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Abstract

This paper describes the design of a low-power micro-
processor system that can run between 8Mhz at 1.1V
and 100MHz at 3.3V. The ramifications of Dynamic
Voltage Scaling, which allows the processor to dynami-
cally alter its operating voltage at run-time, will be pre-
sented along with a description of the system design
and an approach to benchmarking. In addition, a more
in-depth discussion of the cache memory system will be
given.

1. Introduction

Our design goal is the implementation of a low-
power microprocessor for embedded systems. It is esti-
mated that the processor will consume 1.8mW at 1.1V/
8MHz and 220mW at 3.3V/100MHz using a 0.6µm
CMOS process. This paper discusses the system design,
cache optimization, and the processor’s Dynamic Volt-
age Scaling (DVS) ability.

In CMOS design, the energy-per-operation is
given by the equation

where C is the switched capacitance and V is the operat-
ing voltage [2]. To minimize , we use aggressive
low-power design techniques to reduce C and DVS to
optimize V.

Our system design, which addresses the complete
microprocessor system and not just the processor core,
is presented in Section 2. Our benchmark suite, which is
designed for a DVS embedded system, is presented in
Section 3. Section 4 discusses the issues involved with
the implementation of DVS, while Section 5 presents an
in-depth discussion of our cache design.

The basic goal of DVS is to quickly (~10µs)
adjust the processor’s operating voltage at run-time to
the minimum level of performance required by the
application. By continually adapting to the varying per-
formance demands of the application energy efficiency
is maximized.

The main difference between our design and that
of the StrongARM is the power/performance target: our
system targets ultra-low power consumption with mod-
erate performance while the StrongARM targets moder-
ate power consumption with high performance. Our
processor core is based on the ARM8 architecture [1],

which is virtually identical to that of the StrongARM.
The similarities and differences between the two designs
are highlighted throughout this paper.

2. System Overview

To effectively optimize system energy, it is neces-
sary to consider all of the critical components: there is
little benefit in optimizing the microprocessor core if
other required elements dominate the energy consump-
tion. For this reason, we have included the microproces-
sor core, data cache, processor bus, and external SRAM
in our design, as seen in Figure 1. The energy consumed
by the I/O system (not shown) is completely application
and device dependent and is therefore beyond the scope
of our work. The expected power distribution of our sys-
tem is given in Figure 2.

To reduce the energy consumption of the memory
system, we use a highly optimized SRAM design [3]
which is 32 data-bits wide, requiring only one device be
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Figure 1: System Block Diagram
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activated for each access. Schemes that use multiple
narrow-width SRAMs require multiple devices to be
activated for each access, resulting in a significant
increases in the energy consumption. To alleviate the
high pin count problem of 32-bit memory devices, we
multiplex the data address onto the same bit-lines as the
data words.

We use a custom designed high-efficiency non-
linear switching voltage regulator [14] to generate
dynamic supply voltages between 1.1V and 3.3V. An
efficient regulator is crucial to an efficient system
because all energy consumed is channeled through the
regulator. When switching from 3.3V to 1.1V, a linear
regulator would only realize a 3x energy savings,
instead of the 12x reduction afforded by our design.

The threshold voltage (Vt) significantly effects
the energy and performance of a CMOS circuit. Our
design uses aVt of 0.8V to achieve a balance between
performance and energy consumption. The StrongARM
[13], for comparison, uses aVt of 0.35V, which
increases performance at the expense of increased static
power consumption. When idle, the StrongARM is
reported to consume 20mW, which is the predicted
power consumption of our processorwhen running at
20MHz. When idle, we estimate our processor will con-
sume 200µw, an order of magnitude improvement.

3. Benchmarks

Our benchmark suite targets PDAs and embedded
applications. Benchmark suites such as SPEC95 are not
appropriate for our uses because they are batch-oriented
and target high-performance workstations. DVS evalua-
tion requires the benchmarking of workload idle charac-
teristics, which is not possible with batch-oriented
benchmarks. Additionally, our target device has on the
order of 1MB of memory and lacks much of the system
support required by heavy-weight benchmarks; running
SPEC95 on our target device would simply be impracti-
cal.

We feel the following six benchmarks are needed
to adequately represent the range of workloads found in
embedded systems:

• AUDIO Decryption
• MPEG Decoding
• User Interfaces
• Java Interpreter
• Web Browser
• Graphics Primitive Rendering

As of this writing, we have implemented the first
three of these and their characteristics are summarized
in Table 3. “Idle Time” represents the portion of system
idle time, used by DVS algorithms. The “Bus Activity”
column reports the fraction of active cycles on the exter-
nal processor bus, an important metric when optimizing
the cache system. The cache architecture used to gener-
ate Table 3 is discussed in Section 5.

