
To appear in IEEE Transactions on VLSI Systems 1

Dynamic Voltage and Frequency Scheduling
for Embedded Processors Considering Power

and Timing Constraints

M. E. Salehi, M. Samadi, M. Najibi, A. Afzali-Kusha, M.
Pedram, S. M. Fakhraie

M. E. Salehi, M. Samadi, A. Afzali-Kusha, and S. M. Fakhraie are with
Nanoelectronics Center of Excellence, School of Electrical and
Computer Engineering, University of Tehran, Tehran 14395, Iran
(email: {mersali, afzali, fakhraie}@ut.ac.ir)

M. Najibi is with Department of Computer Engineering, Amirkabir
University of Technology, Tehran, Iran, (email: najibi@ce.aut.ac.ir)
M. Pedram is with Department of EE-Systems, University of Southern
California, Los Angeles, CA, U.S.A (email: pedram@ceng.usc.edu).

Abstract— An adaptive method to perform dynamic
voltage and frequency scheduling (DVFS) for minimizing
the energy consumption of microprocessor chips is
presented. Instead of using a fixed update interval, the
proposed DVFS system makes use of adaptive update
intervals for optimal frequency and voltage scheduling. The
optimization enables the system to rapidly track the
workload changes so as to meet soft real-time deadlines. The
technique, which can be realized with very simple hardware,
is completely transparent to the application. The results of
applying the method to some real application workloads
demonstrate considerable power savings and fewer
frequency updates compared to DVFS systems based on
fixed update intervals.

Keywords— Dynamic Voltage Scheduling, Dynamic
Frequency Scheduling, Dynamic Power Management.

I. INTRODUCTION
In recent years, researchers have proposed several

static and dynamic techniques to scale the operating
frequency and voltage of embedded processors. These
techniques address power and performance tradeoffs at
either hardware (fabricated chips) [1]- [4] or software
levels [4]- [9]. Software-based scheduling techniques rely
on pre-collected offline statistical information of different
applications and adjust the voltage and frequency
accordingly. In reality, different hardware conditions,
such as temperature and process variations, may not be
easily observed in software and also different workloads
of the same task might need various computation
requirements. Therefore, offline methods should use the
worst-case execution time (WCET) for scheduling the
voltage to cover possible runtime changes in the critical
path. Execution times of real-world embedded tasks vary
by as much as 87% relative to the measured WCET [10].
Therefore, budgeting for the WCET may result in
excessive energy consumption. The researchers in [11]
and [12] have proposed power management approaches
which track the critical path changes and consider the
impact of process variations.

There are feedback-based online DVFS solutions that
dynamically control the clock frequency and supply
voltage considering the real operating conditions of the
underlying processing hardware [13] [14] [15]. Traditional
feedback-based hardware modules for online voltage
scaling are computationally expensive, and thus
significantly hamper the possible energy savings. In this
paper we propose an adaptive DVFS method with low
area and power overhead to overcome the hardware
complexity of online methods. The proposed DVFS not
only scale the frequency and voltage to the minimum
required value, but also reduce the frequency and voltage
update rates considering both power consumption and
system responsiveness.

The remainder of this paper is organized as follows. In
Section II, we briefly review the related works while
Section III explains the proposed frequency adjustment
algorithm based on the effective deadline. The results are
discussed in Section IV. Finally, the summary and
conclusion are given in Section V.

II. RELATED WORKS
In this section, we briefly review some of the

hardware-based DVFS systems which are most relevant
to our proposed scheme. A DVFS method that
dynamically controls the clock frequency and supply
voltage with a fixed update interval is proposed in [13].
Fixed interval DVS scheme for multiple clock domain
processors has also been presented in [14]. The online
DVS method proposed in [15], exploits a scheduling
algorithm based on fixed update intervals. This method is
implemented with complex PID controllers that may
compensate the power saving of the DVS scheme. The
Razor DVS technique [4] uses a delay-error tolerant flip-
flop for scaling the supply voltage to minimum allowed
value for a given frequency. This method also works
based on fixed update intervals. An online hardware-
based DVFS scheme for dynamically selecting operating
frequencies and voltages in multiprocessor GALS
systems is proposed in [16]. This DVFS approach
monitors the application workload at predefined times
called Tsample and scales frequency and voltage values
accordingly. The frequency prediction algorithm of this
method exploits multipliers and dividers which
complicate the hardware realization of this DVFS.

