
Dynamic Virtual Machine Scheduling in Clouds for Architectural Shared

Resources

Jeongseob Ahn, Changdae Kim, Jaeung Han, Young-ri Choi†, and Jaehyuk Huh

KAIST †UNIST

{jeongseob, cdkim, juhan, and jhuh}@calab.kaist.ac.kr ychoi@unist.ac.kr

Abstract
Although virtual machine (VM) migration has been

used to avoid conflicts on traditional system resources

like CPU and memory, micro-architectural resources

such as shared caches, memory controllers, and non-

uniform memory access (NUMA) affinity, have only re-

lied on intra-system scheduling to reduce contentions on

them. This study shows that live VM migration can be

used to mitigate the contentions on micro-architectural

resources. Such cloud-level VM scheduling can widen

the scope of VM selections for architectural shared re-

sources beyond a single system, and thus improve the

opportunity to further reduce possible conflicts. This

paper proposes and evaluates two cluster-level virtual

machine scheduling techniques for cache sharing and

NUMA affinity, which do not require any prior knowl-

edge on the behaviors of VMs.

1 Introduction

In cloud systems based on virtualization, virtual ma-

chines (VM) share physical resources. Although re-

source sharing can improve the overall utilization of lim-

ited resources, contentions on the resources often lead

to significant performance degradation. To mitigate the

effect of such contentions, cloud systems use dynamic

rescheduling of VMs with live migration technique [3],

changing the placement of running VMs. However,

such VM migration has been used to resolve conflicts or

balance load on traditional allocatable system resources

such as CPUs, memory, and I/O sub-systems. VM mi-

gration can be triggered by monitoring the usages of

these resources for VMs in a cloud system [4, 8].

In the meantime, the advent of multi-cores has en-

abled the sharing of micro-architectural resources such

as shared caches and memory controllers. Contention

on such micro-architectural resources has emerged as

a major reason for performance variance, as an appli-

cation can be affected by co-running applications even

though it receives the same share of CPU, memory, and

I/O. For a single system, there have been several prior

studies to mitigate the impact of contention on shared

caches and memory controllers by carefully scheduling

threads [2, 9]. The prior studies rely on the heterogene-

ity of memory behaviors of applications within a system

boundary. The techniques group applications to share a

cache to minimize the overall cache misses for a system.

However, if a single system runs applications with simi-

lar cache behaviors, such intra-system scheduling cannot

mitigate contentions.

However, cloud systems with virtualization open a

new opportunity to widen the scope of contention-aware

scheduling, as virtual machines can cross legacy system

boundaries with live migration. In this paper, we use live

VM migration to dynamically schedule VMs for mini-

mizing the contention on shared caches and memory con-

trollers. Furthermore, this study considers the effects of

non-uniform memory accesses (NUMA) in multi-socket

systems commonly used in cloud servers.

We propose contention-aware cloud scheduling tech-

niques for cache sharing and NUMA affinity. The tech-

niques identify the cache behaviors of VMs on-line, and

dynamically migrate VMs, if the current placements of

VMs are causing excessive shared cache conflicts or

wrong NUMA affinity. Since the techniques identify

the VM behaviors dynamically and resolve conflicts with

live migration, they do not require any prior knowledge

on the behaviors of VMs. The first technique, cache-

aware cloud scheduling minimizes the overall last-level

cache (LLC) misses in a cloud system. The second tech-

nique, NUMA-aware cloud scheduling extends the first

technique by considering NUMA affinity.

We evaluate our proposed schedulers using selected

SPECcpu 2006 applications in various combinations.

The experimental results show that the cache-aware

scheduler can significantly improve the performance

compared with the worst case. With our preliminary

NUMA optimization, the performance is slightly im-



DIMM DIMM DIMM DIMM DIMM DIMM

7C 8C1C 2C 3C 4C 5C 6C

Memory

Controller

Shared LLC

Router

Network Memory

Controller

Shared LLC

Router

Network

Socket 2Socket 1

Bus

Figure 1: Shared caches and NUMA

proved for our benchmark applications, compared with

that of the cache-aware scheduler.

2 Motivation

2.1 Cache Sharing and NUMA Affinity

Although shared caches can potentially improve the ef-

ficiency of caches with dynamic capacity sharing among

cores, they also incur contention problems when one of

cores generates excessive cache misses and evicts the

cached data from the other cores. Figure 1 shows a

common multi-core system with multiple sockets. In

each socket, there is a shared last-level cache (LLC), and

memory accesses across different sockets have longer la-

tencies than those to the local socket.