As an example, Figure 4 shows anevent impulse

graph [13], which is used to help characterize programs
for DVS analysis. Each impulse represents one MPEG
frame and indicates the amount of work necessary to
process that frame. For this example, there is a fixed
frame-rate which can be used to calculate the optimal
processor speed for each frame, assuming only one out-
standing frame at any given time.

4. Dynamic Voltage Scaling

Our processor has the ability, termed Dynamic
Voltage Scaling (DVS), to alter it’s execution voltage
while in operation. This ability allows the processor to
operate at the optimal energy/efficiency point and real-
ize significant energy savings, which can be as much as
80% for some applications [13]. This section discusses
DVS design considerations and explains how it affects
architectural performance evaluations.

DVS combines two equations of sub-micron
CMOS design [2]:

 and

where is the energy-per-operation, is the
maximum clock frequency, and is the operating volt-
age. To minimize the energy consumed by a given task,
we can reduce , affecting a reduction in . A
reduction in , as shown in the second equation, results
in a corresponding decrease in . A simple example
of these effects is given below.

Reducing , the actual processor clock used,
without reducing does not reduce the energy con-
sumed by a processor for a given task. The

Benchmark
Miss
Rate

Idle
Time

Bus
Activity

AUDIO 0.23% 67% 0.35%

MPEG 1.7% 22% 14%

UI 0.62% 95% 0.52%

Table 3: Benchmark Characterization
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StrongARM 1100, for example, allows to be
dynamically altered during operation [16], affecting a
linear reduction in the power consumed. However, the
change in also causes a linear increase in task run-
time, causing the energy-per-task to remain constant.
Our system always runs with , which min-
imizes the energy consumed by a task.

From a software perspective, we have abstracted
away the voltage parameter and specify the operating
point in terms of . The actual voltage used is deter-
mined by a feedback loop driven by a simple ring oscil-
lator. The primary reason for this design was ease of the
hardware implementation; fortunately, it also presents
the most useful software interface.

Our system applies one dynamic voltage to the
entire system to realize savings from all components. It
would be possible, however, to use multiple independent
supply voltages to independently meet subsystem per-
formance requirements. This was not attempted in our
design. To interface with DVS-incompatible external
components we use custom designed level-converting
circuits.

The implementation of DVS requires the applica-
tion of voltage schedulingalgorithms. These algorithms,
discussed in Section 4.2, monitor the current and
expected state of the system to determine the optimal
operating voltage (frequency).

4.1 Energy/Performance Evaluation Under DVS

DVS can affect the way we analyze architectural
trade-offs. As an example, we explore the interaction
between DVS and the ARM Thumb [4] instruction set.
We apply Thumb to the MPEG benchmark from
Section 3 and analyze the energy consumed. This exam-
ple assumes a 32-bit memory system, which is a valid
assumption for high-performance systems but not nec-
essarily for all embedded designs.

The MPEG benchmark is 22% idle when running
at 100 MHz using the 32-bit ARM instruction set. DVS
allows us to minimize the operating voltage to fill
unnecessary idle-time. Using a first-order approxima-
tion, this would reduce the energy consumed by 40%
and slow down the processor clock to the point at which
idle time is zero. From this starting point, we consider
the application of the Thumb instruction set to this
benchmark.

For typical programs, the 16-bit Thumb instruc-
tion-set is 30% more dense than it’s 32-bit counterpart,
reducing the energy consumed in the cache and memory
hierarchy. However, due to reduced functionality, the
number of instructions executed increases by roughly
18%, increasing the energy dissipated in the processor
core as well as the task execution time.

This example will teach two important lessons.
First, an increase in task delay directly relates to an
increase in energy: DVS exposes the trade-off between
energy and performance. Second, an increase in delay

affects theentire system (core and cache), not just one
fragment: it is vital that the associated increase in the
energy-per-operation is applied to the entire system.

Figure 5 presents six metrics crossed with three
configurations running the MPEG benchmark. The three
configurations are:

• Base:78 MHz using 32-bit instructions.
• Thumb: 78 MHz using Thumb instructions.
• Adjusted: 92 MHz using Thumb instructions.

The ‘Base’ configuration represents the MPEG
benchmark running as 32-bit code, as discussed above.
‘Thumb’ illustrates the intermediate effects of the 16-bit
Thumb architecture without increasing the clock speed.
The energy consumed in the cache (see Figure 5)
decreases due to the decreased memory bandwidth
caused by the smaller code size. The energy of the core,
however, rises slightly due to the increased number of
instructions processed. Overall, the energy decreases by
approximately 10%.

