
 Open access Proceedings Article DOI:10.1109/AINA.2008.14

Dynamic Web Services on a Home Service Platform — Source link

André Bottaro, E. Simon, S. Seyvoz, Anne Gerodolle

Institutions: Orange S.A.

Published on: 25 Mar 2008 - Advanced Information Networking and Applications

Topics: Devices Profile for Web Services, Web service, Service (systems architecture), Dynamic web page and
Open architecture

Related papers:

 Design a jini-based service broker for home networking

 Policy-based integration of multiprovider digital home services

 The Role ofWeb Services at Home

 An industry view on service-oriented architecture and Web services

 Study on Context-Aware SOA based on Open Service Gateway initiative platform

Share this paper:

View more about this paper here: https://typeset.io/papers/dynamic-web-services-on-a-home-service-platform-
rd08fok4xi

https://typeset.io/
https://www.doi.org/10.1109/AINA.2008.14
https://typeset.io/papers/dynamic-web-services-on-a-home-service-platform-rd08fok4xi
https://typeset.io/authors/andre-bottaro-y6r6zq5aqj
https://typeset.io/authors/e-simon-2fvm8vdt61
https://typeset.io/authors/s-seyvoz-4rf15giol8
https://typeset.io/authors/anne-gerodolle-wfje5a2dbw
https://typeset.io/institutions/orange-s-a-274clkl3
https://typeset.io/conferences/advanced-information-networking-and-applications-1zlel434
https://typeset.io/topics/devices-profile-for-web-services-3son2y9u
https://typeset.io/topics/web-service-5jsci0pw
https://typeset.io/topics/service-systems-architecture-imtu2ab0
https://typeset.io/topics/dynamic-web-page-14zgj7rh
https://typeset.io/topics/open-architecture-1pm0i1gi
https://typeset.io/papers/design-a-jini-based-service-broker-for-home-networking-4foik2nqim
https://typeset.io/papers/policy-based-integration-of-multiprovider-digital-home-3oxgmsut2m
https://typeset.io/papers/the-role-ofweb-services-at-home-5duf6w2hzt
https://typeset.io/papers/an-industry-view-on-service-oriented-architecture-and-web-3t352cnvyn
https://typeset.io/papers/study-on-context-aware-soa-based-on-open-service-gateway-jvf4a7uo1q
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/dynamic-web-services-on-a-home-service-platform-rd08fok4xi
https://twitter.com/intent/tweet?text=Dynamic%20Web%20Services%20on%20a%20Home%20Service%20Platform&url=https://typeset.io/papers/dynamic-web-services-on-a-home-service-platform-rd08fok4xi
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/dynamic-web-services-on-a-home-service-platform-rd08fok4xi
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/dynamic-web-services-on-a-home-service-platform-rd08fok4xi
https://typeset.io/papers/dynamic-web-services-on-a-home-service-platform-rd08fok4xi

Dynamic Web Services on a Home Service Platform

André Bottaro
1, 2

, Eric Simon
1
, Stéphane Seyvoz

1
 and Anne Gérodolle

1

1
 FRANCE TELECOM R&D

28, chemin du vieux chêne,

38240 Meylan. FRANCE

{firstname.lastname}@orange-ftgroup.com

 2 GRENOBLE UNIVERSITY

Laboratoire LIG-Adele

38041 Grenoble, Cedex 9, France

{firstname.lastname}@imag.fr

Abstract

The Home Network is a pervasive environment by

nature. Its openness to dynamic distributed and

heterogeneous devices brings great challenges in home

application design. We present here an open

architecture for home service development.

Distribution and heterogeneity are managed by

service-oriented drivers leveraging the “service

platform” concept. Our project provides an open

source driver combining Web Services and OSGi

standards to compose home services. Performance test

results illustrate the service-oriented design.

Keywords: SOA, pervasive computing, home

network, OSGi technology, Web Services, DPWS

1. Introduction

The home network is realizing the vision that Mark

Weiser described years ago [1]: our environment is

more and more filled with networked devices. Some of

them are even slowly fading into the background as

envisioned by Mark Weiser. For instance, the home

DSL router will be automatically managed by servers

on the Internet thanks to the work of the DSL Forum

and home devices automatically configure the router

thanks to plug-n-play mechanisms standardized by the

UPnP™ Forum to seamlessly access the Internet from

inside the home.

