
Dynamic Voltage Scaling and Power Management
for Portable Systems

Tajana Simunic Luca Benini � Andrea Acquaviva � Peter Glynn† Giovanni De Micheli
Computer Systems

Laboratory
Stanford University

†Management Science and
Engineering Department

Stanford University

� DEIS
University of Bologna

ABSTRACT
Portable systems require long battery lifetime while still deliver-
ing high performance. Dynamic voltage scaling (DVS) algorithms
reduce energy consumption by changing processor speed and volt-
age at run-time depending on the needs of the applications running.
Dynamic power management (DPM) policies trade off the perfor-
mance for the power consumption by selectively placing compo-
nents into low-power states. In this work we extend the DPM model
presented in [2, 3] with a DVS algorithm, thus enabling larger
power savings. We test our approach on MPEG video and MP3
audio algorithms running on the SmartBadge portable device [1].
Our results show savings of a factor of three in energy consump-
tion for combined DVS and DPM approaches.

1. INTRODUCTION
Battery-operated portable systems impose tight constraints on

energy consumption. Portable systems often consist of one or more
microprocessors and a set of devices with multiple low-power states.
Many microprocessors support dynamic clock frequency adjust-
ment, and some newer devices also support dynamic supply volt-
age setting [4]. Thus at system level it is possible to reduce energy
by changing the frequency and voltage level of the microproces-
sor (dynamic voltage scaling) and by transitioning components into
low-power states (dynamic power management).

In this work we extend the DPM model presented in [2, 3] with
a DVS algorithm, thus enabling larger power savings. The algo-
rithm is implemented for the SmartBadge portable device [1]. The
SmartBage consists of a StrongARM processor, memory, RF link
and display. All components have four main power states: active,
idle, standby and off. In addition, the processor can operate over
a range of frequencies. For each frequency, there is a minimum
allowed voltage of operation. If the processor is run at the min-
imum frequency and voltage required to sustain the performance
level required by the application, it is possible to save power even
when the system is active, in addition to the savings that can be ob-
tained by DPM during idle periods. This principle is exploited by
the recently announced Transmeta’s Crusoe processor [4].

A DVS algorithm sets the microprocessor voltage and frequency
at run time depending on the behavior of applications currently run-
ning. Early DVS algorithms set processor speed based on the pro-
cessor utilization of fixed intervals [5, 6]. The individual require-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

ments of the tasks running were not considered, resulting in poor
behavior for more complex workloads [13]. There has been a num-
ber of voltage scaling techniques proposed for real-time systems.
The approaches presented in [7, 9, 8, 10] assume that all tasks run
at their worst case execution time (WCET). The workload varia-
tion slack times are exploited on task-by-task basis in [11], and are
fully utilized in [12]. Work presented in [14] introduces a voltage
scheduler that determines the operating voltage by analyzing appli-
cation requirements. The scheduling is done at task level, by setting
processor frequency to the minimum value needed to complete all
tasks. For applications with high frame-to-frame variance, such as
MPEG video, schedule smoothing is done by scheduling tasks to
complete twice the amount of work in twice the deadline.

In all DVS approaches presented in the past, scheduling was
done at the task level, assuming multiple threads. The prediction
of task execution times was done either using worst case execu-
tion times, or heuristics. Such approaches neglect that DVS can be
done within a task or for single-application devices. For, instance,
in MPEG decoding, the variance in execution time on frame basis
can be very large: a factor of three in the number of cycles [15],
or a range between 1 and 2000 IDCTs per frame [16] for MPEG
video.

The first contribution of this work is to develop and verify a
stochastic model for prediction of execution times for streaming
multimedia applications on a frame-by-frame basis. Our model is
based on the change-point detection theory used for ATM traffic
detection among other applications [17]. We compare our model to
prefect prediction and to exponential moving average used in [14].
The prediction algorithm developed is then used as a part of a power
control strategy that merges DVS and DPM.

