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We consider the dynamic private provision of funds to projects that generate public benefits.
Participants have complete information about the environment, but imperfect information about
individual actions: each period they observe only the aggregate contribution. Each player may
contribute any amount in any period before the contributing horizon is reached. All Nash equilib-
rium outcomes are characterized. In many cases they are all also perfect Bayesian equilibrium
outcomes. If the horizon is long, if the players’ preferences are similar, and if they are patient or
the period length is short, perfect Bayesian equilibria exist that essentially complete the project.
In some of them the completion time shrinks to zero with the period length—efficiency is achieved
in the limit.

1. INTRODUCTION

Time is an essential ingredient of many voluntary contribution schemes that finance public
projects. Fund drives to support public television or famine relief, or to build church
complexes, park systems, or library collections, generally take place over periods of weeks
or years. The public is generally kept informed of how much has been contributed to date,
but not of each individual’s contribution history. Contributions are generally nonre-
fundable, and individuals are free to contribute more than once and at any time during
the drive. The model of this paper is intended to capture these features.

The results are fairly positive. Allowing contributions to be made slowly over time
enhances efficiency in some equilibria, even though individual contributions are private
information. Nearly efficient perfect Bayesian equilibria exist if (i) the players evaluate the
public good similarly, (ii) the number of periods is large, and (iii) discounting is low or
the period length small. The only inefficiency is then a completion delay, which vanishes
in some equilibria as the period length shrinks to zero. Dynamics can thus alleviate the
well-known inefficiencies of static contribution games.1

These positive results are tempered by the fact that our game generally has other
equilibria in which no contributions are made. On the other hand, positive results are
surprising in view of the following intuition: allowing players to contribute repeatedly can
worsen incentives by creating future players upon which current players can free ride.
This is the logic behind the negative results of Fershtman and Nitzan (1991) and Admati

1. Static contribution games are studied, e.g. by Andreoni (1988), Bergstrom et al. (1986), Bernheim
(1986), Cornes and Sandler (1996), Moore et al. (1995), Palfrey and Rosenthal (1984), and Varian (1994).
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and Perry (1991). In their models a player can sometimes raise the level of future contri-
butions by lowering his current contribution, which gives him an incentive to free ride on
future players. Our game, in contrast, has equilibria in which a player is deterred from
contributing too little in one period because doing so causes the other players to contribute
nothing in the next.

We consider the model both with and without discounting. In the no-discounting
version, a player’s payoff is received in the final period of the fund drive. It is then equal
to the player’s benefit from the public good, which depends on the total of all past contri-
butions, less the sum of the player’s own past contributions. This payoff is appropriate
for modelling short fund drives, such as a two-week public radio drive or a two-day
telethon to raise money for medical research. In such cases only the final cumulations
matter—the time path of contributions is irrelevant for payoffs, and no benefits are
received until the drive is over.

The discounting version of the model is more appropriate for long fund-raising
drives, such as multi-year campaigns to raise money to build a cathedral, a bridge, a
complex of university buildings, a regional road network, or a collection of books for a
new library. A player’s payoff is then a discounted sum of costs and benefits. His cost in
a period is his contribution that period; his benefit is determined by the prior contributions
of all the players. If this benefit is an increasing function of the cumulative contribution,
partial benefits are received while funds are still being raised. For example, the first build-
ings in a new university complex can be built and put into service before enough has been
donated to build the entire complex; the first roads in a new road network can be con-
structed and used before the towns to be connected have contributed enough to build the
final road; the first books for a new library can be purchased and read before all the
money required for the library collection has been raised. Alternatively, the project may
be ‘‘binary’’ in that it generates no benefits until it has been completed, and then yields a
constant benefit flow. The textbook example is the building of a bridge—no benefits are
generated until the last girder is in place.

The benefit functions we consider range from binary ones to continuous ones that
rise linearly with the cumulative contribution up to a ‘‘completion point’’. In intermediate
cases benefits rise linearly with the cumulation and jump up at the completion point. The
building of a road network is an example: benefits increase with the number of roads that
are built and put into service, and they rise discontinuously at the completion point when
the linking road is finished. Another example is a charity campaign aimed at famine relief
or disease prevention: benefits increase with the number of victims that are fed or treated,
but the big payoff comes when the cause of the famine is eliminated or a cure for the
disease is discovered. Many charity drives exhibit a benefit jump at their conclusion for a
different reason: a wealthy donor creates the jump by having committed to contributing
a ‘‘challenge bonus’’ when the goal of the drive is reached (Firestone (1998)). Thus, in
addition to being caused by technology, a benefit jump at completion may be due to prior
design.

The static version of our model is a coordination game if each player’s benefit jump
is large, as in the binary case. Each player is then willing to contribute if the others
contribute above a certain level. The static game then has both a no-contribution equilib-
rium, and a range of efficient equilibria that complete the project. The interesting question
in this case is whether efficient perfect Bayesian equilibria still exist if players can spread
their contributions over time. The answer is negative in the game of Admati and Perry
(1991); each of its two players has a strong incentive to let the other contribute in the
future (see our Section 7). But in our model, efficient equilibria exist even if the number
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of periods is infinite. We prove this by constructing equilibria that impose the maximal
possible punishment on a unilateral deviator—the non-deviators stop contributing for-
ever. Given any equilibrium profile of the static game, the threat of this punishment in
the dynamic game induces the players to contribute that profile in the first period. The
non-deviators are willing never to contribute again either because they expect the deviator
to complete the project alone immediately, or because the project is so far from com-
pletion that no player wants to complete it alone. The delicate part of the argument is to
show that these strategies can be implemented even when the identity of the deviator is
not common knowledge; we construct beliefs that allow the players to coordinate their
punishment strategies.

The more interesting case is that in which the benefit jumps are sufficiently small that
the only equilibrium of the static game is the no-contribution equilibrium. (Contributing
nothing is a dominant strategy if the jumps are nonexistent, in which case the static game
is a prisoners’ dilemma.) The interesting question now is whether making the game
dynamic creates perfect Bayesian equilibria in which players contribute. Under certain
conditions it does. To prove this we again construct equilibria that punish a deviator by
having the non-deviators never contribute again. But now the players contribute only a
small amount each period. This increases the incentives to contribute for two reasons.
First, the cost to a player of deviating in the current period is increased by shifting some
of the other players’ remaining contributions to the future, to be contributed only if
no previous deviation is detected. This increases the cost of deviating by creating future
contributions that the deviation will cause to be withheld. Second, a player’s gain from
not making his equilibrium contribution in the current period is decreased by making that
equilibrium contribution smaller. Contributions can be thus shifted to the future so that
the current gain from free riding is always less than its cost. Sizeable contributions may
have to be postponed, however. Hence, this construction necessarily yields an equilibrium
in which the project nears completion only if the number of periods is large, and dis-
counting is low or the period length small.

If the benefit functions are continuous, this logic is the only way to induce contri-
butions—a player will contribute now only if threatened with the later withholding of
contributions by the others. Accordingly, the project can never be completed in equilib-
rium. We nonetheless show that some equilibria complete the project asymptotically in
that the cumulative contribution converges to the completion point. As the period length
converges to zero, approximate completion occurs instantly, and the outcome is efficient.

If the benefit functions are discontinuous, another logic applies once the project is
near completion. If the amount remaining to be contributed is sufficiently small relative
to the size of the benefit jumps to be realized at completion, the continuation game has
equilibria that complete the project in one period. Consequently, the game as a whole has
equilibria in which contributions are induced in early periods by the threat of losing future
contributions, until completion requires such a small contribution that it is accomplished
in one period. Some equilibria of this type complete the project in a uniformly bounded
number of periods. A fortiori, in the limit as the period length converges to zero, these
equilibria complete the project instantly and are efficient.

The equilibria we have discussed so far utilize the severe punishment of forever with-
holding contributions. But approximately efficient equilibria that use more forgiving pun-
ishments also exist (again, given similar benefit functions, a sufficient number of
contributing periods, and high discount factors). We identify a type of Markov perfect
equilibrium that we refer to as a ‘‘contribution goal equilibrium.’’ It is characterized by a
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sequence of successive goals. In each period, the players who are to contribute are deter-
mined by the level of the current cumulative contribution and the smallest goal not yet
achieved; their contributions raise the cumulation to that goal. (Incentives are strongest
if only one player is responsible for attaining each goal—we focus on such an equilibrium.)
Punishments are forgiving in so far as a player who free rides in one period simply delays
the achievement of the current and subsequent goals by one period. The outcomes of
these equilibria resemble to some extent the successive attainment of announced contri-
bution goals in some fund drives.

The paper starts with a description of the model in Section 2. Nash equilibrium
outcomes are characterized in Section 3. Section 4 concerns equilibria that do not com-
plete the project. Section 5 considers equilibria that do complete it and are approximately
efficient. In Section 6 we present sufficient conditions for all Nash equilibrium outcomes
to be perfect Bayesian equilibrium outcomes. Related literature is discussed in Section 7,
and conclusions in Section 8. Longer proofs are in Appendices A and B. The related
alternating-contribution model of Admati and Perry (1991) is discussed in Appendix C.

2. THE MODEL

The game has the following elements. The set of players is N ≡ {1, . . . , n}, with nn2. Each
player chooses how much of a private good to contribute to a public project in each
period tn0. Player i contributes zi (t) in period t. Contributions are nonrefundable, and
they cannot be made after the contributing horizon, Tr oS, is reached. Budget constraints
are assumed to be non-binding. Thus, any zin0 is feasible in period toTr , and only ziG0
is feasible in period tHTr .

Denote the contribution vector in period t as z(t) ≡ (z1(t), . . . , zn(t)), and the entire
contribution sequence as {z} ≡ {z(t)}StG0 . Player i ’s payoff, Ui ({z}), is specified below.

Each player sees only his own past contributions and the aggregate of the other
players’ past contributions. Let Z (t) ≡ ∑ j∈N zj (t) be the aggregate contribution in period
t, and let Zi (t) ≡ Z (t)Azi (t). Player i ’s personal history at the start of period t is then

htA1
i ≡ (zi (τ ), Zi (τ ))tA1

τG0 .

The player’s strategy maps each htA1
i into a contribution that is feasible in period t.

This defines the contribution game with unobserved contributions, the subject of most
of our analysis. At times we consider the game in which individual contributions are
publicly observed, so that each player’s information sets are indexed by the public his-
tories htA1 ≡ (z(τ ))tA1

τG0 . To avoid confusion, we always refer to this game explicitly as the
game with observed contributions. The two games are the same if nG2.

Payoffs depend on cumulative contributions. The individual cumulative contribution
of player i at the end of period t is xi (t) ≡ ∑τo t zi (τ ). (Set xi (−1) ≡ 0.) The aggregate cumu-
lative contribution, or more simply the cumulation, is X (t) ≡ ∑ j∈N xj (t).

In the version of the model without discounting, any benefits and costs borne in a
finite number of periods are inconsequential. Thus, if the contributing horizon Tr is finite,
payoffs depend only on the final cumulations X (Tr ) and xi (Tr ). The total benefit player i
receives from the project in all the periods after Tr is fi (X (Tr )), where fi is the benefit
function and is specified below. The cost of contributing enters quasilinearly. Thus, player
i ’s payoff in the no-discounting version of the model, for TrFS, is

Ui ({z})Gfi (X (Tr ))Axi (Tr ). (2.1)
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This is an appropriate payoff function for modelling short fund drives, such as a two-
week public radio campaign. It covers the case in which there is no flow of benefits until
the fund drive is over, as when contributions are not used or collected until Tr . If the
horizon is Tr GS, the generalization of (2.1) is

Ui ({z})G lim
t→S

[ fi (X (t))Axi (t)].
2 (2.2)

In the discounting version of the model, players discount benefits and costs by a
factor δGe−rl∈(0, 1]. The discount rate is rn0 and the period length is lH0. (As we shall
see, the no-discounting version of the model is formally the special case rG0.) The contri-
butions in a period are converted into the non-depreciating capital the project uses to
generate benefits in that and subsequent periods. Thus, the cost of a contribution is borne
when it is made. The total benefit, over all periods, that the project generates for player i
if the cumulation is forever fixed at X is still fi (X ). With a growing cumulation, player i
receives a benefit of (1Aδ ) fi (X (t)) in period t. His overall payoff is

Ui ({z}) ≡ ∑S

tG0 δ t[(1Aδ ) fi (X (t))Azi (t)], (2.3)

which is the same as (2.2) if δG1.3 If δF1 and fi (X (t))H0, the project generates a benefit
in period t, even if more contributions will be made in subsequent periods. This is true,
for example, of long-term fund drivesyprojects that expand a road network, park system,
library, or university; the first of eventually many roads, parks, books, or classrooms are
built and put in use even though more donating and building will occur in the future.
Alternatively, if fi (X )G0 until X exceeds some threshold, benefits are not generated until
the period in which the threshold is reached. If the threshold is the completion of the
project, benefits are generated only after all contributions have been made. This is the
case of a binary project, such as the proverbial building of a bridge.