There have been several studies to mitigate such neg-

ative interferences in shared caches with partitioning

caches [6, 7] or carefully scheduling threads [5, 9]. In

the scheduling-based solutions [9], threads are grouped

and mapped to different sockets, aiming to minimize the

sum of cache misses from all the shared LLCs. In the

scheduling policy for a system with two sockets, threads

are sorted by their LLCmisses, and grouped into two sets

with equal or similar sums of LLC misses. Minimiz-

ing the differences of LLC misses among the last-level

caches reduces the overall LLC misses in the system.

However, NUMA affinity complicates such cache-

aware scheduling. If an application is running on a socket

different from the socket in which its memory pages re-

side, the cost of LLC misses will increase due to the

NUMA effect. Therefore, scheduling to minimize the

overall cache misses must also consider possible NUMA

effects. Blagodurov et al. investigated the impact of

NUMA on cache-aware scheduling to reduce negative

interferences among threads [2]. In virtualized systems,

some commercial hypervisor provides dynamic page mi-

gration to reduce memory access latencies for VMs, but

it does not consider cache sharing effect [1].

The prior studies use thread scheduling in a single sys-

tem to reduce the shared cache contention and negative

NUMA effects. Such intra-system scheduling limits the

-10

10

30

50

P
e

rf
. 

Im
p

ro
v
e

m
e

n
t(

%
) W-I W-B B-W B-I B-B

milc hmmer namd Gems. Total 

Figure 2: Performance improvements over W-W

opportunity to search the best groups of threads sharing

an LLC within a system, which has only several or tens

of cores at most. However, in a virtualized cloud system

composed of a large number of nodes, VMs can migrate

across physical system (or node) boundaries, potentially

increasing the chance to find a better grouping of VMs

for shared LLCs, and to support NUMA affinity.

2.2 Performance Implication in Clouds

In this section, we quantitatively show the performance

implication of cache sharing and NUMA affinity in a

small scale cloud system. We use a 4-node cluster with

8 cores in two sockets for each node. The details of the

experiments are shown in Section 4.1. Figure 2 presents

the performance of a mixed workload from 4 application

types on the cluster, with 8 VM instances for each appli-

cation type.

In this figure, we present six different VM mapping

policies for cache sharing and NUMA affinity. For the

cache sharing aspect, the best case (B) is to map VMs to

cores such that the sum of LLC misses from all the sock-

ets in the cloud system is minimized. The worst case (W)

is the mapping with the highest difference between the

largest and smallest per-socket LLC misses in the cloud

system. For the NUMA affinity, we present three map-

ping policies. The worst case is that the memory pages

of all VMs are allocated in their remote sockets, while

the best case is that all the VM memory pages are allo-

cated in their local sockets. Also, we show an interleaved

allocation (I), which assigns the memory pages of a VM

to be always in both sockets in an interleaved way.

The figure shows the combinations of cache and

NUMA-aware VM scheduling policies. In each combi-

nation, the first letter denotes the cache policy and the

second letter denotes the NUMA policy. For example,

B-I represents a VM scheduling policy which is the

best case for cache sharing, and the interleaved case for

NUMA. The figure presents performance improvements

of the policies over the W-W case.

As expected, there is significant potential for perfor-

mance improvement by placing VMs considering archi-

tectural shared resources. The B-B case significantly

improves the performance compared with W-W. Espe-

cially, milc and GemsFDTD could increase their per-

formance by sharing caches with other less memory-

2



Hypervisor

High load

Low load

Compute Node A Compute Node B

Cloud Scheduler

Front−end Node

VM

Hypervisor

Information

Monitor

Figure 3: Memory-aware Cloud Scheduler

intensive workloads. On the other hand, hmmer and

namd have no improvements, since these do not require

high capacity for LLCs. The NUMA affinity also affects

the overall performance significantly. Even for the best

case for shared caches, a good NUMA policy can im-

prove the performance, especially for memory-intensive

workloads (milc and GemsFDTD). If optimizing the

NUMA affinity is not possible, the interleaved memory

allocation could be an alternative solution to avoid the

worst case for NUMA.