As opposed to DVS, power management algorithms aim at re-
ducing energy consumption at the system-level by selectively plac-
ing components into low-power states during idle periods. DPM
algorithms presented in the past can be classified into deterministic
and stochastic [3]. Deterministic algorithms include basic timeout
and predictive schemes. Stochastic models can give optimal DPM
policies, as long as the basic assumptions made in the formulation
of the model are true. A simple stochastic model for DPM as-
sumes that idle times for system resources follow exponential dis-
tributions. Unfortunately, it has been shown in [2] that approaches
purely based on exponential distributions do not model well real
system behavior.

Two stochastic approaches recently presented allow usage of gen-
eral distributions instead of just exponential. As a result, large
power savings were observed. The first approach is based on re-
newal theory [2]. This model assumes that the decision to transi-
tion to low power state can be made in only one state. Another
method developed is based on the Time-Indexed Semi-Markov De-
cision Process model (TISMDP) [3]. This model is more complex,
but also has wider applicability because it assumes that a decision
to transition into a lower-power state can be made from any number
of states. Both approaches assume a single system active state and



assume that energy consumption in that state is constant.
The second contribution of this work is to merge the DPM and

the DVS approaches, by expanding the active state definition to in-
clude multiple settings of frequency and voltage, thus resulting in a
range of performance and power consumptions available for trade-
off at run time. In this way, the power manager can control perfor-
mance and power consumption levels both by using DVS when the
system is active, and by transitioning components into low-power
states when the system is idle.

The rest of the paper is organized as follows. Section 2 describes
the stochastic models of the system components. The models are
based on experimental observations. In Section 3 we present the
theoretical basis for detection of rate change together with dynamic
selection of CPU frequency and voltage. We show simulation and
measurement results for MPEG2 video (CIF size) and MP3 audio
running on the SmartBadge in Section 4. Finally, we summarize
our findings in Section 5.

2. SYSTEM MODEL
The systems can be modeled with three components: the work-

load, the device (SmartBadge) and the queue (the buffer associated
with the device) as shown in Figure 1. The power manager observes
all event occurrences of interest and takes decisions on what state
the system should transition to next, in order to minimize energy
consumption for a given performance constraint. While the device
is active, the power manager selects the most appropriate execution
frequency and voltage for the processor. As our work was moti-
vated by a real design of the SmartBadge, in all our examples we
use the SmartBadge hardware with MPEG video and MP3 audio.

User Queue

Power Manager

Device

Figure 1: System Model

Each system component is described probabilistically. The work-
load is modeled by a request interarrival distribution. For stream-
ing multimedia applications, requests represent frame arrivals from
the network. Similarly, the service time distribution describes the
behavior of the device in the active state. In multimedia case, it
represents the time needed for processing a frame (decompressing
it and sending to the output interface). The transition time distribu-
tion models the time taken by the device to transition between its
power states. Finally, the combination of interarrival time distribu-
tion (incoming frame arrivals) and service time distribution (frame
decoding times) characterizes well the behavior of the queue (frame
buffer). The details of each system component are described in the
next sections.

2.1 Portable Device
Portable devices typically have multiple power states. Each de-

vice has one active state in which it services the requests, and one
or more inactive low-power states. The active state can further be
characterized by a set of sub-states differentiated by performance
(e.g. CPU frequency) and power consumption (e.g. CPU voltage).
In addition, the power manager can trade off power for performance
by placing the device into low-power states. Each low power state
can be characterized by the power consumption and the perfor-
mance penalty incurred during the transition to or from that state.
Usually higher performance penalty corresponds to lower power
states.

2.1.1 The SmartBadge Device

The SmartBadge, shown in Figure 2, is an embedded system
consisting of Sharp’s display, Lucent’s WLAN RF link, StrongARM-
1100 processor, RAM, FLASH, sensors, and modem/audio analog
front-end on a PCB board powered by the batteries through a DC-
DC converter. Note that the SmartBadge has two types of data
memory – slower SRAM (1MB, 80ns) from Toshiba and faster
DRAM (4MB, 15ns) from Micron that is used only during audio
or video decode. Components in the SmartBadge, the power states
and the transition times of each component from standby (tsby) and
off (to f f ) state into active state are shown in the Table 1.

