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Dynamic Whole-Body Motion Generation

under Rigid Contacts and other Unilateral Constraints
Layale Saab, Oscar E. Ramos, François Keith, Nicolas Mansard, Philippe Souères, Jean-Yves Fourquet

Abstract—The most widely-used technique to generate whole-
body motions on a humanoid robot accounting for various tasks
and constraints is the inverse kinematics. Based on the task-
function approach, this class of methods makes possible the
coordination of the robot movements to execute several tasks in
parallel and account for the sensor feedback, in real-time thanks
to the low computation cost. To some extent, it also enables
dealing with some of the robot constraints (e.g. joint limits or
visibility) and managing the quasi-static balance of the robot. In
order to fully use the whole range of possible motions, this paper
proposes to extend the task-function approach to handle the
full dynamics of the robot multi-body along with any constraint
written as equality or inequality of the state and control variables.
The definition of multiple objectives is made possible by ordering
them inside a strict hierarchy. Several models of contact with the
environment can be implemented in the framework. We propose
a reduced formulation of the multiple rigid planar contact that
keeps a low computation cost. The efficiency of this approach is
illustrated by presenting several multi-contact dynamic motions
in simulation and on the real HRP-2 robot.

Index Terms—Humanoid robotics, redundant robots, dynam-
ics, force control, contact modeling.

I. INTRODUCTION

THE GENERATION of motion for humanoid robots is

a challenging problem, due to the complexity of their

tree-like structure and the instability of their bipedal posture

[3]. Typical examples are shown in Fig. 1, with the HRP-

2 robot using multiple non-coplanar contacts to perform a

dynamic motion. These robots own a large number of degrees

of freedom (DOF), typically more than 30. In return, they are

subject to various sets of constraints (balance, contact, actuator
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Fig. 1. Dynamic multi-contact motion with the HRP-2 model.

limits), that reduce the space of possible motions. These

constraints can typically be formulated as equalities (e.g. zero

velocity at rigid-contact points [4]), and inequalities (e.g.

joint position [5], velocity or torques bounds, obstacles [6]).

Moreover, they are of relative importance (e.g. balance has

to be considered more important than visibility [7]). In total,

the motion has to be designed in a set that lives in the

high-dimensional configuration space but is implicitly limited

to a much smaller submanifold by the set of constraints.

This makes the classical sampling methods [8], [9] more

difficult to use than for a classical manipulator. The motion

manifold cannot be sampled directly but by projection [10].

The connection process in high-dimension is costly [11] and

and often fails due to the number of constraints.

Rather than designing the motion at the whole-body level

(configuration space), the task function approach [12], [13]

proposes to design the motion in a space dedicated to the

task to be performed. It is then easier to design the reference

motion in the task space, and transcripting this reference from

the task space to the whole-body level is only a numerical

problem. This approach is versatile, since the same task is

generally transposable from one robot or situation to another.

It also eases the use of sensory feedback, since the sensory

space is often a good task-space candidate [14], [15].

A task is a basic brick of motion, which can be combined

sequentially [16] or simultaneously to a complex motion.

Simultaneous execution can be achieved in two ways: by

weighting, or by imposing a strict hierarchy. Coming from nu-

merical optimization [17], this second solution was introduced

in robotics by [18] and formalized for any number of tasks

in [19], [20]. This approach is well fitted to cope with equality

constraints. However, inequality constraints cannot be taken

into account explicitly. Therefore, approximate solutions, such

as potential field approaches [21], [7] or damping functions

[5], [22] have been proposed to consider inequalities.

The transcription of the motion reference from the task

space to the whole-body control is naturally written as a
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quadratic program (QP) [23]. A QP is composed of two layers,

namely the constraint and the cost. It can be seen as a hierarchy

of two levels, the constraint having priority over the cost. If

only equality constraints are considered, the QP resolution

corresponds to the inversion schemes [20], in the particular

case of two levels. Inequalities can also be taken into account

directly, as constraints, or in the cost function [24]. In [25], a

method to extend the QP formulation to any number of priority

levels is given. The solution of such a hierarchical problem is

computed by solving a cascade of QP (or hierarchical QP).

In [26], a dedicated solver has been proposed to obtain the

solution at lower cost (in one step instead of a cascade).

All these works only consider the kinematics of the robot.

On a humanoid robot, many constraints arise from the dynam-

ics of the multi-body system. The formulation by task can be

extended to compute the torque at the whole-body level from

the reference motion expressed in the dedicated task space,

also called operational space [27]. For a humanoid in contact,

the motion is constrained to the submanifold of configurations

that respects the contact model [28] as illustrated by Fig. 1. A

review of the work in modeling and control of the dynamics

of a set of bodies in contact is proposed in [29], [30]. The

connection with inverse dynamics has been done in [31], [32].

Using these approaches, it is possible to take into account

a hierarchy of tasks and constraints (or stack of tasks [33]),

all written as equalities [34], [35]. In [36], a first solution to

handle inequalities in the stack of tasks was proposed, but

cannot set any inequality constraint on the contact forces.

In [37], [38], the inverse-dynamics problem has been written

as a QP, where the unilateral contact constraints, along with

classical unilateral constraints (joint limits, etc) are explicitly

considered. In that case, several tasks can be composed by

setting relative weights, but a hierarchy of tasks is not possible.

In this paper, we propose a generic solution to take into

account equalities and inequalities in a strict hierarchy to

generate a dynamic motion. This solution is based on the sim-

ilarities between inverse kinematics and inverse dynamics. In

Section II, the inverse-kinematics scheme is recalled, written

into a general form; the possibility of taking into account

inequalities is then introduced using the solver [25], [26].

