
Dynamic Well-Spaced Point Sets

Umut A. Acara, Andrew Cotterb,∗, Benoı̂t Hudsonc, Duru Türkoğlud

aCarnegie Mellon University, Pittsburgh, PA, 15213, USA
bToyota Technological Institute at Chicago, Chicago, IL 60637, USA

cAutodesk, Inc., Montreal, QC, Canada
dDepartment of Computer Science, University of Chicago, Chicago, IL 60637, USA

Abstract

In a well-spaced point set the Voronoi cells all have bounded aspect ratio. Well-
spaced point sets satisfy some important geometric properties and yield quality
Voronoi or simplicial meshes that are important in scientific computations. In this
paper, we consider the dynamic well-spaced point set problem, which requires
constructing a well-spaced superset of a dynamically changing input set, e.g., as
input points are inserted or deleted. We present a dynamic algorithm that allows
inserting/deleting points into/from the input in O(log∆) time, where ∆ is the geo-
metric spread, a natural measure that yields an O(logn) bound when input points
are represented by log-size words. We show that this algorithm is time-optimal by
proving a lower bound of Ω(log∆) for a dynamic update. We also show that this
algorithm maintains size-optimal outputs: the well-spaced supersets are within a
constant factor of the minimum possible size. The asymptotic bounds in our re-
sults work in any constant dimensional space. Experiments with a preliminary
implementation indicate that dynamic changes may be performed with consider-
ably greater efficiency than re-constructing a well-spaced point set from scratch.
To the best of our knowledge, these are the first time- and size-optimal algorithms
for dynamically maintaining well-spaced point sets.

Keywords: Well-spaced point set, clipped Voronoi cell, mesh refinement,
dynamic stability, self-adjusting computation

∗Corresponding author
Email addresses: umut@cs.cmu.edu (Umut A. Acar), cotter@ttic.edu (Andrew

Cotter), benoit.hudson@autodesk.com (Benoı̂t Hudson), duru@cs.uchicago.edu
(Duru Türkoğlu)

Preprint submitted to Computational Geometry November 3, 2012

1. Introduction

Given a hypercube B in Rd , we call a set of points M ⊂ B well-spaced if
for each point p ∈ M the ratio of the distance to the farthest point of B in the
Voronoi cell of p divided by the distance to the nearest neighbor of p in M is
small [32]. Well-spaced point sets are strongly related to meshing and triangula-
tion for scientific computing, which require meshes to have certain qualities. In
two dimensions, a well-spaced point set induces a Delaunay triangulation with no
small angles, which is known to be a good mesh for the finite element method. In
higher dimensions, well-spaced point sets can be post-processed to generate good
simplicial meshes [8, 20]. The Voronoi diagram of a well-spaced point set is also
immediately useful for the control volume method [22].

A well-spaced superset M of a point set N may be constructed by inserting so-
called Steiner points, although one must take care to insert as few Steiner points
as possible. We call the output and such an algorithm size-optimal if the size of
the output, |M|, is within a constant factor of the size of the smallest possible well-
spaced superset of the input. This problem has been studied since the late 1980s
(e.g., [6, 10, 26]), with several recent results obtaining fast runtime [14, 16, 31].

We are interested in the dynamic version of the problem, which requires main-
taining a well-spaced output (M) while the input (N) changes dynamically due to
insertion and deletion of points. Upon a modification to the input, the dynamic
algorithm should efficiently update the output, preserving size-optimality with re-
spect to the new input. There has been relatively little progress on solving the
dynamic problem. Existing solutions either do not produce size-optimal outputs
(e.g., [9, 25]) or they are asymptotically no faster than running a static algorithm
from scratch [12, 21, 23].

In this paper, we present a dynamic algorithm for the well-spaced point set
problem. Our algorithm always returns size-optimal outputs, and requires worst-
case O(log∆) time for an input modification (an insertion or a deletion). Here,
∆ is the geometric spread, a common measure, defined as the ratio of the diameter
of the input set to the distance between the closest pair of points in the input. Our
update runtime is optimal in the worst-case and our algorithms consume linear
space in the size of the output. If the geometric spread is polynomially bounded in
the size of the input, then log∆ = O(logn) (e.g., when the input is specified using
logn-bit numbers). For the purposes of our bounds, we assume the dimension of
the space, d, to be an arbitrary constant.

To solve the dynamic problem, we first present an efficient construction algo-
rithm for generating size-optimal, well-spaced supersets (algorithm in Sections 5

2

and 6, proofs in Sections 7 and 8). In addition to the output, the construction algo-
rithm builds a computation graph that represents the operations performed during
the execution and the dependencies between them. A key property of this algo-
rithm is that it is stable in the sense that when run with similar inputs, e.g., that
differ in only one point, it produces similar computation graphs and outputs. We
make this property precise by describing a distance measure between the com-
putation graphs of two executions and bounding this distance by O(log∆) when
inputs differ by a single point (Section 9). Taking advantage of this bound, we de-
sign a change-propagation algorithm that performs dynamic updates in O(log∆)
time by identifying the operations that are affected by the modification to the input
and deleting/re-executing them as necessary (Section 10). For the lower bound,
we show that there exist inputs and modifications that require Ω(log∆) Steiner
points to be inserted into/deleted from the output (Section 11).

The efficiency of our dynamic update algorithm directly depends on stabil-
ity. In order to achieve stability, we use several techniques in the design of our
construction algorithm. Generalizing the recently suggested choices of Steiner
points [14, 18], we propose an approach for picking Steiner points by making local
decisions only, using clipped Voronoi cells. Picking Steiner points locally makes
it possible to structure the computation into Θ(log∆) ranks, inductively ensuring
that at the end of each rank the points up to that rank are well-spaced [31]. Pro-
cessing points in rank order alone does not guarantee stability: we further partition
points at a given rank into a constant number of color classes such that the points
in each color class depend only on the points in the previous color classes. These
techniques enable us to process each point only once and help isolate and limit
the effects of a modification. Furthermore, our dynamic update algorithm returns
an output and a computation graph that are isomorphic to those that would be ob-
tained by re-executing the static algorithm with the modified input (Lemma 10.2).
Consequently, the output remains both well-spaced and size-optimal with respect
to the modified input (Theorem 10.3).

The approach of designing a stable construction algorithm and then providing
a dynamic update algorithm based on change propagation is inspired by recent
advances on self-adjusting computation (e.g., [2, 3, 13, 19]). In self-adjusting
computation, programs can respond automatically to modifications to their data
by invoking a change-propagation algorithm [1]. The data structures required by
change propagation are constructed automatically. Our computation graphs are
abstract representations of these data structures. Similarly our dynamic update
algorithms are adaptations of the change-propagation algorithm for the problem
of well-spaced point sets. Self-adjusting computation has been found to be ef-

3

Figure 1: Let M = {v,u,w,y,z}. The near-
est neighbor distance of v, NNM (v), is |vu|.
The polygon with solid boundary lines de-
picts the Voronoi cell of v, VorM (v). Vertex
v is 6-well-spaced, but not 2-well-spaced.

y

6| |vu

u w

z
2| |vuv

fective in kinetic motion simulation of three-dimensional convex hulls [3]. Al-
though these initial findings are empirical, they have motivated the approach that
we present in this paper. Since our approach takes advantage of the structure of a
static algorithm to perform dynamic updates, it can be viewed as a dynamization
technique, a technique which has been used effectively for a relatively broad range
of algorithms (e.g., [7, 11, 24, 27]).

To assess the effectiveness of the proposed dynamic algorithm, we present
a prototype implementation, and report the results of an experimental evalua-
tion (Section 12). Our experimental results confirm our theoretical bounds, and
demonstrate that dynamic updates to an existing well-spaced point set can be per-
formed far more cheaply than re-computing from scratch. These results suggest
that a well-optimized implementation can perform very well in practice.

This paper is the journal version of the following two abstracts: An Efficient
Query Structure for Mesh Refinement published in the proceedings of the 20th An-
nual Canadian Conference on Computational Geometry [17], and Dynamic Well-
Spaced Point Sets published in the proceedings of the 26th Annual Symposium on
Computational Geometry [4].

2. Preliminaries

We present some definitions used throughout the paper, describe the technique
that we use for selecting Steiner vertices, and present an overview of the point
location data structure we use in our algorithms.

Given a set of points N, we define the geometric spread (∆) to be the ratio of
the diameter of N to the distance between the closest pair in N. We say that a
d-dimensional hypercube B is a bounding box if N ⊂ B and each edge of B has
length within a constant factor of the diameter of N. Without loss of generality,

4

we take the bounding box of N to be B = [0,1]d . Given N as input, our algorithm
constructs a well-spaced output M ⊂ B that is a superset of N. We use the term
point to refer to any point in B and the term vertex to refer to the input and output
points. Consider a vertex set M ⊂ B. The nearest-neighbor distance of v in M ,
written NNM (v), is the distance from v to the nearest other vertex in M . The
Voronoi cell of v in M , written VorM (v), consists of points x ∈ B such that for
all u ∈M , |vx| ≤ |ux|. Following Talmor [32], a vertex v is ρ-well-spaced if the
intersection of its Voronoi cell with B is contained in the ball of radius ρ NNM (v)
centered at v; M is ρ-well-spaced if every vertex in M is ρ-well-spaced. Figure 1
illustrates these definitions.

In order to achieve size-optimality, we ensure that the output that our algorithm
constructs is size-conforming [26]. A set of vertices M ⊃ N is size-conforming
if there exists a constant c independent of N such that for all vertices v ∈M ,
NNM (v)> c · lfs(v), where lfs(v), the local feature size of v, is the distance from
v to the second-nearest vertex in N.

3. Clipped Voronoi Cells

Regardless of runtime considerations, the fundamental question in mesh re-
finement is about where to insert the Steiner vertices [29]. Traditional solutions
place Steiner vertices as far from any other vertex as possible, namely, at the
circumcenters of Delaunay simplices (equivalently, at the nodes of the Voronoi
diagram). In two dimensions, Har-Peled and Üngör instead place Steiner vertices
close to a vertex, but not too close: at the off-centers [14]. This local scheme al-
lows them to build a data structure that can locate the off-centers in constant time.
More recent work by Jampani and Üngör extends this idea to three dimensions
using core disks [18]. In this paper, we generalize these two results, by describing
a local picking region that gives us a variety of Steiner vertex choices including
their proposals. The definition of our picking region straightforwardly extends to
arbitrary dimensions. In order to form the basis for our picking region, we begin
by defining a local neighborhood of a vertex.

Definition 3.1 (β -clipped Voronoi cell). Given a vertex v ∈M , the β -clipped
Voronoi cell of v, written Vorβ

M (v), is the intersection of VorM (v) with the ball of
radius β NNM (v) centered at v.

Selecting two parameters ρ and β , we define the picking region we use in our
algorithms. As it will be clearer in Section 6, the parameters ρ > 1 and β > ρ

define the rate of geometric expansion and the degree of locality respectively.

5

Figure 2: This is the same example as Fig-
ure 1. The shaded region displays the
(2,4) picking region of v. Vertices y and z are
4-clipped but not 2-clipped Voronoi neigh-
bors of v.

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

y

u w

z v

Definition 3.2 ((ρ,β) picking region). Given a vertex v ∈M , the (ρ,β) picking
region of v, written Vor(ρ,β)M (v), is Vorβ

M (v)\Vorρ

M (v), the region of the Voronoi
cell bounded by concentric balls of radius ρ NNM (v) and β NNM (v).