If Tr G0, so that contributions are allowed only in the first period, (2.3) becomes
Ui ({z})Gfi (Z (0))Azi (0). This special case is the familiar static game in which the players
contribute at most once and simultaneously.

The function fi is the composition of the project’s production function with player
i ’s evaluation function for its services. The binary benefit function commonly studied is
zero until the cumulation reaches a certain level, after which it is constant. We study a
more general parametrized class of benefit functions. One parameter is a completion point,
X*FS; the project is completed once the cumulation reaches X*. The project may also
generate benefits without being completed, with benefits increasing linearly in the cumu-
lation. Thus, for i∈N,

fi (X ) ≡ 5λ iX

Vi

for XFX*,

for XnX*.
(2.4)

The player’s marginal benefit from a non-completing contribution is λ i . His benefit from
the completed project is Vi . The benefit jump at completion is bi ≡ ViAλ iX*, as shown in
Figure 1.

We assume λ in0 and bin0; these inequalities are equivalent to

0oλ io
Vi

X*
for all i∈N. (2.5)

2. The limit exists if X (t) and xi (t) are bounded, as they will be if strategies are undominated. Otherwise,
use lim inf.

3. Taking δ→1 in (2.3) yields (2.2) if fi (X (t))Axi (t) converges, as it does if strategies are undominated.
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FIGURE 1

The polar case λ iG0 yields the binary benefit function. The other polar case, biG0, yields
the continuous benefit function. A positive bi represents strong increasing returns. As dis-
cussed in the introduction, it may be due to technology, such as the linking road that
completes a network, or it may be due to design, as when some party has publicly commit-
ted to contributing a fixed amount at the time a fund drive’s goal is achieved. (If benefits
equal λ times the dollars contributed, and B dollars will be contributed if the goal X* is
met, the benefit jump is bGλB.)

Payoffs can now be written in a way useful for dynamic programming. Given {z},
the completion period T({z}) is the smallest t for which X (t)nX*, with T ({z})GS if the
project is never completed.4 Refer to {z} as wasteless if X (t)oX* for all t. If it is wasteless,
(2.3) and (2.4) imply

Ui ({z})G∑T

tG0 δ t[λ iZ (t)Azi (t)]C∑S

tGT δ t [(1Aδ )bi ]

G∑T

tG0 δ t [λ iZ (t)Azi (t)]CδTbi , (2.6)

where TGT ({z}). This expresses the payoff as a discounted sum of benefits and costs that
are each borne in just one period; it is as though λ iZ (t)Azi (t) is received in each period
prior to completion, and (1Aδ )bi is received in each subsequent period. If λ iG0, (2.6)
becomes δTViA∑T

tG0 δ tzi (t). If instead biG0, it becomes ∑T

tG0 δ t [λ iZ (t)Azi (t)], which
looks like the payoff of a repeated game with stage-game payoffs λ iZAzi . But the game
is not a repeated game: a player’s interval of possibly undominated contributions in period
t, [0, X*AX (tA1)], depends on prior contributions, and the completion period is
endogenous.

We restrict attention to the case in which free riding is an issue, which is defined by

ViFX*F∑n

jG1 Vj for all i∈N. (2.7)

The first inequality insures that no player is willing to complete the project alone. The
second insures that the project is worthwhile. Assumptions (2.5) and (2.7) together imply
λ iF1: the marginal benefit to any player of a non-completing contribution is less than its
marginal cost. The players thus have incentives to free ride, but efficiency requires them
to complete the project without waste and, if δF1, without delay.

3. NASH EQUILIBRIA

We restrict attention to pure-strategy equilibria. In this section we characterize the Nash
equilibrium outcomes; in Section 6 we show that under a range of parameters, each of
them is also a perfect Bayesian equilibrium outcome.

4. For TGS, the convention below is that δTG0 for all δo1.



MARX & MATTHEWS DYNAMIC VOLUNTARY CONTRIBUTION 333

The static game provides a benchmark. Dropping the time argument, a strategy pro-
file in this game, (z1 , . . . , zn ), yields an aggregate contribution Z and payoffs fi (Z )Azi .
Given a contribution ZiFX* by the others, player i ’s best reply contribution is either the
completing amount, X*AZi , or nothing. (Intermediate amounts are inferior because
λ i≠1.) His marginal benefit from completing the project is fi (X*)Afi (Zi )GViAλ iZi , and
his marginal cost of doing so is X*AZi . The former exceeds the latter if and only if the
completing amount is less than the player’s critical contribution

c*i ≡
ViAλ iX*

1Aλ i

G
bi

1Aλ i

. (3.1)

The player should complete the project if and only if the amount required does not exceed
his critical contribution: the reaction function is, for ZiFX*,

zR
i (Zi ) ≡ 50

X*AZi

if X*AZiHc*i ,

if X*AZiFc*i .
(3.2)

If fi is continuous, then c*i G0 and contributing nothing is the player’s dominant strategy;
the static game is then a prisoners’ dilemma. In general, as (2.7) implies c*i FX*, one
equilibrium of the static game is always the no-contribution profile (0, . . . , 0). A complet-
ing equilibrium exists if and only if X* is not less than the sum of the critical
contributions.5 Completing equilibria thus exist if all the benefit functions are binary, as
then ∑i∈N c*i G∑i∈N ViHX*; the static game is then a coordination game in which each
player is willing to contribute if the others contribute. Theorem 0 summarizes.

Theorem 0. One equilibrium of the static game is always (0, . . . , .0). Any other
(z1 , . . . , zn ) is an equilibrium if and only if ∑i∈N ziGX* and 0ozioc*i for all i∈N.

We index the players henceforth by the size of their critical contributions

c*1 nc*2 n · · ·nc*n .

Because c*i is player i ’s maximum possible equilibrium contribution in the static game, it
provides a measure of his incentive to free ride. The smaller is c*i , the larger is his incentive
to free ride. By this measure, (3.1) implies that the incentive to free ride decreases in bi ,
holding the marginal benefit λ i fixed. But the incentive to free ride increases in λ i , holding
Vi fixed, since the player’s marginal benefit from completing the project, ViAλ iZi , falls
as his benefit λ iZi from contributing nothing increases.

We now turn to the dynamic game. Let gG{(g1(t), . . . , gn(t))}
S
tG0 be a sequence of

nonnegative contributions. The corresponding aggregate contribution in period t, and the
aggregate of all contributions except that of player i, are

G (t) ≡ ∑n

iG1 gi (t) and Gi (t) ≡ G (t)Agi (t).

Two necessary conditions for g to be an equilibrium outcome are that it be feasible, so
that G (t)G0 for all tHTr , and wasteless, as defined in the previous section. Refer to g as
a candidate outcome if it is both feasible and wasteless.

A candidate outcome g is a Nash equilibrium outcome if and only if no player wishes
unilaterally to deviate from it when doing so is met by a maximal feasible punishment. A
strategy profile in which all the other players never contribute imposes the maximal pun-
ishment on a unilateral deviator. This punishment is imposed by the grim-g strategy profile

5. The profile (c*i X*y∑ j∈N c*j )i∈N is an equilibrium of the static game iff ∑ j∈Nc*j nX*.
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in which g is played every period unless an event of the form Z (t)≠G (t) is observed, in
which case no player ever contributes again. This strategy profile is feasible, even though
individual contributions are unobserved, because it is based only on aggregates. Thus, g
is a Nash equilibrium outcome if and only if the grim-g profile is a Nash equilibrium.6

This observation leads to an intuition for why more contributions may be obtained
with a longer contributing horizon. Consider a contribution vector zG(z1 , . . . , zn ) that
completes the project, but is not an equilibrium of the static game. So, for some i∈N, if
the others contribute Zi , then player i prefers to contribute nothing rather than zi :

λ iZiHViAzi . (3.3)

This implies that z is not a first-period equilibrium contribution vector for any TrH0: If
the others contribute Zi in the first period, the right side of (3.3) is still player i ’s payoff
from contributing zi , and the left side is a lower bound on his payoff if he deviates to
zero—it is his payoff if no player contributes after the deviation. Now, consider an out-
come g in which the contributions in z are made in stages over multiple periods. Assuming
no discounting, g still gives player i payoff ViAzi . But his payoff from deviating to zero
in the first period, given that it stops future contributions, is only λ iGi (0). The player will
not deviate from the grim-g profile in the first period, given that it is played thereafter, if
the contributions of the others in period 0 are so small that

λ iGi (0)FViAzi . (3.4)

This shows that a player will contribute in the first period if the others contribute only a
small amount then, shifting the bulk of their contributions to the future to be made on a
contingent basis.

The generalization of (3.4) to other periods and discount factors is

λ iGi (t)oδT (g)AtbiCλ i ∑T (g)

τGt δτAtGi (τ )A(1Aλ i ) ∑T (g)

τGt δτAtgi (τ ). (3.5)

Given that the others play the grim-g strategies and no deviation has occurred, player i
prefers to contribute according to g in period t and thereafter, rather than to deviate to
zero, if and only if (3.5) holds. The left side is the current value of the player’s payoff if
he deviates to zero in period t and thereafter, dropping the terms due to previous contri-
butions (see (2.6)). The right side is his payoff if he does not deviate, dropping the same
terms from previous periods and again discounting to period t. Note that subtracting an
amount from Gi (t) and adding it to Gi (T (g)) enlarges the gap between the right and left
sides of (3.5). The player’s incentive to contribute is thus increased if the others shift some
of their current contributions to the future. In addition, if δF1 his incentive to contribute
is increased if some of his own contribution is shifted to the future—the right side of (3.5)
increases if an amount is subtracted from gi (t) and added to gi (T (g)). That is, since the
net benefit of a non-completing contribution, (λ iA1)gi (t), is negative, an impatient player
prefers to postpone his contributions, ceteris paribus.

Rearrangement of (3.5) yields the constraint that deters downward deviations (free
riding), the under-contributing constraint :

(1Aλ i )gi (t)o∑T (g)

τGtC1 δτAt [λ iG(τ )Agi (τ )]CδT (g)Atbi for i∈N and toT (g). (3.6)

This constraint puts an upper bound on each player’s contribution in each period as a
function of all future contributions. The left side of (3.6) is player i ’s current net cost of

6. It follows that the game with observed contributions has the same Nash equilibrium outcomes.
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contributing gi (t). Its right side is his continuation payoff if he does not deviate; given the
grim-g strategies, the right side is the payoff he foregoes by not contributing gi (t).

Upward deviations are deterred by a second constraint, the over-contributing
constraint :

(λ iA1)(X*A∑t

τG0 G (τ ))Cbi

o∑T (g)

τGtC1 δτAt(λ iG (τ )Agi (τ ))CδT (g)Atbi for i∈N and tFT (g). (3.7)

This constraint insures that the extra amount player i would have to contribute in period
t in order to prematurely complete the project is so large that he will not want to make
it. The right side of (3.7) is the same as in (3.6), the continuation payoff player i loses by
deviating. The left side is the increase in his payoff in period t, over what it is if he
contributes gi (t), if he completes the project then by contributing gi (t)CX*A∑t

τG0 G (τ ).
Although (3.6) and (3.7) explicitly deter only two kinds of deviations from the grim-

g strategies, they actually deter all deviations. This is shown to prove the following.

Theorem 1. A candidate outcome g is a Nash equilibrium outcome if and only if it
satisfies the under- and over-contributing constraints, (3.6) and (3.7).

Proof. Let TGT (g). The grim-g profile gives player i the payoff

Ueq
i ≡ ∑T

τG0 δτ (λ iG (τ )Agi (τ ))CδTbi .

Three kinds of deviation must be considered. The first is for player i to contribute in
period toT a non-completing zi≠gi (t), and then never to contribute again. His payoff is
then

Ud1
i (zi , t) ≡ ∑tA1

τG0 δτ (λ iG (τ )Agi (τ ))Cδ t [λ i (G (t)Agi (t))A(1Aλ i )zi ].

As λ iF1 and zin0, we see that Ud1
i (zi , t)oUd1

i (0, t).
The second kind of deviation player i could make, at tFT, is to over-contribute

exactly enough to complete the project immediately, i.e. to contribute z̄i (t) ≡
gi (t)CX*A∑t

τG0 G (τ ). Since no further contributions will be made, player i ’s payoff from
this deviation is

Ud2
i (t) ≡ Ud1

i (0, t)Cδ t[biA(1Aλ i )z̄i (t)].