Then, putting the operational-space inverse dynamics under

the same generic form, Section III uses the same hierarchical

solver to take into account both dynamics and inequalities.

This first solution deals with the robot in free space. In

Section IV, contacts are introduced in the model and used in

the resolution scheme. The contact model is generic and can be

adapted to various situations (rigid contact, friction cone [39],

elastic contact [40]). A solution is proposed in Section V to

implement a reduced form of multiple plane/plane slidingless

rigid contacts. In Section VI the connection is made with the

zero-moment point (ZMP) contact criterion [41] classically

used in humanoid robotics [42]. The generation is close to the

real time (around 20ms per control cycle on a typical 30DOF

robot). Some examples of complex motions involving non-

coplanar contacts and their execution on the real robot are

presented in Section VII.

II. INVERSE KINEMATICS

A. The task-function approach

The task-function approach [13], or operational-space ap-

proach [27], [43], provides a mathematical framework to

describe tasks in terms of specific output functions. The task

function is a function from the configuration space to an

arbitrary task space, chosen to ease the observation and the

control of the motion with respect to the task to perform.

A task is defined by a triplet (e, ė∗, Q), where e is the task

function that maps the configuration space to the task space,

ė∗ is the reference behavior expressed in the tangent space to

the task space at e. Q is the differential mapping between the

task space and the control space of the robot which verifies

the relation:

ė + µ = Qu (1)

where u is the control in the configuration space and µ is the

drift of the task. To compute a specific robot control u∗ that

performs the reference ė∗, any numerical inverse of Q can be

used. The generic expression of the control law is then :

u∗ = Q#(ė∗ + µ) + Pu2 (2)

In this expression, the first part performs the task, and the

second part, modulated by the secondary control input u2,

expresses the redundancy of the task [18]. In the first term,

Q# is any reflexive generalized inverse of Q, often chosen to

be the (Moore-Penrose) pseudoinverse Q+ [44] or a weighted

inverse Q#W [45] (see App. A). In the second term of (2),

P = I − Q#Q is the projector onto the null space of Q
corresponding to Q#.

B. Hierarchy of tasks

The projector P is intrinsically related to the redundancy

of the robot with respect to the task e. A secondary task

(e2, ė
∗
2, Q2) can be executed using u2 as a new control input.

Introducing (2) in ė2 + µ2 = Q2u gives:

ė2 + µ̃2 = Q̃2u2 (3)

with µ̃2 = µ2 − Q2Q
#(ė∗ + µ) and Q̃2 = Q2P. This last

equation fits the template (1), and can be solved using the

generic expression (2) [20]:

u2
∗ = Q̃2

#
(ė∗ + µ̃2) + P2u3 (4)

where P2 enables the propagation of the redundancy to a third

task using the input u3. By recurrence, this generic scheme can

be extended to any arbitrary hierarchy of tasks.

C. Inverse kinematics formulation

In the inverse-kinematics problem, the control input u is

simply the robot joint velocity q̇. The differential map Q
between the task and the control is the task Jacobian J. In

that case, the drift µ = ∂e
∂t

is often null, and (1) is written:

ė = Jq̇ (5)
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The simplest and most-often used solution is to choose Q# to

be the pseudoinverse Q+, that gives the least Euclidean norm

of both q̇ and ė∗ − Jq̇ [46], [47]. The control law is then:

q̇∗ = q̇∗1 + Pq̇2 (6)

where q̇∗1 = J+ė∗. A typical reference behavior is an expo-

nential decay of e to zero: ė∗ = −λe, λ > 0.

It may happen that J becomes singular, i.e. rank(J) < r0,

where r0 is the nominal rank of J out of the singular config-

uration. Numerical problems can occur during the transition

from the nominal situation to the singular one. To avoid these

problems, the pseudoinverse is often approximated by the

damped least-square J† defined by [48], [49]:

J† =

[
J
ηI

]+ [
I
0

]
(7)

where I is the identity matrix of proper size and η is a

damping factor, chosen as an additional parameter of the

control (typically, η = 10−2 for a humanoid robot).

D. Projected inverse kinematics

Consider a secondary task (e2, ė
∗
2, J2). The template (3) is:

ė2 − J2q̇
∗
1 = J2Pq̇2 (8)

In this case, the differential map is the projected Jacobian

Q = J2P, and the drift is µ = −J2q̇∗1 . The control input q̇∗2
is obtained once more by numerical inversion [20], [50]:

q̇∗2 = (J2P)
+(ė2 − J2q̇

∗) + P2q̇3 (9)

where P2 is the projector into the null space of J2P . The same

scheme can be reproduced iteratively to take into account any

number of tasks until Pi is null.

In general rank(J2P) ≤ rank(J2) ≤ r2, where r2 is the

nominal rank of J2. When the second inequality is strict, the

singularity is said to be kinematic; when the first inequality is

strict, the singularity is said to be algorithmic [51]1. To avoid

any numerical problem in the neighborhood of the singularity,

a damped inverse can be used to invert J2P.

E. Hierarchical quadratic program resolution

1) Generic formulation: When considering a single task,

the solution obtained with the pseudoinverse (2) is known to be

the optimal solution of the QP min
u

||Qu− ė∗−µ||2. The great

advantage of the QP formulation is that both linear equalities

and inequalities can be considered, while the pseudoinverse-

based schemes presented above cannot explicitly deal with

inequalities. A quadratic program is composed of a quadratic

cost function to be minimized while satisfying the set of

constraints [52]. It can be seen as a two-level hierarchy, where

the set of constraints has priority over the cost. Inequalities are

set as the top-priority. The introduction of slack variables is a

classical solution to handle an inequality at the second priority

level [53]. In [25], it was proposed to use the slack variables

to generalize the QP to more than two levels of hierarchy and

1Both cases are similar in the sense that

[

J1
J2

]

is singular.

thus to build a hierarchical quadratic problem (HQP) handling

inequalities.