As shown in the results, the performance variance due

to VM scheduling can be large even in a small scale clus-

ter. In public clouds, supporting consistent performance

regardless of co-running VMs is critical. In a large scale

cloud system, the heterogeneity of VM cache behav-

iors across different nodes, is expected to grow, as var-

ious users will share the cloud system. Exploiting such

heterogeneity of cache behaviors, memory-aware cloud-

level scheduling can potentially improve the efficiency

of shared cache and NUMA affinity, avoiding the worst

case scheduling.

3 Memory-Aware Cloud Scheduling

In this section, we present our memory-aware cloud

scheduling techniques. For memory-aware scheduling,

the cloud scheduler collects the cache behavior of each

VM from computing nodes, and migrates VMs if such

migration can potentially reduce the overall cache misses

and the average memory access latencies by NUMA

affinity in the cloud system. Figure 3 describes the over-

all architecture of the memory-aware cloud scheduler. In

each computing node, a monitor checks LLCmisses with

hardware performance monitoring counters, and period-

ically sends the per-VM LLC miss and NUMA affinity

information to the cloud scheduler. Based on the VM

status information from all the nodes, the cloud sched-

uler makes global scheduling decisions.

We explore two scheduling policies for the memory-

aware cloud scheduler. Firstly, the cache-aware sched-

uler only considers the contentions on shared caches, ig-

noring the NUMA effect. The policy will group VMs

to minimize the overall LLC misses in the entire cloud

system, even if the grouping can violate NUMA affin-

ity. Secondly, the NUMA-aware scheduler extends the

cache-aware scheduler for supporting NUMA affinity.

One of the advantages of the proposed memory-aware

schedulers is that they use only the information of VMs

measured on-line, without previous knowledge on the

VMs. The memory-aware cloud schedulers initially

place VMs on computing nodes, only considering CPU

and memory availability for each node. However, they

dynamically identify the cache behaviors of the VMs,

and re-locate them to improve the memory behavior.

Algorithm 1 Cache-aware scheduler (pseudo code)

PList =< pm1, ..., pmn > // LLC misses of all compute nodes

VList =< vm1, ...,vmk > // LLC misses of VMs in a node

/* Step1: local phase */

for each node i in 1 ... n do

// gather LLC misses for all VMs in node i

pmi ⇐ gather ( i )

VList ⇐ sort ( pmi )

// distribute the VMs across sockets with even LLCmisses

distribute (VList )

end for

/* Step2: global phase */

// find nodes with the largest and smallest LLC misses

maxNode⇐ findMaxNode ( PList )

minNode⇐ findMinNode ( PList )

// find VMs with largest and smallest misses from two nodes

maxVM ⇐ findMaxVM ( maxNode )

minVM ⇐ findMinVM ( minNode )

if maxNodeLLC−minNodeLLC > threshold then

swap ( maxVM, minVM )

end if

Cache-Aware Scheduler: The cache-aware scheduler

migrates VMs to minimize the overall LLC misses in the

cloud system. It consists of local and global schedul-

ing phases. In the local phase, VMs in each computing

node are grouped and scheduled to shared cache domains

(commonly sockets) in the node. Since VM migrations

across physical nodes consume network bandwidth and

computational capability, we attempt to minimize such

VM migration by optimizing VM scheduling within a

node first. In the global phase, the cloud scheduler at-

tempts to re-distribute VMs to have even LLC misses in

all the nodes in the cloud system.

Algorithm 1 presents the cache-aware scheduling with

the two phases. In the local phase, VMs in each node are

sorted by LLC misses, and then grouped to make each

LLC have even misses. We use the same simple algo-

rithm used by Zhuravlev et al [9]. For example, for a

node with two shared cache domains, the VM with the

largest number of LLC misses is assigned to the first

3



group, and the second VM is assigned to the second

group. Among the remaining VMs, the VM with the

smallest number of LLC misses is assigned to the first

group, and the VM with the second smallest number of

LLCmisses is assigned to the second group. This contin-

ues until all VMs are assigned to one of the two groups.

In the global phase, the scheduler finds two nodes, in

the cloud system, with the largest and smallest numbers

of LLC misses. From the two nodes, it finds two VMs

with the largest and smallest numbers of LLC misses,

respectively. If their LLC miss difference is larger than

a threshold, the two VMs are swapped by live migra-

tion. The scheduler periodically executes the two-phase

scheduling to gradually reduce the overall LLC misses in

the cloud system.