The final kind of deviation for player i is to contribute a non-completing amount
zi≠gi (t) in a period tFT, and also to contribute later. Any such deviation is dominated
by a deviation of one of the previous two kinds. If bio (1Aλ i )z̄i (t), the deviation is
dominated by contributing zero in all periods τn t; otherwise, the deviation is domi-
nated by contributing the completing amount z̄i (t) in period t. Thus, Ueq

i nUd1
i (0, t)

for all i and toT, and Ueq
i nUd2

i (t) for all i and tFT, are jointly necessary and sufficient
for g to be an equilibrium outcome. Rearranging these inequalitites yields (3.6) and (3.7),
respectively. u u

The following corollary shows that the over-contributing constraint is often not a
problem. For example, if the aggregate amount to be contributed in the completing period
exceeds each c*i , the over-contributing constraint is implied by the under-contributing
constraint.
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Corollary 1. Let g be a candidate outcome satisfying (3.6), and let TGT (g). Then g
is a Nash equilibrium outcome if any of the following conditions hold: (i) TG0; (ii) c*i G0
for all i; or (iii) TFS and gi (TA1)CG (T )nc*i for all i.

Proof. We show the hypotheses imply (3.7). Obviously (i) does, as (3.7) is vacuous
if TG0. So assume TH0, and let tFT. Both (ii) and (iii) imply that for i∈N,

gi (t)C∑T

τGtC1 G (τ )nc*i .

Thus, since λ iF1, c*i Gbiy(1Aλ i ), and X*n∑T

τG0 G (τ ),

(λ iA1)(X*A∑t

τG0 G (τ ))Cbio (1Aλ i )gi (t).

This and (3.6) imply (3.7). u u

4. NON-COMPLETING EQUILIBRIA

Before turning in Section 5 to equilibria that are approximately efficient, we first delineate
the achievable limits. The following proposition shows that no-contribution equilibria
always exist, and it gives sufficient conditions for equilibria that complete the project (in
finite time) not to exist.

Proposition 1. (i) Nash equilibria exist in which no player contributes. (ii) If TrFS

and biG0 for all i∈N, no contributions are made in any equilibrium. (iii) If Tr GS and biG

0 for all i∈N, the project is not completed in any equilibrium. (iv) If TrFS or (v)
∑i∈N λ iF1, no contributions are made in a non-completing equilibrium.

Proof. Both (3.6) and (3.7) hold if gj ( · ) ≡ 0 for all j: (3.6) holds trivially, and (3.7)
holds because (2.7) implies (λ iA1)X*CbiGViAX*F0. So Theorem 1 implies (i).

To prove (ii)–(iv), assume one is false. Then an equilibrium outcome g exists such
that in some period TFS, a player i contributes gi (T )H0 and no contributions are made
thereafter. The worst that can happen to player i if he deviates to zero in period T is that
no contributions are made thereafter. Let ĝ be this outcome. As biG0 (cases (ii) and (iii))
or X (T )FX* (case (iv)), (2.6) implies Ui (ĝ)AUi (g)GδT(1Aλ i )gi (T )H0. This contradicts
g’s being an equilibrium outcome.

To prove (v), let g be a non-completing outcome with some positive terms. By (2.6),

∑i∈N Ui (g)G∑S

tG0 δ t (∑i∈N λ iA1)G (t)F0.

Thus, since equilibrium payoffs are nonnegative, g is not an equilibrium outcome. u u

Part (i) of Proposition 1 is obvious: if every j≠ i never contributes, player i should
either complete the project alone or never contribute. The latter is best because ViFX*,
and so all players’ never contributing is an equilibrium. It is not generally a perfect Baye-
sian equilibrium, but the no-contribution outcome is often a perfect Bayesian equilibrium
outcome, as we show in Section 6.

Parts (ii) and (iii) show that a completing equilibrium does not exist if all benefit
functions are continuous. As in the static game, no player in this case wants to make a
completing contribution.

Even if the project cannot be completed, it may be asymptotically completed in that
X (t)→X* as t→S, but X (t)FX* for all t. Since contributions are made infinitely often
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in such equilibria, they cannot exist if the contributing horizon Tr is finite, as part (iv) of
Proposition 1 indicates.

Part (v) shows that an asymptotically completing equilibrium also does not exist if the
sum of the players’ marginal benefits from non-completing contributions is less than unity,
the marginal cost of contributing. The argument is simple. In any equilibrium, the sum
of individual payoffs must be nonnegative. An outcome g increments this sum in each
non-completing period t by (∑i∈N λ iA1)G (t), which is negative if ∑i∈N λ iF1 and G (t)H0.
Thus, if a positive benefit jump at completion is never received, the sum of payoffs is
nonnegative only if no contributions are made.

Part (v) does not apply if all the benefit functions are continuous, as then
∑i∈N λ iG∑i∈N ViyX*H1, by (2.7). An asymptotically completing equilibrium may then
exist, as we show in the next section.

5. APPROXIMATELY EFFICIENT EQUILIBRIA

We now give sufficient conditions for nearly efficient equilibria to exist. All such equilibria
either complete the project (in finite time), or complete it asymptotically. These two types
of Nash equilibria are considered in the first two subsections, respectively. In both cases
some of the outcomes are also perfect Bayesian equilibrium outcomes, as we show in
Section 6. In the third subsection we consider a class of nearly efficient Markov perfect
equilibria that use more forgiving punishments to deter free riding.

Completing in finite time

For an equilibrium that completes the project in finite time to exist, some player must
have a discontinuous benefit function, the contributing horizon must be sufficiently long,
and the discount factor must be sufficiently large. These conditions are also sufficient, as
we now prove. The idea is straightforward. In the equilibrium we construct, the players
with positive benefit jumps complete the project immediately once the cumulation is close
enough to X*. Before then, the threat of halting future contributions keeps the players
contributing.

The construction is recursive, starting at the completion period T* to be determined
below. In this period the under-contributing constraint (3.6) is gi (T*)obiy(1Aλ i )Gc*i for
player i. Assuming it binds, player i contributes c*i in the completing period. Define

ci (0) ≡ c*i . (5.1)

Assuming (c1(0), . . . , cn (0)) is contributed in period T*, constraint (3.6) now defines
an upper bound ci (1) for the penultimate contribution gi (TA1), given by (1Aλ i )ci (1)G
δλ i ∑ j≠ i cj (0). Continuing in this fashion, making the under-contributing constraints recur-
sively bind yields a sequence {ci (k)}

S
kG0 for each i∈N :

ci (k) ≡ δ1 λ i

1Aλ i
2 ∑ j≠ i cj (kA1) for all kH0. (5.2)

The quantity ci (k) is the maximal contribution player i can make in period T*Ak if in
each period τHt, each player j∈N contributes cj (T*Aτ ). The equilibrium will specify
that the players contribute these amounts, except in period 0 when they may contribute
less.7

7. We see from (5.1) and (5.2) that any player with λ iG0 does not contribute in this equilibrium until the
completing period. Any player with biG0 contributes in all but the completing period.
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To determine the completion period, note that if each player i contributes ci (κ ) in
every period T*Aκ , the remaining total contributions to be made in periods T*Ak and
thereafter is

R(k) ≡ ∑k

κG0 ∑i∈N ci (κ ). (5.3)

(Let R (−1) ≡ 0.) In period 0 the remaining amount of contributions, R(T*), must exceed
X*. Hence, T* is determined by

R(T*A1)FX*oR(T*). (5.4)

As is shown in the proof of Proposition 2 below, if δ is large and ∑i∈N bi is positive, R(k)
exceeds X* for large k, and hence (5.4) defines a finite T*.

The equilibrium outcome, g*, is defined in the following way. In period zero each
player i contributes a fraction of ci (T*):

g*i (0) ≡ 1 X*AR(T*A1)

R(T*)AR(T*A1)2ci (T*). (5.5)

In periods tH0 each player i∈N contributes the full amount, ci (T*At) :

g*i (t) ≡ 5ci (T*At)

0

for 0FtoT,

for tHT*.
(5.6)

Provided T* is well-defined, Corollary 1 implies g* is a Nash equilibrium outcome: g*
satisfies the under-contributing constraints by construction, and it satisfies the over-con-
tributing constraints because it specifies the maximal possible contributions, c*i , in the
completing period. The full proof of the following is in Appendix A.

Proposition 2. Assume ∑i∈N biH0. Then δ*F1 exists such that for each δ∈(δ*, 1], a
unique T*FS is defined by (5.4). If also Tr nT*, then the g* defined by (5.1)–(5.6) is a
Nash equilibrium outcome that completes the project in period T*.

The only source of inefficiency when g* is played is due to delay. For each δHδ*,
let T*(δ ) be the period in which g* completes the project. From (5.1) and (5.2), the
contributions ci (k) increase in δ for kH0, and ci (0) is constant. So R(k) is an increasing
function, and (5.4) implies that the completion period T*(δ ) does not increase in δ : the
project is completed more quickly the smaller is the discount rate r or the period length
l. A fortiori, g* is efficient if δG1, it is nearly efficient if δ ≈1, and the time g* takes
to complete the project, lT*(e−rl ), converges to zero as º→0. This proves the following
corollary.

Corollary 2. Assume ∑i∈N biH0 and TrHT*(1). Then g* is a Nash equilibrium out-
come if r or l is sufficiently small; g* finishes the project nearly instantaneously if l is nearly
zero; and g* is nearly efficient if r or l is nearly zero.

Completing asymptotically

We now construct an asymptotically completing equilibrium outcome for the case in
which the benefit functions are continuous. We restrict attention to the case of identical
benefit functions: in this subsection we assume biG0, λ iGλ , and ViGVGλX* for all i∈
N. Note that (2.7) implies λH1yn. Thus, if the players contribute at the same rate, each
player’s utility gain in each period is positive.
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To define the equilibrium, first define a critical discount factor,

δ̂ ≡
1Aλ

(nA1)λ
. (5.7)

Note that δ̂F1. The equilibrium outcome, which is denoted ĝ, is symmetric: ĝi (t)Gĝj (t)
for all i≠ j and tn0. It is calculated by converting the under-contributing constraints
(3.6) to equalities, imposing symmetry, and solving the resulting system subject to
∑S

tG0 ĝi (t)GX*yn. This yields

ĝi (t) ≡ 1δ̂
δ 2

t

1δAδ̂
δ 21X*

n 2 for all tn0 and i∈N. (5.8)

If δHδ̂ , then ∑S

tG0 ĝi (t)GX*yn, and so ĝ completes the project asymptotically.

Proposition 3. Assume the players have identical continuous benefit functions. If Tr G
S and δ∈(δ̂ , 1], then ĝ is an equilibrium outcome, and it completes the project
asymptotically.

Proof. Observe that ∑τn t δτ ĝi (τ )Gδ tĝi (t)y(1Aδ̂ ). Hence, for tn0,

(1Aλ )ĝi (t)G(1Aλ )11Aδ̂
δ̂ 2 ∑S

τGtC1 δτAtĝi (τ )

G(nλA1) ∑S

τGtC1 δτAtĝi (τ ).

So (3.6) holds (with equality), since T (g)GS and (nλA1)ĝi (τ )GλG (τ )Aĝi (τ ). Because
c*G0, Corollary 1(ii) now implies that ĝ is an equilibrium outcome. u u

Despite the fact that ĝ never completes the project, it approximately completes the
project arbitrarily quickly as the period length shrinks to zero. In addition, the efficiency
loss vanishes as either r→0 or l→0, as the following corollary shows.

Corollary 3. In the setting of Proposition 3, ĝ is an equilibrium outcome for which:
(i) after any positive amount of time has passed, the contribution needed to complete is nearly
zero if l is nearly zero; and (ii) the efficiency loss is nearly zero if r or l is nearly zero.

Proof. ĝ generates a cumulation in period t of

n ∑t

τG0 ĝi (τ )G(1A(δ̂yδ )tC1)X*.

This quantity increases with δGe−rl. Hence, for any θF1, the amount of time it takes for
the cumulation to exceed θX* shrinks to zero as l→0. This proves (i). When ĝ is played,
the sum of the players’ payoffs,

n(nλA1) ∑S

τG0 δτ ĝi (τ )G
(nλA1)(δAδ̂ )X*

(1Aδ̂ )δ
,

converges to its upper bound of nVAX* as δ→1. This proves (ii). u u

Forgiving punishments

Some of the outcomes of the previous subsections may be supported only by equilibria
that punish a deviator by halting the contributions of the other players forever—that is the
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nature of the strategies used to prove Theorem 1. However, completing and asymptotically
completing equilibria that have more forgiving punishments do exist. We now present an
example of a type we refer to as a contribution goal equilibrium.

As the name suggests, an equilibrium of this type is characterized by a sequence of
contribution goals, {Xk}

T
kG0 . In equilibrium the cumulation is raised each period to the

smallest goal so far unachieved: if X (tA1)∈[XkA1 , Xk ), equilibrium play in period t results
in X (t)GXk . Punishments are thus forgiving—a player who free rides in just one period
simply delays the achievement of the current and subsequent goals by one period.
Completion, or asymptotic completion, occurs so long as no player deviates an infinite
number of times.