However, although services dynamically composing

distributed device features start to appear, the

challenges of Pervasive Computing remain

incompletely solved. Designing an application

dynamically composing the adapted device features

found into an open environment according to the

environment context still remains a complex task.

The Home Network emphasizes the envisioned

environment openness to networked entities. First, it is

open to dynamic connections: devices enter and leave

the network, providing context-dependent features

(e.g. according to users’ activity). Second, it is open to

heterogeneous devices: protocols and device types

differ according to application domains and service

providers. Moreover, devices are spread over the home

space. Designers of innovative home applications

therefore face three main challenges in this pervasive

environment: dynamicity, heterogeneity, distribution.

Here, we share a platform-centric vision of the

domestic network. It leverages the asymmetry between

light standard devices and rich service platforms where

integrated composition takes place. Our vision relies

on the service and component paradigms whose

marriage gives birth to the service platform concept.

On top of this service platform, we build an open

environment that allows designers to model networked

applications as a local composition of uniform service

interfaces lately bound at runtime, i.e. to deal with the

three identified challenges: dynamicity, distribution

and heterogeneity. Devices are dynamically reified on

the platform thanks to bridges dealing with device

dynamic availability and distribution aspects.

The purpose of this paper is to present the design of

one of these specific service-oriented drivers at the

heart of our architecture. The seamless integration of

local and distributed services using various protocols is

one of the issues addressed by Anso1 and Amigo2

European projects. Jointly with Schneider Electric, we

built a DPWS (Devices Profile for Web Services [2])

driver on top of an OSGi service platform [3] thanks to

design patterns described in the paper. Part of this

project is already published through the OSGi

standardisation process [4][5].

1 ANSO is partially supported by the French Ministry

of Industry under the European ITEA program.

2 This work is partially supported by the European

Commission under IST Amigo Project.

The paper is organized as follows. The next section

details the challenges in the design of home

applications and the answers brought by novel

paradigms. Then we present what home service

platforms bring to home computing according to our

vision in section 3. Section 4 details our approach

handling device distribution and heterogeneity thanks

to service-oriented drivers. Section 5 presents our

DPWS Base Driver combining the Web Services and

OSGi standards. Performance comparisons between

the simple core Java™ implementation and our

sophisticated driver are described and analyzed.

Finally we conclude by confronting this work against

the state of the art and pointing out major

contributions.

2. Home application design

2.1. DPWS: A new home standard

Protocol heterogeneity is one of the main challenges

to be faced in home application design. The main

attempts targeting self-organization of the home

network rely today on the use of plug-n-play protocols.

The main ones on the IP network are UPnP™

recommended by DLNA, Apple Bonjour, IGRS

Chinese competitor, and the new DPWS standard

already included in Microsoft Windows Vista OS.

Figure 1 DPWS protocol stack

Devices Profile for Web Services (DPWS) provides

a plug and play protocol middleware for IP capable

devices. DPWS specifies a protocol set

homogeneously based on the Web Services

specifications (Figure 1). It allows devices to

participate in the Web Service Oriented Architecture

(WSOA) fabric.

The Web Services generality, the compliance with

this well-spread Internet standard, some technical

details like the DPWS Discovery Proxy that enables

DPWS network to be scalable and the fact that this

new standard is pushed by Microsoft are the major

competitive assets of DPWS. Its generality, its XML

verbosity are however potentially harmful for device

implementation.

2.2. Home application requirements

Use cases attached to the smart home envisioned by

telecommunication operators, service providers,

manufacturers and software vendors are numerous and

come along with market expectations: Enriched

multimedia activities, home surveillance, and home

care services for the disabled or elderly people [6].

The home network introduces hard challenges for

the achievement of these use cases. These challenges

are emphasized by the openness of the environment:

• Dynamicity due to device availability, device

context, user location and activity.

• Distribution due to the natural location of devices

in the home.

• Heterogeneity due to hardware, software and

protocol variety laid by the market evolution.

• Embedded constraints due to device low cost

drawn by the consumer electronics market.

In order to face these challenges, application

flexibility and development simplicity are demanded.

SOA paradigm (section 2.3) linked to a Component

approach (section 2.4) meets some of the requirements.