The HQP formulation is first recalled in a generic frame.

A generic constraint k is defined by the linear map Ak and

the two inequality bounds (b
k
, bk), where b

k
and bk are

respectively the lower and upper bounds on the reference

behavior2. At level k, the cascade algorithm solving the

hierarchy (Ak, bk) is expressed by the following QP:

min
uk,wk

||wk||2

s.t. b
k−1

≤ Ak−1uk +w
∗
k−1

≤ bk−1

b
k

≤ Akuk + wk ≤ bk

(10)

where Ak−1, (b
k−1

,bk−1) are the constraints at all the

previous levels from 1 to k − 1 (Ak−1 = (A1, ..., Ak−1)),
and Ak, (b

k
, bk) is the constraint at level k.

The slack variable3 wk is used to add some freedom to

the solver if no solution can be found when the constraint k is

introduced under the k−1 previous constraints: wk is variable

and can be used by the solver to relax the last constraint Ak.

On the other hand, w
∗
k−1

is constant and set to the result

of the previous optimization of the k − 1 first QP (at each

of the iterations of the cascade, w∗
k−1

is augmented with the

optimal w∗
k by w

∗
k−1

:= (w∗
k−1

, w∗
k)). A solution to the strict

k − 1 constraint Ak−1 is then always reached, even if the

slack constraint Ak is not feasible: this corresponds to the

definition of the hierarchy.

A classical method to compute the solution of a QP or HQP

relies on an active-search algorithm [52], [26] (see App. B),

which implies iterative computations of the pseudoinverse of

a subproblem of the initial QP. Since pseudoinverses are used,

the classical numerical problems can occur in the neighbor-

hood of singularities. Regularization methods that extend the

damping inverse [49] used in robotics can be applied [54].

The method proposed above is generic and can be applied

to any numerical problem written with a linear hierarchical

structure. In that case, it is referred to as HQP (or cascade of

QP) and denoted with the lexicographic order: (i) ≺ (ii) ≺
(iii) ≺ ... which means that the constraint (i) has the highest

priority. In the following, we propose a solution to apply this

formulation to invert kinematics and dynamics. The constraints

are then the tasks defined above and the hierarchical solver is

called a stack of tasks (SOT) or hierarchy of tasks.

2) Application to inverse kinematics: When considering a

single task, inversion (6) corresponds to the optimal solution

to the problem:

min
q̇

||Jq̇ − ė∗||2 (11)

By applying the QP resolution scheme, both equalities and

inequalities can be considered. Replacing b by ė, the reference

part is then rewritten:

ė∗ ≤ ė ≤ ė
∗

(12)

2Specific cases can be immediately implemented: b
k
= bk in the case of

equalities and b
k
= −∞ or bk = +∞ to handle single-bounded constraints.

3w is an implicit optimization variable whose explicit computation can be
avoided when formulating the problem as a cascade. It does not appear in the
vector of optimization variables u. See [26] for details.
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For instance, in the case of two tasks with priority order e1 ≺
e2, the expression of the QP is given by:

min
q̇,w2

||w2||2

s.t. ė∗1 ≤ J1q̇ + w∗
1 ≤ ė

∗
1

ė∗2 ≤ J2q̇ + w2 ≤ ė
∗
2

(13)

In robotics, when a constraint is expressed as an inequality,

it is very likely to be put as the top priority: typically, joint

limits and obstacle avoidance. Using this framework, it is also

possible to handle inequalities at the second priority level

(i.e. in the cost function). A typical case is to prevent visual

occlusion when possible, or to keep a low velocity if possible,

without disturbing the robot behavior when it is not necessary.

In the sequel, the HQP considering linear equalities and

inequalities is extended from inverse kinematics to inverse

dynamics.

III. INVERSE DYNAMICS

In this section the case of a contact-free dynamical multi-

body system without free-floating root is considered.

A. Task-space formulation

As previously stated, a task is defined by a task function e, a

reference behavior and a differential mapping. At the dynamic

level, the reference behavior is specified by the expected task

acceleration ë∗, while the control input is typically the joint

torques τ . The operational-space inverse dynamics then refers

to the problem of finding the torque control input τ that

produces the task reference ë∗, using any necessary joint

acceleration q̈. The acceleration q̈ is then a side variable,

that does not require to be explicitly computed during the

resolution. Contrary to the case of kinematics, the mapping

between the control input τ and the task space is obtained

in two stages. First, the map between accelerations in the

configuration space and in the task space is obtained by

differentiating (5):

ë = Jq̈ + J̇q̇ (14)

Then, the dynamic equation of the system expressed in the

joint coordinates is deduced from the mechanical laws of

motion [55].

Aq̈ + b = τ (15)

where A = A(q) is the generalized inertia matrix of the

system, q̈ is the joint acceleration, b = b(q, q̇) includes all the

nonlinear effects including Coriolis, centrifugal and gravity

forces and τ are the joint torques. The generic form (1) is

obtained by replacing q̈ in (15) with (14) [27]:

ë − J̇q̇ + JA−1b = JA−1τ (16)

This equation follows the template (1) with Q = JA−1, µ =
−J̇q̇ + JA−1b and u = τ .

