truth views in Table 1. We obtain the results of Li et

al. [26] and Tretschk et al. [51] using the official implemen-

tation with default parameters. Note that the method from

Tretschk et al. [51] needs per-sequence hyper-parameter

tuning. The visual quality might be improved with careful

hyper-parameter tuning. Our method compares favorably

against the state-of-the-art algorithms.

Qualitative evaluation. We show the sample view synthe-

sis results in Figure 8. With the learned neural implicit rep-

resentation of the scene, our method can synthesize novel

views that are never seen during training. Please refer to

5718

Ours Li et al. [26]

Figure 9. Comparison with [26]. We show that our proposed reg-

ularizations are the keys to better visual results.

Table 2. Ablation study on different losses. We report PSNR,

SSIM and LPIPS on the Playground sequence.

PSNR ↑ SSIM ↑ LPIPS ↓

Ours w/o Lfull 12.90 0.1549 0.991

Ours w/o static NeRF 18.81 0.4969 0.293

Ours w/o blending 22.23 0.7610 0.153

Ours w/o Lsparsity 22.32 0.7884 0.137

Ours w/o Lreg 22.53 0.7972 0.124

Ours w/o Lmotion 22.61 0.8027 0.137

Ours w/o rigidity 22.73 0.8142 0.118

Ours w/o Ldepth 22.99 0.8170 0.117

Ours w/o mask 23.43 0.8205 0.102

Ours 23.65 0.8452 0.093

the supplementary video results for the novel view synthe-

sis, and the extensive qualitative comparison to the methods

listed in Table 1.

Figure 9 shows the comparison with Li et al. [26] on

large motion sequences taken in the wild. Unlike [26] which

predicts the blending weight using a static NeRF, we learn

a time-varying blending weight. This weight helps better

distinguish the static region and yields a clean background.

Our rigidity regularization encourages the scene flow to be

zero for the rigid region. As a result, the multi-view con-

straints enforce the background to be static. Without this

regularization, the background becomes time-variant and

leads to floating artifacts in [26].

4.3. Ablation Study

Table 2 analyzes the contribution of each loss quantita-

tively.

Depth order loss. For a complicated scene, we need ad-

ditional supervision to learn the correct geometry. In Fig-

ure 10 we study the effect of the depth order loss. Since the

training objective is to minimize the image reconstruction

loss on the input views, the network may learn a solution

that correctly renders the given input video. However, it

may be a physically incorrect solution and produces arti-

facts at novel views. With the help of the depth order loss

Ldepth, our dynamic NeRF model learns the correct relative

depth and renders plausible content.

Without depth

order loss

With depth

order loss

Without motion

regularization

With motion

regularization

Figure 10. Depth order loss and motion regularization. Training

with depth order loss ensures the correct relative depth of the dy-

namic object. Regularizing our scene flow prediction in dynamic

NeRF can help handle videos with large object motion.

Non-rigid deformation Incorrect flow

Figure 11. Failure cases. (Left) Our method does not handle non-

rigid deformation very well. (Right) Our dynamic NeRF heavily

relies on the optical flow estimation and produces artifacts with

inaccurate flow estimates.

Motion regularization. Supervising scene flow prediction

with the 2D optical flow is under-constrained. We show in

Figure 10 that without a proper motion regularization, the

synthesized results are blurry. The scene flow may point to

the wrong location. By regularizing the scene flow to be

slow, temporally and spatially smooth, and consistent, we

obtain plausible results.

Rigidity regularization of the scene flow. The rigidity

regularization helps with a more accurate scene flow predic-

tion for the static region. The dynamic NeRF is thus trained

with a more accurate multi-view constraint. We show in

Figure 9 that the rigidity regularization is the key to a clean

background.

4.4. Failure Cases

Dynamic view synthesis remains a challenging problem.

We show and explain several failure cases in Figure 11.

