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SPOTLIGHT ON TRANSACTIONS

C
omputer architects often 

face the challenging task 

of balancing various de-

sign considerations, such 

as performance, power, cost, and 

reliability. With its unprecedented 

success in numerous domains and 

disciplines, machine learning could 

be a promising approach to solving 

complicated architecture design and 

optimization problems. IEEE Trans-

actions on Computers continues to 

lead research in this area, recently 

publishing more than 10 papers that 

propose innovative, viable, and prom-

ising ways to take the advantage 

of machine learning in computer 

architecture.

In the recent study “Dynamic 

Voltage and Frequency Scaling in 

NoCs With Supervised and Rein-

forcement Learning Techniques” 

(IEEE Transactions on Computers, vol. 

68, no. 3, pp. 375–389, 2019), Quintin 
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Fettes, Mark Clark, Razvan Bunescu, 

Avinash Karanth, and Ahmed Louri 

propose learning-enabled, energy-

aw a r e d y n a m ic (L E A D) v ol t a g e/

frequency (VF) scaling for multi-

core architectures, using supervised 

learning and reinforcement learning 

(RL) approaches.

Applying dynamic voltage/frequency 

scaling (DVFS) to a network-on-chip 

(NoC) can be an effective technique 

to reduce dynamic energy, but the de-

crease occurs at the expense of NoC 

performance as well as the execution of 

applications running on multicores. To 

tackle this problem more smartly, the 

LEAD model groups an NoC router and 

its outgoing links into the same VF do-

main and implements proactive DVFS 

mode management strategies that rely 

on offline, trained machine-learning 

models to provide optimal VF mode se-

lection. The authors present three su-

pervised learning versions of LEAD 

systems that are based on buffer utili-

zation, a change in buffer utilization, 

and a change in energy/throughput to 

allow proactive mode selection based 

on accurate predictions of future net-

work parameters. This produces an 

average dynamic energy savings of 

15.4% when evaluated using the Prince-

ton Application Repository for Shared 

Memory Computers and SPLASH-2 

benchmarks on a four-by-four concen-

trated mesh architecture, with merely 

an 0.8% loss in throughput and no sig-

nificant impact on latency.

To increase the efficacy, the authors 

explore the use of modern RL tech-

niques, such as deep Q-networks, noisy 

networks, replay buffers, and priori-

tized replay, to select DVFS modes more 

effectively. This approach, diagrammed 

in Figure 1, is more scalable than other 

supervised learning models and does 

not require expensive threshold tuning, 

thus, allowing for an easier adjustment of 

dynamic-energy-versus-throughput 

t radeof f s. A l l model s a re t ra i ned 

o f f l ine to minimize t heir energ y 

consumption and area footprint at 

runtime. LEAD-RL increases the aver-

age dynamic energy savings to 20.3% 

at the cost of a 1.5–1.7% decrease in 

throughput and latency.

Ultimately, the more flexible RL 

approach enables the learning of an 

optimal behavior for a wider range 

of load environments, under any 

desired energy-versus-throughput 

tradeoffs, and without much human 

engineering in the automatic train-

ing process.

I
EEE Transactions on Computers will 

closely follow these exciting de-

velopments in applying machine 

learning to computer architectures 

and provide the latest academic and 

industry research. Please stay tuned 

for upcoming issues to keep current 

on this topic as well as computing 

architectures, memory technologies, 

real-time systems, and much more. 
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FIGURE 1. LEAD-RL generates long-term, expected rewards for each mode and selects 

the mode that is predicted to lead to the greatest return during the next time window.
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