The parameter ρ also defines the well-spacedness of the resulting set after
the insertion of Steiner vertices: a vertex v is ρ-well-spaced if and only if the
(ρ,β) picking region of v is empty, i.e., Vorρ

M (v) = Vorβ

M (v) = VorM (v).
In order to correctly compute the β -clipped Voronoi cell Vorβ

M (v) of a ver-
tex v, an algorithm must certify that v is the closest vertex to any point inside
Vorβ

M (v) and that any point on the boundary of Vorβ

M (v) is either equidistant to v
and another vertex or at the clipping distance β NNM (v) from v. In this regard,
we introduce the following notion:

Definition 3.3 (β -clipped Voronoi neighbor). Given any two vertices v and u, u is
called to be a β -clipped Voronoi neighbor of v if the β -clipped Voronoi cell of v
contains a point equidistant from v and u.

Using this definition, we reduce the problem of computing β -clipped Voronoi
cell of v to computing the set of β -clipped Voronoi neighbors of v. Simply,
given the set of β -clipped Voronoi neighbors of v, one can construct its β -clipped
Voronoi cell efficiently. Figure 2 illustrates these definitions.

Correct computation of the β -clipped Voronoi neighbors thus the β -clipped
Voronoi cell requires certificates for any point x ∈Vorβ

M (v) that there is an empty
ball centered at x containing v on its boundary. More formally, for any such
point x, we define the certificate ball of x to be the the ball centered at x with
radius |vx| and we define the certificate region of Vorβ

M (v) as the union of the cer-
tificate balls of the points inside Vorβ

M (v). Figure 3 illustrates these definitions.
Finally, we conclude that identifying the certificate region and certifying that it is
empty of vertices is necessary and sufficient for computing clipped Voronoi cells.

6

sv
sz

su
sysw

sa

sb

Figure 3: M = {a,b,v,u,w,y,z}. NNM (v) = |vu|. The thick boundary depicts
the β -clipped Voronoi cell of v, Vorβ

M (v), for β = 4. The thin boundary depicts
the certificate region of Vorβ

M (v). Vertices a and b are not β -clipped Voronoi
neighbors of v since there is no empty certificate ball for a and the vertex b is too
far away from v, at distance more than β NNM (v).

4. Dynamic Balanced Quadtrees

To permit the efficient calculation of nearest neighbors and clipped Voronoi
cells, we use a point location data structure based on the balanced quadtrees of
Bern, Eppstein, and Gilbert [6]. We extend this balanced quadtree to arbitrary (d)
dimensions and dynamize it by describing an algorithm for inserting/deleting an
input vertex in O(log∆) time.

We use the term quadtree to mean a 2d-tree for which each quadtree node cor-
responds to a d-dimensional hypercube, which is itself partitioned into 2d equally-
sized hypercubes controlled by the node’s children. Our well-spaced point set al-
gorithms treat the quadtree data structure almost as a black box; they use only the
leaves of the quadtree, which we refer to as (quadtree) squares. Our quadtrees are
minimal among those that satisfy the crowding and the grading properties defined
as follows:

• Crowding: every quadtree square (leaf node) contains at most one vertex,
and if it does, none of its neighbors contains a vertex.

• Grading: all neighbors of any internal node must exist in the quadtree.

7

Here, we define the neighbors of a quadtree node to be the same size nodes in each
of the 3d−1 cardinal and diagonal directions. To support fast traversal and access,
a quadtree node keeps pointers to its parent, children, and neighbors. Additionally,
every square contains a pointer to an input vertex it may contain, as well as a list
of all Steiner vertices contained within the square. We define two squares to be
adjacent if their intersection contains at least one point. Given any two adjacent
squares, the grading condition ensures that either they are neighbors or one of
them is a neighbor of the parent of the other.

For efficiently locating and inserting Steiner vertices, our quadtree data struc-
ture supports the QTInsertSteiner function. Given a Steiner vertex w that
is inside the (ρ,β) picking region of a vertex v, this function finds the quadtree
square that contains w by a traversal starting from the square of v towards w. Since
w is inside the β -clipped Voronoi cell of v, this function runs in O(1) time.

For constructing the quadtree, we provide the function QTBuild. For in-
serting/deleting an input vertex v̂ into/from a quadtree, we provide the functions
QTInsertInput and QTDeleteInput. Given the original quadtree Q and
the vertex v̂, these two functions return the updated quadtree Q′ and the set of
obsolete squares of Q. For insertions, the obsolete squares are those that become
internal nodes in Q′; for deletions, they are the deleted leaf nodes of Q.

In the rest of this section, we briefly explain the construction and the dynamic
modification functions. Also, we state the lemmas summarizing our results, some
of which will be useful in the analysis of the dynamic well-spaced point set al-
gorithms. The QTBuild function iteratively inserts each input vertex into an
empty quadtree using QTInsertInput. Given an input vertex v̂ to be inserted,
QTInsertInput first determines the square that contains v̂ by performing a
top-down traversal of the quadtree. If this square already contains an input ver-
tex, it then splits this square and descends into the child containing v̂, repeating
as necessary. Finally, it inserts v̂ into the resulting (currently empty) square, and
in order to restore the quadtree, it imposes the crowding and the grading condi-
tions. We state the following easily-verified facts which characterize the squares
that become obsolete as a result of inserting v̂.

Fact 1. During a call to QTInsertInput to insert v̂, if a quadtree node is split
due to crowding, then either that node or one of its neighbors contains v̂.

Fact 2. During a call to QTInsertInput, if a quadtree node is split due to
grading, then a descendant of one of its neighbors must have been split due to
crowding.

8

Lemma 4.1. For any square s ∈Q that is returned by QTInsertInput(Q, v̂),
we have |sv̂| ∈O(|s|), where |sv̂| is the minimum distance between v̂ and s, and |s|
is the side-length of s.

Proof. Facts 1 and 2 imply that every split square s is at most a neighbor’s neigh-
bor of the quadtree node containing v̂ at the same depth as s. Hence, the distance
between v̂ and s satisfies |sv̂| ≤ 2

√
d|s|.

The QTDeleteInput function performs essentially the same steps as the
QTInsertInput function, in reverse. First, descending through the quadtree,
it locates the quadtree square containing v̂ and deletes it from the square. Next,
motivated by Facts 1 and 2, it checks all ancestors of this square, their neighbors
and neighbors’ neighbors, all in a bottom-up fashion, merging them if they are
no longer crowded, and do not need to be split due to grading. An analogue of
Lemma 4.1 holds for QTDeleteInput, and the proof follows similarly.

Lemma 4.2. For any square s ∈Q that is returned by QTDeleteInput(Q, v̂),
we have |sv̂| ∈ O(|s|).

Proof. Every square returned by QTDeleteInput is a child of a square which
would be split by QTInsertInput, were the deleted vertex to be re-inserted
into the quadtree. The proof of Lemma 4.1 shows that all such squares satisfy the
claim, so their children will also.

By Facts 1 and 2, the functions QTInsertInput and QTDeleteInput
perform a constant number of operations at each level of the quadtree. Addi-
tionally, the quadtree depth is bounded by O(log∆), permitting us to state the
following theorem:

Theorem 4.3. The functions QTInsertInput and QTDeleteInput insert
or delete a single point, and update the quadtree in O(log∆) time. Furthermore,
QTBuild requires O(n log∆) time to construct a quadtree on n input points.

Proof. Because QTInsertInput and QTDeleteInput perform a constant
number of operations at each of the O(log∆) levels of the quadtree, they require
O(log∆) time. Because QTBuild consists of n calls to QTInsertInput, it
requires O(n log∆) time.

Finally, we prove a lemma demonstrating that the quadtree data structure we
describe in this section can be used to approximate the local feature size (lfs) of the
points up to a constant factor. By definition of lfs, this implies an approximation
of the nearest-neighbor distances of the input vertices.

9

Lemma 4.4. Given an input N, let Q be the minimum quadtree that represents N
satisfying the crowding and the grading conditions, and let s∈Q be a square and
p be a point in s. We have lfs(p) ∈Θ(|s|); also, if p ∈ N, then lfs(p)> |s|.

Proof. If p∈N or there exists an input vertex in s, then by the crowding condition,
the neighbors of s do not contain a vertex. This implies that there are no other input
vertices in a ball of radius |s| around p, i.e., lfs(p)> |s|. Otherwise, let v ∈ s′ 6= s
be the input vertex nearest p. If s′ is not adjacent to s, since all the adjacent squares
have size at least |s|/2 by the grading condition, we have lfs(p)≥NNN(p)> |s|/2.
If s′ is adjacent to s, then by the Lipschitz condition lfs(p)+ |pv| ≥ lfs(v), and
lfs(v) > |s′| by the analysis above, and consequently lfs(v) > |s|/2 by s′ being
adjacent to s. Therefore, if |pv| > |s′|/2 then lfs(p) ≥ NNN(p) = |pv| > |s|/4;
otherwise, the same lower bound still holds, lfs(p)≥ lfs(v)−|pv|> |s′|/2≥ |s|/4.

For the upper bound, we use the minimality of the quadtree, that s̃, the parent
of s, must have been split because of one of the two conditions. If s̃ is split
because of crowding then there exist two vertices within 2

√
d|s̃| distance of p. If

s̃ is split due to grading, this split must have been caused by a crowding split due
to vertices v,u 6= p. Facts 1 and 2 prove that s̃ is at most a neighbor’s neighbor of
the quadtree node containing v, also u. This implies that there exist two vertices
within 3

√
d|s̃| distance of p. In either case, lfs(p)< O(|s|).

5. Computing Clipped Voronoi Cells

For computing the clipped Voronoi cells, our quadtree data structure supports
the function QTClippedVoronoi. Given a vertex v and a parameter β > 1,
this function returns the set of β -clipped Voronoi neighbors of v. For an arbitrary
vertex in an arbitrary quadtree, the routine can take time polynomial in the number
of cells of the quadtree. However, in Section 8 we prove that given the access
pattern of our algorithm, all the QTClippedVoronoi calls terminate in worst-
case constant time.

To determine the β -clipped Voronoi neighbors, CV , we perform a scan starting
at v and proceeding along a circular frontier that moves away from v up to a
maximum distance tmax = β NNM (v). At time t the frontier is the boundary of
the ball of radius t. When the scan reaches a vertex u, we determine whether u is a
Voronoi neighbor of v or not. If it is, we add u to CV , otherwise, we discard it. This
way, throughout the scan, we maintain the set CV , which consists of the β -clipped
Voronoi neighbors of v within the current scan distance. For efficiency, we need to
ensure that the scan does not exceed the certificate region. Because if the scan goes

10

Figure 4: Illustration of the distance func-
tion δ v. In this example, CVt = {u,w} and
the thick curve is the set of points with dis-
tance δ v

CVt
(x) = t, e.g., y is at distance t (note

that u and w are at distance < t). Since y is
guaranteed to be a Voronoi neighbor, the al-
gorithm inserts y into CVt . There is no empty
ball that touches both v and z, so δ v

CVt
(z) =∞.

t v u

w

y

z

past the certificate region, we may not be able to bound the number of quadtree
squares and thus the number of vertices we visit in this scan. Therefore, we use a
distance function that differs from the Euclidean one. For any point x, we define
the distance δ v

M (x) as the diameter of the smallest certificate ball that includes v
and x on its boundary. If no such ball exists then we define δ v

M (x) = ∞. By using
this distance function, we eliminate the need to check whether a vertex that the
scan reaches is a Voronoi neighbor or not, because the empty ball that defines its
distance to v is a certificate ball for x. Figure 4 illustrates an example.