For simplicity, we consider only the case of continuous benefit functions, and restrict
attention to an asymptotically completing contribution goal equilibrium in which only on
player is responsible for achieving each goal. Thus, a player who is responsible for the
current goal cannot gain from the contributions of others until he contributes enough to
achieve the goal. If he does not contribute enough, he alone makes up the shortfall in the
next period. A player’s only gain from free riding is to shift a contribution into the dis-
counted future, as opposed to lowering his total contribution.8

We further restrict attention to the case in which the benefit functions are identical.
Thus, we again assume biG0, λ iGλ , and ViGVGλX* for all i∈N. To define the goals,
first define J ( p) ≡ pnA1CpnA2C· · ·CpA(1Aλ )yλ . This polynomial has a unique positive
root, γ , and it is in the interval (0, 1).9 The goals are given by

Xk ≡ 11A1γ
δ 2

k

2X* for all kn0. (5.9)

Thus X0G0, and Xk→X* monotonically if δ∈(γ , 1]. Player i ’s strategy maps each possible
cumulation X into a contribution, ziGσ i (X ). Letting ι(k) ≡ k mod n, the strategy is

σ i (X ) ≡ 5XkAX

0

if X∈[XkA1 , Xk ) and iGι (k),
otherwise.

(5.10)

So each player is responsible for achieving every n-th goal. Let σG(σ1, . . . , σn).
These strategies depend only on the publicly observed cumulation. Since a player’s

payoff depends on the contributions of the others only through their sum, his beliefs
about their individual contributions are irrelevant; given that the others use σ , a player’s
continuation payoff after any history depends only on the current cumulation and his
future actions. The appropriate perfection concept is therefore Markov perfect
equilibrium.10 The proof of Proposition 4 is in Appendix A.

Proposition 4. If the players have identical continuous benefit functions, Tr GS, and
δ∈(γ , 1], then σ is a Markov perfect equilibrium, and it completes the project asymptotically.

Observe from (5.9) that Xk increases in δ . This implies that efficiency is obtained in
the limit as r→0 or l→0; the following corollary can be proved as was Corollary 3.

8. If the players were to contribute equally to achieve each goal, punishments for free riding would be
weaker. If the benefit functions are identical, such equilibria exist only if Vn(2A1yn)(X*yn), and the time they
take to raise contributions to θX*, for any fixed θ∈(0, 1), is bounded below as l→0; efficiency is not obtained
in the limit. See Marx and Matthews (1997).

9. Since bG0 implies λ∈(1yn, 1), J (0)F0FJ (1). Hence, γ ∈(0, 1).
10. See Fudenberg and Tirole (1991) for a discussion of Markov perfection.
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Corollary 4. In the setting of Proposition 4, the contribution goal equilibrium σ has
the following features: (i) after any positive amount of time has passed, the contribution
needed to complete the project is nearly zero if l is nearly zero; and (ii) the efficiency loss is
nearly zero if r or l is nearly zero.

The contribution goal equilibrium of Proposition 4 appears most plausible in two
cases. The first is if there are only two players: in this case they contribute in alternate
periods, with each one refusing to contribute until the other has brought the cumulation
up to the appropriate goal. Even though they contribute in alternate periods in equili-
brium, this is not so off the equilibrium path—the strategies are not feasible if the players
are restricted to contributing only in alternate periods (as they are in Admati and Perry
(1991)).

Second, the equilibrium is fairly plausible if the number of players is infinite. The
infinite-player game is a device for modelling a situation with a large number of partici-
pants; each potential contributor in, say, a New York radio fund drive plausibly views
the number of others as infinite. The game is well defined with an infinite number of
players because the benefit functions are constant for XHX*. The static game with nG
S and bG0 has only the no-contribution equilibrium. However, one equilibrium of the
infinite horizon game with these parameters is the limit of the equilibria defined by (5.9)
and (5.10) as n→S. In the limiting equilibrium, each player contributes only once, doing
so in order to induce all higher-indexed players to contribute later. The goals are given
by (5.9) with γ replaced by 1Aλ (this is the root of J ( p) if nGS ). The strategies are
given by (5.10) with iGı (k) replaced by iGk (renumber the players to start with iG0).
Corollary 4 still holds, and so efficiency is obtained in the limit as the period length
vanishes. This equilibrium resembles what we see in real short-run fund drives, such as a
one-week public radio drive or a one-year university building campaign. Contributors in
these situations do tend to contribute only once, and many seem to wait to see how the
drive is faring before they contribute. Whether contributions tend to decrease over time,
as they do in this equilibrium, is unknown to us.

6. PERFECT BAYESIAN EQUILIBRIA

There is obviously no perfection problem with the Markov perfect equilibria of Prop-
osition 4. The same is not true of the grim equilibria used to prove Theorem 1. Those
strategies are not sequentially rational after a history that brings the project so near to
completion that some player is willing to complete it alone. Refer to the interval of such
cumulations for player i as his critical set :11

Ci ≡ (X*Ac*i , X*). (6.1)

If previous contributions yield X∈Ci , and the strategies require the others to stop con-
tributing, player i ’s best reply is to complete the project immediately alone. A grim strat-
egy equilibrium is thus not sequentially rational if any player’s critical contribution is
positive.

None the less, many Nash equilibrium outcomes are also the outcomes of equilibria
that do not have this perfection problem; specifically, they are outcomes of perfect Baye-
sian equilibria (PBE). The main theorem of this section is the following.12

11. The critical sets satisfy Ci ⊇ CiC1 , since c*i nc*iC1 .
12. Theorem 2(a) trivially implies that Propositions 3 and 4 identify PBE outcomes. Theorem 2(b) implies

that Proposition 2 identifies a PBE outcome if b1Gb2 and λ1Gλ2 , by (5.1) and (5.2).
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Theorem 2. Let g be a Nash equilibrium outcome. Then g is a PBE outcome if

(a) c*1 Gc*i for all i∈N, or
(b) c*1 Gc*2 , and both g1(t)ngi (t) and g2(t)ngi (t) for all tn0 and iG3, . . . , n.

Hypothesis (a) requires all players to have the same critical set. The importance of
this is that if the cumulation is in the common critical set, each player can believe that
any other player will complete the project on his own, regardless of that player’s identity.

Hypothesis (b) requires only that the two largest critical sets be the same, but it
restricts attention to outcomes in which the two players with this largest critical set con-
tribute the most in every period. A special case is a symmetric outcome, one in which
gi (t)Ggj (t) for all i∈N and tn0. Like (a), (b) implies that every player’s critical set is a
subset of at least one other player’s critical set. Thus, no player can ever believe he is the
only one willing to complete the project alone.

The proof of Theorem 2 is in Appendix B. It proceeds by showing that under either
hypothesis, there is a sequentially rational way of imposing on any unilateral deviator
the maximal punishment—the withholding of all future contributions by the non-
deviators. This punishment necessarily deters any deviation from a Nash equilibrium
outcome.

In order to explain the proof, it is convenient to consider first the game with observed
contributions. A PBE of this game is the same as a subgame perfect equilibrium (SPE).
The analogue of Theorem 2(a) holds:

Proposition 5. If the critical contributions of the players are identical, every Nash
equilibrium outcome of the game with observed contributions is a SPE outcome.13

We give only an informal argument for Proposition 5. Given a Nash equilibrium
outcome of the game with observed contributions, consider the following strategies:

After any unilateral deviation, all players stop contributing if X is not in the common
critical set; otherwise, the non-deviators stop contributing and the deviator immedi-
ately completes the project alone. After a multilateral deviation, any continuation
equilibrium is played.

These strategies are sequentially rational. In particular, after a unilateral deviation, a non-
deviator who would be willing to complete the project alone because X is in his critical
set is happy not to contribute because he knows the deviator will then complete the pro-
ject, since X must also be in his critical set. As these strategies punish any unilateral
deviation by halting the contributions of the non-deviators, no unilateral deviation is
profitable.

This argument relies on the critical contributions being identical. If instead c*i Hc*j
for some i≠ j, a unilateral deviation by player j could yield an X that is in Ci , but not the
closure of Cj . It would then not be a continuation equilibrium for all players to stop
contributing, or for the deviator, player j, to complete the project alone. As a result, if
the critical contributions differ, the game with observed contributions can have Nash
equilibrium outcomes that are not SPE outcomes, as is shown by Example 1 below.

The argument for Proposition 5 can be extended to prove Theorem 2. As now contri-
butions are unobserved, the players must be given appropriate beliefs. Our proof utilizes

13. Thus, the Nash equilibrium outcomes and the PBE outcomes of the games with and without observed
contributions are all the same if the critical contributions of the players are identical. (Recall Footnote 6.)
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beliefs according to which each player rationalizes, if possible, any observed deviation as
being unilateral. To be more specific, consider a vector z̄∈ℜn

+ that is supposed to be
contributed in some period. If it is, then i sees that his own contribution is z̄i , and that
the aggregate contribution of the others is Zr iG∑k≠ i z̄k . If exactly one player deviates,
player i instead observes a pair in the set

Ai (z̄) ≡ {(zi , Zi )∈ℜ2
+ u (i) zi≠ z̄i and ZiGZr i , or

(ii) ziGz̄i , Zi ≠Zr i , and Zin∑k≠ i, j z̄k for some j≠ i}. (6.2)

If player i is the deviator, (zi , Zi ) satisfies (i); if player j≠ i is the deviator, it satisfies (ii).
The reverse is also true: for any (zi , Zi )∈Ai (z̄), a unilateral deviation from z̄ exists that
causes player i to observe (zi , Zi ). Beliefs that rationalize deviations as being unilateral
whenever possible require player i to believe exactly one player deviated whenever he
observes a pair in Ai (z̄).

Such beliefs are used to prove Theorem 2, together with strategies that satisfy the
following:

Player i contributes his equilibrium amount each period until he sees a deviation. If
the (zi , Zi ) he then sees is in Ai (z̄), where z̄ was the equilibrium contribution vector
that period, he never contributes again if ziGz̄i or X∉Ci ; otherwise, he immediately
contributes enough to complete the project alone.

Accordingly, any unilateral deviation causes the non-deviators to stop contributing, as
every player observes a pair in his Ai (z̄) set. Each non-deviating i believes the deviation
was unilateral, and hence that each other player j≠ i observes a pair in Aj (z̄). If X∈Ci ,
this non-deviating player is nonetheless willing not to contribute if he believes the deviator
will complete the project alone. Player i will believe this if he believes the deviator is a
player j for whom Ci ⊆ Cj : in this case X∈Ci implies X∈Cj , and so i knows that j ’s
strategy requires him to complete the project alone.

The proof of Theorem 2 thus uses beliefs that not only rationalize deviations as being
unilateral whenever possible, but also beliefs that cause each non-deviator i to believe the
deviator was a player with the largest critical set. This property is automatic under hypoth-
esis (a), as it implies all players have the same critical set. It is also true under (b) if,
whenever a non-deviator believes a unilateral deviation has occurred, he believes the devi-
ator was player 1 or 2. Under (b), the equilibrium contributions of players 1 and 2 are no
less than any other player’s, and so any player who believes a unilateral deviation has
occurred can rationalize it as being due to one of them.

The proof of Theorem 2(b) uses such beliefs and strategies. Thus, if player 1 (2) sees
a possibly unilateral deviation by the others, he believes player 2 (1) was the unique
deviator among them. Suppose player j unilaterally deviates. Any non-deviator i≠1 then
believes player 1 unilaterally deviated, and hence that player 1 will complete the project
alone if X∈C1 . If X∉C1 , player i knows 1 will not contribute, but this does not induce
him to contribute because X∉Ci (as Ci ⊆ C1). If player 1 was not the deviator, he believes
player 2 was, and hence that player 2 will complete the project alone if X∈C2 . If X∉C2 ,
player 1 knows 2 will not contribute, but this does not induce him to contribute because
X∉C1 (as C1GC2). Any unilateral deviation thus induces the non-deviators to stop con-
tributing, which proves the theorem.14

We leave for the future a full treatment of the case in which the critical contributions
are different. Heterogeneity creates interesting phenomena, as we now illustrate with two

14. The complication in proving Theorem 2 is showing sequential rationality after multilateral deviations.
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examples. In Example 1, no contributions are made in the only equilibrium of the static
game, but every PBE completes the project if the contributing horizon is longer and finite.
Imperfect observability plays no role, as the example has only two players.

Example 1. Let nG2, X*G5, and δG1. The preference parameters are V1GV2G

4, λ1G0, and λ2G4y5. Thus, c*1 G4 and c*2 G0. The unique equilibrium of the static game
is for neither player to contribute, since c*2 G0 implies that player 2’s dominant strategy
is not to contribute, and c*1FX* implies that player 1 is unwilling to complete the project
alone.