5. Conclusions

We have presented a new algorithm for dynamic view

synthesis from a single monocular video. Our core techni-

cal contribution lies in scene flow based regularization for

enforcing temporal consistency and alleviates the ambiguity

when modeling a dynamic scene with only one observation

at any given time. We show that our proposed scene flow

based 3D temporal consistency loss and the rigidity regu-

larization of the scene flow prediction are the keys to better

visual results. We validate our design choices and compare

favorably against the state of the arts.

5719

References

[1] Benjamin Attal, Selena Ling, Aaron Gokaslan, Christian

Richardt, and James Tompkin. MatryODShka: Real-time

6DoF video view synthesis using multi-sphere images. In

ECCV, 2020. 2

[2] Matan Atzmon and Yaron Lipman. Sal: Sign agnostic learn-

ing of shapes from raw data. In CVPR, 2020. 2

[3] Luca Ballan, Gabriel J Brostow, Jens Puwein, and Marc

Pollefeys. Unstructured video-based rendering: Interactive

exploration of casually captured videos. ACM TOG (Proc.

SIGGRAPH), 2010. 2

[4] Aayush Bansal, Minh Vo, Yaser Sheikh, Deva Ramanan, and

Srinivasa Narasimhan. 4D visualization of dynamic events

from unconstrained multi-view videos. In CVPR, 2020. 2

[5] Michael Broxton, John Flynn, Ryan Overbeck, Daniel Erick-

son, Peter Hedman, Matthew Duvall, Jason Dourgarian, Jay

Busch, Matt Whalen, and Paul Debevec. Immersive light

field video with a layered mesh representation. ACM TOG

(Proc. SIGGRAPH), 39(4):86–1, 2020. 1, 2

[6] Chris Buehler, Michael Bosse, Leonard McMillan, Steven

Gortler, and Michael Cohen. Unstructured lumigraph ren-

dering. In Proceedings of the 28th annual conference on

Computer graphics and interactive techniques, 2001. 2

[7] Canon. Free viewpoint video system. https://global.

canon/en/technology/frontier18.html, 2008.

1

[8] Joel Carranza, Christian Theobalt, Marcus A Magnor, and

Hans-Peter Seidel. Free-viewpoint video of human actors.

ACM TOG (Proc. SIGGRAPH), 22(3):569–577, 2003. 1, 2

[9] Gaurav Chaurasia, Sylvain Duchene, Olga Sorkine-

Hornung, and George Drettakis. Depth synthesis and lo-

cal warps for plausible image-based navigation. ACM TOG

(Proc. SIGGRAPH), 32(3):1–12, 2013. 2

[10] Zhiqin Chen and Hao Zhang. Learning implicit fields for

generative shape modeling. In CVPR, 2019. 2

[11] Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett, Den-

nis Evseev, David Calabrese, Hugues Hoppe, Adam Kirk,

and Steve Sullivan. High-quality streamable free-viewpoint

video. ACM TOG (Proc. SIGGRAPH), 34(4):1–13, 2015. 1,

2

[12] Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip

Davidson, Sean Ryan Fanello, Adarsh Kowdle, Sergio Orts

Escolano, Christoph Rhemann, David Kim, Jonathan Tay-

lor, et al. Fusion4D: Real-time performance capture of chal-

lenging scenes. ACM TOG (Proc. SIGGRAPH), 35(4):1–13,

2016. 2

[13] Robert A Drebin, Loren Carpenter, and Pat Hanrahan.

Volume rendering. ACM Siggraph Computer Graphics,

22(4):65–74, 1988. 4

[14] John Flynn, Michael Broxton, Paul Debevec, Matthew Du-

Vall, Graham Fyffe, Ryan Overbeck, Noah Snavely, and

Richard Tucker. DeepView: View synthesis with learned

gradient descent. In CVPR, 2019. 2

[15] John Flynn, Ivan Neulander, James Philbin, and Noah

Snavely. Deepstereo: Learning to predict new views from

the world’s imagery. In CVPR, 2016. 2

[16] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna,

and Thomas Funkhouser. Local deep implicit functions for

3D shape. In CVPR, 2020. 2

[17] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna,

William T Freeman, and Thomas Funkhouser. Learning

shape templates with structured implicit functions. In ICCV,

2019. 2

[18] Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and

Michael F Cohen. The lumigraph. In Proceedings of the con-

ference on Computer graphics and interactive techniques,

pages 43–54, 1996. 2

[19] Marc Habermann, Weipeng Xu, Michael Zollhoefer, Gerard

Pons-Moll, and Christian Theobalt. Livecap: Real-time hu-

man performance capture from monocular video. ACM TOG

(Proc. SIGGRAPH), 38(2):1–17, 2019. 2

[20] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,

George Drettakis, and Gabriel Brostow. Deep blending for

free-viewpoint image-based rendering. ACM TOG (Proc.