UCB1200

Analog &
Digital

Sensors

Microphone
and

Speakers

Memory:

Flash

SDRAM

Display

DC-DC
Converter B

at
te

ry


WLAN RF

StrongARM

SA-1100

Figure 2: SmartBadge

The initial goal in designing the SmartBadge was to allow a com-
puter or a human user to provide location and environmental infor-
mation to a location server through a heterogeneous network. The
SmartBadge could be used as a corporate ID card, attached (or built
in) to devices such as PDAs and mobile telephones, or incorporated
in computing systems. In this work we focus on using the Smart-
Badge as a PDA capable of MPEG video and MP3 audio playback.

Table 1: SmartBadge components

Component Active Idle Stdby tsby to f f
P (mW) P (mW) P (mW) (ms) (ms)

Display 1000 1000 100 100 240
WLAN RF 1500 1000 100 40 80
SA-1100 400 170 0.1 10 35
FLASH 75 5 0.023 0.6 160
SRAM 115 17 0.13 5.0 100
DRAM 400 10 0.4 4.0 90
Total 3500 2200 200 110 705

The StrongARM processor on the SmartBadge can be config-
ured at run-time by a simple write to a hardware register to execute
at one of 10 different frequencies. Note that the number of frequen-
cies is predefined by the design of the StrongARM processor. We
measured the transition time between two different frequency set-
tings at 150 microseconds. Since typical decoding time for MPEG
video or MP3 audio is much longer than the transition time, it is
possible to change the CPU frequency without perceivable over-
head. For each frequency, there is a minimum voltage the SA-1100
needs in order to run correctly, but with lower energy consumption.
Figure 3 shows the frequency-voltage tradeoff.

In addition to the active state, the SmartBadge supports three
lower power states: idle, standby and off. The idle state is entered
immediately by each component in the system as soon as that par-
ticular component is not accessed. The standby and off state transi-
tions can be controlled by the power manager. The transition from
standby or off state into the active state can be best described using
the uniform probability distribution.

2.1.2 The Active State Model
Service times (decoding times for video or audio frames) on the

SmartBadge in the active state are modeled by an exponential dis-



0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

100 120 140 160 180 200

Frequency (MHz)

Vo
lta

ge
 (V

)

Figure 3: Frequency vs. Voltage for SA-1100

tribution. The average service time is defined by 1
λD

where λD is
the average service rate (measured in frames/second for MPEG2
video (CIF size) and MP3 audio). Equation 1 defines the cumula-
tive probability of the device servicing a request within time inter-
val t.

FD
�
t ��� 1 � e � λDt (1)

0

0.2

0.4

0.6

0.8

1

100 120 140 160 180 200

Frequency (MHz)

R
a
tio



Performance
Energy

Figure 4: Performance and energy for MP3 audio

Figure 4 shows the tradeoff between performance and energy
when running MP3 audio decode on the SmartBadge hardware at
allowable frequency and voltage setting for the SA-1100 processor,
and Figure 5 shows the same results for MPEG video. The shape of
the performance curve versus processor frequency setting depends
on the application and on the underlying hardware. MP3 audio was
decoded using slower SRAM on the SmartBadge. Since memory
access time does not depend on processor clock frequency, perfor-
mance improvements at high processor frequencies are memory-
bound, and speedup is not linear. MPEG video decode ran on much
faster SDRAM and thus its performance curve is almost linear as
it is more limited by the processor speed. In both figures all values
are normalized to the data points obtained for the fastest frequency.

The basic rationale for DVS is that for frames that take a shorter
time to decode, processor frequency and voltage can be lowered,
and for longer frames, increased. In addition, the decoding speed
needs to be adjusted to frame arrival frequency, so that the frame
buffer does not contain too many or too few frames. The detection
of changes in decoding speed and arrival frequency are thus critical
for optimal setting of CPU frequency and voltage. We present an
optimal way for detection in section 3.

