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Abstract— An adaptive method to perform dynamic 
voltage and frequency scheduling (DVFS) for minimizing 
the energy consumption of microprocessor chips is 
presented. Instead of using a fixed update interval, the 
proposed DVFS system makes use of adaptive update 
intervals for optimal frequency and voltage scheduling. The 
optimization enables the system to rapidly track the 
workload changes so as to meet soft real-time deadlines. The 
technique, which can be realized with very simple hardware, 
is completely transparent to the application. The results of 
applying the method to some real application workloads 
demonstrate considerable power savings and fewer 
frequency updates compared to DVFS systems based on 
fixed update intervals. 
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I. INTRODUCTION 
In recent years, researchers have proposed several 

static and dynamic techniques to scale the operating 
frequency and voltage of embedded processors. These 
techniques address power and performance tradeoffs at 
either hardware (fabricated chips)  [1]- [4] or software 
levels  [4]- [9]. Software-based scheduling techniques rely 
on pre-collected offline statistical information of different 
applications and adjust the voltage and frequency 
accordingly. In reality, different hardware conditions, 
such as temperature and process variations, may not be 
easily observed in software and also different workloads 
of the same task might need various computation 
requirements. Therefore, offline methods should use the 
worst-case execution time (WCET) for scheduling the 
voltage to cover possible runtime changes in the critical 
path. Execution times of real-world embedded tasks vary 
by as much as 87% relative to the measured WCET  [10]. 
Therefore, budgeting for the WCET may result in 
excessive energy consumption. The researchers in  [11] 
and  [12] have proposed power management approaches 
which track the critical path changes and consider the 
impact of process variations.  

There are feedback-based online DVFS solutions that 
dynamically control the clock frequency and supply 
voltage considering the real operating conditions of the 
underlying processing hardware  [13] [14] [15]. Traditional 
feedback-based hardware modules for online voltage 
scaling are computationally expensive, and thus 
significantly hamper the possible energy savings. In this 
paper we propose an adaptive DVFS method with low 
area and power overhead to overcome the hardware 
complexity of online methods. The proposed DVFS not 
only scale the frequency and voltage to the minimum 
required value, but also reduce the frequency and voltage 
update rates considering both power consumption and 
system responsiveness.  

The remainder of this paper is organized as follows. In 
Section II, we briefly review the related works while 
Section III explains the proposed frequency adjustment 
algorithm based on the effective deadline. The results are 
discussed in Section IV. Finally, the summary and 
conclusion are given in Section V. 

II. RELATED WORKS 
In this section, we briefly review some of the 

hardware-based DVFS systems which are most relevant 
to our proposed scheme. A DVFS method that 
dynamically controls the clock frequency and supply 
voltage with a fixed update interval is proposed in  [13]. 
Fixed interval DVS scheme for multiple clock domain 
processors has also been presented in  [14]. The online 
DVS method proposed in  [15], exploits a scheduling 
algorithm based on fixed update intervals. This method is 
implemented with complex PID controllers that may 
compensate the power saving of the DVS scheme. The 
Razor DVS technique  [4] uses a delay-error tolerant flip-
flop for scaling the supply voltage to minimum allowed 
value for a given frequency. This method also works 
based on fixed update intervals. An online hardware-
based DVFS scheme for dynamically selecting operating 
frequencies and voltages in multiprocessor GALS 
systems is proposed in   [16]. This DVFS approach 
monitors the application workload at predefined times 
called Tsample and scales frequency and voltage values 
accordingly. The frequency prediction algorithm of this 
method exploits multipliers and dividers which 
complicate the hardware realization of this DVFS.  

All of these work use fixed update intervals for 
scheduling voltage and frequency. The optimum value of 
the fixed update interval strictly depends on the 
application and patterns of the workloads. Therefore, the 
value of fixed interval should be carefully tuned for 
different applications. Fixed update interval DVFS 
methods can be used when the behavior of the application 
is predictable for various applications and input 
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conditions and the worst-case behavior is not very 
different from the average-case behavior. Efficient 
adaptive techniques, however, are required because of the 
gap between worst-case and average-case processing 
demands of different applications. 