However, if the game is dynamic with a finite contributing horizon, 0FTrFS, then
every SPE completes the project. (As individual contributions are observed because nG
2, we focus on subgame perfect equilibria.) To prove this, let εH0. Consider an arbitrary
SPE strategy for player 1, and for 2 a noncontingent strategy according to which he
contributes nothing except in period TrA1, when he contributes 1Cε . This strategy pair
leads to a period Tr subgame in which R(Tr ) ≡ min(0, X*AX (TrA1)) is needed to complete
the project. Since R(Tr )o4AεFc*1 and c*2 G0, the unique subgame equilibrium is (z1 , z2)G
(R(Tr ), 0). This gives a payoff of at least 3Aε to player 2, which proves that his payoff in
any SPE is not less than 3. Hence, in every SPE the project is completed, player 2 contrib-
utes no more than 1, and player 1 contributes no less than 4. This implies, since player
1’s payoff must be nonnegative, that the cumulative contributions in every SPE are x1G

4 and x2G1.
In this argument player 2 can induce player 1 to complete the project at Tr because

he himself can commit not to contribute at Tr or thereafter. If Tr GS, commitment is
impossible and other SPE outcomes exist. For example, let Xr ∈[1, 4], and denote by s(Xr )
the following strategy profile: at any tn0, the players contribute

(z1 , z2)G5 (0, XrAX (tA1))

(5AX (tA1), 0)

if X (tA1)FXr ,

if Xr oX (tA1)F5.

Player 2 accordingly contributes Xr in the first period, and player 1 completes the project
in the second. It is easily verified that s(Xr ) is a SPE if Tr GS (and s(1) is a SPE for all
TrH0). Player 1 receives a zero payoff from s(1), and player 2 receives a zero payoff from
s(4). These equilibria can be used as punishments to deter contributions. The following is
a no-contribution SPE when Tr GS: In period tn0, neither player contributes if
X (tA1)G0, and if X (tA1)H0 they play s(1) if player 1 was the only player to have
contributed in the first period with a positive contribution, and they play s(4) otherwise.

Our final example shows that a PBE outcome of the game with unobserved contri-
butions need not be a SPE outcome of the game in which they are observed. Essentially,
imperfect observability creates new equilibria because it allows non-deviators to hold
different beliefs about who deviated.15

Example 2. Let nG3, X*G5, Tr G1, and δG1. The preference parameters for iG
1, 2 are ViG4 and λ iG0, and for player 3 they are V3G4 and λ3G4y5. Thus,
c*1 Gc*2 G4 and c*3 G0.

Consider outcome g(0)G(1, 1, 1), g(1)G(1, 1, 0). The grim-g strategies are a Nash
equilibrium, and so g is a PBE outcome by Theorem 2(b). The PBE used in the proof has

15. Such beliefs are not pathological: they are consistent with sequential equilibrium in similar games with
finite strategies, as Matthews (1998) shows.
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the feature here that if player 3 unilaterally deviates from g(0), player 1 (2) will think
player 2 (1) was the deviator, and so each will think the other will complete the project
on his own at tG1 (since 5A2Fc*i for iG1, 2). The deviation by player 3 hence causes
no contributions to be made at tG1, and this deters him from deviating.

Now consider the game with observed contributions. In this game no player can be
confused about who deviated. Suppose player 3 deviates from g(0) by contributing
nothing. In any equilibrium of the ensuing subgame, players 1 and 2 complete the project
and player 3 does not contribute. This deviation is beneficial to player 3, and so g is not
a SPE outcome.16

7. RELATED LITERATURE

We first discuss the closely related literature on dynamic voluntary contribution under
complete information.17 We then turn to recently studied games with similar features.

Dynamic contribution

Fershtman and Nitzan (1991) (henceforth FN) study a differential game in which contri-
butions become the capital a project uses to generate a flow of public benefits. Its open-
loop equilibrium yields low contributions; it is analogous to the no-contribution equilib-
rium of our static game. Surprisingly, the Markov perfect equilibrium that FN identify
yields even lower contributions. In this equilibrium a player’s contribution rate is a
decreasing function of the cumulative contribution. A player can thus induce greater
future contributions by decreasing his current contribution, and so he has a strong incen-
tive to free ride. The model differs from ours in many ways: it has continuous time,
decaying contributions, and quadratic payoffs. Most importantly, FN restrict attention
to a linear Markov-perfect equilibrium. As Wirl (1996) shows, the game also has nonlinear
Markov-perfect equilibria, and some yield greater contributions than does the open-loop
equilibrium. The negative conclusion of FN that dynamics aggravate free riding is thus
true only of some equilibria. If the model is modified by making time discrete and re-
placing discounting by the limiting means criterion, Gaitsgory and Nitzan (1994) show
that every individually rational payoff vector is attained by some Nash equilibrium.

The model of Bagnoli and Lipman (1989) (henceforth BL), unlike ours or the other
models we discuss here, concerns mechanism design rather than the private provision of
public goods. A game form is constructed that fully implements, via a refinement of
subgame perfect equilibrium, the core of a public goods economy in which the public
good is available in discrete levels. The game form resembles our contribution game, but
with a central authority committed in each period to halting the process if too little is
contributed, and to refunding the excess if too much is contributed. BL’s result shows
that adding a third party with these relatively small commitment capabilities can overcome
free riding. The discreteness of the public good plays a role similar to that of our benefit
jump, insuring that a player is willing to contribute once the contribution total is close to
that required to raise the public good to its next level. Our asymptotic completion result,

16. The following is a SPE: the players contribute z(0)G(0, 0, 1), z(1)G(0, 0, 0) if X(0)F1, and z(1)G
(R*y2, R*y2, 0) if 1oX (0)F5, where R*G5AX (0) is the amount needed at tG1 for completion. The outcome
is ĝ(0)G(0, 0, 1) and ĝ(1)G(2, 2, 0), which is payoff equivalent to g.

17. The following are less related. McMillan (1979) studies a repeated game with a contribution stage
game; folk theorems apply. Dynamic incomplete information games with discrete public good and contribution
levels are studied in Bliss and Nalebuff (1984), Gradstein (1992), and Vega-Redondo (1995). Delay is caused in
these games by the incentive to wait for low-cost types to contribute first.
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Proposition 3, is foreshadowed by an unpublished result in the Appendix of Bagnoli and
Lipman (1987), proved for a strictly concave public good production function and two
players.

Admati and Perry (1991) (henceforth AP) study a dynamic contribution game that
differs from ours in only a few ways, but yields the opposite conclusion that dynamics
aggravate free riding. This conclusion is the more surprising because the players have
identical binary benefit functions—recall that in this case of our model, an efficient PBE
exists for any discount factor and any contributing horizon. We discuss the AP model in
some detail.

The AP game has two players and an infinite contributing horizon. It differs from
ours in that each player is allowed to contribute only in alternate periods, and the cost to
a player of contributing zi is given by a strictly convex function w(zi ) (satisfying w(0)G0).18

The payoff of player i if completion occurs at T and his contributions are zi (0), . . . , zi (T ) is

δTVA∑T

tG0 δ tw(zi (t)).

AP show that (generically) this game has a unique subgame perfect equilibrium outcome.
This AP outcome is usually inefficient, most notably if w is linear: ‘‘. . . in the linear case
a necessary and sufficient condition for the completion of the project in our equilibrium
is that each player would complete the project (immediately) if he was the only player.’’
(p. 268) The AP outcome therefore yields no contributions under our assumptions w(z) ≡ z
and (2.7), which is now VFX*F2V. No contributions are made even if w merely approxi-
mates the identity function in the sense that w′(0)nVyX*, by AP’s Proposition 4.1.

The logic of these results is the following. In the AP game, a player completes the
project in some period if that makes him better off than having the other player complete
the project in the next period. Thus, in any SPE, the player whose turn it is to contribute
will complete the project if the required amount is less than the quantity R1 defined by
VAw(R1) ≡ δV. Suppose that in some period completion requires a greater contribution,
yCR1 for some yH0. If the player whose turn it is contributes just y, the other player will
complete the project in the next period by contributing R1 . The player’s marginal benefit
from contributing yCR1 rather than y is thus VAδV. This is less than his marginal cost
of raising y to yCR1 , since the strict convexity of w and w(0)G0 imply

w( yCR1)Aw( y)Hw(R1)GVAδV. (7.1)

This proves that a completing contribution in any SPE cannot exceed R1 . Repeating this
argument recursively yields a sequence {Rk} such that in any SPE, R1 is the most that
can be contributed in a period to complete the project, R2 is the most that can be contrib-
uted in the penultimate period before it is completed, and so on. So the cumulation is
bounded by ∑S

kG1 Rk , which is easily shown to equal V if w is the identity function. Thus,
no SPE completes the project when VFX* and w is sufficiently close to the identity
function.

The crux of this argument is that a completing contribution cannot exceed R1 . This
is not true for various modifications of the AP game. For example, if w is the identity
function, (7.1) is an equality: a player is indifferent between contributing yCR1 to com-
plete the project, and contributing just y to let the other player complete it in the next
period. This implies the existence of equilibria in which a completing contribution is larger

18. AP also study a ‘‘subscription game’’ in which the players alternately pledge amounts to be paid when
the project is completed. Its SPE is efficient when w is linear.
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than R1 , and hence of equilibria that complete the project. Specifically, we show in Appen-
dix C that if δ is sufficiently large and (2.7) holds, the AP game with w(z) ≡ z has a SPE
in which player 1 contributes X*AV in the first period, and player 2 contributes V in the
second period to complete the project.19

We also show in Appendix C that two other modifications of the AP game have
completing equilibria if w approximates the identity function, but δ is large and (2.7)
holds. First, if the infinite contributing horizon is made finite (and positive), every SPE
completes the project. Second, if the players can contribute in any period instead of being
required to alternate, some subgame-perfect and Markov-perfect equilibria complete the
project within two periods. These equilibria resemble the completing equilibria we con-
sidered in Sections 5 and 6, indicating that the latter equilibria are robust to making the
contributing cost function slightly convex. The completing equilibria of the AP game with
w(z) ≡ z are not robust in this sense, since they vanish if w is made strictly convex. The
difference between AP’s negative result and our more positive one should therefore be
attributed primarily to the AP players being required to alternate their contributions.

Other dynamic models

Some of our results are like those obtained in recent papers on other kinds of dynamic
incentive problems. We discuss a sample of them here.

Gale (1995) studies a dynamic investment game in which each player chooses the
period in which to make a discrete investment to a project. Each player invests at most
once, at which time he begins receiving a flow of benefits from the project. The model can
thus be interpreted as one of voluntary contribution to a project that produces an exclud-
able public good each period. The efficient equilibrium consists of all players investing in
the first period. Equilibria with delay also exist because each player has an incentive to
wait until enough others have invested that the benefit flow has become positive. This is
like our model with a positive benefit jump—a player is then reluctant to contribute only
until the level of previous contributions is high. In Gale’s model, all subgame perfect
equilibria converge to the efficient one as the period length converges to zero.20

Bolton and Harris (1998) study a many-player bandit problem. Each player at each
moment can choose to invest in a risky asset with an unknown expected return. The
realized return yields a public benefit in the form of information that helps all players
make better future decisions. The public benefit function is thus stochastic, and deter-
mined endogenously by the degree of current uncertainty and the nature of future stra-
tegies. Despite such differences, the symmetric Markov-perfect equilibrium is somewhat
similar to some of the equilibria of our game, e.g. investment in the risky asset is too slow
because of free-riding, but the inefficiency vanishes as discounting disappears.

Neher (1997) shows that an investor in a start-up firm can, by making her investment
piecemeal over time, protect herself from the entrepreneur’s inability not to renegotiate
down the investor’s claim once the investment is sunk. The model differs from ours in its
focus on contracts, renegotiation, and transferable assets, but it reaches a similar result:
investing over time can mitigate an incentive problem caused by an inability to commit.

19. This is not made clear in AP. The discussion around Lemma 4.1 gives the incorrect impression that
any SPE outcome when w is linear is payoff-equivalent to the AP outcome, and so yields no contributions when
w(z) ≡ z and VFX*.

20. More recently Gale (1998) studies a related class of games in which players can only increase the level
of their actions (e.g. cumulative contributions) over time. For games with positive spillovers, like public good
contribution games, he characterizes the limits of all SPE outcomes when there is no discounting and the players
can only move one at a time.
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8. CONCLUSIONS

Our model of voluntary contribution allows players to contribute whenever and as much
as they wish during the course of the drive, but only to observe aggregate contributions.
This is consistent with real fund-raising campaigns that last weeks or months, and in
which the public is encouraged by periodically announcing how much is needed to reach
the campaign goal. We characterize the pure strategy Nash equilibrium outcomes, and
show that they are all perfect Bayesian equilibrium outcomes if the players’ preferences
are sufficiently similar in the sense of Theorem 2. We show that approximately efficient
equilibria exist if the players have similar benefit functions, if contributions can be made
in a large number of periods, and if discounting is low or the period length small. Creating
future contributors upon which to free ride does increase the incentive to free ride, but
this can be countered by the ability of future players to punish past free riders by withhold-
ing or postponing contributions.