2.2 User Workload Model
The requests to the multimedia application during the decoding

are in form of audio or video frame arrivals through the WLAN.
Thus, the workload’s stochastic model in the active state can be
defined by the frame interarrival time distribution. We measured

0.2

0.4

0.6

0.8

1

80 100 120 140 160 180 200
Frequency (MHz)

R
at

io


Performance
Energy 

Figure 5: Performance and energy for MPEG video

MPEG2 video (CIF size) and MP3 audio frame arrival times by
monitoring the accesses to the WLAN card. The frame arrival
times vary for two different reasons: the user of the system can
request various video and audio clips, each might be with differ-
ent frame rate, and the frames arrive through the wireless network
which can cause a large variation in the frame delays. The frame

0

0.2

0.4

0.6

0.8

1

-0.1 0.1 0.3 0.5 0.7 0.9

Interarrival Time (s)

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Experimental

Exponential

Average fitting error = 8%

Figure 6: MPEG video arrival time distribution

interarrival times in the active state for both applications can be
approximated with an exponential distributions. Figure 6 shows
exponential cumulative distribution fitted to the measured results
for the MPEG video. Similar results have been observed for the
MP3 audio. Frame arrival rate in the active state is defined as λU
and the mean frame interarrival time is 1

λU
. The probability of the

SmartBadge receiving a frame within time interval t follows the
cumulative probability distribution shown below.

FU
�
t ��� 1 � e � λU t (2)

Note that the exponential distribution is not used to model the
arrivals in the idle state. In the idle state, audio or video frames
have all been decoded and no new requests have arrived yet. This
is when the power manager can make a decision on what low-power
state to place the device in as discussed in [2]. Remember that the
full optimization model should not only decide when to transition
the device into one of the low-power states (standby or off) but
should also perform dynamic voltage scaling in the active state.

2.3 Queue
Portable devices normally have a buffer for storing requests that

have not been serviced yet. For multimedia requests such as MPEG
video and audio it is convenient to describe queue in terms of the
number of frames waiting in the frame buffer. As the frames ar-
riving to the SmartBadge do not have priority, our queue model
contains only the number of frames waiting service (decoding). In
the active state, where the exponential distributions is used to de-
scribe frame arrivals and service times, the behavior of the system



can be modeled using M/M/1 queue model. More details on this
model and its application to dynamic voltage scaling are given in
the following section.

3. THEORETICAL BACKGROUND
In the work presented in [2, 3], the power manager’s only job is

to decide when to transition the device into one of the low-power
states. Power management policies are obtained using one of two
models: renewal theory model [2] and time-indexed semi-markov
process model [3]. It was observed that in the idle state we need to
accurately model the tail of the interarrival time distribution, which
does not follow a perfect exponential distribution. As a result, the
time elapsed since the last entry into the idle state had to be ac-
counted for in the model in order to obtain the optimal power man-
agement policy. Renewal theory naturally accounts for the time
elapsed in the idle state through formulation of the system renewal
time. In the TISMDP model, instead of the simple state model
shown on the left in Figure 7, it was necessary to expand the idle
and the sleep states with time index representing elapsed time since
the last entry into the idle state as shown on the right. Note that in
both renewal and TISMDP models there is only one active state
(with one or more elements in the queue).

Original system model

Arrival

Departure

Arrival

Sleep
No Arrival

Sleep
Arrival

Idle State
queue = 0

Sleep State
queue > 0

Sleep State
queue = 0

Active State
queue > 0

Time-indexed system model

Arrival

Departure

Arrival

Sleep
No Arrival

Sleep
Arrival

Active State
queue > 0

Sleep State
queue > 0

Idle State
queue = 0

t> n    t

Idle State
queue = 0

t < t < 2      t

Idle State
queue = 0

t<    t

No
Arrival

No
Arrival

Sleep State
queue = 0
t> n    t+U

Sleep State
queue = 0
t+U < t &

t< 2    t +U

Sleep State
queue = 0

U< t<     t + U

No
Arrival

No
Arrival

Sleep
No Arrival

Figure 7: Time-indexed SMDP states

In this work we have extended the function of power manager
(PM) to include decisions on the CPU frequency and voltage set-
ting while in the active state. Thus, instead of having only one
active state as shown in Figure 7, now there is a set of active states,
each characterized by different performance (CPU frequency) and
power consumption (CPU voltage) as shown in Figure 8. Since
TISMDP and renewal models both assumed that active state can
be described using the exponential distribution, the transformation
from one active into multiple active states is completely compati-
ble with the rest of the model. As a result, the power management
policies we develop can make decisions for both dynamic voltage
setting and the transition into the low-power states.