SIGGRAPH), 37(6):1–15, 2018. 2

[21] Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ra-

mamoorthi. Learning-based view synthesis for light field

cameras. ACM TOG (Proc. SIGGRAPH), 35(6):1–10, 2016.

2

[22] Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro

Ando, Toru Matsuoka, Wadim Kehl, and Adrien Gaidon.

Differentiable rendering: A survey. arXiv preprint

arXiv:2006.12057, 2020. 2

[23] Johannes Kopf, Fabian Langguth, Daniel Scharstein,

Richard Szeliski, and Michael Goesele. Image-based ren-

dering in the gradient domain. ACM TOG (Proc. SIGGRAPH

Asia), 32(6), 2013. 2

[24] Johannes Kopf, Kevin Matzen, Suhib Alsisan, Ocean

Quigley, Francis Ge, Yangming Chong, Josh Patterson, Jan-

Michael Frahm, Shu Wu, Matthew Yu, et al. One shot 3D

photography. ACM TOG (Proc. SIGGRAPH), 39(4):76–1,

2020. 2

[25] Marc Levoy and Pat Hanrahan. Light field rendering. In

Proceedings of the annual conference on Computer graphics

and interactive techniques, 1996. 2

[26] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.

Neural scene flow fields for space-time view synthesis of dy-

namic scenes. In CVPR, 2021. 3, 7, 8

[27] Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen,

and Johannes Kopf. Consistent video depth estimation. ACM

TOG (Proc. SIGGRAPH), 2020. 2

[28] Marcus Magnor, Marc Pollefeys, German Cheung, Wojciech

Matusik, and Christian Theobalt. Video-based rendering. In

ACM SIGGRAPH 2005 Courses, 2005. 2

[29] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,

Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-

worth. Nerf in the wild: Neural radiance fields for uncon-

strained photo collections. arXiv preprint arXiv:2008.02268,

2020. 3

[30] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-

bastian Nowozin, and Andreas Geiger. Occupancy networks:

Learning 3D reconstruction in function space. In CVPR,

2019. 2

5720

[31] Mateusz Michalkiewicz, Jhony K Pontes, Dominic Jack,

Mahsa Baktashmotlagh, and Anders Eriksson. Implicit sur-

face representations as layers in neural networks. In ICCV,

2019. 2

[32] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view syn-

thesis. In ECCV, 2020. 2, 3, 4, 7

[33] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and

Andreas Geiger. Occupancy flow: 4D reconstruction by

learning particle dynamics. In ICCV, 2019. 3

[34] M. Niemeyer, Lars M. Mescheder, Michael Oechsle, and A.

Geiger. Differentiable volumetric rendering: Learning im-

plicit 3D representations without 3D supervision. CVPR,

2020. 2

[35] Simon Niklaus, Long Mai, Jimei Yang, and Feng Liu. 3D

ken burns effect from a single image. ACM TOG (Proc. SIG-

GRAPH Asia), 38(6):1–15, 2019. 2

[36] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo

Strauss, and Andreas Geiger. Texture fields: Learning tex-

ture representations in function space. In ICCV, 2019. 2

[37] Sergio Orts-Escolano, Christoph Rhemann, Sean Fanello,

Wayne Chang, Adarsh Kowdle, Yury Degtyarev, David Kim,

Philip L Davidson, Sameh Khamis, Mingsong Dou, et al.