It is not clear how to compute the distance δ v
M (x) exactly without a prohibitive

overhead. However, we can relax the requirement that the balls be empty of ver-
tices in M . Instead, using CVt , which we define as the set of β -clipped Voronoi
neighbors of v up to time t, we compute δ v

CVt
(x), the diameter of the smallest ball

with v and x on its boundary that includes no vertex of CVt in its interior. As we ad-
vance time, this distance function does not decrease because adding new vertices
into CV can only make it harder for a ball to be empty. Therefore, δ v

CVt
(x)≤ δ v

M (x)
for all t. We also prove that at time t, when the scan reaches a vertex x, the distance
to x is accurately computed, that δ v

CVt
(x) = δ v

M (x) = t (Lemma 5.1). A corollary
of this result is that CVtmax = CV and that the scan visits the certificate region of
Vorβ

M (v) because all points in the certificate region have distance less than tmax.

Lemma 5.1. During the computation of Vorβ

M (v), when the scan reaches time t,
for any vertex u satisfying δ v

CVt
(u)≤ t, we have δ v

CVt
(u) = δ v

M (u).

Proof. Pick any vertex u satisfying δ v
CVt

(u)≤ t, i.e., there exists a ball of diameter
δ v

CVt
(u) touching both v and u and containing no vertex of CVt in its interior. By the

monotonicity of the distance function, we know that δ v
CVt

(u) ≤ δ v
M (u). We want

to show that δ v
CVt

(u)< δ v
M (u) is not possible by proving that there is no vertex of

11

QTClippedVoronoi
(

v(t),β
)
=

tmax← ∞, E←{square of v}, CV ← /0
while ∃p ∈ E such that δ v

CV (p)< tmax
p← argminp∈E δ v

CV (p)
if p is a vertex then

if CV = /0 then tmax← β |vp|
CV ←CV ∪{p}

else (p is a square)

CGInsertEdge
(

p−→ v(t)
)

E← E ∪{vertices of p}
E← E ∪{squares adjacent to p}

return CV

For computing the distance δ v
CV (p)

minimize |cv|
subject to |cv|= |cp|

|cv| ≤ |cu| ∀u ∈CV
distance δ v

CV (p) = 2|cv|

Figure 5: Pseudo-code for computing clipped Voronoi cells.

M \CVt inside this ball. Towards a contradiction, assume that there exists one,
say w. Then, there exists a smaller ball for w, i.e., δ v

CVt
(w)< δ v

CVt
(u). Again, by

monotonicity, we have δ v
CVt′

(w) ≤ δ v
CVt

(w) for all t ′ < t. Therefore, w must have
been discovered at some time t ′ < t and inserted into CVt ′ ⊂CVt . This contradicts
our assumption that w is a vertex in M \CVt .

Figure 5 shows the pseudo-code for the scan we describe above. The algorithm
discretizes the scan using quadtree squares. Starting at the square of v, it explores
outward from v using a queue E of events — reaching vertices and squares. Upon
reaching a vertex, it updates CV , and upon reaching a square, it enqueues the
vertices that the square contains and the unvisited squares it is adjacent to. Also,
to facilitate dependency tracking in dynamic updates, the algorithm inserts a (read)
dependency edge for each square scanned, using the CGInsertEdge function
described in Section 6.

To compute δ v
CVt

(p), the algorithm finds a point c that is the center of a certifi-
cate ball of minimum radius using the convex program of Figure 5 with O(1) vari-
ables and O(|CV |) constraints. For a quadtree square, the distance is the minimum
distance to any point p in the square. This corresponds to letting p to be free vari-
ables in the above program and adding a box constraint (2d linear constraints) on
the coordinates of p. This leaves us with a quadratic program rather than a convex
one, but it remains a program with O(1) variables and O(|CV |) constraints. As we
prove in Section 8, in our algorithms, we make sure that the clipped Voronoi calls
return a constant number of clipped Voronoi neighbors. Thus, for our purposes,
computation of this distance function takes O(1) time.

12

6. A Stable Construction Algorithm

Given an input set of vertices, we can construct a ρ-well-spaced superset by
repeatedly choosing a vertex, and directly enforcing ρ-well-spacedness on this
vertex through what we call a “fill” operation. For any β > ρ > 1, the fill opera-
tion on a vertex inserts Steiner vertices in the (ρ,β) picking region of that vertex
until it becomes ρ-well-spaced. Although correct, this basic algorithm is not ef-
ficient because vertices may need to be filled multiple times. More specifically, a
Steiner vertex inserted while filling a vertex may become the nearest neighbor of
an already filled vertex, causing it to no longer be ρ-well-spaced, and requiring it
to be filled again. This algorithm is not stable either; it can generate very different
outputs when run on similar inputs, because the presence/absence of a single ver-
tex can affect the choices of many subsequent Steiner vertices. To address these
problems and achieve efficiency and stability, we refine the basic algorithm by
specifying an order in which vertices are filled.

In order to ensure efficiency and avoid filling vertices multiple times, we fill
vertices in increasing order according to their nearest-neighbor distances. Before
we explain the details of this schedule, we discuss the intuition behind it by point-
ing out several facts about our Steiner vertex selection scheme. Given a vertex
set M , consider filling a vertex v ∈M that is not ρ-well-spaced. Let w be a
Steiner vertex inserted while filling v. The first fact is that w is in the (ρ,β) pick-
ing region of v.

Fact 3. The Steiner vertex w is in Vor(ρ,β)M (v). That is, ∀u ∈M , |wv| ≤ |wu| and
ρ NNM (v)≤ |wv|< β NNM (v).

Since v is the nearest neighbor of w, i.e., |wv| = NNM (w), this fact implies
that NNM (w) ≥ ρ NNM (v). Now, let us suppose that the vertices whose nearest
neighbors are at distance less than α are all ρ-well-spaced. Since v is not ρ-well-
spaced in M , we have NNM (v)≥ α . Then, we infer the following fact.

Fact 4. For any given α > 0, if every vertex u ∈M with NNM (u)< α is ρ-well-
spaced, then NNM (w)≥ ρα .

This fact implies that the Steiner vertices that will be inserted into M are all at
least ρα away from any vertex in M . Therefore, inserting a Steiner vertex does
not change the nearest neighbors and hence the well-spacedness of the vertices
whose nearest neighbors are at distance less than ρα . Motivated by this property,
we define the rank of a vertex v ∈M as the logarithm in base ρ of its nearest

13

neighbor distance, i.e.,
⌊

logρ NNM (v)
⌋

and fill the vertices in a single pass using
the rank order. With this partial ordering, for example, the vertices with nearest
neighbor distances in [ρr,ρr+1) would be at rank r. Note that for any ρ > 1,
this partial order has only O(log∆) ranks. As we prove in Lemma 8.5, filling
vertices in rank order guarantees that filling each vertex takes O(1) time, yielding
an efficient construction algorithm. However, these refinements are not enough to
ensure stability.

}

}
`(r)

κ`(r)

Figure 6: Illustration of a col-
oring scheme in 2D. The col-
oring parameter κ is 2 and
there are 4 colors in total.

In order to achieve stability, we take advan-
tage of the locality of our Steiner vertex selec-
tion scheme and geometrically partition the ver-
tices at each rank into a constant number of color
classes and fill them in color order so that ver-
tices of the same color class can be filled indepen-
dently. More specifically, we say that two vertices
at the same rank are independent if at least one of
them is not ρ-well-spaced and the certificate re-
gion of the β -clipped Voronoi cell of any of them
does not intersect the (ρ,β) picking region of the
other. Intuitively, two vertices are independent if
the Steiner vertices inserted while filling one of
them do not alter the picking region of the other.
We identify independent vertices by using a coloring scheme that partitions the
space based on a coloring parameter κ , and a real valued function `(r) defined
on ranks. At each rank r, we partition the space into d-dimensional hypercubes
or r-tiles with side length `(r). We color r-tiles such that they are colored peri-
odically in each dimension with period κ , using κd colors in total. A vertex v
has color c ∈ {0,1, . . . ,κd−1} if it lies in a c colored r-tile. Figure 6 illustrates a
coloring scheme. By choosing `(r) small enough and κ large enough, we prove
that two vertices at the same rank are independent if they have the same color
(Lemma 9.1). Therefore, at a given rank, filling vertices in color order restricts the
dependencies between vertices: filling a vertex may affect only the unprocessed
vertices of different colors. During a dynamic update, this makes it possible to
re-fill a vertex without affecting other independent vertices at the same rank and
color.

The efficiency and stability of our algorithm critically relies on filling vertices
in rank and color order. In order to fill a vertex v that is currently at rank r, the
algorithm schedules a fill operation acting on v at rank r. However, since the rank

14

of a vertex depends on its nearest neighbor and since that can change as Steiner
vertices are inserted, we need to update the ranks of the vertices dynamically. In
order to ensure that the ranks of the vertices are up-to-date, in our algorithm, we
use another type of operation called dispatch. For each vertex v, our algorithm
creates a single dispatch operation acting on v. This operation computes the rank
of v, updates the ranks of β -clipped Voronoi neighbors of v, and schedules new
fill operations as necessary. In order to ensure timely execution of dispatch opera-
tions, the algorithm assigns ranks to dispatch operations as well and executes both
types of operations in rank order with dispatches having precedence over fills at
the same rank. For an input vertex v, the algorithm assigns the logarithm in base ρ

of the side length of the quadtree square that contains v as the rank of the dispatch
operation acting on v. As we prove in Lemma 4.4 this rank is O(1) ranks below
the actual rank of v. For a Steiner vertex w, at the time of its insertion, since we
know that the nearest neighbor of w is the vertex being filled, the fill operation that
inserts w easily computes the current rank of w and schedules a dispatch operation
acting on w at its current rank.

Using dispatch operations, the algorithm guarantees that for each vertex there
exists a fill operation acting on it at its most up-to-date rank (Lemma 7.1). When
executed, a fill operation makes the vertex it acts on ρ-well-spaced; subsequent
fill operations terminate immediately without inserting Steiner vertices. Instead of
creating a single fill operation per vertex and updating its rank as the ranks of the
vertices change, we prefer the approach of recording and executing multiple fill
operations acting on a single vertex because it simplifies the analysis by making
the dependencies between the operations explicit.