Algorithm 2 NUMA-aware scheduler (pseudo code)

SList =< sock1,1, ...,sockn,m > // LLC misses of all sockets

for each node i in 1 ... n do

for each socket j in 1 ... m in node i do

// gather LLC misses for all VMs in socki, j
socki, j ⇐ gather ( i, j )

end for

end for

// find sockets with the largest and smallest LLC misses

maxSocket ⇐ findMaxSocket ( SList )

minSocket ⇐ findMinSocket ( SList )

// find VMs with largest and smallest misses from 2 sockets

maxVM ⇐ findMaxVM ( maxSocket )

minVM ⇐ findMinVM ( minSocket )

if maxSocketLLC−minSocketLLC > threshold then

swap ( maxVM, minVM )

end if

NUMA-Aware Scheduler: The NUMA-aware sched-

uler considers the NUMA affinity in addition to the re-

duction of LLC misses in the cloud system. Unlike the

cache-aware scheduler, the NUMA-aware scheduler only

provides global scheduling as the local scheduling can

potentially break the NUMA affinity of VMs. In the

cache-aware scheduling, the local scheduling can assign

a VM to a socket different from the one, in which it was

initially created and thus its memory pages reside, for

minimizing LLC misses within a computing node.

Initially, the memory pages of a VM are allocated

only one of the socket in a node. Such NUMA-aware

memory allocation is supported by the Xen hypervisor.

From the initial placement, the NUMA-aware scheduler

migrates VMs to different sockets to reduce the overall

LLC misses. Algorithm 2 presents the NUMA-aware

scheduler with only a global phase. For each schedul-

ing iteration, the scheduler selects two sockets, in the

cloud system, with the largest and smallest numbers of

Memory bound CPU-bound

1 GemsFDTD milc hmmer namd

2 omnetpp lbm gobmk sjeng

Memory bound CPU-bound

3 cactusADM gcc soplex namd

Memory bound CPU-bound

4 libquantum tonto povray sjeng

Memory bound

5 cactusADM milc omnetpp soplex

CPU bound

6 gobmk sjeng namd povray

Table 1: Selected workloads from SPECcpu 2006

LLC misses. Among the two sockets, two VMs with the

largest and smallest numbers of LLC misses are selected

respectively, and the two VMs may be swapped. As this

socket exchange moves the VMs including their memory

pages, their NUMA-affinity is still maintained.

For further improvements, within a physical node,

only the hot pages, which are frequently accessed by a

VM can be migrated to different sockets, instead of mi-

grating entire pages belong to the VM. The hot page sup-

ports can allow less expensive local scheduling even for

the NUMA-aware scheduler. The NUMA improvements

based on hot page migrations will be our future work.

4 Evaluation

4.1 Methodology

We have implemented the proposed schedulers running

in a separate cloud manager node. Each computing node

is virtualized with the open source Xen hypervisor. Each

node runs a monitoring tool, which records LLC misses

for VMs and periodically sends the miss and NUMA

affinity information to the cloud scheduler.

On top of the Xen hypervisor, each node runs 8 guest

VMs, which use a Ubuntu distribution based on Linux

kernel 2.6.18. In our small scale testbed, there are 4

physical nodes with total 32 VMs. Each physical node

has 8 cores placed on two chips (sockets) and each socket

on a node has a 12MB L3 cache shared by 4 cores. In the

dual-socket system, memory access latencies to the lo-

cal socket and remote sockets are different. Each VM

employs a single core and 1GB guest physical memory

size. Table 1 presents our benchmark applications. We

create 6 workloads by mixing applications with various

memory characteristics. Each workload has 4 different

applications, and 8 instances of each application run on

the 32 VMs in our testbed.

4.2 Performance Improvements

Figure 4 shows the performance improvements for indi-

vidual applications on WL1 and WL3, respectively. The

4



-10

10

30

50

P
e

rf
. 

Im
p

ro
v
e

m
e

n
t(

%
)

Cache-Aware NUMA-Aware B-B

milc hmmer namd Gems. Total 

(a) WL1: 2 Memory bound + 2 CPU bound

-10

10

30

50

P
e

rf
. 

Im
p

ro
v
e

m
e

n
t(

%
)

Cache-Aware NUMA-Aware B-B

soplex gcc cactus. namd Total 

(b) WL3: 3 Memory bound + 1 CPU bound

Figure 4: Performance improvements over W-W

0

20

40

60

P
e

rf
. 