The delay increase caused by the expanded
instruction stream pushes the processor utilization over
100%. Because of this, the MPEG application will not
be able to process its video frames fast enough. The
‘Adjusted’ configuration represents the increase in pro-
cessor speed required to maintain performance. This
change in clock frequency necessitates an increase in
voltage which raises the energy-per-operation of the
entire system. As can be seen from the ‘Total Energy’
columns, the energy savings are no longer realized: the
16-bit architecture increases overall energy consump-
tion.

Although not energy-efficient in all situations, the
Thumb instruction set may be efficient for some tasks
due to the non-linearity of voltage-scaling. If the base
system were initially running at a very low voltage, for
example, the increase in processor speed necessary
would not dramatically increase the energy-per-opera-
tion. The savings due to the reduced code-size, there-
fore, would affect an overalldecreasein system energy.

4.2 Voltage Scheduling

To effectively control DVS, avoltage scheduleris
used to dynamically adjust the processor speed and volt-
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age at run-time. Voltage scheduling significantly com-
plicates the scheduling task since it allows optimization
of the processor clock rate. Voltage schedulers analyze
the current and past state of the system in order to pre-
dict the future workload of the processor.

Interval-based voltage schedulers are simple
techniques that periodically analyze system utilization
at a global level: no direct knowledge of individual
threads or programs is needed. If the preceding time
interval was greater than 50% active, for example, the
algorithm might increase the processors speed and volt-
age for the next time interval. [5][13][17] analyze the
effectiveness of this scheduling technique across a vari-
ety of workloads. Interval-based scheduling has the
advantage of being easy to implement, but it often has
the difficulty of incorrectly predicting future workloads.

More recently, investigation has begun into
thread-based voltage schedulers, which require knowl-
edge of individual thread deadlines and computation
required [7][12]. Given such information, thread-based
schedulers can calculate the optimal speed and voltage
setting, resulting in minimized energy consumption. A
sample deadline-basedvoltage scheduling graphis
given in Figure 6;Sx and Dx represent task start-time
and deadline, respectively, while the graph area,Cx, rep-
resents computational resources required.

4.3 Circuit Level Considerations

At the circuit level, there are two types of compo-
nents in our design adversely affected by DVS: complex
logic gates and memory sense-amps. Complex logic
gates, such as 8-input NAND gates, are implemented by
a CMOS transistor chain which will have a different rel-
ative delay if the voltage is varied. Additionally, mem-
ory sense-amps are sensitive to voltage variations
because of their analog nature, which is necessary to
detect the small voltage fluctuations of the memory
cells.

To the largest extent possible, these voltage sensi-
tive circuits are avoided; however, in some situations,
such as in the cache CAM design described below, it is
better to redesign the required components with
increased tolerance. Redesigns of these components will
often be less efficient or slower than the original version
when running at a fixed voltage. We estimate an
increase in the average energy/instruction of the micro-
processor on the order of 10%, which is justified by the

overall savings afforded by DVS.

5. Cache Design

This section describes the design of our cache
system, which is a 16kB unified 32-way set-associative
read-allocate write-back cache with a 32-byte line size.
The cache is an important component to optimize since
it consumes roughly 33% of the system power and is
central to system performance. Our primary design goal
was to optimize for low-power while maintaining per-
formance; our cache analysis is based on layout capaci-
tance estimates and aggregated benchmark statistics.

Our 16kB cache is divided into 16 individual 1kB
blocks. The 1kB block-size was chosen to achieve a bal-
ance between block access energy and global routing
energy. Increasing the block-size would decrease the
capacitance of the global routing but it would also
increase the energy-per-access of the individual blocks.

Our cache geometry is very similar to that of the
StrongARM, which has a split 16kB/16kB instruction/
data cache. Other features, namely the 32-way associa-
tive CAM array, are similar. In the StrongARM design,
the caches consume approximately 47% of the system
power [13].

5.1 Basic Cache Structure

We have discovered that a CAM based cache
design (our implementation is given in Figure 7) is more
efficient than a traditional set-associative organization
(Figure 8) in terms of both power and performance. The
fundamental drawback with the traditional design is that
the energy per access scales linearly with the associativ-
ity: multiple tags and data must be fetched simulta-
neously to maintain cycle time. A direct-mapped cache,
therefore, would be extremely energy efficient; its per-
formance, however, would be unacceptable. We esti-
mate that the energy of our 32-way set-associative
design is comparable to that of a 2-way set-associative
traditional design.