Figure 7 shows the pseudo-code of our algorithm StableWS. The algorithm
starts by constructing a quadtree Q and stores it for use in dynamic updates. It
then constructs a ρ-well-spaced output by performing dispatch and fill operations
that it enqueues in Ω. When enqueueing a dispatch or a fill operation acting on
a vertex w, the algorithm computes the rank rw of w by using its current nearest
neighbor distance. (For dispatch operations acting on input vertices, it uses an
approximation.) Then, computing the color cw of w at this rank, it determines
the time of this operation, which is comprised of the rank rw, a flag indicating a
dispatch (D) or a fill (F), and the color cw only if the operation is a fill operation. In
the pseudo-code, we represent this operation with the vertex w itself and its time tw
in the subscript (w(tw)). The algorithm executes the operations in Ω in time order,
first by rank then by operation type and then by color order (for fills): it performs
the dispatch operations before the fill operations, ordering fill operations at the
same rank by color. For brevity, we define time t = 0 to be the beginning of time,

15

Dimension: d
Parameters: ρ,β ,κ, `(r)

StableWS (N) =
Q← QTBuild(N)
for each v ∈ N

apxnnv← |square of v|
Enqueue

(
v,D,apxnnv,v(0),Ω

)
for r = min rank in Ω to

⌊
logρ

√
d
⌋

for each v(r,D) ∈Ω

Dispatch(v(r,D),Ω)

for c = 0 to κd −1
for each v(r,F,c) ∈Ω

Fill(v(r,F,c),Ω)
return Q

Dispatch
(

v(t),Ω
)
=

CV ← QTClippedVoronoi
(

v(t),β
)

nnv←min{|vu| : u ∈CV}
Enqueue

(
v,F,nnv,v(t),Ω

)
for each w ∈CV

Enqueue
(

w,F, |wv|,v(t),Ω
)

Fill
(

v(t),Ω
)
=

CV ← QTClippedVoronoi
(

v(t),β
)

while v is not ρ-well-spaced
Pick w ∈ Vor(ρ,β)(v)
QTInsertSteiner

(
v(t),w

)
CGInsertEdge

(
v(t) −→ square of w

)
Enqueue

(
w,D, |wv|,v(t),Ω

)
CV ←CV ∪{w}

Enqueue
(

w, f lag,nnw,v(t),Ω
)
=

rw←
⌊

logρ nnw
⌋
, cw← Color(w,rw,κ)

if f lag = D then tw← (rw,D)
else tw← (rw,F,cw)
if tw > t then
if @ edge · −→ w(tw) then

Ω←Ω∪
{

w(tw)

}
CGInsertEdge

(
v(t) −→ w(tw)

)
Color (v,r,κ) =
for i = 1 to d do ci← bvi/`(r)c mod κ

return c = c1c2 . . .cd in base κ

Figure 7: The pseudo-code of the stable construction algorithm.

when the input vertices are enqueued for dispatch operations but before any of
them are performed, and we define time t = ∞ to be the end of the algorithm.
We write Mt to refer to the output at time t, e.g., M0 is the input, N, and M∞ is
the output, M. For readability, we use t instead of Mt in the subscript, e.g., NNt
instead of NNMt .

To support efficient dynamic updates, the construction algorithm builds a com-
putation graph. The computation graph G = (V,E) consists of nodes, V = Σ∪Ω,
comprised of the set of quadtree squares (Σ) and the set of operations (Ω), and di-
rected edges representing various dependencies between operations and squares.
One can view these dependencies as read, write, and execution flow dependen-
cies. The construction algorithm uses the CGInsertEdge function to record
each dependency by inserting an edge into the computation graph. Consider ex-
ecuting an operation represented by v(t). If the function QTClippedVoronoi
executed by v(t) reads a square s, it records this (read) dependency by inserting
the edge s−→ v(t) (Section 5). If v(t) calls Enqueue to schedule an operation op
acting on w into Ω, the Enqueue function first computes the rank and color of w
and determines the time tw of op = w(tw). If tw > t, Enqueue records this (execu-

16

tion) dependency by inserting the edge v(t) −→ w(tw). In order to avoid duplicate
operations in Ω, it schedules w(tw) into Ω only if there is no edge from another
operation towards w(tw). Finally, to account for the (write) dependencies that arise
by inserting Steiner vertices, for each Steiner vertex w that v(t) inserts, the algo-
rithm inserts the edge v(t) −→ s, where s is the square that contains w. For the
purposes of facilitating analysis, we tag each edge with the time of the operation
that creates it, in the examples above, this time is t.

7. Output Quality and Size

This section includes the proofs of the quality of the output of our algorithm,
i.e., M is ρ-well-spaced and size-optimal. Lemma 7.3 proves size-optimality by
showing that M is size-conforming. For ρ-well-spacedness, the first two lemmas
prove that our algorithm fills vertices in an order such that after filling a vertex the
key invariant is satisfied—the vertex becomes and remains ρ-well-spaced. There-
fore, our algorithm incrementally progresses towards a ρ-well-spaced output. In
these two lemmas, let M be the set of vertices in the output at the beginning of
rank r.

Lemma 7.1. At the beginning of rank r, assume that every vertex u ∈M with
NNM (u)< ρr is ρ-well-spaced. Then, for every vertex w ∈M with NNM (w) ∈
[ρr,ρr+1), there exists a fill operation that acts on w at rank r.

Proof. Consider a vertex w ∈M , let u be its nearest neighbor in M , and assume
that ρr ≤ |wu| < ρr+1. Let w(rw,D) and u(ru,D) be the dispatch operations that act
on w and u respectively. If rw ≤ r and u is in the output at the beginning of rank rw
then w(rw,D) schedules a fill operation that acts on w at rank r. Alternatively, u(ru,D)

schedules such a fill operation if ru ≤ r and w is a β -clipped Voronoi neighbor
of u at the beginning of rank ru. We prove that one of the two conditions holds.

Analyzing the vertices w and u, whether they are both input vertices or one of
them is a Steiner vertex inserted when the other one was in the output, in two of
the three cases, we prove that the first condition holds. In the first case, if both
w and u are input vertices then by Lemma 4.4, rw≤ r. In the second case, in which
w is a Steiner vertex and u is in the output when w is being inserted, consider the
vertex v that creates w. By Fact 3, we know that |wv| ≤ |wu|, which implies that
rw ≤ r.

We prove that the second condition holds in the remaining case, in which u is
a Steiner vertex and w is already in the output when u is being inserted. Similar
to the previous case, we deduce that ru ≤ r. Since u is the nearest neighbor of w

17

in M , w is a Voronoi neighbor of u in M ′, where M ′ ⊂M is the output at the
beginning of rank ru. If u is ρ-well-spaced in M then |wu| ≤ 2ρ NNM (u) <
2β NNM ′(u). Otherwise, the assumption of the lemma implies ρr ≤ NNM (u).
Since |wu| < ρr+1, we get |wu|< ρ NNM (u)< 2β NNM ′(u). Either way, w is a
β -clipped Voronoi neighbor of u in M ′.

Lemma 7.2 (Progress). At the beginning of rank r, every vertex u ∈M with
NNM (u)< ρr is ρ-well-spaced.

Proof. We use induction. At the minimum rank, there are no vertices with smaller
nearest-neighbor distance, so the claim is trivially true. Assume that the lemma
holds up to rank r, that is, every vertex u ∈M with NNM (u) < ρr is ρ-well-
spaced. For rank r + 1, let M ′ ⊃M be the set of vertices in the output at the
beginning of rank r+1 and consider a vertex w∈M ′ with NNM ′(w)< ρr+1. We
claim that w ∈M ; towards a contradiction, assume that w ∈M ′ \M . Then, w is
a Steiner vertex inserted at rank r. Repeatedly applying Fact 4 for each (Steiner)
vertex in M ′ \M , we see that the nearest neighbors of these Steiner vertices
are at distance ≥ ρr+1; in particular, NNM ′(w) ≥ ρr+1. This is a contradiction
to our criteria NNM ′(w)< ρr+1, thus, w ∈M . Furthermore, NNM (w) < ρr+1

for similar reasons. If NNM (w) < ρr then by our induction hypothesis w is
ρ-well-spaced. Otherwise, if ρr ≤ NNM (w)< ρr+1, by Lemma 7.1, there exists
a fill operation that acts on w at rank r. After executing that operation, w becomes
ρ-well-spaced. Finally, Fact 4 implies that w remains ρ-well-spaced.

Lemma 7.3. The output M is size-conforming and size-optimal with respect to N.

Proof. We use induction over the order in which the algorithm inserts Steiner ver-
tices and show that there exists a constant c such that for every v∈M, cNNM(v)≥
lfs(v), thereby proving that M is size-conforming. In the base case, every vertex
is an input vertex and the nearest neighbor of an input vertex is exactly the local
feature size. For the inductive case, assume that there exists a constant c such that,
for every v ∈M , we have cNNM (v)≥ lfs(v). Furthermore, assume that v inserts
a Steiner vertex w and the new output is M ′ = M ∪{w}. We analyze the induc-
tive claim for w and for any vertex u ∈M separately. For w, by Fact 3 we know
that |wv| ≥ ρ NNM (v) and NNM ′(w) = |wv|. By the triangle inequality, lfs satis-
fies the Lipschitz condition: lfs(v)+ |wv| ≥ lfs(w). By the inductive hypothesis,
cNNM (v)≥ lfs(v). Therefore, we have (c

ρ
+1)|wv|=(c

ρ
+1)NNM ′(w)≥ lfs(w).

For any vertex u ∈M , if NNM (u) = NNM ′(u) then the claim holds triv-
ially. Otherwise, assume that NNM (u) > NNM ′(u) = |wu|. By the Lipschitz

18

condition, we have |wu|+ lfs(w) ≥ lfs(u) and by Fact 3 we know |wu| ≥ |wv|.
Combining these by the bound we obtained for lfs(w), we get (c

ρ
+ 2)|wu| =

(c
ρ
+2)NNM ′(u)≥ lfs(u). Solving for c≥ c

ρ
+2, we conclude that any c≥ 2ρ

ρ−1
suffices to prove the inductive step. Therefore, M is size-conforming and hence
size-optimal [26].

Theorem 7.4 (Correctness). StableWS constructs a size-optimal ρ-well-spaced
superset M of its input N.

Proof. The property that M is ρ-well-spaced follows from the Progress Lemma
and the fact that StableWS iterates over all ranks. Lemma 7.3 proves the size
bound.

8. Runtime

We analyze the running time of our static algorithm and emphasize two lem-
mas that are useful in the analysis of our dynamic algorithm. The first lemma
(Lemma 8.1) proves that throughout the algorithm, the nearest-neighbor distance
of a vertex v changes only by a constant factor. The second lemma (Lemma 8.2)
proves that all operations acting on v have rank blogρ NN∞(v)c±O(1); none are
scheduled too early nor too late.

Lemma 8.1. Let t be the time at which v is created (t = 0 for input vertices). Then,
NNt(v) ∈Θ(NN∞(v)).

Proof. As time progresses, more vertices are added, so the nearest neighbor dis-
tance can only shrink: NNt(v) ≥ NN∞(v). For the upper bound, we analyze in-
put vertices and Steiner vertices separately. By definition, an input vertex v has
lfs(v) = NN0(v). The algorithm is size-conforming (Lemma 7.3), so NN0(v) =
lfs(v) ∈ O(NN∞(v)). For a Steiner vertex w that is created at time t = (r,F,c),
Fact 3 implies that ρr+1 ≤ NNt(w) ≤ βρr+1. For any other Steiner vertex u
that is created later, the same fact implies that ρr+1 ≤ |uw| which means ρr+1 ≤
NN∞(w). Therefore, NNt(w)≤ βρr+1 ≤ β NN∞(w).

Lemma 8.2. If an operation at rank r acts on v then NN∞(v) ∈Θ(ρr).