Im
p

ro
v
e

m
e

n
t(

%
)

Cache-Aware NUMA-Aware B-B

WL1 WL2 WL3 WL4 WL5 WL6 

Figure 5: Performance improvements over W-W

bars show the performance improvements over the worst

case (W-W), as described in Section 2.2. The cache-

aware scheduler can significantly improve the perfor-

mance compared with the worst case. On WL1, which

consists of 2 memory and 2 CPU bound applications, the

overall performance is improved by 17%. Note that the

improved performance includes the overhead of VM mi-

grations. The cache-aware scheduling significantly im-

proves the performance of memory-bound applications,

milc and GemsFDTD, which incur a large number of

LLC misses, while it degrades the other two applications

slightly. Although hmmer and namd are not very sensi-

tive to the cache capacity, they have to share LLCs with

the memory-intensive applications.

Our preliminary NUMA-aware scheduler improves

the overall performance slightly compared with the

cache-aware scheduler. As the initial design removes

the local scheduling and relies only on global schedul-

ing to maintain NUMA affinity, the cloud system slowly

adjusts VM placements. Furthermore, the global migra-

tion consumes CPU resources to copy VM memory to

another physical node. A local NUMA-aware schedul-

ing, which migrates only hot pages of a VM to a differ-

ent socket within a single node, can reduce unnecessary

global VM migration to maintain NUMA affinity.

Figure 5 summarizes the performance improvements

for our six workloads, showing similar trends except for

WL6. WL6 consists of all CPU-bound applications, and

thus does not benefit from memory-aware scheduling.

5 Conclusions and Future Work

In this paper, we proposed and evaluated memory-aware

cloud scheduling techniques, which do not require any

prior knowledge on the behaviors of VMs. This paper

shows that VM live migration can also be used to mit-

igate micro-architectural resource contentions, and the

cloud-level VM scheduler must consider such hidden

contentions. We plan to extend our preliminary design

of NUMA-aware scheduling for more efficient NUMA

affinity supports with hot page migrations. Also, we will

investigate a systematic approach based on a cost-benefit

analysis for VM migrations and contention reductions.

Acknowledgments

This research was supported by the SWComputing R&D

Program of KEIT(2011-10041313, UX-oriented Mobile

SW Platform) funded by the Ministry of Knowledge

Economy.

References

[1] VMware ESX Server 2 NUMA Support. White paper. .

[2] BLAGODUROV, S., ZHURAVLEV, S., MOHAMMAD, D., AND FE-

DOROVA, A. A case for numa-aware contention management on

multicore processors. In Proceedings of the USENIX Annual Tech-

nical Conference (2011).

[3] CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL, E.,

LIMPACH, C., PRATT, I., AND WARFIELD, A. Live migration of

virtual machines. In Proceedings of the 2nd conference on Sympo-

sium on Networked Systems Design & Implementation (2005).

[4] GULATI, A., SHANMUGANATHAN, G., HOLLER, A., AND AH-

MAD, I. Cloud-scale resource management: challenges and tech-

niques. In Proceedings of the 3rd USENIX conference on Hot top-

ics in cloud computing (2011).

[5] MERKEL, A., STOESS, J., AND BELLOSA, F. Resource-

conscious scheduling for energy efficiency on multicore proces-

sors. In Proceedings of the 5th European conference on Computer

systems (2010).

[6] QURESHI, M. K., AND PATT, Y. N. Utility-based cache parti-

tioning: A low-overhead, high-performance, runtime mechanism

to partition shared caches. In Proceedings of the 39th Annual

IEEE/ACM International Symposium onMicroarchitecture (2006).

[7] SUH, G. E., DEVADAS, S., AND RUDOLPH, L. A new memory

monitoring scheme for memory-aware scheduling and partition-

ing. In Proceedings of the 8th International Symposium on High-

Performance Computer Architecture (2002).

[8] WOOD, T., SHENOY, P., VENKATARAMANI, A., AND YOUSIF,

M. Black-box and gray-box strategies for virtual machine migra-

tion. In Proceedings of the 4th USENIX conference on Networked

systems design and implementation (2007).

[9] ZHURAVLEV, S., BLAGODUROV, S., AND FEDOROVA, A. Ad-

dressing shared resource contention in multicore processors via

scheduling. In Proceedings of the 15th International Conference

on Architectural support for programming languages and operat-

ing systems (2010).

5