All of these work use fixed update intervals for
scheduling voltage and frequency. The optimum value of
the fixed update interval strictly depends on the
application and patterns of the workloads. Therefore, the
value of fixed interval should be carefully tuned for
different applications. Fixed update interval DVFS
methods can be used when the behavior of the application
is predictable for various applications and input

To appear in IEEE Transactions on VLSI Systems 2

conditions and the worst-case behavior is not very
different from the average-case behavior. Efficient
adaptive techniques, however, are required because of the
gap between worst-case and average-case processing
demands of different applications.

III. FREQUENCY SCHEDULING METHODS
In DVFS algorithms, the supply voltage is adaptively
adjusted based on the predicted frequency. Therefore, one
of the major challenges of DVFS systems is how to
determine the optimal working frequency without
violating the deadlines. In hard real-time systems, there
exists an explicitly specified deadline for each workload
and if this deadline is not met, the system may not
function properly. In some applications, the real-time
requirement is not that strict, i.e., it is simply required that
the system be able to process the workload in an
acceptable amount of time. This can be assured by
following a simple conservative rule, which states that the
processing of the current workload must be finished prior
to the arrival of the next workload. In this way, we may
consider the arrival time of the next workload as an
effective deadline for the current workload in soft real
time applications. Knowing the effective deadline for
each workload, the frequency may be adjusted to the
lowest required value. The importance of the effective
deadline in the frequency adjustment is shown in [17] by
considering greedy and deadline-aware frequency
scheduling policies. As shown in [17], an accurate
prediction of the effective deadline may yield a
significant reduction in the energy consumption. In this
section, we briefly discuss the frequency adjustment
method exploited in [13] and then present our frequency
scheduling method based on the concept of the effective
deadline.

A. Fixed Update Intervals
The frequency scheduling circuitry presented in [13] is
composed of an activity monitor and a frequency adjuster.
By inspecting a subset of the system control signals, the
activity monitor determines whether the system is in
active (useful) or idle (useless) mode. By active we mean
the period of time the processor is processing any
workload. The processor is idle in the slack time when the
processing of the current workload is finished and is
waiting for the next workload.
Intuitively the output of the activity monitor can be
considered as a signal with “1” indicating active and “0”
showing idle cycles. When the number of idle cycles in
an interval exceeds a threshold value, the frequency is
lowered; otherwise, the frequency is increased or held
steady. The frequency update rate in [13] directly depends
on the value of the fixed interval, i.e., larger values for the

interval lead to lower rates of the frequency changes, and
hence, a weaker workload tracking ability. Choosing
small values for the fixed interval leads to unnecessary
frequency and voltage updates.

B. Variable Update Intervals
We have developed an adaptive frequency scheduling
algorithm that decreases the frequency update interval in
order to track abrupt workload changes while increasing
this interval to minimize unwanted voltage fluctuations
for slowly varying workloads. The algorithm works based
on the concept of effective deadline introduced
previously. It is thus desirable to develop a dynamic
algorithm to calculate the effective deadline.
1) Effective Deadline Prediction

In the proposed deadline prediction, for each workload,
a prediction of the arrival time of the next workload
(effective deadline) is made based on an adaptive
algorithm. We use effective deadline, predicted adaptive
interval length, or simply target interval length (TIL)
interchangeably in the remainder of this paper. During
each workload, the system clock cycles are counted by a
cycle counter whose value is considered as the current
interval length (CIL). The counter saturates when its
value reaches the TIL and resets to zero at the arrival of
the next workload. If at the arrival of the next workload,
CIL < TIL (see Figure 1(a)), we decrease TIL by an
interval step. In this case, the value of the TIL is updated
at the arrival of the next workload. If the next workload is
not arrived until the CIL reaches the TIL (see Figure
1(b)), we increase TIL by the interval step. In this case,
the TIL is updated when the cycle counter reaches the
value of TIL (i.e., the counter is saturated.)

The value of the interval step (kstep) is updated
adaptively. When ‘k’ consecutive interval increases
(decreases) occur, it means that the TIL should reach a
much larger (smaller) value. In both cases, the interval
step will be multiplied by two to speed up the move to
higher or lower TIL’s. If these cases do not occur, the
interval step is divided by two to minimize the interval
variations.