Proof. Consider an operation v(tv) at rank r. Lemma 8.1 implies that it suffices
to prove NNt(v) ∈ Θ(ρr), where t is the time v(tv) is created. If v(tv) is a dispatch
operation and v is an input vertex, then t = 0, and our algorithm uses the size
of the square that contains v to approximate NN0(v). Hence, NN0(v) ∈ Θ(ρr)

19

by Lemma 4.4. If v(tv) is a dispatch operation and v is a Steiner vertex then we
know that v is created at time t by a fill operation acting on a vertex u and that
r = blogρ |vu|c. Since v is picked from the Voronoi cell of u, |vu|= NNt(v), thus
NNt(v) ∈ Θ(ρr). If v(tv) is a fill operation created by the dispatch operation act-
ing on v, then we know that the rank is computed exactly, i.e., r = blogρ NNt(v)c.
The last case is that v(tv) is a fill operation created by a dispatch operation op
acting on another vertex u at rank r′. We know that op assigns the rank of v to
be r =

⌊
logρ |vu|

⌋
. Since NNt(v) ≤ |vu|, we get NNt(v)< ρr+1, thus, the up-

per bound holds. For the lower bound, since |vu| ≥ ρr, it suffices to show that
NNt(v) ∈ Ω(|vu|). If NNt(v) ≥ ρr′ , we show that ρr′ ∈ Ω(|vu|) by applying
the result from above for op, that NNt(u) ∈ Θ(ρr′), and by using the fact that
v is a β -clipped Voronoi neighbor of u at time t, that 2β NNt(u) ≥ |vu|. Other-
wise, if NNt(v) < ρr′ then by the Progress Lemma, v is ρ-well-spaced at time t.
Since v and u are Voronoi neighbors at time t, this implies that u is a ρ-clipped
Voronoi neighbor of v. Therefore, 2ρ NNt(v)≥ |vu| and we prove in all cases that
NN∞ ∈Θ(ρr).

Lemma 8.3. At the beginning of rank r, any point p inside an empty ball of ra-
dius ρr satisfies lfs(p) ∈Ω(ρr).

Proof. Let c be the center of an empty ball of radius ρr, i.e., NNt(c) ≥ ρr,
where t = (r,D). Given this ball, let p be a point inside it. For some constant ε

whose value we will set later, if NNt(p) ≥ ερr then our proof is done. Other-
wise, if NNt(p) < ερr, let q be the point at distance ρr/2 away from c on the
ray from c to p, and let u ∈ Mt be the vertex nearest q. Then, we claim that
NNt(u)> ρr/2ρ and for some small enough ε that u is the vertex nearest p as
well. Using the Lipschitz condition, we get lfs(p)+ |pu| ≥ lfs(u)≥NNt(u). Then,
our claims imply lfs(p)> ρr/2ρ−|pu|> (1/2ρ− ε)ρr and consequently prove
our lemma statement.

Our first claim is trivially true if NNt(u) ≥ ρr; otherwise, u must be ρ-well-
spaced by Lemma 7.2, which implies that q, being a point inside the Voronoi cell
of u, is within ρ NNt(u) distance of u. In other words, NNt(u) > |qu|/ρ . Since
u is outside the empty ball, |qu| ≥ ρr/2, therefore, we prove our first claim.

For proving the second claim, we first observe that u, the nearest neighbor of q,
lies inside the ball of radius (1/2+ ε)ρr centered at q because there is a vertex
inside the ball of radius ερr centered at p. Since the ball of radius ρr centered
at c is empty, the crescent defined by this empty ball and the ball centered at q
contains u. We will show that this region, shaded in Figure 8, is contained in a ball

20

Figure 8: Illustration of the proof of
Lemma 8.3. There is an empty ball centered
at c of radius ρr and p is a point inside this ball.
The nearest neighbor of p is within ερr dis-
tance (the small ball). The point q, ρr/2 away
from c on the ray from c to p, has its nearest
neighbor within (1/2+ε)ρr distance (the mid-
size ball), inside the shaded region. The point x
in the shaded region is one of the farthest away
from b. The lemma is proven by showing that
the shaded region can be made small enough.

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

c q p
b

x

of diameter ρr/2ρ . Then, using the fact that the nearest neighbor of u is at least
ρr/2ρ away from u, we prove that u is the only vertex in this region and therefore
the vertex nearest p. In order to bound the diameter, for appropriate ε , we show
that any point of the shaded region is within ρr/4ρ distance of the point b, that
is located ρr away from c on the ray from c to p: observe that any point x on the
intersection of the ball centered at c of radius ρr and the ball centered at q of radius
(1/2+ ε)ρr is the farthest away from b. Since xq is the median of the side cb of
the triangle cbx, using Apollonius’ theorem, one can get |xb|2 = 2ε(ε + 1)ρ2r.
Solving for |xb| ≤ ρr/4ρ , we see that any ε ≤

√
1/4+1/32ρ2−1/2 suffices to

prove our claim and therefore our lemma.

Lemma 8.4. Computing the β -clipped Voronoi cell of a vertex takes O(1) time.

Proof. When the QTClippedVoronoi function visits a quadtree square, that
square either intersects the certificate region, or it is a neighbor of a square that
intersects the certificate region. Let r be the rank at which the function is called
and s be a square that intersects the certificate region. By Lemma 8.3, for any
point p ∈ s, that is inside the certificate region, lfs(p) ∈ Ω(ρr). Furthermore, by
Lemma 4.4, lfs(p) ∈ Θ(|s|), which implies that s covers a volume of Ω(ρr). By
Lemmas 8.1 and 8.2, the certificate region of the β -clipped Voronoi cell of v is
within a ball of radius O(ρr). This implies that there are only O(1) squares that
intersect the certificate region. Thanks to the grading condition, the squares have
bounded number of squares adjacent to them, therefore QTClippedVoronoi
visits only O(1) squares. The function also does work iterating over the vertices
each square contains. By Lemma 7.3, a vertex u has a nearest neighbor no closer

21

than Ω(lfs(u)); meanwhile, again by Lemma 4.4, the quadtree square that con-
tains u has side length O(lfs(u)). Hence, each square contains only O(1) vertices
and the total work is O(1).

Lemma 8.5. Dispatch and fill operations run in O(1) time.

Proof. The main costs of an operation v(t) are the β -clipped Voronoi cell com-
putations and the loops. Lemma 8.4 shows that Steiner vertex insertions and the
clipped Voronoi cell computations take constant time. This implies that there are
a constant number of β -clipped Voronoi neighbors of v. If v(t) is a dispatch opera-
tion, it iterates over each of them, this takes constant time. If v(t) is a fill operation,
it has a loop that inserts Steiner vertices until v is ρ-well-spaced. For each inserted
Steiner vertex w, Fact 3 implies NNt(w)≥ ρ NNt(v). Thus, we can associate non-
overlapping empty balls of radius ρ NNt(v)/2 around every Steiner vertex. Since
the Steiner vertices are in a ball of radius β NNt(v) around v, a packing argument
shows that v(t) inserts a constant number of Steiner vertices. This concludes that
the operation represented by v(t) runs in constant time.

Lemma 8.6. For every vertex v ∈M, there are O(1) operations that act on v.

Proof. By Lemma 8.2, any operation acting on v has rank
⌊

logρ NN∞(v)
⌋
±O(1).

Therefore, if we can bound the number of operations acting on v at each rank by a
constant, our claim will hold. There is only one dispatch operation for each vertex,
so we only need to count the fill operations scheduled by other dispatch operations.
Fix r and consider a dispatch operation acting on u at time t ′ = (r′,D) scheduling
a fill operation acting on v at rank r. Then, v is β -clipped Voronoi neighbor of u,
in other words, |uv| ≤ 2β NNt ′(u). The fact that the fill operation is scheduled for
rank r implies ρr ≤ |uv|< ρr+1. Considering the dispatch operation, Lemmas 8.1
and 8.2 show that NNt ′(u) = O(ρr′). These facts imply ρr = O(ρr′). Again by
Lemma 8.2, we know that there exists an empty ball around u with radius Ω(ρr′)
which is Ω(ρr) by the previous assertion. We already know that |uv| < ρr+1,
therefore, a packing argument proves our claim.

Theorem 8.7 (Efficiency). StableWS runs in O(n log∆) time.

Proof. As shown in Section 4, building the quadtree takes O(n log∆) time. By
Lemmas 8.5 and 8.6, the rest of the algorithm takes O(m) time, where m = |M|.
The total runtime is O(n log∆+m). That m ∈ O(n log∆) follows from our dy-
namic bounds.

22

9. Dynamic Stability

We call two inputs N and N′ related if they differ by one vertex, i.e., N′ can
be obtained from N by inserting or deleting a vertex. To analyze the stability
of the algorithm StableWS, we define a notion of distance between two exe-
cutions with related inputs. We prove that this distance is bounded by O(log∆)
in the worst-case, where ∆ is the larger geometric spread of the inputs N and N′

(Lemma 9.5).
As described in Section 6, StableWS(N) constructs a computation graph

G = (V,E) by building quadtree squares Σ and a set of operations Ω. The set
of nodes V is Σ∪Ω; the edges E represent the dependencies in the computation.
For another input set N′ which is related to N, consider running StableWS(N′)
and creating G′ = (V ′,E ′), Σ′, and Ω′ similarly. We define a recursive matching
between the nodes of the two executions: two operations v(t) ∈Ω and v′(t ′) ∈Ω′

match if v = v′, t = t ′, and either the times t = t ′ = 0 or there exist matching
operations w(τ) ∈ Ω and w′(τ ′) ∈ Ω′ such that the computation graphs G and G′

include the edges w(τ) −→ v(t) and w′(τ ′) −→ v′(t ′) respectively; and, two squares
s ∈ Σ and s′ ∈ Σ′ match if s and s′ have the same corner points. We denote this
matching by µ : V ′→V , where µ = {(v′(t ′),v(t)) | v

′
(t ′) and v(t) match}. We denote

the domain and the range of µ by dom(µ) and range(µ). Using this matching,
we define µ ′ = µ ∪{(u,u) | u ∈V ′ \dom(µ)} to be a total function defined on the
nodes V ′ of G′. We combine the computation graphs in a union graph G∪ = (V ∪
µ ′(V ′),E ∪µ ′(E ′)), where µ ′(E ′) = {(µ ′(u),µ ′(v)) | (u,v) ∈ E ′}. Intuitively, the
union graph injects G′ into G under the guidance of µ by extending G with the
unmatched nodes of G′, unifying the matched nodes, and adding the edges of G′

while redirecting them to the matched nodes appropriately. In order to capture the
dependencies between two operations, we define a path in the union graph to be a
dependency path if the times of the edges on the path do not decrease. Lemma 9.1
allows us to refine this definition: a path (x0,x1, . . . ,xk) is a dependency path if the
times of the edges x0 −→ x1, x1 −→ x2, · · · ,xh−1 −→ xh increase monotonically.

Lemma 9.1. Set coloring parameters `(r) and κ such that `(r)< ρr/
√

d and κ >
1+3βρr+1/`(r). Then, any two fill operations at the same rank are independent
if the vertices they act on have the same color.

Proof. Consider two operations v(t) and u(t), where t = (r,F,c). Let M be the set
of vertices in the output at the beginning of rank r. If both v and u are ρ-well-
spaced in M then v(t) and u(t) are independent. Otherwise, if v is not ρ-well-
spaced the Progress Lemma implies that NNM (v) ≥ ρr. Since `(r)< ρr/

√
d,

23

the diameter of an r-tile is less than ρr, and thus v and u cannot be in the same
r-tile. Since v and u have the same color, v and u are far apart, more precisely,
|vu| ≥ (κ−1)`(r)> 3βρr+1. The fact that our construction algorithm creates
these operations implies NNM (v),NNM (u) < ρr+1. Then, the (ρ,β) picking
regions and the certificate regions of the β -clipped Voronoi cells of v and u are
inside balls of radii βρr+1 and 2βρr+1 around these vertices respectively. Using
the triangle inequality, we know that that the (ρ,β) picking region of one of them
does not intersect the certificate region of the β -clipped Voronoi cell of the other;
therefore, v(t) and u(t) are independent.