The torque τ∗ that ensures ë∗ is solved using the generic

form (2). It is generally proposed to weight the inverse by

the inertia matrix A. This weight ensures that the process

is consistent with Gauss’ principle [56], i.e. that the torques

and accelerations corresponding to the redundancy of the task

are the closest to the acceleration of the unconstrained multi-

body system. This principle can be intuitively understood by

considering the weight like a minimization of the acceleration

pseudo energy q̈TAq̈ [57], [31].

The redundancy can also be explicitly formulated during

the inversion, using the form (3). A SOT can be iteratively

built, with the lower-priority tasks being executed in the best

possible way without disturbing the higher priority tasks [58],

[59]:

τ∗ = τ∗1 + Pτ2 (17)

where P =I−JT (JA−1JT )+JA−1 is the projector in the null

space of JA−1 and τ∗1 =(JA−1)#A(ë∗−J̇q̇+JA−1b).

B. Projected inverse dynamics

As before, the differential map for the projected secondary

task e2 is obtained by replacing (17) into the robot dynamics

equation in the task space ë2 − J̇2q̇ + J2A
−1b = J2A

−1τ :

ë2 + µ2 = Q2τ2 (18)

with µ2 = −J̇2q̇ + J2A
−1b− J2A

−1τ∗1 , and Q2 = J2A
−1P.

The same weighted inverse is used to invert Q2 [58], [59].

Accordingly, any number of tasks can be added iteratively

until the projector becomes null.

The same singularities as in inverse kinematics may appear

(the dynamics in itself does not bring any new singular case,

since A is always full rank). To avoid any numerical problem,

the damped weighted inverse is generally used. As for the

kinematics, only tasks defined by equality constraints can be

taken into account using this pseudoinverse-based resolution.

To take into account inequalities, we propose to extend to the

dynamics the HQP [25] that was previously introduced for the

kinematics.

C. Application of the QP solver to the inverse dynamics

When resolving a given task e while taking into account the

dynamics, both (14) and (15) must be fulfilled. There are two

ways of formulating the QP. First, q̈ can be substituted from

(14) into (15), to obtain the single reduced equation (16). In

that case, the QP only requires to solve τ , the variable q̈ being

not explicitly computed:

min
τ

||JA−1τ − ë∗ − µ||2 (19)

Alternatively, (14) can be solved under the constraint (15).

Using the hierarchy notation, the HQP is thus (15) ≺ (14), or

using the standard QP notation:

min
τ,q̈,w

||w||2

s.t. Aq̈ + b = τ

ë∗ + w = Jq̈ + J̇q̇

(20)

In that case, both τ and q̈ are explicitly computed. They

constitute the vector of optimization variables u = (τ, q̈).
QP (19) has a reduced form, but QP (20) allows any explicit

formulation using the dynamics variables. In the following,

such an exhaustive formulation is necessary to deal with the

contact.
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IV. INVERSE DYNAMICS UNDER CONTACT CONSTRAINTS

A. Insertion of the contact forces

In the previous section, the considered multi-body system

was in free space (no contact forces) and fully actuated (no

free-floating body, for example). The model of the humanoid

robot includes both the contact forces and a zero-torque

constraint on the six first DOF. First, the case of a single

contact point denoted by xc is considered:

Aq̈ + b+ J⊤
c f = ST τ (21)

where A and b are defined as before, q̈ is the vector of

generalized joint accelerations4, f is the 3D contact force

applied at the contact point xc, Jc = ∂xc

∂q
is the Jacobian

matrix of xc
5 and S = [0 I] is a matrix that allows to select

the actuated joints.

The rigid-contact condition implies that there is no motion

of the robot contact body xc i.e. ẋc = 0, ẍc = 0. For a given

state, it implies the linear equality constraint:

Jcq̈ = −J̇cq̇ (22)

If multiplying (21) by JcA
−1 and substituting the expression

of Jcq̈ given by (22), a constraint is obtained, that constrains

the torque with respect to the contact force:

JcA
−1J⊤

c f = JcA
−1(ST τ − b) + J̇cq̇ (23)

In this expression, the acceleration does not appear explicitly

anymore. In the basic case, JcA
−1J⊤

c is invertible, and f can

be deduced [35]:

f = (J⊤
c )A

−1#(ST τ − b) + (JcA
−1J⊤

c )−1J̇cq̇ (24)

This expression of f can be re-injected in (21), to obtain a

reformulated dynamic equation where the force variable does

not appear explicitly anymore.

Aq̈ + bc = PcS
T τ (25)

where Pc = (I − Jc
#A−1

Jc)
T = (I − (JcA

−1)#AJcA
−1)

is the projection operator of the contact6, and bc = Pcb +
J⊤
c (JcA

−1J⊤
c )−1J̇cq̇. As above, the differential map between

the task and the torque input is expressed through the inter-

mediate variable q̈ by inserting (25) in (14):

ë + µ = Qτ (26)

with µ = −J̇q̇ + JA−1bc and Q = JA−1PcS
T . By inverting

(26) and choosing a proper weighted inverse, the obtained for-

mulation is equivalent to the operational-space inverse dynam-

ics developed in [61] (see Appendix C). When inverting (26),

it is possible to explicitly handle the redundancy using the

inversion template (3). The scheme can be propagated to

any levels of hierarchy. The general form of the inverse for

the second level of the hierarchy is J2P1A
−1PcS

T , where

4To be exact, q̈ should be written

[

v̇f
q̈A

]

, where vf is the 6D velocity of the

robot root and qA the position of the actuated joints. For the ease of notation
q, q̇ and q̈ are used in the article.