If players receive a discrete benefit when the project is completed, equilibria may exist
that complete the project in a finite number of periods. Such benefit jumps can be due to
an increasing returns technology, or to a challenge bonus that some party has committed
to make when a specified goal is achieved. If the true benefit functions are continuous, a
challenge bonus can create completing equilibria where none existed before. As the chal-
lenge bonus can be arbitrarily small if δ and Tr are large, any subset of players has an
incentive to commit to making it. The model thus predicts the use of challenge bonuses
in some circumstances.

Some experimental evidence is also consistent with the model. Though most public
good experiments are static,21 Dorsey’s (1992) allow players to contribute over multiple
periods. He finds that total contributions are larger than in the static setting, especially if
contributions are nonrefundable and the benefit function has a completion point, as in
our model.

Our main theoretical result, Theorem 2, shows that under either of two alternative
conditions, any Nash equilibrium outcome is also the outcome of a perfect Bayesian
equilibrium. The proof requires the construction of beliefs and actions off the equilibrium
path that make it rational for each non-deviator to impose the maximum possible punish-
ment of never contributing again—despite the fact that the project might be so close to
completion that every continuation equilibrium completes it, and despite the fact that the
identity of a deviator is unobserved. The first sufficient condition is that the players’
critical contributions c*i be identical. The alternative condition is that the two greatest
critical contributions be the same and belong to players who contribute the most every
period. Interestingly, this condition implies the result only because the players do not
observe the identity of a deviator.

We leave several extensions to future research. An important one will be to pursue
the suggestive examples in Section 6 by studying cases in which the players are more
heterogeneous than is assumed in Theorem 2. Another will be to consider general utility
functions, in order to determine the implications of income effects. Other timing conven-
tions should also be studied, such as those in which benefits are not received until the
project is completed or the contributing horizon is reached, whichever comes first. (This
timing is covered by the no-discounting version of our model, but not by the discounting
version.) Alternatively, contributions may generate benefits only after a lag, as when each
stage of a project takes time to complete but can be used immediately once it is completed.
Finally, it would be fruitful to disentangle the concept of a period as the minimum length

21. Ledyard (1995) surveys public good experiments.
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of time between contributions, as opposed to the minimum length of time between
announcements that update information about received contributions.

APPENDIX

A. Proofs for Section 5

Proof of Proposition 2. Since each ci (κ )n0, each R(κ )n0. So at most one T*n0 satisfies (5.4). Assuming
some T*FS does satisfy it, g* is a well-defined candidate outcome. By construction, it satisfies (3.6) and
completes the project in period T*. As T*G0 or g*(T*)G(c*1 , . . . , c*n ), Corollary 1 (i) or (iii) implies g* is a
Nash equilibrium outcome.

To show the existence of T*FS satisfying (5.4) for large δ , we show that if δ is near one, then R(k*)HX*
for some k*FS. It suffices to show this k* exists when δG1, since R(k) is continuous in δ for each k. So
assume δG1 henceforth.

Define Y (k) ≡ ∑i∈N (1Aλ i )ci (k). Since each λ iF1 and ci (k)n0, Y (k)n0. By (5.2),

Y (k)G(∑i∈N λ iA1) ∑i∈N ci (kA1)CY (kA1). (A1)

Iterating, using (5.3) and (1Aλ i )ci (0)Gbi , yields

Y (k)G(∑i∈N λ iA1)R(kA1)C∑i∈N bi . (A2)

Case 1. ∑i∈N λ in1. Then (A2) implies that Y (k)n∑i∈N bi . Therefore, letting λq ≡ mini∈N λ i ,

∑i∈N ci (k)n∑i∈N 11Aλ i

1Aλq 2ci (k)

G
Y (k)

1Aλq
n

∑i∈N bi

1Aλq
H0.

Hence, R(k)G∑κok ∑i∈N ci (κ )→S. It follows that R(k*)HX* for some k*FS.

Case 2. ∑i∈N λ iF1. Then {Y (k)} is a decreasing nonnegative sequence. It thus converges, and so taking
limits in (A1) shows that ∑i∈N ci (k)→0. Since Y (k)o∑i∈N ci (k), we also have Y (k)→0. Hence, from (A2),

lim
k→S

R(kA1)G
∑i∈N bi

1A∑i∈N λ i

G
∑i∈N ViAX* ∑i∈N λ i

1A∑i∈N λ i

HX*,

using ∑i∈N ViHX*. This again proves that R(k*)HX* for some k*FS. u u

Derivation and Proof of Proposition 4. We first derive the equilibrium. Let Zk ≡ XkAXkA1 . For kn1, let
Hk be the equilibrium continuation payoff of player iGı (k) starting from XGXk , which is the period after this
player raises the cumulation to Xk . In the next nA1 periods, players j≠ i contribute in turn
ZkC1 , ZkC2 , . . . , ZkCnA1 ; in the n-th subsequent period, player i contributes ZkCn . His continuation payoff in
the next period is HkCn . Thus,

HkGλ ∑kCnA1

κGkC1 δκAkA1ZκC(λA1)δnA1ZkCnCδnHkCn . (A3)

Let Vi (X ) be a player i ’s equilibrium value function. Thus Vı (k)(Xk )GHk , and Vi (X )G0 for XnX*. Other-
wise, for X∈[XkA1 , Xk ),

Vi (X ) ≡ 5 (λA1)(XkAX )CδVi (Xk )

λ (XkAX )CδVi (Xk )

if iGı(k),

if i≠ ı (k).
(A4)

Since a player has the option of never contributing, Vi (Xk )n0 for all kn0. Suppose kn1 and iGı (kC1). If XG

XkA1 , player i is supposed to let another player contribute Zk in the current period before he contributes ZkC1

in the next period. His continuation payoff from this strategy must be no less than what he would get by
contributing ZkC1 at the same time as Zk is contributed. Thus, Vi (XkA1)nλZkC(λA1)ZkC1CδVi (XkC1). By
(A4), this becomes λZkCδVi (Xk )nλZkCVi (Xk ). Therefore, since Vi (Xk )n0,

Vı (kC1)(Xk )G0 for all kn1. (A5)
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We construct the equilibrium for which (A5) also holds for kG0. This, (A4), and Vı (k)(Xk )GHk imply

HkGδ−1(1Aλ )Zk for all kn1. (A6)

Using this to remove Hk and HkCn from (A3), and letting ρk ≡ δ kZk , we obtain a linear homogeneous difference
equation:

A11Aλ
λ 2ρkC∑kCnA1

κGkC1 ρκG0.

Since J (γ )G0, this equation has a solution of the form ρkGKγ k, or rather, ZkGK(γ yδ )k, where K is a constant.
Setting ∑S

kG1 ZkGX*, we see that δHγ is required, and KGX*(δAγ )yγ . Thus, ZkG(γ yδ )kA1(1Aγ yδ )X*.
Formula (5.9) comes from XkG∑k

κG1 Zκ .

Proof of Proposition 4 for δ∈(γ , 1). We need to show that one-shot deviations are unprofitable. Let the
current cumulation be X∈[XkA1 , Xk ) for some kn1, and consider player i∈N.

Case iGı (k). In this case player i is supposed unilaterally to bring the cumulation up to Xk . He can raise
it to any level YnX. Any YnX* is strictly dominated. Choosing a Y∈[X, X*) and then joining the others in
playing σ yields a continuation payoff of

Wi(Y, X ) ≡ (λA1)(YAX )CδVi (Y). (A7)

We show that Xk maximizes Wi ( · , X ) on [X, X*). We can restrict attention to the points X, Xk , XkC1 , . . . ,
since Wi ( · , X ) decreases on each interval [XκA1 , Xκ ).22 Because Wi (X, X)GδVi (X )oVi (X )GWi (Xk , X ), we can
restrict attention to Xk , XkC1 , . . . .

For κnk, let ∆κ ≡ W(XκC1 , X )AW(Xκ , X ). Hence,

∆κG(λA1)ZκC1Cδ [Vi (XκC1)AVi (Xκ )]. (A8)

If iGı (κC1), then 0GVi (Xκ )G(λA1)ZκC1CδVi (XκC1) by (A5) and (A4). Hence, (A8) implies ∆κG0. If instead
i≠ ı (κC1), then (A4) yields Vi (Xκ )GλZκC1CδVi (XκC1). Using this to eliminate δVi (XκC1) from (A8), we obtain

∆κG(1Aδ )Vi (Xκ )AZkC1 . (A9)

By (A3) and (A4), Vi (Xκ ) is bounded above by λ∑ jnκC1 δ jAκA1Zj , and this in turn is bounded above by λZκC1y
(1Aδ ), since {Zj} is decreasing. Hence, (A9) implies ∆κF0. We conclude that ∆κo0 for all κnk, and so YGXk

indeed maximizes Wi ( · , X ).

Case i≠nk. In this case another player is supposed to raise the cumulation to Xk in the current period.
If player i also contributes, he raises the cumulation to some YnXk . Any YnX* is strictly dominated. Choosing
Y∈[Xk , X*) and then joining the others in playing σ yields a continuation payoff of

Ŵ i (Y, X ) ≡ λ (XkAX )C(λA1)(YAXk )CδVi (Y )

Gλ (XkAX )CWi (Y, Xk ), (A10)

where Wi is defined in (A7). We must show that Xk maximizes Ŵ i ( · , Xk ) on [Xk , X*). We showed above that
Xk maximizes Wi ( · , X ) on [X, X*) for any X∈[XkA1 , Xk ). Hence, as Wi ( · , X) is continuous in X, Xk maximizes
it on [Xk , X*). So Xk indeed maximizes Ŵ i ( · , Xk ) on [Xk , X*).

Proof of Proposition 4 for δG1. The goals are now XkG(1Aγ k )X*. Let i∈N. Suppose that in some
period player i ’s cumulation has reached xi , and the cumulation has reached XFX*. We show that conditional
on starting from (xi , X ), σ i is a best reply to σ−i . (We cannot restrict attention to one-shot deviations because
δG1.)

If σ is played starting from (xi , X ), X (t)→X*. Let x*i be the corresponding limit of player i ’s cumulative
contribution. His conditional payoff is then U*i ≡ λX*Ax*i .

Let σ̃ i be a best reply to σ−i , conditional on reaching (xi , X). Let the sequences of player i ’s and the
aggregate cumulative contributions when (σ̃ i , σ−i ) is played, starting from (xi , X), be {x̃i (τ )} and {X̃ (τ )}. Let
the limits of these sequences be x̃i and X̃. Player i ’s conditional payoff is then ŨiGλ min (X̃, X*)Ax̃i .

The nature of σ−i implies that starting from (xi , X ), no strategy of player i can induce the others to
contribute more than X*Ax*i . Thus, if X̃nX*, he himself must contribute at least x*i when he plays σ̃ i ; that
is, x̃inx*i . Therefore, in this case ŨiGλX*Ax̃ioU*i , which shows that σ i is a conditional best reply to σ−i .

22. By (A4), Wi
Y ( · , X )G(1Aδ )(λA1)F0 if iGı (κ ), and Wi

Y ( · , X)G(1Aδ )λA1F0 if i≠ ı (κ ).
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Now suppose X̃FX*. The nature of σ−i then implies that kn1 and tFS exist such that
X̃ (τ )∈[XkA1 , Xk ) for all τn t. No player except perhaps i contributes after date t. Modify σ̃ i to a strategy σ̄ i by
replacing it with σ i at all dates τHt. According to σ̄ i , player i at date tC1 raises the cumulation from X̃ (t) to
Xk , whereupon it is raised successively to XkC1 , XkC2 , . . . , and converges to X*. This yields a continuation
payoff of Vi (X̃ (t)), and so player i ’s payoff conditional on (xi , X) when (σ̄ i , σ−i ) is played is

Ur iGλ i X̃ (t)Ax̃i (t)CVi (X̃ (t))

Gλ i X̃Ax̃iAλ i (X̃AX̃ (t))C(x̃iAx̃i (t))CVi (X̃ (t))

GŨiC(1Aλ i )(X̃AX̃ (t))CVi (X̃ (t)),

where the last equality uses x̃iAx̃i (t)GX̃AX̃ (t). Since Vi (X̃ (t))n0, this proves Ur inŨi . So σ̄ i is also a conditional
best reply to σ−i . The argument above can now be applied with σ̄ i replacing σ̃ i , since the cumulation converges
to X* when (σ̄ i , σ−i) is played after (xi , X ) is reached . Thus, σ i is a conditional best reply to σ−i . u u

B. Proof of Theorem 2

We construct a PBE that has outcome g, regardless of which hypothesis holds, (a) or (b).