We partition the nodes of the union graph G∪ = (V∪,E∪) into several cate-
gories. The nodes V− =V \ range(µ) are called obsolete (squares Σ−, operations
Ω−); these are the nodes of G that have no matching pairs in G′. The nodes
V+ = V ′ \ dom(µ) are called fresh (squares Σ+, operations Ω+); these are the
nodes of G′ that have no matching pairs in G. Furthermore, we call a square s∈V∪

inconsistent if it is fresh or obsolete, or if it contains the vertex v̂ of the symmetric
difference of N and N′. We define an operation v(t) ∈ range(µ) to be inconsistent
if it is reachable from an inconsistent square via a dependency path. We represent
inconsistent nodes with V× (squares Σ×, operations Ω×). We define the distance
between the executions with related inputs N and N′ to be the number of obsolete,
fresh, or inconsistent operations of the union graph, i.e., |Ω−∪Ω+∪Ω×|.

Lemma 9.2. For every operation in Ω− ∪Ω+ ∪Ω×, there exists a dependency
path from a square in Σ×.

Proof. By definition, an inconsistent operation can be reachable via a dependency
path from Σ×. For unmatched operations, assume towards a contradiction that
there exist an operation in Ω−∪Ω+ that is not reachable from Σ×. Let v(t) be the
earliest of such operations. Let us assume that v(t) represents a dispatch operation,
and that v is an input vertex. Since v(t) does not depend on an inconsistent square,
it does not read one. Therefore, v is in N∩N′ and lies in identical squares in both
executions, which implies that its nearest neighbor approximation is the same in
both executions. Hence, there exists an operation v(t) in the other execution as
well. The definition of µ matches these operations because in both computation
graphs contain the edge v(0)−→ v(t). For the remaining cases, there exists an edge
w(τ) −→ v(t) for some unmatched or inconsistent operation w(τ) with τ < t. By
the minimality of v(t), w(τ) can be reached via a dependency path from a square
in Σ×. Extending that path to v(t) proves the contradiction.

24

As proven in the previous section, the function QTClippedVoronoi sat-
isfies the following locality property: for a given input N, a size-conforming set
of vertices M ⊃ N, and a square s read by QTClippedVoronoi, for all x ∈ s,
|vx| ∈ O(NNM (v)). This property allows us to relate the operations on a depen-
dency path geometrically.

Lemma 9.3. Consider two operations w(τ) and v(t) in G∪. If there exists a depen-
dency path from w(τ) to v(t) and rank of t is r, then |vw| ∈ O(ρr).

Proof. First, we show that for any edge in G∪, the distance between its nodes
is short. We define the distance between a square and an operation to be the
distance from the vertex of the operation to the farthest point in the square, and
the distance between two operations to be the distance between their vertices.
Consider an edge e ∈ E with time te whose rank is re. The edge e consists of
an operation u(te) ∈ Ω and either a square s that u(te) accesses (reads/writes) or
another operation u′(t ′) that it schedules. Using the locality result stated prior to
this lemma, we bound the distance between u(te) and s by O(NNte(u)). Also, u′(t ′)
is within the same distance. Lemmas 8.1 and 8.2 bound NNte(u) by O(ρre); thus,
the distance between the nodes of e is at most αρre , where α is a constant in the
big-Oh notation. The same analysis applies for any edge e′ ∈ E∪.

By the definition of dependency paths, the times of the edges on a depen-
dency path from w(τ) to v(t) monotonically increase. Assuming that the rank of
τ is r′, there can be at most κd edges for each rank between r′ and r. Therefore,
in the worst case, the distance between v and w is bounded by ∑

r
i=r′ κ

dαρ i =

ακd ρr+1−ρr′

ρ−1 < ακd ρr+1

ρ−1 . Consequently, |vw| ∈ O(ρr).

In order to bound the distance between the executions with inputs N and N′

which generate outputs M and M′, we focus on the vertices rather than the oper-
ations. We define a vertex to be affected if there exists an obsolete, a fresh, or an
inconsistent operation of it. Since there is a constant number of operations acting
on a given vertex (Lemma 8.6), the number of affected vertices measures the dis-
tance asymptotically. We define the sets of affected vertices in both executions:
M̂= {v | v(t) ∈Ω−∪Ω×} and M̂′ = {v | v(t) ∈Ω+∪Ω×}. The next two lemmas
bound the number of affected vertices.

Lemma 9.4. For any vertex v ∈ M̂, |vv̂| ∈ O(NNM(v)) and for any v ∈ M̂′, |vv̂| ∈
O(NNM′(v)).

25

Proof. We prove the lemma for v ∈ M̂; symmetric arguments apply for M̂′. By
definition of M̂, there exists an operation v(tv) ∈ Ω−∪Ω× at rank r. Lemma 9.2
suggests that there exists a dependency path from a square s ∈ Σ× to v(tv). Let
s−→ u(tu) be the first edge on this path, where the rank of tu is ru. By Lemma 9.3,
we know that |vu| ∈O(ρr). By the fact that the operation that u(tu) represents reads
s, we know |us| is in O(ρru) and by lemmas 4.1 and 4.2 the quadtree functions
QTInsertInput and QTDeleteInput guarantee that |sv̂| ∈ O(|s|) which is
in O(ρru) as well. Using the triangle inequality and the fact that ru ≤ r, we bound
|vv̂| by O(ρr). It only remains to prove that there is a ball around v of radius Ω(ρr)
empty of vertices of M. Lemma 8.2 proves precisely this.

Lemma 9.5 (Distance). The distance between two executions with related inputs
is bounded by O(log∆).

Proof. The distance is asymptotically bounded by the sizes of the affected sets
of vertices |M̂| and |M̂′|. Consider the vertices v ∈ M̂ with |vv̂| ∈ [2i,2i+1). By
Lemma 9.4, we can assign non-overlapping empty balls of radius Ω(2i) to them.
Therefore, there is a constant number of such vertices for any i. At most O(log∆)

values of i cover M̂, so |M̂| ∈ O(log∆). Similar arguments apply to M̂′.

10. Dynamic Update Algorithm

We describe an algorithm for dynamically updating the output of StableWS
when the input is modified by insertion/deletion of a vertex, prove it correct
(Lemma 10.2) and efficient (Theorem 10.3).

Our dynamic update algorithm is a change-propagation algorithm. Given the
input modification, the update algorithm re-executes the actions of the stable al-
gorithm for the part of the computation affected by the modification and undoes
the part of the computation that becomes obsolete. More precisely, the algorithm
maintains distinct set of operations for removal Ω	 (obsolete operations), for ex-
ecution Ω⊕ (fresh operations), and for re-execution Ω⊗ (inconsistent operations),
which contain operations representing the operations that become obsolete, that
need to be executed, and that become inconsistent respectively. The inconsistent
operations are updated by deleting their old versions and executing them again,
which may now perform actions different than before. The algorithm removes and
executes operations in the same order as the stable algorithm. It uses the Undo
function to remove obsolete operations and the Dispatch and Fill functions
of the stable algorithm for executing fresh operations.

26

Global queues: Ω	,Ω⊕,Ω⊗

PropagateWS
(
Σ−, v̂

)
=

for each s ∈ Σ−∪{square of v̂}
MarkReaders(s,0)
for each input vertex v 6= v̂ ∈ s
Undo

(
v(0)
)

apxnnv← |square of v|
Enqueue

(
v,D,apxnnv,v(0),Ω

⊕
)

rmin← min rank in Ω	∪Ω⊕∪Ω⊗

for r = rmin to
⌊

logρ

√
d
⌋

for each v(r,D) ∈Ω	∪Ω⊗

Undo
(

v(r,D)
)

for each v(r,D) ∈Ω⊕∪Ω⊗

Dispatch
(

v(r,D),Ω
⊕
)

for c = 0 to κd −1
for each v(r,F,c) ∈Ω	∪Ω⊗

Undo
(

v(r,F,c)
)

for each v(r,F,c) ∈Ω⊕∪Ω⊗

Fill
(

v(r,F,c),Ω
⊕
)

for each Steiner w inserted by v
MarkReaders(square of w,(r,F,c))

MarkReaders (s, t) =
for each edge s−→ v(tv)
if tv > t then Ω⊗←Ω⊗∪{v(tv)}

Insert (Q, v̂) =
(Q′,Σ−)← QTInsertInput(Q, v̂)
appnnv̂← |square of v̂|
Enqueue

(
v̂,D,apxnnv̂, v̂(0),Ω

⊕
)

PropagateWS
(
Σ−, v̂

)
return Q′

Delete (Q, v̂) =
(Q′,Σ−)← QTDeleteInput(Q, v̂)
Undo

(
v̂(0)
)

PropagateWS
(
Σ−, v̂

)
return Q′

Undo (v(t)) =
for each edge s−→ v(t)
CGDeleteEdge

(
s−→ v(t)

)
for each edge v(t) −→ w(tw)

CGDeleteEdge
(

v(t) −→ w(tw)

)
if @ edge · −→ w(tw) then

Ω	←Ω	∪
{

w(tw)

}
if t = (r,F,c) then

sw← square of w
MarkReaders(sw, t)
CGDeleteEdge

(
v(t) −→ sw

)
if v(t) ∈Ω	 then

Ω⊗←Ω⊗ \{v(t)}

Figure 9: The pseudo-code of the dynamic algorithm.

Figure 9 shows the pseudo-code for the Insert and Delete functions for
inserting and deleting a vertex v̂ into and from the input, and the PropagateWS
function for dynamic updates. Given v̂, Insert/Delete updates the quadtree,
determines the set of inconsistent squares Σ⊗, and initializes the fresh/obsolete set
by creating a dispatch operation or by marking the old dispatch operation acting
on v̂. Both functions then call PropagateWS.

The PropagateWS function starts by updating the operation sets by find-
ing the input vertices that are contained in the inconsistent squares, deleting their
dispatch operations, and creating new dispatch operations for them. It also ini-
tializes the inconsistent operation set, as MarkReaders marks inconsistent all
operations that read an inconsistent square. The algorithm then proceeds in time
order, first undoing the obsolete and inconsistent operations and then performing
the fresh and inconsistent operations by calling Dispatch and Fill (Figure 7).

27

Figure 10: Dynamic update after insertion
of v̂. Solid vertices are input (N), vertices
marked + are inserted, vertices marked− are
deleted. Gray squares are inconsistent. The
four smaller gray squares are fresh; they re-
place the bigger obsolete square.

v*

The Undo function undoes the work of obsolete and fresh operations by remov-
ing the Steiner vertices they insert (if any) and by removing the edges incident to
them (dependencies) from the computation graph. While removing these edges,
it also marks for removal the operations that lose their last incoming edge from
other operations—these operations would not be created in a fresh execution with
the modified input. The Undo function also calls the MarkReaders function to
expand the set of inconsistent operations as the set of vertices in a square changes
due to the removal of Steiner vertices. After Undo finishes its work and as the
algorithm executes fresh fill operations, it calls the MarkReaders function for
a similar reason: to update the set of inconsistent operations due to the insertion
of fresh Steiner vertices.