5The coordinates of xc, f and Jc have to be expressed in the same frame,
for example the one attached to the corresponding robot body

6The exact same form can be obtained if Jc is rank deficient [60].

P1 is the projector into the null space of the main task.

In general, rank(J2P1A
−1PcS

T ) ≤ rank(J2A
−1PcS

T ) ≤
rank(J2) ≤ r2. If the first inequality is strict, this is the

algorithmic singularity encountered in inverse kinematics. If

the last inequality is strict, it is a kinematic singularity. If

the intermediate inequality is strict, the singularity is due

to the dynamic configuration of the multi-body system in

contact, and could be called a dynamic singularity7. As above,

a damped inverse is used in practice to avoid the numerical

problems in the neighborhood of the singularity.

As before, (26) follows the template (2) and can be directly

formulated as a QP. The QP can be expressed under a reduced

form as proposed in [2]. Or more simply, the HQP (20) can

be reformulated to consider the dynamics in contact. Using

the HQP notation, the program for one task is (21) ≺ (22)

≺ (14). The variables f and q̈ are then explicitly computed:

u = (τ, q̈, f). This HQP was proved to be equivalent to the

reduced inversion in [1].

B. Rigid-point-contact condition

For a single point in rigid contact with a surface, there are

two complementary possibilities: either the force along the

normal to the contact surface is positive (the robot pushes

against the surface and does not move), or the acceleration

along the normal is positive (the robot contact point is taking

off, and does not exert any force on the surface). Both

possibilities are said to be complementary since one and only

one of them is fulfilled. This is mathematically written:

ẍ ≥ 0 (27)

f⊥ ≥ 0 (28)

ẍf⊥ = 0 (29)

where f⊥ is the component of f corresponding to the normal

direction. The complementary condition is a direct expression

of d’Alembert-Lagrange Virtual Work principle, in the simple

case of rigid contact. By writing (21) and (22), it is implicitly

considered that the robot is in the first case: no movement

(22) and positive normal force. In consequence, the generated

control must also fulfill the second condition (28).

Very often, only the zero-motion condition constraint (22)

is considered [35]. As a consequence, an unfeasible dynamic

motion can be generated since the second contact condi-

tion (28) is not explicitly verified. A first solution can be

to saturate the part of the control that does not correspond

to gravity compensation when the positivity condition is not

satisfied [59]. However, such a solution is very restrictive

compared to the motions that the robot can actually perform.

It is straightforward to take into account the two conditions

above in a HQP. In that case, the contact forces have to be

explicitly computed as one of the QP variables: u = (τ, q̈, f).
The HQP is then (21) ≺ (22) ≺ (28) ≺ (14).

7The three cases are similar in the sense that the matrix





J1 0 0
J2 0 0
A Jc −ST





is singular.
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The two first levels (21), (22) are always feasible. However,

it may happen that (28) is not. This case is sometimes referred

to as strong contact instability [62]: whatever the motions of

the multi-body system are, the contact cannot be maintained.

In practice, the solver finds an optimal u, but with nonzero

slack variables corresponding to (28). The solution u is then

meaningless, since it is dynamically inconsistent. To obtain a

consistent control in that case, a change of behavior should

be triggered, with the robot removing one of its contacts from

(22) and trying to find another solution without this contact.

However, the nonzero slack on (28) only appears in extreme

cases, for example when the robot is already falling, and in

general it is already too late to do anything to restore the

balance.

The typical situation with a humanoid robot requires more

than one contact point: for example, when one rectangular foot

is in contact with the ground, at least four contacts points are

needed, with as many force variables and contact constraints.

It is then very costly to handle several bodies in contact. In

the following, we focus on the case of planar rigid contact,

and propose a reduced formulation such that the cost of the

HQP does not increase linearly with the number of points in

contact.

V. REDUCED FORMULATION OF RIGID PLANAR CONTACTS

Instead of considering one variable per contact force f , the

contact forces are summarized by the generalized 6D (spatial)

force exerted by the body contacting the environment.

Aq̈ + b+ J⊤
c φ = ST τ (30)

where Jc is now the Jacobian of the contacting body expressed

on any arbitrary fixed point c of the body, and φ is the 6D force

(linear and angular components) expressed at c. The contact is

supposed to occur between two rigid planar surfaces, one of

them being a face of one robot body, the other one belonging

to the environment. If the robot is in contact with two or more

planar surfaces at the same time, several planar contacts are to

be considered. The point c denotes the arbitrary origin of the

reference frame attached to the robot body in contact (c can

be on the contact surface as before or anywhere on the contact

body, e.g. on the last joint). A rigid planar contact is defined

by at least three unaligned points of the body pi, i = 1..l
(l ≥ 3), that define the boundaries of the contact polygon. For

i = 1..l, fi denotes the contact force applied to pi. The vector

f of the contact forces fi is related to φ by:

φ =

[ ∑
i fi∑

i pi × fi

]
= X



f1
...

fl


 = Xf (31)

with

X =

[
I I ... I

[p1]× [p2]× ... [pl]×

]

where the first three components of φ are the linear part

of the force vector, the second three components are the

angular part and [pi]× is the cross-product matrix defined

by [pi]×z = pi × z for any vector z. Using this notation,

the necessary and sufficient condition to ensure the contact

stability (in the sense that the contact remains in the same

phase of the complementary condition, i.e. no take off) is that

all the normal components f⊥i of the contact forces fi are

positive, expressing the fact that the reaction forces of the

surface are directed toward the robot:

f⊥ ≥ 0 (32)

with f⊥ = Snf = (f⊥1 , f
⊥
2 , . . . , f

⊥
l ) the vector of the normal

components of the forces at the contact points and Sn the

matrix selecting the normal components.