Preliminaries. Let z̄∈ℜn
+ . Define M(z̄) to be the smallest integer such that z̄M (z̄)n z̄i for all i∈N. Thus,

according to z̄, player M(z̄) is supposed to contribute the maximum amount. Similarly, let m(z̄) be the smallest
integer not equal to M(z̄) satisfying z̄m(z̄)n z̄i for all i∈N \{M(z̄)}. Player m(z̄) thus contributes the second-largest
amount.

Player i can rationalize his observation Zi as the outcome of a deviation from z̄ by at most one of the
other players if and only if ZinZr iAz̄k , where z̄k is the maximum of the other players’ contributions in z̄. Recall
that Ai (z̄) is the set of pairs (zi , Zi ) that player i can rationalize as a unilateral deviation from z̄. Hence, (zi , Zi )∈
Ai (z̄) if and only if either (i) zi≠ z̄i and ZiGZr i , or

(ii) ziGz̄i , Zi≠Zr i , and Zin5Zr iAz̄M(z̄)

Zr iAz̄m(z̄)

if i≠M(z̄),

if iGM(z̄).
(B1)

History htA1
i G((zi (r), Zi (r))

tA1
rG0 determines the aggregates Z(r)Gzi (r)CZi (r) and X(r)G∑r′or Z(r′ ). The

corresponding remaining contribution needed to complete the project is R(t) ≡ max (0, X*AX(tA1)). Refer to
htA1

i as

(i) an equilibrium history if tG0 or Z(r)GG(r) for all rG0, . . . , tA1;
(ii) a grim history if it is not an equilibrium history, and X(tA1)∉C1 or tHTr ; and
(iii) a completing history if it is not an equilibrium history, X(tA1)∈C1 , and toTr .

These definitions depend only on publicly observed quantities, and every personal history is exactly one of these
three types. According to the strategies to be defined, g(t) will be contributed at an equilibrium history; no
player will contribute at a grim history; and the project will be (expected to be) completed immediately at a
completing history.

Refer to htA1G(htA1
1 , . . . , htA1

n ) as a possible history profile if it is generated by a play of the game. If
one history in it is an equilibrium (grim) (completing) history, then it is common knowledge at htA1 that all
personal histories are equilibrium (grim) (completing) histories. The same is true of any truncation, hrA1G

(hrA1
1 , . . . , hrA1

n ) for ro t, of htA1.
Given a completing history htA1

i , define variables (τ , z̄, M, m, zi , Zi ) as follows. Let τ be the smallest integer
such that the truncation hτA1

i of htA1
i is also a completing history. The truncation hτA2

i is thus an equilibrium or
a grim history: some players deviated in period τA1, and the contributions in period τA1 caused the cumulative
contribution to increase above X*Ac*1 , so that X (τA1)∈C1 , for the first time. Let

z̄ ≡ 5g(τA1)

(0, . . . , 0)

if hτA2
i is an equilibrium history,

if hτA2
i is a grim history.

(B2)

According to the strategies to be defined, the contributions in z̄ should have been made in period τA1. Finally,
let MGM(z̄), mGm(z̄), and (zi , Zi )G(zi (τA1), Zi (τA1)). Since hτA1

i is not the same type of history as
hτA2

i , (zi , Zi )≠ (z̄i , Zr i ) for all i∈N: each player knows a deviation occurred in period τA1.
Let htA1 be a possible profile of completing histories, and define the variables (τ , z̄, M, m) as above. Under

hypothesis (a), all the Ci sets are identical, and so

CMGCmGC1 . (B3)
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This also follows from hypothesis (b), as it and (B2) imply C1GC2 and {M, m}G{1, 2}. Thus, under either
hypothesis, it is common knowledge at htA1 that M and m are both willing to complete the project alone, i.e.,
that CM and Cm both contain X (tA1).

Strategies. Player i ’s strategy, si , maps personal histories into contributions. Let

si (h
tA1
i ) ≡ 5gi (t)

0

if htA1
i is an equilibrium history,

if htA1
i is a grim history.

(B4)

Now suppose htA1
i is a completing history, and let (τ , z̄, M, m, zi , Zi ) be the variables defined above. There

are three cases. First, if (zi , Zi )∈Ai (z̄), let

si (h
tA1
i ) ≡ 5R(t)

0

if zi≠ z̄i and X(tA1)∈Ci ,

otherwise.
(B5)

Thus, if player i can rationalize the deviation from z̄ as unilateral, he contributes enough to complete the project
alone if he himself deviated and X (tA1)∈Ci ; otherwise he contributes nothing. Since all histories that follow
htA1

i have the same truncation hτA1
i , player i will never contribute in any period after t if ziGz̄i , regardless of

what happens.
Second, if (zi , Zi )∉Ai (z̄) and i≠M, let

si (h
tA1
i ) ≡ 0. (B6)

All players except M never contribute after period τA1 if they cannot rationalize the deviation that period as
unilateral.

Third, if (zM , ZM )∉AM (z̄), let

sM (htA1
M ) ≡ 50R(t)

if ZMG0 and, for some j≠M, z̄jH0, zMGZr j , and X(tA1)∈Cj ,

otherwise.
(B7)

Player M completes the project immediately if he cannot rationalize the τA1 deviation as unilateral, unless the
first line of (B7) holds. In that case player M knows j observed (zj , Zj )G(0, Z̄j ), and that j will complete the
project immediately, by (B5); M then contributes nothing.

This completes the specification of a strategy profile, sG(s1 , . . . , sn ).

Beliefs. The beliefs of player i at history htA1
i are represented by a probability distribution over the past

contributions of the other players that is consistent with htA1
i : it is a distribution Pi ( · uhtA1

i ) on the set of nonnega-
tive vectors z̃ tA1

−i G(z̃−i (0), . . . , z̃−i (tA1)) that satisfy

∑ j≠ i z̃j (r)GZi (r) for all rG0, . . . , tA1. (B8)

The beliefs are required to satisfy three properties at completing histories. Let htA1
i be a completing history, with

the variables (τ , z̄, M, m, zi , Zi ) defined as above.
First, if possible each player should believe that no more than one of the others deviated at τA1. This is

done by assuming each player believes when possible that none of the others deviated, except perhaps the one
who was to have contributed the most:

Pi (z̃jGz̄j uhtA1
i )G1 if 5 i≠M, j∉{i, M}, and ZinZr iAz̄M ,

iGM, j∉{M, m}, and ZMnZrMAz̄m .
(B9)

So, if player i≠M (iGM ) knows one of the others deviated, and possibly only one of them deviated, he believes
only M(m) deviated. Another implication of (B9) is that player i believes none of the other players deviated if
ZiGZr i .

Second, player i≠M believes M deviated if he knows at least one of the others deviated:

Pi (z̃MGz̄M uhtA1
i )G0 if i≠M and Zi≠Zr i . (B10)

Third, if player M knows more than one of the others deviated, and in aggregate the others did contribute,
then he believes they all deviated according to an atomless distribution:

PM (z̃jGa uhtA1
M )G0 if 0FZMFZrMAz̄m , j≠M, and an0. (B11)
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Let PG(P1 , . . . , Pn ) be any profile of distributions that satisfy (B9)–(B11) at completing histories, and are
consistent with the strategy profile s whenever possible.23 This yields an assessment, (s, P), which satisfies Bayes’
rule when possible (and more).

Sequential rationality. It remains to show that (s, P) is sequentially rational. Let htA1
i be a personal his-

tory. We show that if player i knows the others use the strategies s−i , and his beliefs Pi ( · uhtA1
i ) satisfy the above

restrictions, then si (h
tA1
i ) is his best reply at htA1

i . There are four cases to consider.

Case 1. htA1
i is a grim history. At this history player i knows the others will not contribute. The same

will be true at any future date at which X∉C1 , as the history then will still be grim. If i contributes enough to
cause X∈C1 , and the date is not greater than Tr , the history then will be completing. However, player i will have
been the unilateral deviator at the date τA1 at which X entered C1 . Each j≠ i at τA1 will have observed
(zj , Zj )G(0, zi ), with ziH0, when he expected to have observed (z̄j , Zr j )G(0, 0). Thus, (zj , Zj )∈Aj (z̄) and zjGz̄j ,
and so (B5) implies j does not contribute at this history. Player j will also not contribute at any subsequent
history, since it will either be grim, if the date exceeds Tr , or completing, in which case it yields the same τ and
z̄.

So, regardless of what player i does at htA1
i or thereafter, s requires the other players never to contribute

again. Player i ’s best reply is thus to contribute nothing, as (B4) specifies, since X(tA1)∉C1 implies X(tA1)∉Ci .

Case 2. htA1
i is an equilibrium history. As in Case 1, if player i deviates from g(t) at this history, s requires

the other players never to contribute thereafter. This is sufficient to deter such a deviation, since it is the same
punishing strategy as is used in the grim-g Nash equilibrium.

The remaining cases refer to a completing history htA1
i and its associated variables (τ , z̄, M, m, zi , Zi ). It is

common knowledge at any possible history profile containing htA1
i that each personal history is a completing

history, that it gives rise to the same (τ , z̄, M, m), that s called for z̄ to have been played at τA1, and that z̄ was
not played at τA1.

Case 3. htA1
i is a completing history and (zi , Zi )∈Ai (z̄). By (B1) and (B9), player i believes the deviation

at τA1 was unilateral. He thus believes each j≠ i observed some (zj , Zj )∈Aj (z̄). The proof depends on whether
he deviated.

Case 3A. zi≠ z̄i . In this case player i believes no other player deviated at τA1. As he believes the
actions of the others are given by (B5), he believes no other player will contribute in period t or thereafter,
regardless of what he does. His best reply is to complete the project immediately if X(tA1)∈Ci , and
otherwise not to contribute, as (B5) specifies.

Case 3B. ziGz̄i . In this case Zi≠Zr i , and player i believes exactly one of the others deviated at τA1,
either player M or m, by (B1) and (B9). Let j∈{M, m} be who player i believes deviated. By (B3), CjG

C1 . The definition of a completing history therefore implies X(tA1)∈Cj . Thus, since player i believes j
acts according to (B5), he believes j will contribute R(t) in period t. His best reply is to contribute 0, as
(B5) specifies.

Case 4. htA1
i is a completing history, (zi , Zi )∉Ai (z̄), and i≠M. In this case Zi≠Zr i , and player i knows

the deviation at τA1 was multilateral. By (B10), player i believes M deviated. Thus, given that M contributes
according to (B5) or (B7), player i believes that either player M will contribute R(t), or that ZMG0 and, for
some j≠M, zMGZr j , z̄jH0, and X (tA1)∈Cj . In the latter case, player j observed (zj , Zj )G(0, Zr j ) with zj≠ z̄j , and
(B5) implies he will complete the project immediately. So in either case player i believes another player will
complete the project immediately. His best reply is to contribute 0, as (B6) specifies.

Case 5. htA1
M is a completing history and (zM , ZM )∉AM (z̄). Now ZM≠ZrM , and player M knows the devi-

ation at τA1 was multilateral. Since (B3) implies X (tA1)∈CM , player M should complete the project immedi-
ately if he believes the others will not contribute in the period t or thereafter, regardless of what he does. There
are three subcases.

23. As Fudenberg and Tirole (1991) discuss, other properties should be required of these beliefs. This is
not a problem; e.g. player i ’s beliefs about z̃j (r) can be required to depend only on his personal history, hrA1

i ,
and his observation of the aggregate of the other contributions in that period, Zi (r).
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Case 5A. ZMG0. Then player M knows j≠M saw (zj , Zj )G(0, zM ). As M also knows z̄, he knows
what j ’s contribution in period t will be, given (B1), (B5), and (B6). That is, for any possible history htA1

containing the htA1
M at issue, player M knows

sj (h
tA1
j )G5R(t)

0

if z̄jH0, zMGZr j , and X(tA1)∈Cj ,

otherwise.
(B12)

Thus, M should not contribute if the top line of (B12) holds for some j≠M, as (B7) specifies. Otherwise he
should complete the project, as (B7) specifies.

Case 5B. ZMH0 and ZMnZrMAz̄m . Then by (B9) and ZM≠ZrM , player M believes that among the
other players, only m deviated from z̄. Since the deviation was multilateral, this implies zM≠ z̄M . Player M
thus believes

ZmGzMC∑ j≠M,m z̄j

≠ z̄MC∑ j≠M,m z̄jGZrM ,

and so (zm , Zm )∉Am (z̄). By (B6), player M believes m will never contribute again. Also, as he believes no
player j∉{M, m} deviated, he believes they will never contribute again either, by (B5) and (B6). So he
should complete the project immediately, as (B7) specifies.