III. FREQUENCY SCHEDULING METHODS  
In DVFS algorithms, the supply voltage is adaptively 
adjusted based on the predicted frequency. Therefore, one 
of the major challenges of DVFS systems is how to 
determine the optimal working frequency without 
violating the deadlines. In hard real-time systems, there 
exists an explicitly specified deadline for each workload 
and if this deadline is not met, the system may not 
function properly. In some applications, the real-time 
requirement is not that strict, i.e., it is simply required that 
the system be able to process the workload in an 
acceptable amount of time. This can be assured by 
following a simple conservative rule, which states that the 
processing of the current workload must be finished prior 
to the arrival of the next workload. In this way, we may 
consider the arrival time of the next workload as an 
effective deadline for the current workload in soft real 
time applications. Knowing the effective deadline for 
each workload, the frequency may be adjusted to the 
lowest required value. The importance of the effective 
deadline in the frequency adjustment is shown in  [17] by 
considering greedy and deadline-aware frequency 
scheduling policies. As shown in  [17], an accurate 
prediction of the effective deadline may yield a 
significant reduction in the energy consumption. In this 
section, we briefly discuss the frequency adjustment 
method exploited in  [13] and then present our frequency 
scheduling method based on the concept of the effective 
deadline. 

A. Fixed Update Intervals 
The frequency scheduling circuitry presented in  [13] is 
composed of an activity monitor and a frequency adjuster. 
By inspecting a subset of the system control signals, the 
activity monitor determines whether the system is in 
active (useful) or idle (useless) mode. By active we mean 
the period of time the processor is processing any 
workload. The processor is idle in the slack time when the 
processing of the current workload is finished and is 
waiting for the next workload.  
Intuitively the output of the activity monitor can be 
considered as a signal with “1” indicating active and “0” 
showing idle cycles.  When the number of idle cycles in 
an interval exceeds a threshold value, the frequency is 
lowered; otherwise, the frequency is increased or held 
steady. The frequency update rate in  [13] directly depends 
on the value of the fixed interval, i.e., larger values for the 

interval lead to lower rates of the frequency changes, and 
hence, a weaker workload tracking ability. Choosing 
small values for the fixed interval leads to unnecessary 
frequency and voltage updates.  

B. Variable Update Intervals 
We have developed an adaptive frequency scheduling 
algorithm that decreases the frequency update interval in 
order to track abrupt workload changes while increasing 
this interval to minimize unwanted voltage fluctuations 
for slowly varying workloads. The algorithm works based 
on the concept of effective deadline introduced 
previously. It is thus desirable to develop a dynamic 
algorithm to calculate the effective deadline.  
1) Effective Deadline Prediction 

In the proposed deadline prediction, for each workload, 
a prediction of the arrival time of the next workload 
(effective deadline) is made based on an adaptive 
algorithm. We use effective deadline, predicted adaptive 
interval length, or simply target interval length (TIL) 
interchangeably in the remainder of this paper. During 
each workload, the system clock cycles are counted by a 
cycle counter whose value is considered as the current 
interval length (CIL). The counter saturates when its 
value reaches the TIL and resets to zero at the arrival of 
the next workload. If at the arrival of the next workload, 
CIL < TIL (see Figure 1(a)), we decrease TIL by an 
interval step. In this case, the value of the TIL is updated 
at the arrival of the next workload. If the next workload is 
not arrived until the CIL reaches the TIL (see Figure 
1(b)), we increase TIL by the interval step. In this case, 
the TIL is updated when the cycle counter reaches the 
value of TIL (i.e., the counter is saturated.) 

The value of the interval step (kstep) is updated 
adaptively. When ‘k’ consecutive interval increases 
(decreases) occur, it means that the TIL should reach a 
much larger (smaller) value. In both cases, the interval 
step will be multiplied by two to speed up the move to 
higher or lower TIL’s. If these cases do not occur, the 
interval step is divided by two to minimize the interval 
variations.  

 
   (a)        (b) 

Figure 1. Effective deadline prediction concept for cases 
corresponding to (a) interval decrement and (b) interval 
increment.  