A. Including the contact forces within the QP Solver

Condition (32) must now be introduced in the HQP pro-

posed at the end of Section IV-B

1) A first way of modeling the problem: The constraints

should be written with respect to the optimization variables,

while (32) depends on f . A first way of writing (32) with

respect to the optimization variables is to use the linear map

X between φ and f given by (31). In order to compute

f , (31) should be inverted by using a particular generalized

inverse X#:

f = X#φ (33)

The normal component f⊥ is then given by:

f⊥ = SnX#φ = Fφ (34)

The condition of positivity of f⊥ is then written with respect

to the optimization variables:

Fφ ≥ 0 (35)

The resulting HQP is (30) ≺ (22) ≺ (35) ≺ (14), with the

vector of optimization variables being u = (q̈, τ, φ).
However, it is possible to show that (35) is only a sufficient

condition of (32), that is too restrictive. In fact, the map X
is not invertible. Thus, by choosing a specific inversion .#,

an unnecessary assumption is made, and it may happen that

an admissible φ produces a negative f⊥ = S⊥X#φ. Fig. 2

displays the domain reached by the center of pressure: for a

necessary and sufficient condition, the whole support polygon

should be reached. Using the 2-norm, only the included

diamond is reached, as presented in Fig. 2. Various included

quadrilaterals are reached when using other norms for the

inversion operator #.

2) Using contact forces as variables: The problem is that

the forces fi cannot be uniquely determined from φ, while it

is possible to determine φ from fi. To cope with this problem

we propose to include the contact forces f in the optimization

variables of the QP resolution. Condition (32) is then directly

written with respect to the variables u = (τ, q̈, φ, f), with the

HQP: (30) ≺ (22) ≺ (31) ≺ (32) ≺ (14).

Compared to the HQP formulated at the end of Sec-

tion IV-B, this new formulation considerably reduces the size

of Jc, and thus the whole complexity of the resolution scheme.

Adding φ inside the variables acts as a proxy on the bigger-

dimension variable f . The contact forces only appear for the

positivity condition (32) and in the relation with φ (31). The



Submitted to IEEE Transaction on Robotics 7

-0.04

-0.02

0

0.02

0.04

0.06

-0.05 0 0.05 0.1

-0.04

-0.02

0

0.02

0.04

0.06

-0.05 0 0.05 0.1

-0.04

-0.02

0

0.02

0.04

0.06

-0.05 0 0.05 0.1

-0.04

-0.02

0

0.02

0.04

0.06

-0.05 0 0.05 0.1

Fig. 2. Random sampling of the reached support region. The actual support
polygon is the encompassing rectangle. The point clouds display the ZMP
of random forces admissible in the sense of (35). Random forces φ are
shot and the corresponding f = X#φ are computed. If φ respects (35),
the corresponding center of pressure is drawn. Each sub-figure displays the
admissible forces for a different weighted inversion (the Euclidean norm is
used on the top left, and random norms for the three others). Only a sub-
region of the support polygon can be reached, experimentally illustrating the
fact that (35) is a too-restrictive sufficient condition.

HQP is now sparse on the column corresponding to f , which

could be optimally exploited only if the solver is sparse. In the

following, we rather propose to reduce the formulation while

making the constraint matrix dense.

3) Reducing the size of the variable f : It is possible to

decouple in (31) the relation between φ and the tangent

components of f . φ was previously expressed at an arbitrary

point c of the contact body (φ = cφ). Consider the point o
chosen at the interface of contact (e.g. o is the projection

of c on the contact surface). oφ denotes the 6D forces at o,

expressed in terms of oφ as follows:

oφ =

[
fo
τo

]
=

[
I3 03

[oc]× I3

]
cφ = oXc

cφ (36)

with ox the coordinates of any quantity x in the frame

Fo centered at o, having its z-axis normal to the contact

surface. From (31) and (36), it comes:




ofx =
∑

i f
x
i = cfx

ofy =
∑

i f
y
i = cfy

ofz =
∑

i f
z
i = cfz

oτx =
∑

i −opzi f
y
i +

∑
i
opyi f

z
i = −czcfy + cτx

oτy =
∑

i −opxi f
z
i +

∑
i
opzi f

x
i = czcfx + cτy

oτz =
∑

i −opyi f
x
i +

∑
i
opxi f

y
i = cτz

(37)

Since o is coplanar with the pi, the opzi are null. The previous

expression reveals a decoupling in cφ: the forces ofx,y and

the torque oτz are expressed in terms of fx,yi . The force ofz

and the torques oτx,y are a function of fzi . In the QP, ofx,y

and oτz are unconstrained and can be removed along with the

associated constraints (37.1), (37.2) and (37.6). The reduced

rigid-contact constraint can be expressed as follows:

Qc

[
φ
f⊥

]
= 0

f⊥ ≥ 0

(38)

with

Qc =




0 0 −1 0 0 0 1 1 . . . 1
0 cz 0 −1 0 0 py1 py2 . . . pyl

−cz 0 0 0 −1 0−px1−px2 . . .−pxl




The HQP is then (30) ≺ (22) ≺ (38) ≺ (14) with the

optimization variables: u = (τ, q̈, φ, f⊥).