Figure 6: The Voltage Scheduling Graph
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Our design has been modified from a vanilla
CAM in two major ways:

• Narrow memory bank: The fundamental SRAM
data block for our design is organized as a 2-word x
128-row block, instead of a 8-word x 32-row block.

• Inhibited tag checks: Back-to-back accesses map-
ping to the same cache line do not trigger multiple
tag checks.

The 2-word by 128-row block organization for
our cache data was chosen primarily because a large
block width would increase the energy-per-access to the
data block. A block width of 8 words, for example,
would effectively entail fetching 8 words per access,
which is wasteful since only one or two of these words
would be used. The narrow block width unfortunately
causes an irregular physical layout, increasing total
cache area; however, we chose this design as energy was
our primary concern.

There are two natural lower-bounds on the block
width. First, the physical implementation of the SRAM
block has an inherent minimum width of 2-words [3].
Second, the ARM8 architecture has the capability for
double-bandwidth instruction fetches and data reads [1],
which lends itself to a 2-word per access implementa-
tion.

Unnecessary tag checks, which would waste
energy, are inhibited for temporally sequential accesses
that map to the same cache line. Using the sequential-
access signal provided by the processor core and a small
number of access bits, this condition can be detected
without a full address comparison. Our simulations indi-
cate that about 46% of the tag checks are avoided with a
8-word cache line size, aggregated across both instruc-
tion and data accesses. For the individual instruction and
data streams, 61% and 8% of tag checks are prevented,
respectively.

5.2 Cache Policies and Geometry

Cache energy has a roughly logarithmic relation-

ship with respect to its overall size, due to selective
block enabling: a 16kB cache consumes little more
energy than an 8kB cache. Our fundamental cache size
constraint was die cost, which is determined primarily
by cache area. Benchmark simulations indicate that a
16kB unified cache is sufficient; we felt the increased
cost of a 32kB cache was not justified. We chose a uni-
fied cache because it is most compatible with the ARM8
architecture.

The cache line size has a wide-ranging impact on
energy efficiency; our analysis (Figure 9) indicates that
an 8-word line size is optimal for our workload. Given
the 1kB block size, our associativity is inversely propor-
tional to the line size: an 8-word line yields 32-way
associativity (1kB / 8-words = 32-way). The energy of a
CAM tag access is roughly linear with associativity.
Also, smaller cache line sizes generate less external bus
traffic, consuming less energy. The energy of the data
memory is practically constant, although there are slight
variations caused by updates due to cache misses.

We implement a write-back cache to minimize
external bus traffic. Our simulations indicate that a
write-through cache would increase the external bus
traffic by approximately 4x, increasing the energy of the
entire system by 27%. We found no observable perfor-
mance difference between the two policies.

Our simulations find no significant evidence
either for or against read-allocate in terms of energy or
performance; we implement read-allocate to simplify
the internal implementation. Similarly, we find that
round-robin replacement performance is comparable to
that of both LRU and random replacement, due to the
large associativity.

5.3 Related Work

Most low-power cache literature [6][9][15][8]
suggests improvements to the standard set-associative
cache model of Figure 8. The architectural improve-
ments proposed center around the concepts of sub-bank-
ing and row-buffering. Sub-banking retrieves only the
required portion of a cache line, saving energy by not
extraneously fetching data. Row-buffering fetches and
saves an entire cache line to avoid future unnecessary

Figure 8: Traditional Set-Associative Cache Design
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tag comparisons.
Our CAM-based cache design indirectly imple-

ments the concepts of sub-banking and row-buffering.
The 2-word block size of our memory bank is similar to
2-word sub-banking. Tag checks inhibition is similar to
row-buffering: only one tag-check is required for each
cache-line access.

[8] presents a technique for reducing the energy
of CAM-based TLBs by restricting the effective asso-
ciativity of the parallel tag compare and modifying the
internal CAM block. Due to time constraints, these
modifications were not considered for our design.

6. Conclusion

This paper describes the implementation of a
low-power Dynamic Voltage Scaling (DVS) micropro-
cessor. Our analysis encompasses the entire micropro-
cessor system, including the memory hierarchy and
processor core. We use a custom benchmark suite
appropriate for our target application: a portable embed-
ded system.

Dynamic Voltage Scaling allows our processor to
operate at maximal efficiency without limiting peak per-
formance. Understanding the fluid relationship between
energy and performance is crucial when making archi-
tectural design decisions. A new class of algorithms,
termed voltage schedulers, are required to effectively
control DVS.

A description of our cache design was given
which presents the architectural and circuit trade-offs
with energy and performance for our application
domain. For minimized energy consumption, we found
that a CAM-based cache design is more energy efficient
than a traditional set-associative configuration.
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