 (a) (b)

Figure 1. Effective deadline prediction concept for cases
corresponding to (a) interval decrement and (b) interval
increment.

2) Proposed Frequency Scheduling Method
The predetermined value of khistory is used to determine

the number of clock ticks that the workload history is

To appear in IEEE Transactions on VLSI Systems 3

examined. khistory thus represents the maximum number of
acceptable idle cycles between consequent workloads. At
the update interval, if all of the workload history bits are
‘1’ (‘0’), the estimated frequency is lower (higher) than
the required value, and hence, should be increased
(decreased) for the next workload. Finally, when some of
these history bits are ‘1’, and some are ‘0’, it shows that
the system is working with a proper frequency and should
not be changed.

A simple zero/one detector logic such as one
introduced in [17] may be used for frequency scheduling.
For large sizes of the khistory, the area overheads of the
zero/one detection logic increase linearly with the size of
the khistory. To overcome the problem, we propose a
Count-Reset-Hold (CRH) circuit whose area overhead is
proportional to log2 khistory. For this purpose, we need two
types of the CRH counters denoted by CRH0 and CRH1.
The proposed counter is an up counter that is controlled
by hold and reset signals. At each clock cycle, CRH0
(CRH1) counts the subsequent ‘0’ (‘1’) bits of the input
signal. It counts up while the reset and hold signals are
‘0’. When the reset is high, the counter output is reset to
0, and when the hold signal is high, the counter output
remains unchanged. Figure 2 (a) and (b) show both the
CRH0 and CRH1 circuits.

(a) (b)

(c) (d)

Figure 2. Circuits for (a) CRH0, (b) CRH1 (c) Frequency
scheduling (d) overload/underload detection.

The frequency scheduling circuit based on the proposed
counter is also depicted in Figure 2(c). When the number
of consequent ‘0’ (‘1’) in the activity signal reaches the
khistory, it means that for the last khistory clock cycles the
CPU has been idle (active), and hence, the frequency
decrease (increase) signals are activated. Finally, note

that the perfect value for the frequency is the amount that
provides some idle cycles before the arrival of the next
workload [13] [17].

3) Overload and Underload States
If the effective deadline is not determined correctly, the

frequency adjustment may malfunction in some special
cases. The two special cases called overload and
underload that must be looked upon are suggested in [17].
We detect the overload/underload situation by counting
the consequent frequency increases, i.e., if the number of
consequent frequency increases/decrease reaches a value
denoted by koverload/ kunderload, we conclude that an abrupt
increase/decrease in the workload has occurred and the
system is overloaded/underloaded. If the overload or
underload condition is detected, TIL will be replaced by
the minimum possible value and all the frequency updates
will be done in the direction of frequency
increase/decrease. This small update interval leads to the
highest frequency update rate. The overload/ underload
detection circuits are shown in Figure 2 (d).

IV. RESULTS AND DISCUSSION
To assess the efficiency of the proposed frequency

scheduling method, we applied the fixed update interval
 [13], adaptive update interval, and oracle DVFS methods
to a workload set obtained from real workloads based on
realistic computational load of the MPEG2 decoder and
two packet-processing applications. We have used MIPS-
based SimpleScalar [18] simulations to determine the
computational load of the MPEG2 decoding in terms of
instructions per frame. The computational complexities of
the packet-processing applications were also extracted
from [20].The packet-processing applications which were
selected from the PacketBench [21] included an IPv4
look-up (IPv4-trie) and flow classification (Flow-class)
algorithms that are widely used in network processing
nodes. We have also exploited a method the same as
Wattch [19] for estimating the power consumption based
on the effective capacitance concept.

 The DVFS algorithms and the power estimation
methods were modeled in Verilog and simulated in
Modelsim. The MPEG2 decoder workload is obtained
from decoding three different MPEG2 movies. The
computational load is related to the number of
instructions required for decoding a frame.

In ADAPTIVE, there are four parameters whose values
determine the power saving capability and deadline
misses (responsiveness) of the system. The parameters are
the size of the workload history (khistory),
overload/underload history (koverload/kunderload), and the
Interval step (kstep). For MPEG decoding workloads, we
used some simulations to obtain the best values for the

To appear in IEEE Transactions on VLSI Systems 4

parameters. The priority of finding the values of the
parameter was based on their effects on the power and
deadline misses. The results showed that the most
effective parameter was koverload. Figure 3 shows the
deadline misses and power consumption of the selected
movies as a function of the koverload. In the MPEG2
decoder, frames should be processed in 33μs. Each frame-
processing time violating this specified period causes a
deadline miss. As shown in Figure 3, a good value for
koverload is between 2 and 7, and hence, the overload
detection circuit can be implemented with a 3-bit CRH1
counter leading to the deadline misses in the range of 5%-
15%, and the power consumption reduction of 40%-60%.