Holoportation: Virtual 3D teleportation in real-time. In Pro-

ceedings of the 29th Annual Symposium on User Interface

Software and Technology, 2016. 1, 2

[38] Jeong Joon Park, Peter Florence, Julian Straub, Richard

Newcombe, and Steven Lovegrove. Deepsdf: Learning con-

tinuous signed distance functions for shape representation.

In CVPR, 2019. 2

[39] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien

Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo-

Martin Brualla. Deformable neural radiance fields. arXiv

preprint arXiv:2011.12948, 2020. 3

[40] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc

Pollefeys, and Andreas Geiger. Convolutional occupancy

networks. In ECCV, 2020. 2

[41] Eric Penner and Li Zhang. Soft 3D reconstruction for view

synthesis. ACM TOG (Proc. SIGGRAPH), 36(6):1–11, 2017.

2

[42] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and

Francesc Moreno-Noguer. D-nerf: Neural radiance fields for

dynamic scenes. In CVPR, 2021. 3

[43] René Ranftl, Katrin Lasinger, David Hafner, Konrad

Schindler, and Vladlen Koltun. Towards robust monocular

depth estimation: Mixing datasets for zero-shot cross-dataset

transfer. TPAMI, 2020. 6

[44] Gernot Riegler and Vladlen Koltun. Free view synthesis. In

ECCV, 2020. 2

[45] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-

ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned

implicit function for high-resolution clothed human digitiza-

tion. In ICCV, 2019. 2

[46] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin

Huang. 3D photography using context-aware layered depth

inpainting. In CVPR, 2020. 2

[47] Harry Shum and Sing Bing Kang. Review of image-based

rendering techniques. In Visual Communications and Image

Processing 2000, volume 4067, pages 2–13, 2000. 2

[48] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-

zstein. Scene representation networks: Continuous 3D-

structure-aware neural scene representations. In NeurIPS,

2019. 2

[49] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field

transforms for optical flow. In ECCV, 2020. 5

[50] Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann,

Stephen Lombardi, Kalyan Sunkavalli, Ricardo Martin-

Brualla, Tomas Simon, Jason Saragih, Matthias Nießner,

et al. State of the art on neural rendering. In Computer

Graphics Forum, 2020. 2

[51] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael

Zollhöfer, Christoph Lassner, and Christian Theobalt. Non-

rigid neural radiance fields: Reconstruction and novel view

synthesis of a deforming scene from monocular video. arXiv

preprint arXiv:2012.12247, 2020. 3, 7

[52] Richard Tucker and Noah Snavely. Single-view view syn-

thesis with multiplane images. In CVPR, 2020. 2

[53] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin

Johnson. Synsin: End-to-end view synthesis from a single

image. In CVPR, 2020. 2

[54] Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil

Kim. Space-time neural irradiance fields for free-viewpoint

video. In CVPR, 2021. 3

[55] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir

Mech, and Ulrich Neumann. Disn: Deep implicit surface

network for high-quality single-view 3D reconstruction. In

NeurIPS, 2019. 2

[56] Lior Yariv, Matan Atzmon, and Yaron Lipman. Univer-

sal differentiable renderer for implicit neural representations.

arXiv preprint arXiv:2003.09852, 2020. 2

[57] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan

Atzmon, Ronen Basri, and Yaron Lipman. Multiview neu-

ral surface reconstruction by disentangling geometry and ap-

pearance. In NeurIPS, 2020. 2

[58] Jae Shin Yoon, Kihwan Kim, Orazio Gallo, Hyun Soo Park,

and Jan Kautz. Novel view synthesis of dynamic scenes

with globally coherent depths from a monocular camera. In

CVPR, 2020. 2, 7

[59] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen

Koltun. Nerf++: Analyzing and improving neural radiance

fields. arXiv preprint arXiv:2010.07492, 2020. 2

[60] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,

and Oliver Wang. The unreasonable effectiveness of deep

features as a perceptual metric. In CVPR, 2018. 7

[61] C Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele,

Simon Winder, and Richard Szeliski. High-quality video

view interpolation using a layered representation. ACM TOG

(Proc. SIGGRAPH), 23(3):600–608, 2004. 1, 2

5721