At run-time, the PM observes request arrivals and service com-
pletion times (in our case frame arrivals and decoding times), the
number of jobs in the queue (the number of frames in the buffer)
and the time elapsed since last entry into idle state. When in the ac-
tive state, the PM checks if the rate of incoming or decoding frames
has changed, and then adjusts the CPU frequency and voltage ac-
cordingly. Once the decoding is completed, the system enters idle
state. At this point the power manager observes the time spent in
the idle state, and depending on the policy obtained using either
renewal theory or TISMDP model, it decides when to transition
into one of the sleep states. When a request arrives for more audio
or video decoding, the power manager transitions the system back
into the active state and starts the decoding process.

Arrival

Departure

Arrival

Sleep
No Arrival

Sleep
Arrival

Active State
f0,V0

Sleep State
queue > 0

Idle State
queue = 0

t> n    t

Idle State
queue = 0

t < t < 2      t

Idle State
queue = 0

t<    t

No
Arrival

No
Arrival

Sleep State
queue = 0
t> n    t+U

Sleep State
queue = 0
t+U < t &

t< 2    t +U

Sleep State
queue = 0

U< t<     t + U

No
Arrival

No
Arrival

Sleep
No Arrival

...

Active State
f1,V1

Active State
f
n
,V

n

Figure 8: Expansion of the active state

We next present the optimal approach for detecting a change in
the frame arrival or decoding times. Once a change is detected, a
decision has to be made on how to set the CPU frequency and volt-
age. We present results based on M/M/1 queue theory that enable
power manager to make this decision.

3.1 Dynamic Voltage Scaling Algorithm
The DVS algorithm consists of two main portions: detection of

the change in request arrival or servicing rate, and the policy that
adjusts the CPU frequency and voltage. The detection is done using
maximum likelihood ratio that guarantees optimal detection for ex-
ponential distributions. Policy is implemented using M/M/1 queue
results to ensure constant average delay experienced by buffered
frames.

Detecting the change in rate is a critical part of optimally match-
ing CPU frequency and voltage to the requirements of the user. For
example, the rate of MP3 audio frames coming via RF link can
change drastically due to changes in the environment. The servic-
ing rate can change due to variance in computation needed between
MPEG frames [15, 16], or just by changing the audio source cur-
rently decoded by the MP3 audio. The request (frame) interarrival
times and servicing (decoding) times follow exponential distribu-
tion as discussed in the previous section. The two distributions are
characterized by the arrival rate, λU , and the servicing rate, λD.

The change point detection is performed using maximum like-
lihood ratio, Pmax, as shown in Equation 3. Maximum likelihood
ratio computes the ratio between the probability that a change in
rate did occur (numerator in Equation 3) and the probability that
rate did not change (denominator). The probability that the rate
changed is computed by fitting the exponential distribution with an
old rate, λo, to the first k � 1 interarrival or decoding times (x j), and
another exponential distribution with a new rate, λn, to the rest of
the points observed in window of size m (which contains the last
m interarrival times of requests). The probability that the rate did
not change is computed by fitting the interarrival or decoding times
with the exponential distribution characterized by the current (or
old) rate, λo.

Pmax �
Πk � 1

j � 1λoe � λox j Πm
j � kλne � λnx j

Πm
j � 1λoe � λox j

(3)

An efficient way to compute the maximum likelihood ratio, Pmax,
is to calculate the natural log of Pmax as shown below:

ln
�
Pmax ���

�
m � k 	 1 � ln λn

λo
� �

λn � λo �
m

∑
j � k

x j (4)



Note that in this equation, only the sum of interarrival (or decod-
ing) times needs to be updated upon every arrival (or service com-
pletion). A set of possible rates, Λ, where λn 
 λo � Λ is predefined,
as well as the size of the window m. Variable k is used to locate the
point in time when the rate has changed. The change point detec-
tion algorithm consists of two major tasks: off-line characterization
and on-line treshold detection.