The technological choice of the platform achieve the

flexibility needs and simplifies device availability

management (section 4.1) .

Our contribution is here the design of our service-

oriented drivers (section 4.2) and its implementation

(part 5) relying on the concept of a “service platform”

(part 3). It further answers the needs for managing

distributed aspects and protocol heterogeneity in a

transparent way for the developer while keeping the

implied overhead below reasonable barriers.

2.3. Service Oriented Computing and local

networks

The success of Service Oriented Computing is

noticeable worldwide. This paradigm is mostly spread

on B2B and Internet-scale innovative architectures

through the use of the most popular implementation:

the Web Services. The paradigm is less known in local

networks whereas it brings relevant advantages in the

design of home and industrial networked application.

Service Oriented Computing consists of modeling

an application into logical entities providing

functionalities and other entities using those

functionalities. A piece of functionality – a set of

IPv4/IPv6

TCP

HTTP 1.1 UDP

SOAP 1.2
(+WSDL 1.1, XML Schema)

WS-Addressing
WS-Policy

WS-Security

WS-Eventing WS-Discovery
 WS-MetadataExchange

invocable operations – is called a service. The

(abstract) description of a set of operations is called a

service interface. A logical entity providing a service is

a service provider and an entity using a service is

called a service client.

The complete chart of the Service Oriented

Architecture paradigm includes an entity called the

service registry storing the description of available

service providers (Figure 3). Service providers publish

their description, which is made of a service interface

and specific distinguishing properties, in the registry.

Service clients actively request available providers –

active discovery mode – or listens to service

registration events – passive discovery mode – with the

only knowledge of the needed service interface and

specific properties.

The salient advantages of Service Oriented

Computing are:

• Abstraction: The organization of third-party

entities is considered as a service composition.

Home devices are represented as black boxes.

• Loose coupling: Providers and clients only share

a service interface. Clients are independent from

provider implementations. Substitutability is

stressed by service discovery filters that consist of

a simple interface name and descriptive properties.

• Separate administration: Composed entities have

distinct lifecycles.

Therefore, Service Orientation brings the

abstraction needed in the composition of

heterogeneous device features and the flexibility

needed for the application resiliency to the home

network dynamics.

2.4. Component Orientation in Service-

Oriented applications

Component orientation is also needed in the Home

application design. It appears to be complimentary to

service orientation. The latter models the applications

into a high-level service composition whereas

component approaches are needed in the

implementation of every identified network entity.

Salient advantages of the Component approach are:

• Code structuring: every networked entity is

implemented as a logical code unit.

• Separation of the business logic and the non-

functional aspects: The latter – here service

distribution, service dynamicity, service

(protocol) heterogeneity – have to be managed

transparently for the business developer.

Containers are responsible for the management of

these non-functional aspects.

• Inversion of Control: The lifecycle of the

component is managed outside of the component

and its inner business logic. The control of this

lifecycle is given to the containers.

Therefore, Component Orientation brings

application modularity to every involved entity in the

whole application and makes the management of

complex non-functional aspects transparent to the

business developer while the whole application

composition is left to the administrator. As Thierry

Coupaye et al. write in [7], component approaches are

used in a pre-facto integration mode where all the

components have to obey the same component model

while service orientation is needed in a post-facto

integration mode where every software entity has to be

integrated just as it is with its own behavior.

3. Our vision

3.1. A platform-centric vision

We continue to believe that the self-organization of

smart environments like the home network must take

advantage of the asymmetry between light standard

devices and rich service platforms (Figure 2).

Functionalities provided by constrained devices are

composed in high-level applications running on

flexible platforms. Today this asymmetric vision is

closed to the home reality where home servers, PCs,

Media Centers, smart phones are sometimes able to

control features provided by standalone media servers,

media players, internet radios, lights, blinds, air

condition, IP cameras. This platform-centric vision is

further introduced in the previous work [8].

3.2. The service platform concept

In this vision, the application design is modular

thanks to the component approach of the platform and

every device feature, i.e. every service, is reified on the

platform. In order to enable application components to

dynamically compose those services, they are

registered in a common service registry on the

platform. The service registry is the masterpiece of the

software design of the execution environment. This

service-oriented design, which relies on the design

pattern named Service Locator [9], characterizes the

service platform concept used in this article.