2) Proposed Frequency Scheduling Method 
The predetermined value of khistory is used to determine 

the number of clock ticks that the workload history is 
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examined. khistory thus represents the maximum number of 
acceptable idle cycles between consequent workloads. At 
the update interval, if all of the workload history bits are 
‘1’ (‘0’), the estimated frequency is lower (higher) than 
the required value, and hence, should be increased 
(decreased) for the next workload. Finally, when some of 
these history bits are ‘1’, and some are ‘0’, it shows that 
the system is working with a proper frequency and should 
not be changed. 

A simple zero/one detector logic such as one 
introduced in  [17] may be used for frequency scheduling. 
For large sizes of the khistory, the area overheads of the 
zero/one detection logic increase linearly with the size of 
the khistory. To overcome the problem, we propose a 
Count-Reset-Hold (CRH) circuit whose area overhead is 
proportional to log2 khistory. For this purpose, we need two 
types of the CRH counters denoted by CRH0 and CRH1. 
The proposed counter is an up counter that is controlled 
by hold and reset signals. At each clock cycle, CRH0 
(CRH1) counts the subsequent ‘0’ (‘1’) bits of the input 
signal. It counts up while the reset and hold signals are 
‘0’. When the reset is high, the counter output is reset to 
0, and when the hold signal is high, the counter output 
remains unchanged. Figure 2 (a) and (b) show both the 
CRH0 and CRH1 circuits. 

 
(a) (b) 

(c)  (d) 

Figure 2. Circuits for (a) CRH0, (b) CRH1 (c) Frequency 
scheduling (d) overload/underload detection. 

The frequency scheduling circuit based on the proposed 
counter is also depicted in Figure 2(c). When the number 
of consequent ‘0’ (‘1’) in the activity signal reaches the 
khistory, it means that for the last khistory clock cycles the 
CPU has been idle (active), and hence, the frequency 
decrease (increase) signals are activated. Finally, note 

that the perfect value for the frequency is the amount that 
provides some idle cycles before the arrival of the next 
workload  [13] [17].  

3) Overload and Underload States 
If the effective deadline is not determined correctly, the 

frequency adjustment may malfunction in some special 
cases. The two special cases called overload and 
underload that must be looked upon are suggested in  [17]. 
We detect the overload/underload situation by counting 
the consequent frequency increases, i.e., if the number of 
consequent frequency increases/decrease reaches a value 
denoted by koverload/ kunderload, we conclude that an abrupt 
increase/decrease in the workload has occurred and the 
system is overloaded/underloaded. If the overload or 
underload condition is detected, TIL will be replaced by 
the minimum possible value and all the frequency updates 
will be done in the direction of frequency 
increase/decrease. This small update interval leads to the 
highest frequency update rate. The overload/ underload 
detection circuits are shown in Figure 2 (d).  

IV. RESULTS AND DISCUSSION 
To assess the efficiency of the proposed frequency 

scheduling method, we applied the fixed update interval 
 [13], adaptive update interval, and oracle DVFS methods 
to a workload set obtained from real workloads based on 
realistic computational load of the MPEG2 decoder and 
two packet-processing applications. We have used MIPS-
based SimpleScalar  [18] simulations to determine the 
computational load of the MPEG2 decoding in terms of 
instructions per frame. The computational complexities of 
the packet-processing applications were also extracted 
from  [20].The packet-processing applications which were 
selected from the PacketBench  [21] included an IPv4 
look-up (IPv4-trie) and flow classification (Flow-class) 
algorithms that are widely used in network processing 
nodes. We have also exploited a method the same as 
Wattch  [19] for estimating the power consumption based 
on the effective capacitance concept.  

 The DVFS algorithms and the power estimation 
methods were modeled in Verilog and simulated in 
Modelsim. The MPEG2 decoder workload is obtained 
from decoding three different MPEG2 movies. The 
computational load is related to the number of 
instructions required for decoding a frame.  