Off-line characterization is done using stochastic simulation of a
set of possible rates to obtain the value of ln

�
Pmax � that is sufficient

to detect the change in rate. The results are accumulated in a his-
togram, and then the value of maximum likelihood ratio that gives
very high probability that the rate has changed is chosen for every
pair of rates under consideration. In our work we selected 99.5%
likelihood.

On-line detection collects the interarrival time sums at run time
and calculates the maximum likelihood ratio. If the maximum like-
lihood ratio computed is greater than the one obtained from the
histogram, then there is 99.5% likelihood that the rate change oc-
curred, and thus the CPU frequency and voltage need to be ad-
justed. We found that a window of m � 100 is large enough. Larger
windows will cause longer execution times, while much shorter
windows do not contain statistically large enough sample and thus
give unstable results. In addition, the change point can be checked
every k � 10 points. Larger values of k interval mean that the
changed rate will be detected later, while with very small values
the detection is quicker, but also causes extra computation. The
same change point detection algorithm can be used for any type of
distribution, not only for the exponential distributions.

The adjustment of frequency and voltage is done using M/M/1
queue model. Using this model we try to keep the average total de-
lay for processing frames in the queue constant (Equation 5). Note
that when general distributions are used, M/M/1 queue model is not
applicable, so another method of frequency and voltage adjustment
is needed.

Framedelay � λD

λU
�
λU � λD � (5)

When either interarrival rate, λU , or the servicing rate, λD, change,
the frame delay is evaluated and the new frequency and voltage are
selected that will keep the frame delay constant. For example, if
the arrival rate for MP3 audio changes, Equation 5 is used to obtain
required decoding rate in order to keep the frame delay (and thus
performance) constant. The decoding rate can be related back to
the processor frequency setting using Figure 4 or an equivalent ta-
ble. On the other hand, if a different frame decoding rate is detected
while processor is set to the same frequency, then piece-wise lin-
ear approximation based on the application frequency-performance
tradeoff curve (Figures 4 and 5) is used to obtain the new proces-
sor frequency setting. In either case, when CPU frequency is set
to a new value, the CPU voltage is always adjusted according to
Figure 3.

4. RESULTS
We implemented the change point detection algorithm as a part

of the power manager for both MPEG2 video (CIF size) and MP3
audio examples. When the system is in the active state (the state
where audio and video decoding occur), the power manager (PM)
observes changes in the frame arrival and decoding rates using
change point detection algorithm described in the previous section.
Once a change is detected, the PM evaluates the required value
of the processor frequency that would enable the frame delay ex-
pressed in Equation 5 to remain constant. The CPU voltage is set
using results shown in Figure 3. Figure 9 shows the relationship be-
tween CPU frequency and MPEG video frame arrival and decoding
rates for average buffered frame delay of 0 � 1 seconds, which then
corresponds to an average of 2 extra frames of video buffered. This
example is for a clip of football video decoded on the SmartBadge.
Similar results can be obtained for other clips, but with different
decoding rates, as the rates depend on the content and on the hard-

ware architecture.

0

5

10

15

20

25

30

35

40

95 110 125 140 155 170 185 200

CPU Frequency (MHz)

Ra
te 

(fr
am

es
/se

c)

CPU rate

WLAN rate

Figure 9: MPEG Frame Rates vs. CPU Frequency

We compare our rate change detection algorithm to ideal detec-
tion and to exponential moving average algorithm. Ideal detec-
tion assumes knowledge of the future; thus the system detects the
change in rate exactly when the change occurs. Exponential mov-
ing average can be defined as follows:

Ratenew
ave � �

1 � g � Rateold
ave 	 gRatecur (6)

where Ratenew
ave is the new average rate, Rateold

ave is the old average,
Ratecur is the current measured rate and g is the gain. Figure 10
shows the comparison results for detecting a change from 10 fr/sec
to 60 fr/sec. Our algorithm detects the correct rate within 10 frames
of the ideal detection and is more stable than the exponential mov-
ing average algorithm.