As their notation suggests, the obsolete, fresh, and inconsistent operations
used by the algorithm are related to those defined in the stability analysis; the
following lemma makes the relationship between them precise.

Lemma 10.1. The set of operations processed in the dynamic update algorithm,
Ω	 ∪Ω⊕ ∪Ω⊗, is a subset of the set of obsolete, fresh, and inconsistent opera-
tions, Ω−∪Ω+∪Ω×.

Proof. Let A = Ω	∪Ω⊕∪Ω⊗ and B = Ω−∪Ω+∪Ω×. Towards a contradiction,
assume that A 6⊂ B and let v(t) be the earliest operation in A\B. If v(t) ∈Ω	 then
either v(t) is a dispatch operation acting on an input vertex or there is an edge from
another operation w(τ) ∈Ω	∪Ω⊗ towards v(t). In the first case, v(t) depends on a
square in Σ×, which implies v(t) ∈ B. In the second case, by minimality of t, since
τ < t, w(τ) ∈ B. Lemma 9.2 implies that w(τ) is reachable from a square in Σ×

by a dependency path, therefore, v(t) is also reachable using dependency paths.
Then v(t) must be in B, either because it is inconsistent or because there it has

28

no matching operation. Similar arguments show that v(t) ∈ Ω⊕ implies v(t) ∈ B.
Therefore v(t) must be in Ω⊗, i.e., v(t) reads a square s for which the algorithm
calls the function MarkReaders (s, t ′) with a time t ′ < t. If s ∈ Σ⊗ then clearly
v(t) ∈ B; otherwise, there is another operation v′(t ′) that writes into s. Again, by
minimality of v(t), v′(t ′) ∈ B and by Lemma 9.2 there exists a dependency path
from v′(t ′) to v(t) which puts v(t) in B. Contradiction.

When completed, PropagateWS updates the output to M̃ and the computa-
tion graph to G̃ as if StableWS is run from-scratch with N′ as input, computing
M′ and G′.

Lemma 10.2 (Isomorphism). The output sets M̃ and M′ are equal and there exists
an isomorphism φ : G̃→ G′ that preserves the vertex and time of each operation.

Proof. We prove equality of the output and build φ by induction on time. Define
the following sets of operations: Ω

	
t = {v(τ) ∈Ω	 | v(τ) is created at time < t}

based on their creation times. (Ω	0 is the set of dispatch operations acting on
input vertices). Also, define a similar assemblage for the ⊕, ⊗, and ′ sets. Let
G̃t be the subgraph of G̃ induced by the nodes Ω̃t ∪ Σ̃ excluding the edges with
time≥ t; the excluded edges are related to the execution of operations at time≥ t.
Define G′t similarly and let M̃t be the updated set of vertices obtained by removing
and inserting vertices until time t, just before the executing operations at time t.

Initially, M̃0 = M′0 = N′ and Σ̃ = Σ′. Therefore, there exists an isomorphism
φ0 : G̃0→G′0. Assume the inductive hypothesis at time t, that M̃t =M′t and that we
have an isomorphism φt : G̃t →G′t . Pick op ∈ Ω̃t with time t and let op′ = φt(op).
We aim to prove that op and op′ execute in the same way. Because our functions
are all deterministic, it suffices to show that op and op′ read the same data. There
are three cases: op is either in Ω

⊕
t , or in Ω

⊗
t , or otherwise op is an operation that

has not been modified.
Assume that op is in Ω

⊕
t . We know Σ̃ = Σ′, therefore, op and op′ traverse the

same quadtree structure in their execution. For a vertex v that op reads, v cannot be
in M	t because the vertices in M	t are removed at time < t. Thus, op reads only the
vertices in M̃t =M′t , in other words op reads the same data as op′ does. The case
that op ∈ Ω

⊗
t is similar, because the re-execution of the inconsistent operations

follow the same rules. In the remaining case, op is not modified. Consider a
square s that op accesses. Because the update algorithm did not schedule op for
re-execution, we know that s is not in Σ−. Furthermore, for the same reason, s does
not contain a vertex in M	t ∪M⊕t . Therefore, op only reads vertices in M′t ∩Mt ; op
reads the same data as op′ does. Hence, in all cases, op and op′ execute similarly.

29

Figure 11: Inserting the dynamic vertex x (the
un-filled black point) into the set of solid black
points creates Ω(log∆) fresh Steiner vertices (the
gray points).

We have a natural correspondence between the operations that op and op′

create and the Steiner vertices they insert (in any). Therefore, M̃t+1 =M′t+1. Fur-
thermore, because op and op′ read and write the same squares the edges incident
to these operations have natural correspondences as well. Extending φt to φt+1 by
adding these correspondences completes proof of the inductive step.

Theorem 10.3. The Insert and Delete functions modify the output in O(log∆)
time and maintain a ρ-well-spaced output of optimal-size with respect to the up-
dated input.

Proof. By Lemma 10.2, we know that the output is the same as what would have
been generated by executing from scratch StableWS with the new input, there-
fore, Theorem 7.4 applies. As discussed in Section 4, the quadtree can be up-
dated in O(log∆) time. Also, Lemma 10.1 relates the runtime of the update algo-
rithm to the distance between the executions with the old and new inputs. Finally,
Lemma 9.5 bounds the runtime of PropagateWS as desired.

11. Lower bound

We present a lower bound proving that any algorithm which explicitly main-
tains a well-spaced superset requires Ω(log∆) time per dynamic update. Consider
dynamically inserting a new point very close to an existing input vertex. Even the
optimal dynamic algorithm is forced to insert geometrically growing rings of new
Steiner vertices around the dynamically inserted vertex. We prove that we can
iterate this process using a gadget. This shows that our algorithm is worst-case
optimal compared to all other explicit algorithms, even in an amortized setting.

We define a gadget (see Figure 11) consisting of points in the hypercube
[0,n−1/d]d . Consider two vertices at distance δ = 1/∆ from each other in the

30

middle of the box; let one of them be the dynamic vertex x which will be inserted
later. Also, consider a grid of O(1) vertices on each of the faces of the hypercube,
chosen according to the scheme of Hudson [15, p.79]. The input N consists of
tiling [0,1]d with the gadgets, n1/d for each dimension, without any dynamic ver-
tex. The dynamic modification sequence consists of inserting n dynamic vertices,
one for each gadget.

Lemma 11.1. Inserting the dynamic vertex to a single gadget requires inserting
Ω(log∆) Steiner vertices.

Proof. Let N be the input before adding the dynamic vertex x. Any size-optimal
output M of N has O(1) Steiner vertices inside the gadget box. Consider insert-
ing x and let N′ = N∪{x} and δ = NNN′(x). Draw the segment from x to the
farthest point in VorN′(x). This segment has length at least ` = Ω(n−1/d). Con-
sider the Voronoi diagram of a ρ-well-spaced superset M′ of N′ and consider the
Voronoi cells that this segment cuts. Let v1,v2, . . . be the vertices of those Voronoi
cells, in order. We know that the vertices in M′ are ρ-well-spaced, therefore,
|v1x| ≤ 2ρ NNN′(x) = 2ρδ . Also, the nearest neighbor distance of v1 is at most
|v1x|. We can use the same argument to get |v1v2| ≤ 2ρ|v1x| and repeat. In other
words, distance from x grows only geometrically as we walk down the segment:
covering the distance ` requires Ω(logn−1/d/δ) = Ω(logn−1/d∆) many Steiner
vertices. Choosing δ to be sufficiently small, e.g., δ = O(n−(1+ε)/d) for some
constant ε > 0, we have Ω(logn−1/d∆) = Ω(lognε/d) = Ω(log∆). This implies
that M differs from M′ in at least Ω(log∆) vertices.

Theorem 11.2 (Lower Bound). There exists an initial input and a set of n dynamic
insertions that forces any algorithm to insert Ω(n log∆) new Steiner vertices.

Proof. In the above scheme, we would like to prove that inserting n dynamic ver-
tices requires inserting Ω(n log∆) Steiner vertices. We refer to a technique of
inserting vertices to the hypercube faces [15]. It was developed precisely to make
sure that certain algorithms need not add vertices outside the hypercube when
making the interior ρ-well-spaced. Contrapositively, adding vertices outside a
gadget does not help make the gadget, with its dynamic vertex, be ρ-well-spaced.
Thus the prior lemma applies to each gadget individually, showing that the fi-
nal ρ-well-spaced superset must contain at least Ω(n log∆) Steiner vertices, for
a carefully selected ρ . Since there exists a constant ρ > 1 such that the original
input of n gadgets is ρ-well-spaced, the initial output must be of size O(n). This
completes our proof.

31

●●●●●●●●●

●
●● ●●

●●
●●

●
●
●●●●●

●●
●

●
●
●

●●

●

●●
●

●●

●

●●
●

●

●
●
●

●

●●

●
●

●

●●

●●●

●
●

●

● ●

●

●

●

●●

●
●
●

●

●
●

●
●

●●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●
●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

● ●

●

●

●

● ●

●

● ●●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

● ●
●●

●●

● ●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
● ● ● ● ● ● ● ● ●●

● ●● ●●
●

● ●●●
●
●
●

●
●

●
●

●
●

●
●

●●
●●

●
●

●●●● ● ●● ●●●
●

●
●

● ● ●●● ● ●●
●

●
●

●
● ●● ●

●
●

●
●

●
●

●
●

●
●

●
●

●● ● ●●● ● ● ● ● ●
●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●● ● ● ●●● ● ●●
●
●
●
●
●

●
●
● ● ● ●●

●
● ●

● ●
●
●●

●
●
●

●
●

●
●

●
●● ● ●●● ● ● ●●●●● ●●● ● ●

●
●
●
●
●
●
●

● ● ●●● ●
● ●

●
●

●
●
●
●
●

●
●

●
●

●
●
●●●

●
●

●
●●●

●●
●●

●
●
●
●
●
●
●
●
●

●●
●

●●●●
●

●
●
●
●
●
●
●

●
●
●
●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●●●●

●
●●

●●●
●

●
●●●

●●
●●●●●●●●●

●
●●●●●

●
●
●
●●●

●
●
●

●
●

●
●●

●●
●

●●
●
●

●
●

●
●

●
●
●
●

●●
●

●
●
●
●●

●
●
●
●
●
●

●●●
●

●
●
●

●
●
●●●●●●●

●
●
●
●
●

●
●

●
●

●
●

●●
●

●●
●

●
●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●
●

●
●

●●
●

●
●●●

●●

●
● ●

●●

●
●

●
●

●
●

●●
●●● ● ● ●

●
●

● ● ●●
●●●

●
●

●
●●●●●

●●●●●●

●
●
●● ● ● ● ●

●
●●●●●●

●
●●

●●
●

●
●● ●

● ●
●●●

●●

●●

●●

●●

●●

●●

Figure 12: A model of Lake Superior meshed by StableWS.

12. Experiments

We have implemented1 the proposed algorithm, and performed an experimen-
tal analysis using both synthetic and real datasets with parameters ρ =

√
2, and

β = 2 in 2D or β = 2
√

2/
√

3 in 3D. As we report below, our experiments con-
firm our asymptotic bounds and give strong evidence that they can be realized
efficiently in practice. Specifically, considering synthetic datasets, we show that
the practical efficiency of our algorithm matches the theoretical analysis. We also
consider real data sets of varying sizes in 2D and 3D, where our algorithm handles
dynamic changes significantly faster than a full recomputation.