In ADAPTIVE, there are four parameters whose values 
determine the power saving capability and deadline 
misses (responsiveness) of the system. The parameters are 
the size of the workload history (khistory), 
overload/underload history (koverload/kunderload), and the 
Interval step (kstep). For MPEG decoding workloads, we 
used some simulations to obtain the best values for the 
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parameters. The priority of finding the values of the 
parameter was based on their effects on the power and 
deadline misses. The results showed that the most 
effective parameter was koverload. Figure 3 shows the 
deadline misses and power consumption of the selected 
movies as a function of the koverload. In the MPEG2 
decoder, frames should be processed in 33μs. Each frame-
processing time violating this specified period causes a 
deadline miss. As shown in Figure 3, a good value for 
koverload is between 2 and 7, and hence, the overload 
detection circuit can be implemented with a 3-bit CRH1 
counter leading to the deadline misses in the range of 5%-
15%, and the power consumption reduction of 40%-60%. 

  

 
(a) 

 
(b) 

Figure 3. Power consumption and deadline miss of the selected 
movies versus koverload (a) deadline miss, (b) power. 

The next parameter that is tuned is the kunderload. As the 
results reveal, when kunderload is around 10, the deadline 
miss is about 6% and the power saving is nearly 
saturated. This value needs a 4-bit CRH1 counter for 
underload detection. Finally, we have found that setting 
khistory to 3200 reduces the deadline miss to below 2% 
which requires a 12-bit CRH counter. The last parameter 
of the system is kstep which is used for properly tuning the 
interval value. We have found the power consumption 
and deadline miss of the selected movies as a function of 
kstep. Since the power consumption is a weak function of 
kstep, this parameter may be used for fine tuning of the 
deadline misses. 

Our study showed that koverload and kunderload were the 
most effective parameters. Figure 4 shows the effect of 
these parameters on the power consumption and deadline 
misses of one of the selected movies. The power values 

are normalized to the maximum values of the power 
consumption. We can observe that higher kunderload and 
lower koverload values yield lower deadline misses (more 
responsiveness) while lower kunderload and higher koverload 
values give rise to lower power consumptions.  

(a) 

(b) 
Figure 4. Power consumption and deadline misses of the Legend 
movie for a wide range of koverload and kunderload values. (a) power 
consumption, (b) deadline miss. 

We have tuned the parameters of ADAPTIVE based on 
MPEG workloads and used these parameters for the 
packet-processing applications as well. Therefore, we 
have used the results of Figure 4 and set the values of 
koverload and kunderload to 2 and 6, respectively. The other 
parameters including khistory and  kstep, were also set to 1000 
and 5, respectively. In Figure 5, we have compared the 
power consumptions and the frequency update rates of the 
FIXED, ADAPTIVE, and oracle (ideal) techniques for the 
MPEG2 decoding and two packet-processing 
applications.  

With the oracle we mean an ideal DVFS algorithm in 
which the workload computational complexity is known 
at the beginning of processing and the frequency is set to 
the optimum value accordingly. Therefore, the update rate 
of oracle is one update per frame and the deadline miss is 
zero. Besides, FIXED and ADAPTIVE parameters were 
set such that the deadline misses of both systems were the 
same. As shown in Figure 5, on average, ADAPTIVE 
leads to about 12% more power savings, compared to that 
of the FIXED, while the update rate of ADAPTIVE is 
also about 2.6 times lower than that of the FIXED. 
According to the presented results in  [13], exploiting the 
DVFS scheme does not increase the power consumption 
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of subsystems such as memory. Therefore, excluding the 
memory power consumption does not affect the results. 

V. CONCLUSION 
In this work, an efficient and adaptive update interval 

method for dynamic voltage and frequency management 
was proposed. In this method, the frequency and voltage 
of the system for the periodic workloads were scheduled 
while maintaining soft real-time deadlines. The saving 
was achieved by introducing the concept of the effective 
deadline and taking advantage of the possible correlation 
between the consecutive workloads. To show the efficacy 
of the method, comparisons between oracle, adaptive, and 
fixed interval DVFS systems were performed using 
realistic workloads of the MPEG2 decoder and packet-
processing applications. The results showed that the 
proposed adaptive interval DVFS technique could save 
power more with fewer frequency updates as compared to 
the fixed interval DVFS systems. 

(a) 

(b) 
Figure 5. (a) Power consumption and (b) updates rates per frame 
or packet for the realistic workloads in FIXED, ADAPTIVE, 
and oracle techniques. 
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