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900 1000

Frame Number

Fr
am

es
 p

er
 s

ec


Exp. Average (gain=0.03)
Exp. Average (g=0.05)
Change Point
Ideal

Figure 10: Rate Change Detection

Table 2: MP3 audio streams

MP3 Audio Bit rate Sample Rate Dec. Rate
Clip Label (Kb/s) (KHz) (frames/s)
A 16 16 51.35
B 16 32 27.30
C 32 16 49.80
D 32 32 26.05
E 64 16 47.95
F 64 32 25.25

In the following set of results we compare (i) the ideal detec-
tion algorithm, (ii) the exponential average approximation used in
previous work and (iii) the maximum processor performance to (iv)
the change point algorithm presented in this paper. For this purpose
we use six audio clips totaling 653 seconds of audio, each running
at a different set of bit and sample rates as shown in Table 2. We
have found that there was very little variation on frame-by-frame
basis in decoding rate within a given audio clip, but the variation in



Table 3: MP3 audio DVS

MP3 Audio Change Exp.
Sequence Result Ideal Point Ave. Max
ACEFBD Energy 196 217 225 316

Fr.Delay 0.1 0.09 0.1 0
BADECF Energy 189 199 231 316

Fr.Delay 0.1 0.09 0.1 0
CEDAFB Energy 190 214 232 316

Fr.Delay 0.1 0.04 0.1 0

decoding rate between clips can be large as shown in Table 2 (the
decoding rates are for 202.4MHz processor frequency).

During decoding, the DVS algorithm detects changes in both ar-
rival and decoding rates for the MP3 audio sequences. The result-
ing energy (kJ) and average total frame delay (s) are displayed in
Table 3. Each sequence consists of a combination of six audio clips.
For all sequences, the frame arrival rate varied between 16 and 44
frames/sec. Our change point algorithm performs well, its results
are very close to the ideal, with no performance loss as compared to
the ideal detection algorithm that allows an average 0 � 1s total frame
delay (corresponding to 6 extra frames of audio in the buffer).

Table 4: MPEG video DVS

MPEG Video Change Exp.
Clip Result Ideal Point Ave. Max
Football Energy 214 218 300 426
(875s) Fr.Del. 0.1 0.11 0.16 0
Terminator2 Energy 280 294 385 570
(1200s) Fr.Del. 0.1 0.11 0.16 0

The next set of results are for decoding two different video clips.
In contrast to MP3 audio, for MPEG video there is a large variation
in decoding rates on frame-by-frame basis (this has been shown
in [15, 16] as well). We again report results for ideal detection, ex-
ponential average, maximum processor performance and our change
point algorithm. The ideal detection algorithm allows for 0.1s av-
erage total frame delay equivalent to 2 extra frames of video in the
buffer. The arrival rate varies between 9 and 32 frames/second. En-
ergy (kJ) and average total frame delay (s) are shown in Table 4.
The results are similar to MP3 audio. The exponential average
shows poor performance and higher energy consumption due to its
instability (see Figure 10). Our change point algorithm performs
well, with significant savings in energy and a very small perfor-
mance penalty (0.11s frame delay instead of allowed 0.1s).

Table 5: DPM and DVS
Algorithm Energy (kJ) Factor
None 4260 1.0
DVS 3142 1.4
DPM 2460 1.7
Both 1342 3.1

Finally, we combine the dynamic voltage scaling detection with
power management algorithms presented in [2, 3]. We use a se-
quence of audio and video clips, separated by idle time. During
longer idle times, the power manager has the opportunity to place
the SmartBadge in the standby state. The optimal power man-
agement policy can be obtained by either of the two approaches
presented in [2, 3] as the only decision point is upon the entrance
into the idle state. Table 5 shows the energy savings for the whole
system if we implemented only dynamic voltage scaling (and thus
did not transition into standby state during longer idle times), or if
only power management is implemented (and thus processor runs

at maximum frequency and voltage in the active state) and finally
also for the combination of the two approaches. We obtain savings
of a factor of three when expanding the power manager to include
dynamic voltage scaling with our change point detection algorithm.