(a)

(b)

Figure 3. Power consumption and deadline miss of the selected
movies versus koverload (a) deadline miss, (b) power.

The next parameter that is tuned is the kunderload. As the
results reveal, when kunderload is around 10, the deadline
miss is about 6% and the power saving is nearly
saturated. This value needs a 4-bit CRH1 counter for
underload detection. Finally, we have found that setting
khistory to 3200 reduces the deadline miss to below 2%
which requires a 12-bit CRH counter. The last parameter
of the system is kstep which is used for properly tuning the
interval value. We have found the power consumption
and deadline miss of the selected movies as a function of
kstep. Since the power consumption is a weak function of
kstep, this parameter may be used for fine tuning of the
deadline misses.

Our study showed that koverload and kunderload were the
most effective parameters. Figure 4 shows the effect of
these parameters on the power consumption and deadline
misses of one of the selected movies. The power values

are normalized to the maximum values of the power
consumption. We can observe that higher kunderload and
lower koverload values yield lower deadline misses (more
responsiveness) while lower kunderload and higher koverload
values give rise to lower power consumptions.

(a)

(b)
Figure 4. Power consumption and deadline misses of the Legend
movie for a wide range of koverload and kunderload values. (a) power
consumption, (b) deadline miss.

We have tuned the parameters of ADAPTIVE based on
MPEG workloads and used these parameters for the
packet-processing applications as well. Therefore, we
have used the results of Figure 4 and set the values of
koverload and kunderload to 2 and 6, respectively. The other
parameters including khistory and kstep, were also set to 1000
and 5, respectively. In Figure 5, we have compared the
power consumptions and the frequency update rates of the
FIXED, ADAPTIVE, and oracle (ideal) techniques for the
MPEG2 decoding and two packet-processing
applications.

With the oracle we mean an ideal DVFS algorithm in
which the workload computational complexity is known
at the beginning of processing and the frequency is set to
the optimum value accordingly. Therefore, the update rate
of oracle is one update per frame and the deadline miss is
zero. Besides, FIXED and ADAPTIVE parameters were
set such that the deadline misses of both systems were the
same. As shown in Figure 5, on average, ADAPTIVE
leads to about 12% more power savings, compared to that
of the FIXED, while the update rate of ADAPTIVE is
also about 2.6 times lower than that of the FIXED.
According to the presented results in [13], exploiting the
DVFS scheme does not increase the power consumption

To appear in IEEE Transactions on VLSI Systems 5

of subsystems such as memory. Therefore, excluding the
memory power consumption does not affect the results.

V. CONCLUSION
In this work, an efficient and adaptive update interval

method for dynamic voltage and frequency management
was proposed. In this method, the frequency and voltage
of the system for the periodic workloads were scheduled
while maintaining soft real-time deadlines. The saving
was achieved by introducing the concept of the effective
deadline and taking advantage of the possible correlation
between the consecutive workloads. To show the efficacy
of the method, comparisons between oracle, adaptive, and
fixed interval DVFS systems were performed using
realistic workloads of the MPEG2 decoder and packet-
processing applications. The results showed that the
proposed adaptive interval DVFS technique could save
power more with fewer frequency updates as compared to
the fixed interval DVFS systems.

(a)

(b)
Figure 5. (a) Power consumption and (b) updates rates per frame
or packet for the realistic workloads in FIXED, ADAPTIVE,
and oracle techniques.

REFERENCES

[1] B. C. Mochocki, X. S. Hu, and G. Quan, “A Unified approach to
variable voltage scheduling for nonideal DVS processors,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 23, no. 9, Sept. 2004, pp. 1370-1377.

[2] S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K.
Flautner, and T. Mudge, “A self-tuning DVS processor using
delay-error detection and correction,” IEEE Journal of Solid-State
Circuits, vol. 41, no. 4, April 2006, pp. 792-804.

[3] K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage
and frequency scaling for precise energy and performance tradeoff
based on the ratio of off-chip access to on-chip computation
times,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 24, no. 1, January 2005, pp.
18-28.