We consider that the service platform is the smart

dynamic receptacle of pervasive entities. This

adaptable receptacle turns pervasive software

composition into the composition of uniform service

components. The main role of the platform is to adapt

to the environment in locally representing all the

relevant external entities with their specific context on

the platform.

Figure 2 An asymmetric home network

4. A framework for home applications

4.1. OSGi platform: A modular platform

One of the main standard execution environments

allowing application reconfiguration at runtime is the

OSGi platform [3]. The core features of the OSGi

platform are based on an original Java™ class loader

architecture that allows for code sharing and isolation

between modules called bundles, and modular

software update at runtime, which are relevant

platform features answering application dynamic

availability in smart environments.

Moreover, the OSGi specification defines a

cooperation model between bundles that is service-

oriented and relies on a service registry and service

eventing mechanisms. This model makes the OSGi

platform enter our definition of a service platform.

The service-oriented pattern is well implemented

when service interfaces (Java™ API), service requester

(Java™ API client) and service provider (Java™ API

implementation) are contained into separate bundles

and when requester and provider cooperate through the

service registry (Figure 3).

Figure 3 SOA pattern in OSGi design

Furthermore, the OSGi specification now provides a

model that automates service binding between

functional components. The OSGi Declaratives

Services specification defines a new component model

above bundles which service dependencies are

automatically managed by a Service Component

Runtime. This model, coming from the original project

named Service Binder [10], simplifies the management

of service dynamicity for developers.

4.2. Service-oriented drivers

In order to control devices on the network, we

define drivers above our service platform. Every driver

is designed in order to hide protocol details and

distributed aspects to the developers while reifying the

network dynamicity on the service platform. In this

section, details of the design is explained explicitly for

DPWS set of protocols. It is also applicable for other

plug-n-play standard in which discovery and eventing

protocols are defined.

On the one hand, every networked DPWS device is

dynamically reified – imported – into a service on the

platform according to programming language

interfaces matching the DPWS standard description.

On the other hand, every local service implementing

the same programming language interfaces is

dynamically reified – exported – as a DPWS Device

on the local network.

The service-oriented driver characteristics are:

• Protocol heterogeneity management: This design

follows the OSGi Device Access Specification: It

enables the coexistence of several independent

drivers on the platform without a stricter

cooperation API than the OSGi general one. Thus,

adherence to a pluggable model specific to

distribution management is avoided. Protocol

heterogeneity is simply managed by this design

where every driver matches one set of protocols.

• Distribution transparency: The design completely

hides protocol details since the developer only

access proxy object through programming

language calls. Moreover, we designed a unique

API for imported DPWS services and OSGi

services to be exported. Thanks to this design,

client bundles seamlessly handle resident and

reified DPWS devices. Controlling local and

remote services is not distinguishable at

development time.

• Mutualised support for (generated) refined drivers:

Drivers for specific DPWS devices (printers,

media servers, etc.) can be implemented above this

device API representing general DPWS devices

(see refined drivers definition in [8]).

• Network dynamicity reification: The use of the

OSGi service registry and its associated service

eventing runtime mirrors DPWS networked

discovery and eventing mechanisms, specified by

WS-Discovery and WS-Eventing standards.

Thanks to this bridge, developers are able to

implement applications dynamically discovering and

controlling DPWS devices and services without a deep

knowledge of the underlying communication

protocols.

5. Our DPWS Base Driver

5.1. Modularity and requirements variety

Figure 4 Global system modularity

The design of our DPWS Base Driver is modular

(Figure 4) so as to face the use case variety. Thus, only

a precise set of bundles is useful for every use case.

Bundles can be installed on-demand thanks to the

capabilities of the underlying OSGi platform.

DPWS defines the interaction between devices and

clients (a.k.a. control points). Three main technical use

cases are defined in the next sections: the generic

network control point use case, the specific application

client use case, the specific DPWS device use case.

5.1.1. Generic network control point use case

The preliminary test of the generality of our base

driver is to be able to discover any device present on

the network, to introspect its metadata information,

invoke the provided operations, as well as to listen to

device events. In this use case:

• Resource-consuming WSDL document parsing is

needed in the use case. A complete generic control

point has to parse this description so as to offer the

detailed list of the available operations to the user.