5. CONCLUSIONS
We presented a new approach for dynamic voltage scaling that

can be used as a part of a power managed system, such as systems
presented in [2, 3]. Our dynamic voltage scaling algorithm is based
on two different tasks: (i) change point detection algorithm that de-
tects the change in arrival or decoding rates, and (ii) the frequency
setting policy that sets the processor frequency and voltage based
on the current arrival and decoding rates in order to keep constant
performance. We tested our approach on MPEG video and MP3
audio algorithms running on the SmartBadge portable device [1].
Our change point detection algorithm is very stable as compared
to the exponential moving average algorithm presented previously.
As a result, it gives large energy savings at a small performance
penalty for both MPEG video and MP3 audio applications. Finally,
we implemented our DVS algorithm together with power manage-
ment algorithms and show factor of three savings in energy due to
the combined approach.

6. ACKNOWLEDGMENTS
This work was supported in part by NSF under grant number

CCR-9901190. In addition, we would like to thank Hewlett-Packard
Laboratories for their support.

7. REFERENCES
[1] G. Q. Maguire, M. Smith and H. W. Peter Beadle “SmartBadges: a wearable computer and communication

system”, 6th International Workshop on Hardware/Software Codesign, 1998.
[2] T. Simunic, L. Benini and G. De Micheli, “Energy Efficient Design of Portable Wireless Devices”,

International Symposium on Low Power Electronics and Design, pp. 49–54, 2000.
[3] T. Simunic, L. Benini and G. De Micheli, “Dynamic Power Management for Portable Systems”, The 6th

International Conference on Mobile Computing and Networking, pp. 22–32, 2000.
[4] L. Geppert, T. Perry, “Transmeta’s magic show,” IEEE Spectrum, vol. 37, pp.26–33, May 2000.
[5] M. Weiser, B. Welch, A. Demers, S. Shenker, “Scheduling for reduced CPU energy,” Proceedings of

Symposium on Operating Systems Design and Implementation, pp.13–23, Nov. 1994.
[6] K. Govil, E. chan, H. Wasserman, “Comparing algorithms for Dynamic speed-setting of a low-power CPU,”

Proceedings of Internactional Conferenc on Mobile Computing and Networking, Nov. 1995.
[7] F. Yao, A. Demers, S. Shenker, “A scheduling model for reduced CPU energy,” IEEE Annual foundations of

computer sciend, pp.374–382, 1995.
[8] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, M. Srivastava, “Power optimization of variable voltage-core based

systems,” Proceedings of Design Automation Conference, pp.176–181, 1998.
[9] I. Hong, M. Potkonjak, M. Srivastava, “On-line Scheduling of Hard Real-time Tasks on Variable Voltage

Processor,” Proceedings of International Conference on Computer-Aided Design, Nov. 1998.
[10] T. Ishihara, H. Yasuura, “Voltage Scheduling Problem for dynamically variable voltage processors,”

Proceedings of IEEE International Symposium on Low Power Electronics and Design, pp.197–202, 1998.
[11] Y. Shin, K. Choi, “Power conscious fixed priority scheduling for hard real-time systems,” Proceedings of

Design Automation Conference, pp.134–139, 1999.
[12] S. Lee, T. Sakurai, “Run-time voltage hopping for low-power real-time systems,” Proceedings of IEEE

International Symposium on Low Power Electronics and Design, pp.806–809, 2000.
[13] T. Pering, T. Burd, R. Brodersen, “The simulation and evaluation of Dynamic Voltage Scaling Algorithms”

Proceedings of IEEE International Symposium on Low Power Electronics and Design, 1998.
[14] T. Pering, T. Burd, R. Brodersen, “Voltage scheduling in the IpARM microprocessor system” Proceedings of

IEEE International Symposium on Low Power Electronics and Design, pp.96–101, 2000.
[15] A. Bavier, A. Montz, L. Peterson, “Predicting MPEG Execution Times,” Proceedings of SIGMETRICS,

pp.131–140, 1998.
[16] A. Chandrakasan, V. Gutnik, T. Xanthopoulos, “Data Driven Signal Processing: An Approach for Energy

Efficient Computing,” Proceedings of IEEE International Symposium on Low Power Electronics and Design,
pp.347–352, 1996.

[17] R. Vesilo, “Cumulative Sum Techniques in ATM Traffic Management,” Proceedings of IEEE GLOBECOM,
pp.2970–2976, 1998.