[4] T. Burd, T. Pering, et al., “A Dynamic voltage scaled
microprocessor system,” IEEE Journal of Solid-State Circuits,
vol. 35, no. 11, Feb. 2000, pp.294-295.

[5] K. J. Nowka, G. D. Carpenter, et al., "A 32-bit PowerPC system-
on-a-chip with support for dynamic voltage scaling and dynamic
frequency scaling," IEEE Journal of Solid-State Circuits, vol. 37,
no. 11, Nov. 2002, pp. 1441-1447.

[6] K. Flautner, D. Flynn, et al., “IEM926: an energy efficient SoC
with dynamic voltage scaling,” in proc. of the Design, Automation
and Test in Europe Conference and Exhibition Designers’ Forum,
Feb. 2004, pp. 324-329.

[7] J.R. Lorch, A.J. Smith, “PACE: A new approach to dynamic
voltage scaling,” IEEE Transactions on Computers, vol. 53, no. 7,
July 2004, pp. 856-869.

[8] M. Marinoni and G. Buttazzo “Elastic DVS management in
processors with discrete voltage/frequency modes,” IEEE
Transactions on Industrial Informatics, vol. 3, no. 1, February
2007, pp. 51-56.

[9] S. Liu, Q. Qiu, and Q. Wu, “Energy aware dynamic voltage and
frequency selection for real-time systems with energy harvesting,”
in proc. of Design, Automation and Test in Europe, 2008, pp. 236-
241.

[10] J. Wegener and F. Mueller. “A comparison of static analysis and
evolutionary testing for the verification of timing constraints,”
Real-Time Systems, 21(3):241–268, Nov. 2001.

[11] M. Elgebaly and M. Sachdev, “Variation-aware adaptive voltage
scaling system,” IEEE Transactions on Very Large Scale
Integration (VLSI) systems, vol. 15, no. 5, May 2007, pp. 560-571.

[12] S. Chandra, K. Lahiri, A. Raghunathan, and S. Dey, “Variation-
tolerant dynamic power management at the system-level,” IEEE
Transactions on Very Large Scale Integration (VLSI) systems, vol.
17, no. 9, September 2009, pp. 1220-1232.

[13] M. Nakai, S. Akui, et al., "Dynamic voltage and frequency
management for a low-power embedded microprocessor," IEEE
Journal of Solid-State Circuits, vol. 40, no. 1, Jan. 2005, pp 28-35.

[14] S. Herbert and D. Marculescu, “Analysis of dynamic
voltage/frequency scaling in chip-multiprocessors,” in proc. of
Int’l Symp. on Low Power Electronics and Design, Aug. 2007,
pp.38-43.

[15] Wu, Q., Juang, P., Martonosi, M., and Clark, D.W.: “Formal
Online Methods for Voltage/Frequency Control in Multiple Clock
Domain Microprocessors,” in proc. of ASPLOS-XI, Oct. 2004, pp.
248-259.

[16] P. Choudhary and D. Marculescu, “Power management of
voltage/frequency island-based systems using hardware-based
methods,” IEEE Transactions on Very Large Scale Integration
(VLSI) systems, vol. 17, no. 3, March 2009, pp. 427-438.

[17] M. Najibi, M. Salehi, A. Afzali Kusha, M. Pedram, S. M. Fakhraie,
and H. Pedram “Dynamic voltage and frequency management
based on variable update intervals for frequency setting,” in proc.
of IEEE/ACM International Conference on Computer-Aided
Design, Nov. 2006, pp. 775-760.

[18] D. Burger and T. Austin, The SimpleScalar tool set version 2.0,
Computer Architecture News, 25, (3) (1997) 13–25, June.

[19] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework
for architectural-level power analysis and optimizations,” In proc.
of the 27th International Symposium on Computer Architecture,
June 2000, pp. 83-94.

[20] M. E. Salehi and S. M. Fakhraie, “Quantitative analysis of packet-
processing applications regarding architectural guidelines for
network-processing-engine development,” Journal of System
Architecture, vol. 55, no. 7-9, July-September 2009, pp. 373-386.

[21] R. Ramaswamy, N. Weng and T. Wolf “Analysis of network
processing workloads,” Journal of System Architecture, (2009),
10.1016/j.sysarc.2009.09.001.