• Export mechanisms are useless in the use case:

The described generic control point only needs to

access imported device references and their

operations reified into objects and methods.

5.1.2. Specific application client use case

Some driver users wish to design specific client and

server applications tailored to work together in a

statically defined way. In this use case, two resource-

consuming features are not mandatory.

• WSDL document parsing is useless in the use

case: As the control points and devices are

designed to work together, application designers

precisely know the interactions linking them.

• Export mechanisms are useless in the use case like

in the first one.

5.1.3. Specific DPWS service use case

In a constrained environment where only a simple

device is to be exported, two resource-consuming

features are not mandatory:

• WSDL document serving and moreover online

generation can be considered optional:

Constrained devices will only provide a URL for

clients to find the device description.

• Import mechanisms are useless.

5.1.4. A modular design

WSDL parsing is externalized in a bundle named

WSDL Description manager, as we wish that the Base

Driver remains as minimal as possible. The ability to

discover and access any device ensures the generality

of our driver. The core driver only provides simple

references to the location of WSDL descriptions. The

control point is free to use the optional WSDL

description manager to get an object representation.

A device manufacturer may wish to simplify DPWS

integration on its platform. The optional DPWS

Service offers a simplified API for the exposition of

OSGi services as DPWS devices.

This modular design allows for the installation of

the full set of bundles on some smart devices while a

limited set will satisfy the needs of some constrained

devices depending on the needs of the application.

This design also leaves the specification open to

various Java™-Web Services interface description

mappings. For instance, the WSDL Description

Manager may implement JWSDL standard (JSR110)

mapping.

Figure 5 A modular driver

The DPWS Specification consists of several WS-*

specifications, which further stresses the need for

modularity. A DPWS Stack or Driver may integrate all

the code parts corresponding to these specifications.

5.2. Handling asynchronous communication

The DPWS base driver applies the Whiteboard

pattern to subscribe on targeted services: an internal

control point registers a handler with a filter property

in the service registry; the DPWS Base Driver

discovers the handler and uses the filter to subscribe to

matching event sources. The subscriptions can be

mutualized for a set of control points matching the

same targeted service with the same action filter. The

base driver uses a publish/subscribe mechanism to

deliver the events to the resident control points.

5.3. Lazy and Immediate Networking

The behavior of an application should be adapted to

specific networked context. That is why two

networking modes are defined on the driver.

On a wide network (e.g. an enterprise network), a

consequent set of devices is likely to be present. For

network bandwidth saving purposes, the base driver

can be configured in the lazy networking mode to reify

the devices with the minimum set of available

information. It only retrieves device information from

the network when the application asks for it.

The immediate networking mode is targeted for

networks with high bandwidth and a sufficiently low

number of devices. In this case, the base driver reifies

the devices with all the information it is possible to

retrieve at discovery time.

5.4. Lazy and Immediate Loading

For memory saving purposes, the base driver can be

configured according to the needs of the application

and the device constraints. The late reification

minimizes used memory space. However, it slows

down the first access to a targeted service.

5.5. Lessons learned

Lessons learned during the design and

implementation of the DPWS Base Driver are

numerous. First, the DPWS specification is a set of

very general standards based on SOAP. While protocol

generality can be considered as an advantage that can

lead to acceptability and even interoperability, it brings

also complexity in the design of a concrete framework.

Understanding and implementing the set of DPWS

protocols are really more complex.

Second, as Zeeb et al. describe in [11], we faced the

lack of mandatory statements in the DPWS

specification. Many statements are qualified with

“SHOULD”, which consequently means that the

statement is simply recommended and this

recommendation is optional. Moreover, the novelty of

the specification explains that concrete practices are

not known today and some specification statements

remain ambiguous. In order to remain generic, our API

and our implementation have therefore to accept both

behaviours in every recommendation case.

Third, it appeared that some parts of the OSGi

specification and the Web Services, so-called

“universal” middleware standards, do not match. The

biggest issue appears for the design of the WS-

Eventing mechanisms with the OSGi Event Admin

ones. The WS-Eventing event filter – action URIs –

can not be inserted in the OSGi Event Admin filter.

We finally did not follow this OSGi chapter.