Case 5C. 0FZMFZrMAz̄m . Now M knows at least two of the others deviated. By (B11), he believes
zj≠ z̄j and zj≠zMCZMAZr j , for any j≠M. (To show this, first set aGz̄j , and then aGzMCZMAZr j , in (B11).)
As the latter is the same as Zj≠Zr j , player M believes that (zj , Zj )∉Aj (z̄). Thus, by (B6), player M believes
no other player will ever contribute again. His best reply is to complete the project immediately, as (B7)
specifies. u u

C. Alternating Contributions

In this Appendix we show how the negative conclusion of Admati and Perry (1991) (AP) regarding the effect
of dynamics on free riding is altered by changing any of three assumptions: that the contributing cost function
is strictly convex, that the contributing horizon is infinite, or that players cannot contribute in successive periods.

The AP game. The AP model has two players, both of whom have the same binary benefit function:
λ iG0 and ViGV. We maintain assumption (2.7): VFX*F2V. The contributing cost function w is increasing
and satisfies w(0)G0. Player i ’s payoff is δTVA∑T

tG0 δ tw(zi (t)) if completion occurs in period T and he contrib-
utes zi (0), . . . , zi (T ). Three more specifications define the AP game: (i) w is strictly convex; (ii) the contributing
horizon is Tr GS; and (iii) the players can contribute only in alternate periods, starting with player 1.

Recall from Section 7 that w(R1) ≡ (1Aδ )V defines the maximum amount R1 a player is willing to contrib-
ute in order to complete the project this period rather than contribute nothing and have the other player complete
the project next period. Starting with R1 , a sequence {Rk}

S
kG1 is defined recursively so that a player is indifferent

between contributing Rk , and contributing zero and having the other player contribute Rk in the next period,
given that contributions RkA1 , . . . , R1 will then be made successively to complete the project. This yields
w(Rk ) ≡ δ2kA3(1Aδ2)V for kn2. Let S0 ≡ 0 and Sq ≡ ∑q

kG1 Rk for qH0.
For any history htA1, the remaining amount required for completion is

R(htA1) ≡ max (0, X*AX (tA1)).

We refer to the following strategy as the AP equilibrium: for any history htA1, the player whose turn it is
contributes

sA(htA1) ≡ 5R(htA1)ASq

0

if SqFR(htA1)YSqC1 for any qFS,

if SSoR(htA1).
(C1)

Denote the resulting contribution sequence as the AP outcome. At the null history h−1 that starts the game,
R(h−1)GX*. So the AP outcome yields no contributions if SSoX*. Otherwise, for some qFS, the first contri-
bution is X*ASq , the second is Rq , the third is RqA1 , and so on until R1 is contributed to complete the project.
This is generically the only subgame perfect equilibrium (SPE) outcome.

Proposition C1 (Admati and Perry (1991)). If X*≠Sq for any qFS, the AP outcome is the only SPE
outcome of the AP game.
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The linear AP game. Modifying the AP game by assuming w(z) ≡ z yields the linear AP game. The AP equilibrium
is still one of its equilibria. This linear cost function implies SSGV. Thus, by the second line of (C1), the AP
equilibrium yields no contributions, given that VFX*, even though efficiency requiries completion. This is the
basis of AP’s inefficiency results, Lemma 4.1 and Proposition 4.1.

However, the linear AP game has other equilibria. In particular, the following is an equilibrium that
completes the project in two periods if δ is sufficiently large. For any history htA1, if it is player 1’s turn, he
contributes

sL
1 (htA1) ≡ 5R(htA1)

max (0, R(htA1)AV )

if R(htA1)FR1 ,

if R(htA1)nR1 ;
(C2)

and if it is player 2’s turn, he contributes

sL
2 (htA1) ≡ 5R(htA1)

0

if R(htA1)oV,

if R(htA1)HV.
(C3)

The outcome of sL is that player 1 contributes X*AV in period 0, and player 2 completes the project in the
second period by contributing V. Off the equilibrium path, player 1 completes the project if the amount required
is less than R1G(1Aδ )V. Otherwise, he contributes just enough to make sure the next amount required to
complete the project is not more than V. Player 2 does not contribute unless the amount required to complete
is not more than V, and if it is he completes the project immediately. The equilibrium payoffs are U1G

(1Cδ )VAX* and U2G0, so the first mover receives all the surplus.

Proposition C2. The profile sL is a SPE of the linear AP game if δH(X*AV )yV.

Proof. Most of the proof is obvious. Player 1’s payoff, (1Cδ)VAX*, is positive by the lower bound
hypothesis on δ . Hence, it is optimal for him to contribute X*AV in order to induce player 2 to complete the
project in the next period, rather than not to contribute and so leave the project uncompleted forever, Also in
accordance with (C2), the definition of R1 implies that it is optimal for player 1 to complete the project immedi-
ately if the required amount does not exceed R1 .

The interesting part of the proof is showing that if R(htA1)oV, player 2 should complete the project
immediately, instead of inducing player 1 to complete it next period by contributing just R(htA1)AR1 . In fact,
player 2 is indifferent between these actions, as was shown in the text: the inequality in (7.1) is an equality if w
is linear. u u

The equilibrium sL is not robust to making w strictly convex. As we show in the text near (7.1), if w is
strictly convex, player 2 is unwilling to complete the project by contributing more than R1 , contrary to (C3).
Indeed, no SPE of the linear game that yields contributions can be robust to making w strictly convex: the AP
outcome is the only SPE outcome if w is strictly convex, and by AP’s Proposition 4.1, it yields no contributions
if w approximates the identity function in the sense that w′(0)nVyX*. (Recall that VyX*F1.)

The finite horizon AP game. An alternative modification of the game, replacing Tr GS by 0FTrFS,
yields the finite horizon AP game.24 Refer to the player who may contribute at Tr (resp. TrA1) as player b (resp.
a). In Period Tr , player b has no future contributors upon which to free ride. In essence, the finite horizon allows
player a to commit to making his last contribution at TrA1. Player b will complete the project in the last period
if it leaves him any nonnegative continuation payoff. The maximum final contribution, w−1(V ), is thus greater
than it is in the AP game, R1Gw−1((1Aδ )V ), and does not vanish as δ→0. Player a’s SPE payoff is bounded
below by what he gets by contributing just enough at TrA1 to induce player b to complete the project at Tr .
Hence, in some cases every SPE completes the project.

To prove this, let δ be sufficiently close to 1, and w to the identity function, that

δVHw(X*Aw−1(V )). (C4)

(Recall that VHX*AV.) This condition implies that player a obtains a positive payoff by contributing
X*Aw−1(V ) if then player b completes the project in the next period.

Proposition C3. Given (C4) and any 0FTrFS, every SPE of the finite horizon AP game with horizon Tr

completes the project. If also w(z) ≡ z, the set of all SPE payoffs converges to (Ua , Ub)G(2VAX*, 0) as δ→1.

24. The Tr G0 case is not interesting, as then only player 1 can contribute.
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Proof. Given a SPE, let the equilibrium payoffs be Ueq
a and U eq

b . Let R be the contribution needed to
complete at TrA1 when player a does not contribute in any prior period, and player b plays his equilibrium
strategy. Let ε∈(0, w−1(V )). Suppose player a contributes nothing until TrA1, and he then contributes
max (0, RAw−1(V )Cε ). Player b then completes the project at Tr if it is not completed already, since
w(R(hTrA1))ow(w−1(V )Aε )FV. The payoff of player a when he plays this strategy is at least

δTrVAδTrA1w(max {0, RAw−1(V )Cε})nδTrVAδTrA1w(max {0, X*Aw−1(V )Cε})

GδTrA1 min {δV, δVAw(X*Aw−1(V )Cε )}.

The left side of this inequality is not more than U eq
a . The right side is positive for small ε , by (C4). Hence

U eq
a H0, which proves the equilibrium completes the project. If w(z) ≡ z, the right side of the inequality is

δTrA1 min {δV, (1Cδ )VAX*Aε}GδTrA1((1Cδ)VAX*Aε ),

since VFX*. Thus, U eq
a n2VAX* as (δ , ε )→ (1, 0). As the total surplus 2VAX* is no less than U eq

a CU eq
b , and

U eq
b n0, this proves that U eq

a G2VAX* and U eq
b G0 as δ→1. u u

So, if discounting is low or the period length short, and w approximates the identity function, making the
horizon finite in the AP game insures that every SPE completes the project. This is in contrast to the infinite
horizon game in which no contributions are made if w approximates the identity. But Proposition C3 reveals
an unpleasant endgame effect: for large δ , nearly all the surplus goes to the player able to contribute at TrA1.
This is in contrast to the lack of endgame effects in our game: its set of NE outcomes simply expands as Tr

increases (Theorem 1), and the same is true of its set of PBE outcomes if players 1 and 2 (in the general nn2
case) have the same critical contributions (Theorem 2(b)).

The unrestricted AP game. Another modification of the AP game is to allow each player to contribute in
any period. This unrestricted AP game would be a special case of our game if w were linear. We show that it,
with finite or infinite contributing horizons, has subgame and Markov perfect equilibria that complete the project
if w approximates the identity function. Thus, the completing equilibria of our game are robust to making the
contributing cost function strictly convex.

Let w approximate the identity function in so far as z*∈ℜ2
+ exists such that z*1Cz*2 GX* and w(z*i )oV for

iG1, 2. Then define a strategy profile s0: in period 0 player i contributes s0
i (h

−1)Gz*i , and at any other history
htA1 player i≠ j contributes

s0
i (h

tA1)G5
0 if zi (0)Gz*i ,

R(htA1) if zj (0)Gz*j ,

z*i R(htA1)yX* otherwise.

(C5)

This profile completes the project in period 0. A unilateral deviator completes it alone; if both players deviate,
it is complted by each player i ’s contributing the fraction z*i yX* of the remaining cost. (Note that s0 may not
be efficient—as w is convex, it may be better to spread the contributions over time.) The proof of the following
is straightforward.

Proposition C4. Suppose z*∈ℜ2
+ satisfies z*1Cz*2 GX* and w(z*i )oV for iG1, 2. Then s0 is a SPE of the

unrestricted AP game with horizon Tr for any 0oTr oS and 0oδo1.

The punishments in s0 are severe—after a unilateral deviation, the non-deviator refuses ever to contribute
again. But completing equilibria with more forgiving punishments also exist. The following is a contribution
goal equilibrium (see Section 5) that completes the project in two periods. (A fortiori, it is also a Markov perfect
equilibrium, as are sA and sL above.) If the player responsible for meeting the first goal does not do so, he is
punished only for as many periods it takes him to meet the goal.

Assume δ is sufficiently close to unity, and w is sufficiently close to the identity function, that (C4) and
the following condition holds:25

w(X*)A min
0oyoX*

(w( y)Cw(X*Ay))FδVAδ2V. (C6)

Let the first goal be X0 ≡ X*Aw−1(V ). (It can be larger as well.) By (C4), δVAw(X0)n0 and VAw(X*AX0)n0.
Thus, if player 1 contributes X0 in the first period, and player 2 contributes X*AX0 in the second period to

25. For example, let w(z)GzCεz2. Let ε̄H0 be such that w(X*y2)FV (recall that X*y2FV ), and assume
ε∈(0, ε̄ ). Let w̄(z)GzCε̄z2. Then (C4) holds if δHw̄(X*y2)yV, and (C6) holds if εF2δ (1Aδ )Vy(X*)2.
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complete the project, both receive a nonnegative payoff. The left side of (C6) increases in X*, and so (C6) also
holds if X* is replaced by X0 . Thus, (C6) implies that player 1 prefers to contribute X0 in one period to obtain
completion in the next period, rather than to contribute X0 over two periods to obtain completion in the period
after the next. Similarly, player 2 prefers to contribute X*AX0 in one period to complete the project, rather
than to contribute it over two periods to complete the project in the next period. These observations prove the
following:

Proposition C5. If δ and w satisfy (C4) and (C6), the strategy profile sG defined below is a Markov perfect
equilibrium of the unrestricted AP game for any horizon 0FT̃oS:

sG
1 (htA1) ≡ max (0, X0AX(tA1)), (C7)

sG
2 (htA1) ≡ 50

R(htA1)

if X (tA1)FX0 ,

if X(tA1)nX0 .
(C8)

According to sG, player 1 alone is responsible for achieving the goal X0 . Player 2 does not contribute until
it is achieved, which in equilibrium occurs in period 0. Player 2 is then responsible for achieving the final goal,
X*, which he does in period 1. The players contribute in alternate periods, though they are not restricted to
doing so. The contributions of player 1 and 2 converge, respectively, to X*AV and V as w converges to the
identity function. In this limit the outcome of sG converges to that of sL.
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