In all experiments, we measure both the time required for generating a well-
spaced superset from scratch, and for performing point insertions into and dele-
tions from this set. We report wall-clock times for from-scratch runs, and speedups,
measured relative to these times, for point changes. Our testing machine has an
Intel Core i5 750 CPU, 8G of memory, and runs Ubuntu 10.04.

We note that developing practically efficient mesh generators is a huge engi-

1http://ttic.uchicago.edu/˜cotter/projects/dynamic_wsp

32

http://ttic.uchicago.edu/~cotter/projects/dynamic_wsp

Time Insert Speedup Delete Speedup
Ti

m
e

(s
)

1e+02 1e+03 1e+04 1e+05

5e
−

02
5e

−
01

5e
+

00
5e

+
01

2D
3D

Sp
ee

du
p

1e+02 1e+03 1e+04 1e+05

2
5

20
10

0
50

0
50

00

2D
3D

1e+02 1e+03 1e+04 1e+05

2
5

20
10

0
50

0
50

00

2D
3D

n n n

Figure 13: Left: time, in seconds, required to generate a well-spaced superset of
a size-n set of uniformly random inputs. Right: speedups, relative to the time
required by a from-scratch run, observed for random single-point insertions into
and deletions from an existing well-spaced point set. All plots are in log-log scale.

neering challenge (e.g., Triangle [28, 30] in 2D and SVR [16, 5] in 3D), especially
because of the care needed to ensure that arithmetic operations on floating-point
numbers can be performed accurately and efficiently. Such an engineering effort is
beyond the scope of this paper; we simply wish to confirm that there are no major
obstacles in making our algorithm practical. In our implementation we therefore
employ exact floating-point arithmetic operations with some simple, easy to im-
plement optimization.

12.1. Uniform random data
In our first set of experiments, we generated uniformly random data of various

sizes and dimensions, and measured the time required for from-scratch runs, and
point changes. The results of these experiments are reported in Figure 13. As can
be seen in the left-hand plot, the runtime required to create a well-spaced superset
from scratch using our algorithm is roughly linear in the input size n, indicating
that our algorithm scales very well. Theorem 8.7 upper bounds the runtime as
O(n log∆), and while log(∆) is an increasing function of n for uniformly random
data, the effects of this additional term are not noticeable in these experiments.

Theorem 10.3 indicates that the time required for each point change, whether
an insertion or deletion, should be O(log∆), indicating that we should experience
a speedup for each dynamic change, over re-running from scratch, which is linear
in n. The two right-hand plots in figure 13 illustrate the speedups, relative to

33

Application Our Implementation
Dataset d Inputs Outputs Time Insert Delete
SD Bay 2 1823 8469 0.672s 52.5× 47.9×
New Zealand 2 18595 97952 8.69s 483× 417×
Cape Cod 2 20930 85571 7.24s 459× 387×
Lake Superior 2 33487 160004 14.3s 634× 538×
SF Bay 2 85910 341962 30.1s 1710× 1420×
Bunny 3 35947 145018 4.76s 22.9× 18.5×
Armadillo 3 172974 608342 384s 55.1× 42.8×

Table 1: Properties of a number of well-known meshing datasets, as well as the
sizes of the well-spaced supersets found by our algorithm, time required to find
them, and speedups experienced when performing single-point insertions into or
deletions from these well-spaced supersets.

the time of a from-scratch run, and confirm that the observed performance of our
algorithm matches these bounds. In fact, the speedups experienced for the largest
point sets on which we experimented, containing 100000 points, are quite large,
approaching a factor of 5000 in 2D and 100 in 3D.

12.2. Real-world Datasets
In order to explore further the performance of our algorithm, we performed

experiments on several well-known 2D and 3D datasets. Table 1 reports the wall-
clock time required to find well-spaced supersets, from scratch, of these datasets,
as well as the speedups experienced when performing random point insertions or
deletions. These results are roughly in line with those of figure 13, and show that
the results of these earlier experiments did not depend on the fact that the data was
taken to be uniformly random.

13. Conclusion

We present a dynamic algorithm for computing a well-spaced superset of a
dynamically changing set of input points. Our algorithm is efficient, finds an
optimal-size output, consumes linear space, and responds to dynamic modifica-
tions in worst-case optimal time. The underlying technique is a stable algorithm
for computing well-spaced point sets whose executions can be represented with
computation graphs that remain similar when the input sets themselves are similar.

34

Our dynamic update algorithm takes advantage of stability to update the output
efficiently by propagating the input modification through the computation graph.
To assess the practicality of our approach we present a prototype implementation.
Our experiments show that the algorithm can be implemented efficiently such that
it delivers performance consistent with our theoretical bounds. We expect a well-
polished implementation will provide static performance comparable to the state
of the art, and dynamic performance orders of magnitude faster.

References

[1] Acar, U.A., 2005. Self-Adjusting Computation. Ph.D. thesis. Department of
Computer Science, Carnegie Mellon University.

[2] Acar, U.A., Blelloch, G.E., Blume, M., Tangwongsan, K., 2006. An experi-
mental analysis of self-adjusting computation, in: Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion.

[3] Acar, U.A., Blelloch, G.E., Tangwongsan, K., Türkoğlu, D., 2008. Robust
Kinetic Convex Hulls in 3D, in: 16th Annual European Symposium on Al-
gorithms.

[4] Acar, U.A., Cotter, A., Hudson, B., Türkoğlu, D., 2010. Dynamic well-
spaced point sets, in: SCG ’10: Proceedings of the 26th Annual Symposium
on Computational Geometry.

[5] Acar, U.A., Hudson, B., Miller, G.L., Phillips, T., 2007. SVR: Practi-
cal engineering of a fast 3D meshing algorithm, in: International Meshing
Roundtable, pp. 45–62.

[6] Bern, M., Eppstein, D., Gilbert, J.R., 1994. Provably Good Mesh Genera-
tion. Journal of Computer and System Sciences 48, 384–409.

[7] Boissonnat, J.D., Devillers, O., Schott, R., Teillaud, M., Yvinec, M., 1992.
Applications of random sampling to on-line algorithms in computational ge-
ometry. Discrete Computional Geometry 8, 51–71.

[8] Cheng, S.W., Dey, T.K., Edelsbrunner, H., Facello, M.A., Teng, S.H., 2000.
Sliver Exudation. Journal of the ACM 47, 883–904.

35

[9] Chentanez, N., Alterovitz, R., Ritchie, D., Cho, L., Hauser, K.K., Goldberg,
K., Shewchuk, J.R., O’Brien, J.F., 2009. Interactive simulation of surgical
needle insertion and steering, in: Proceedings of ACM SIGGRAPH.

[10] Chew, L.P., 1989. Guaranteed-quality triangular meshes. Technical Report
TR-89-983. Department of Computer Science, Cornell University.

[11] Clarkson, K.L., Mehlhorn, K., Seidel, R., 1993. Four results on randomized
incremental constructions. Computational Geometry Theory and Applica-
tion 3, 185–212.

[12] Coll, N., Guerrieri, M., Sellarès, J.A., 2006. Mesh modification under local
domain changes, in: 15th International Meshing Roundtable, pp. 39–56.

[13] Hammer, M.A., Acar, U.A., Chen, Y., 2009. CEAL: A C-based language for
self-adjusting computation, in: Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and Implementation.

[14] Har-Peled, S., Üngör, A., 2005. A time-optimal Delaunay refinement algo-
rithm in two dimensions., in: 21st Symposium on Computational Geometry,
pp. 228–236.

[15] Hudson, B., 2007. Dynamic Mesh Refinement. Ph.D. thesis. School of Com-
puter Science, Carnegie Mellon University. Available as Technical Report
CMU-CS-07-162.

[16] Hudson, B., Miller, G.L., Phillips, T., 2006. Sparse Voronoi Refinement,
in: 15th International Meshing Roundtable, pp. 339–356. Long version in
Carnegie Mellon University Tech. Report CMU-CS-06-132.

[17] Hudson, B., Türkoğlu, D., 2008. An efficient query structure for mesh re-
finement, in: Canadian Conference on Computational Geometry.

[18] Jampani, R., Üngör, A., 2007. Construction of sparse well-spaced point sets
for quality tetrahedralizations, in: IMR, pp. 63–80.

[19] Ley-Wild, R., Acar, U.A., Fluet, M., 2009. A cost semantics for self-
adjusting computation, in: Proceedings of the 26th Annual ACM Sympo-
sium on Principles of Programming Languages.

36

[20] Li, X.Y., Teng, S.H., 2001. Generating well-shaped Delaunay meshes in 3D,
in: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 28–37.

[21] Li, X.Y., Teng, S.H., Üngör, A., 1999. Simultaneous refinement and coars-
ening for adaptive meshing. Engineering with Computers 15, 280–291.

[22] Miller, G.L., Talmor, D., Teng, S.H., Walkington, N., Wang, H., 1996. Con-
trol Volume Meshes Using Sphere Packing: Generation, Refinement and
Coarsening, in: 5th Intl. Meshing Roundtable, pp. 47–61.

[23] Molino, N., Bao, Z., Fedkiw, R., 2004. A virtual node algorithm for chang-
ing mesh topology during simulation, in: SIGGRAPH.

[24] Mulmuley, K., 1991. Randomized multidimensional search trees (extended
abstract): dynamic sampling, in: Proceedings of the 7th Annual Symposium
on Computational Geometry, pp. 121–131.

[25] Nienhuys, H.W., van der Stappen, A.F., 2004. A Delaunay approach to
interactive cutting in triangulated surfaces, in: fifth Intl. Workshop on Algo-
rithmic Foundations of Robotics.

[26] Ruppert, J., 1995. A Delaunay refinement algorithm for quality 2-
dimensional mesh generation. J. Algorithms 18, 548–585.

[27] Schwarzkopf, O., 1991. Dynamic maintenance of geometric structures made
easy, in: Proceedings of the 32nd Annual Symposium on Foundations of
Computer Science, pp. 197–206.

[28] Shewchuk, J.R., 1996. Triangle: Engineering a 2D Quality Mesh Generator
and Delaunay Triangulator. volume 1148. Springer-Verlag, Berlin.

[29] Shewchuk, J.R., 1998. Tetrahedral mesh generation by Delaunay refine-
ment, in: SCG ’98: Proceedings of the Fourteenth Annual Symposium on
Computational Geometry, ACM Press, New York, NY, USA. pp. 86–95.

[30] Shewchuk, J.R., 2002. Delaunay refinement algorithms for triangular mesh
generation. Computational Geometry: Theory and Applications 22, 21–74.

[31] Spielman, D., Teng, S.H., Üngör, A., 2007. Parallel Delaunay refinement:
Algorithms and analyses. IJCGA 17, 1–30.

37

[32] Talmor, D., 1997. Well-Spaced Points for Numerical Methods. Ph.D. thesis.
Carnegie Mellon University. Available as Technical Report CMU-CS-97-
164.

38

	Introduction
	Preliminaries
	Clipped Voronoi Cells
	Dynamic Balanced Quadtrees
	Computing Clipped Voronoi Cells
	A Stable Construction Algorithm
	Output Quality and Size
	Runtime
	Dynamic Stability
	Dynamic Update Algorithm
	Lower bound
	Experiments
	Uniform random data
	Real-world Datasets

	Conclusion