6. Evaluation

6.1. Test description

A test scenario consists of a series of 1000

invocations on a simple device action. Each test

scenario is performed with a unique client calling one

of the two distinct DPWS devices: a standalone DPWS

device – embedding the core Java™ DPWS stack –

versus an OSGi device service.

The client and the devices are installed on two

distinct machines: the standalone device and the OSGi

device run on the first machine whereas the client is

located on the second.

• test1: the client subscribes to an event source, and

invokes 1000 times an action generating an event.

Invocation and event reception are synchronized.

• test2: the client calls a request-response action

1000 times.

• test3: the client calls a one-way action 1000 times.

In every scenario, an Olympic average is calculated:

Every test is executed 10 times (Figure 6), the two

slowest results (usually corresponding to a warm-up)

and the two fastest results are not used.

Figure 6 Performance tests

6.2. Results analysis

In the worst case, the access to OSGi devices is

1,88% slower than the direct access to the original

device: 8036276ns comparatively to 7887711ns.

We performed the same tests with a OSGi control

point, the results show that in the worst case, the OSGi

control point is 1,606% slower than the standalone

control point: 7933849ns versus 7887711ns.

The overhead brought by the service-oriented driver

design is reasonable in comparison to the development

advantages. The benefits naturally are the simplicity of

DPWS application development and the flexibility of

the overall architecture separating the business logic

from the use of the given protocol. Developers thus get

rid of the complex distributed aspects and overcome

the protocol heterogeneity challenge.

Moreover, the best case in which the device and the

client are collocated on the same platform is not

described: Thanks to the driver characteristics, direct

programming language calls replace network calls.

7. Related Work

Most of the projects facing distributed aspects in

Component engineering rely on a direct proxy and stub

generation for every component interface that has to be

distributed [7][12]. In our architecture where services

are numerous and heterogeneous, we advocate the

reuse of several components in the import and export

mechanisms that mutualize some of the distributed

management aspects: Generated proxys, which are

specific to explicit service profiles (Light, media

servers, etc.) rely on a same base driver that relies

itself on a common standard HTTP Service shared by

all the applications on the platform. To have a deeper

insight on our driver generation relying on the generic

API of base drivers, see [8].

Marco Aiello [6] advocates the use of the Web

Services at home for home device interoperability. He

defines total interoperability as being the achievement

of openness, scalability, heterogeneity. We are in line

with this vision on the two first points. First, our

architecture is open to dynamic connections according

to standard protocols. It is also scalable since the

service composition can be hierarchical or peer-to-peer

(scenario 3 and 4 in [6]). However, we think that

heterogeneity concerns not only device and network

resources but also the home protocol variety. That is

why we adopt the concept of a service platform where

the service registry reifies every entity of the network.

This master piece of our architecture enables the

separation between the service composition logic and

the distributed protocol management. The latter is even

modular since every service-oriented driver like the

DPWS Base Driver described in this paper is attached

to one protocol and is independent to the other drivers.

This work improves our first work on a distributed

OSGi platform [13]. In the latter, we mixed the service

composition, precisely the service binding automation

brought by the Service Binder model, from distribution

transparent management here delegated to service-

oriented drivers. Service binding automation and

distribution transparency are independent and

complementary aspects in the architecture. A

distributed service registry shared by several service

platform is discussed this year in the Enterprise Expert

Group of the OSGi Alliance. We plan to give the

details of our architecture in a next article as soon as

the whole work is achieved.

This work is to be part of a wider approach [8] close

to ReMMoC’s [14] that aims to allow protocol adapters

to be plugged in at deployment time and hide protocol

heterogeneity to SOA developers. ReMMoC used

WSDL-based abstractions to achieve representation

uniformity: Device Profile for Web Services

integration is even more relevant today. Further, our

architecture shows a more loosely coupled model in

which applications only adhere to the common service

API of the underlying platform instead of an ad-hoc

remote lookup API.

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

20000000

1 2 3 4 5 6 7 8 9 10

Test series number

E
la

p
s

e
d

 t
im

e
 (

n
s

)

OSGi Device test1

Device test1

OSGi Device test2

Device test2

OSGi Device test3

Device test3

Average w/o

warm up

4000000

6000000

8000000

10000000

12000000

14000000

16000000

E
la

p
s

e
d

 t
im

e

(n
s

)

8. Conclusion

The standards of the home network make the dream

of smart applications organizing distributed devices

according to the user activity come true. However, the

design of these smart applications remain complex. We

believe that Service Oriented Computing linked with

component approaches brings the needed flexibility

and simplicity in targeted application design and

implementation.