B. Generalization to multiple contacts

Eq. (30) considers one single body in contact. If several bod-

ies are in contact or one body is in contact with several planes,

a force φi is introduced for each couple plane-body in contact:

Aq̈ + b+
∑

i

J⊤
i φi = ST τ (39)

For each body in contact, the same reasoning can be applied

separately. Support polygons and normal forces f⊥i have to

be introduced. For each contact, f⊥i is constrained to be

positive and can be mapped to φi using (36). The zero-motion

constraint corresponding to contact i is denoted by (22.i) and

the positivity constraint by (38.i), where i refers to the index.

C. Multiple tasks and final norm

Similarly for several tasks, (14.j) denotes the constraint for

each task j (using the same notation where j refers to the

index). After adding all the tasks, some DOF may remain

unconstrained. In that case, it is desirable to comply with

Gauss’ principle. This is possible by imposing q̈ = a0 as the

least priority, where a0 is the acceleration of the unconstrained

system8. This has strictly the same effect as weighting all the

pseudoinverses by A−1, as done in (17) [56]. However no

damping mechanism acts in the corresponding DOF that would

reduce the motion energy and stabilize the system. The task-

function formalism requires the system to be fully constrained

to ensure its stability in terms of automatic control (Lyapunov

stability, [13]). On a physical robot, damping is always present.

For perfect systems like simulations, where damping is absent

or is perfectly compensated, it is better to introduce, at the very

last level, a task to cope with the case of an insufficient number

of tasks and constraints to fulfill the full-rank condition:

q̈ = −Kq̇ (40)

Various full-rank constraints could have been considered (min-

imum acceleration, distance to a reference posture, etc). The

choice of using the minimum velocity constraint is arbitrary.

Finally, the complete HQP for n contacts and k tasks is

written: (39) ≺ (22.1) ≺ (38.1) ≺ ... ≺ (22.n) ≺ (38.n) ≺
(14.1) ≺ ... ≺ (14.k) ≺ (40), with the optimization variables

u = (τ, q̈, φ1, f
⊥
1 , ..., φn, f

⊥
n ).

D. Opening to other classes of contacts

The model (22)-(38) is built on the rigid point contact.

From the basic point model, many other variations can be

built. In particular, it is straightforward to obtain edge contact.

Elastic contact can be defined by modifying the equation

8Similarly, the constraint can be imposed on a least-square τ .
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of motion (22) [40]. Linearized friction cones can also be

considered, by replacing J⊤
c f by J⊤

c Gλ and f⊥ ≥ 0 by

λ ≥ 0, where G is a family of generators of the linearized

cone, and λ are the multipliers of these generators [37],

[38]. Motions with slips are made possible by removing the

motion constraint (22) in the tangent directions, and setting a

constraint on the tangent force to be outside the friction cone.

However, the limitation in the viewpoint of real-time control

is the size of the obtained QP formulation: typically, a good

cone approximation is obtained with twelve generators, which

introduce twelve new variables per point of contact. The

prospectives of this work for humanoid robot control are to

find reduced formulations to handle these situations. In the

remaining of the paper, the reduced rigid planar formulation

is used, since it keeps a relatively low computational cost while

covering many possible situations with the humanoid robot.

VI. CONTROL LAW ROBUSTNESS

A. Comparison of (38) with the ZMP condition

A classical situation is to have one or two feet of the

humanoid robot in contact with a flat horizontal floor. In this

case, a classical condition to enforce the contact stability is

to check that the ZMP stays inside the support polygon [63],

[64]. In this section, this condition is proved to be equivalent

to (32).

Proposition VI.1. In the case of contact with a horizontal

floor, the rigid contact condition (32) is equivalent to the well-

known contact stability condition which requires that the ZMP

belongs to the support polygon.

1) Sufficient implication: As above, the robot is supposed

to be in single support9. The contact surface is supposed to

be horizontal. The ZMP (also called center of pressure –

COP [65]) can be defined as the barycenter of the contact

points pi delimiting the contact surface of the foot with a

horizontal floor, weighted by the normal component f⊥i of

the contact forces fi at these points10:

z =
1

Σif⊥i
Σipif

⊥
i (41)

In affine geometry, it is well known that the convex hull of

a polygon can be written as the set of all positive-weight

barycenters of the vertices [66]. The rigid contact condition

defined by (32) ensures that each f⊥i is positive. Consequently,

(32) together with (41) ensures that the ZMP belongs to the

convex hull of the contact points pi which, by definition, is

equal to the support polygon.

2) Necessary implication: On the other hand, if the ZMP

belongs to the support polygon, there always exists a distri-

bution of contact forces fi at the points pi, having positive

components f⊥i , and such that the ZMP is the barycenter of

the pi weighted by the f⊥i . This is sometimes referred to as

weak contact stability [62] for which the ZMP is known to be

9The same reasoning holds with several bodies in contact with the same
horizontal plane.

10The foot is usually a rectangle but any shape delimited by three or more
contact points can be considered as well.

a reduced condition [67]. When the support polygon is defined

by more than three contact points (l > 3), an infinite number

of possible barycenter weights f⊥i can be found to define the

ZMP. For given weights, one of the f⊥i can be negative (this

is typically what happens in Fig. 2). However, since the ZMP

is inside the convex hull, there is at least one combination of

non-negative weights that reaches it.

B. Brief stability analysis

The inverse dynamics schemes are known to be sensitive to

modeling errors [68]. In particular, if the inertia parameters are

not perfectly known, the application of the reference torques

leads to different accelerations. The estimated value of X is

denoted by X̂ . The solution of the QP is equivalent to the

solution given by the pseudoinverse if none of the positive-

force constraints are active; otherwise, it has a similar form

with an additional projection and can be written for one task:

τ = (ĴÂ−1P̂fS
T )+(ë∗ + µ̂) (42)

where Pf is the projection operator onto the contact zero-

motion constraint (22) and onto the set of contact positive-

force constraints (38) that are active. Using (26), the observed

task acceleration when applying this control law, also denoted

by .̂, is:

̂̈e = JA−1PcS
T (ĴÂ−1P̂fS

T )+(ë∗ + µ)− µ (43)

Since PcPf = Pf , ̂̈e = ë∗ if all the estimations are perfect.