Our work can be distinguished from the state of the

art by proposing a design for the integration of service-

oriented protocols in an open modular architecture.

The key concept of this design is the service platform

concept that is described in the paper. The defined

service-oriented drivers hide protocol details, enable a

seamless control of local and remote device services,

and reify network dynamicity on the platform.

The combination of the new Devices Profile for

Web Services on a home standard platform is also

technically new. We implemented this architecture and

tested applications above the OSGi R4 service

platform. Felix and Knopflerfish open source

platforms are our reference platform implementations.

This work was demonstrated during the review of the

ITEA ANSO project in September 2007. The DPWS

Base Driver is about to be delivered open source in the

IST Amigo project. Actions are carried out into the

OSGi standardisation process [4][5].

The main perspective of this work we are

investigating is the integration of many home protocol

drivers in an architecture where functions are

registered in a uniform programming language API.

The service composition will consist of a simplified

task of chaining semantic functions together.

9. Acknowledgements

Special thanks to Sylvain Marié, Schneider Electric,

who has brought his precious knowledge of the DPWS

set of specifications in this work targeting a

standardization proposal to the OSGi Alliance.

10. References

1 M. Weiser, “The computer for the 21st century”,

Scientific American, 265(3):66-75, September 1991.

2 Microsoft Corp., “Devices Profile for Web Services”,

http://schemas.xmlsoap.org/ws/2006/02/devprof, 2006.

3 OSGi Alliance, “OSGi Service Platform Core

Specification Release 4”, October 2005.

4 André Bottaro, Anne Gérodolle, Sylvain Marié, Stéphane

Seyvoz, Eric Simon, “RFP 86 DPWS Discovery Base

Driver”, OSGi Alliance, May 2007.

5 André Bottaro, Anne Gérodolle, Sylvain Marié,

"Combining OSGi technology and Web Services to

realize the plug-n-play dream in the home network",

OSGi Community Event, Munich, Germany, June 2007.

6 Marco Aiello, “The Role of Web Services at Home”,

Advanced International Conference on

Telecommunications (AICT/ICIW 2006), Guadeloupe,

French Caribbean, February 2006.

7 Philippe Collet, Thierry Coupaye, Hervé Chang, Lionel

Seinturier, Guillaume Dufrêne, "Components and

Services: A Marriage of Reason", Technical Report

I3S/RR-2007-17-FR, Mai 2007.

8 André Bottaro, Anne Gérodolle, Philippe Lalanda,

"Pervasive Service Composition in the Home Network",

21st International IEEE Conference on Advanced

Information Networking and Applications (AINA-07),

Niagara Falls, Canada, May 2007.

9 Martin Fowler, “Inversion of Control Containers and the

Dependency Injection pattern”,

http://martinfowler.com/articles/injection.html, 2004.

10 H. Cervantes, R. Hall, "Autonomous Adaptation to

Dynamic Availability Using a Service-Oriented

Component Model", 26th ACM International Conference

on Software Engineering, Edinburgh, May 2004.

11 Elmar Zeeb, Andreas Bobek, Hendrik Bohn, Frank

Golatowski, “Lessons learned from implementing the

Devices Profile for Web Services”, Digital EcoSystems

and Technologies Conference (DEST'07), Inaugural

IEEE-IES, Cairns, Australia, February 2007.

12 Jan Newmarch, “UPnP Services and Jini Clients”,

Information Systems: New Generations (ISNG 2005),

Las Vegas 2005.

13 André Bottaro, Anne Gérodolle, Philippe Lalanda,

"Pervasive Spontaneous Composition", First IEEE

International Workshop on Service Integration in

Pervasive Environments, Lyon, France, 2006.

14 Paul Grace, Gordon S. Blair, Sam Samuel, "ReMMoC, A

Reflective Middleware to Support Mobile Client

Interoperability", Proceedings of International

Symposium on Distributed Objects and Applications,

November 2003.