If the estimations are biased, applying the control (42) in

closed-loop at the whole-body level is known to keep the

stability properties of the control law ë∗ in the task space

iff JA−1PcS
T (ĴÂ−1P̂fS

T )+ is definite positive [13]. When

the estimation error is due to an inaccurate dynamic model, a

classical solution to reduce the estimation error is to rely on a

time-delay estimation, i.e reporting the biases observed at one

iteration of the control on the next iteration [69]. However, this

technique cannot perfectly cancel the errors of estimation, thus

(43) still holds.

The reference ë∗ is not perfectly tracked. It is also true

for the contact forces computed by the solver. Indeed, the

observed forces are:

φ̂ = (Jc
T )#AĴT

c φ
∗ + (JcA

−1Jc
T )−1JcA

−1Âq̈∗ (44)

where φ∗ and q̈∗ are the reference force and acceleration

computed by the HQP and J̇cq̇ is neglected. The second term

is close to 0 when Â is not too far from A. Similarly, the

first term is nearly the identity matrix when the estimation is

correct. The previous equation can be summarized by:

φ̂ = (I + ǫ1)φ
∗ + ǫ2q̈

∗ (45)

with ǫ1 and ǫ2 two matrices that tend to zero when the

estimation tends to perfection. When the ǫi are not null,

the observed force φ̂ is biased with respect to the solver

predictions. If the bias is too great, there is no guarantee that

the observed force φ̂ maintains the contact; then the property

of stability can be lost.

In conclusion, applying the computed torques in closed-loop

ensures the stability of the control as long as the observed

forces respect the contact positivity-force constraint.
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C. The contact condition as a qualitative robustness indicator

The previous stability analysis is not very instructive in

practice, since it is barely possible to predict when the

observed φ̂ keeps the contact stability. The robustness of the

control scheme thus relies on the behavior of φ̂. It is interesting

to provide an indicator of how easy it is for φ̂ to leave

the acceptable domain. When considering one single point in

contact as in Section IV, this indicator is straightforward to

choose: consider the normal force value f⊥∗ computed by

the solver. If f⊥∗ is large, then for small ǫ1, ǫ2, we can be

very confident that f̂⊥ is positive and keeps the contact stable.

Then, for one single contact point, the positivity of f⊥∗ is a

good indicator of the robustness of the control.

For more than one single contact point, it is not possible to

use a direct combination of the normal forces as an indicator.

Indeed there is an infinite number of possible force values,

all of them being equivalent in terms of the robot behavior.

Once more, this is connected to the results displayed in Fig. 2:

the computed solution may include one zero normal force,

while another solution exists with strictly positive values.

When considering a single planar contact, the ZMP is a good

indicator of robustness: when the predicted ZMP z∗ is far

inside the support polygon, then we can be very confident

that the observed ZMP ẑ stays inside the support polygon,

which means in return that all the f̂⊥ are positive.

If the contacts are not coplanar, the ZMP is not defined.

In that case, the generalized zero-moment point (GZMP) [70]

has been proposed. Contrary to the ZMP or to (38), the GZMP

is not a constructive criterion, i.e. it has not been used to

generate a motion or a control law. The idea of the GZMP

is to find from the 3D contact points a plane that acts like

the floor plane for the ZMP. On this plane, all the force

boundaries are projected, defining a 2D polygon. The GZMP

exists in this same plane. The contact-stability criterion says

that the GZMP should remain inside the 2D polygon. The

GZMP is easy to display. It is easy to visualize the distance

to the boundaries and thus to have a qualitative evaluation

of the motion robustness with respect to the contact stability.

The GZMP needs some implementation work in order to be

calculated, since the 2D projection plane is deduced from ge-

ometrical computations. Moreover, it is only an approximated

criterion, since the friction forces are neglected. To cope with

these limitations and obtain a generative criterion, the GZMP

was augmented in [67]. However, this last criterion, like (38),

cannot be easily plotted, and is thus not relevant to judge the

robustness of the obtained motion.

Consider the six first rows of the dynamic equation. The

dependency on τ disappears:

Āq̈ + b̄ = J̄cf (46)

where Ā, b̄ and J̄c are the first six rows of respectively A, b
and Jc

T . For a given q̈∗, the left term is constant, denoted by

ψ∗. It corresponds to the actuation of the free-floating body

that cannot be accomplished by the motors. The variable f can

be partitioned in two parts f = (f♥, f♠): f♥ is unconstrained,

while f♠ is subject to the positivity constraint. J̄c is similarly

partitioned into J̄♥ and J̄♠. The set K♠ := {ψ = J̄♠f, f > 0}

is a 6D cone, that can be expressed by its facets. The motion

is robust to the parameter error if the point ψ∗ − J̄♥f♥ =
(I − J̄♥J̄♥

+)ψ∗ is deep inside the cone. The distance from

this point to the closest facet of K♠ can be used as a measure

of the robustness of the motion. The scaling between torques

and forces is done using a characteristic length of the system

(1m for a human-size robot). In the following, this criterion

is referred to as robustness criterion VI-C.

VII. EXPERIMENTS

Three sets of experiments are presented in this section. The

first one presents a simple oscillatory motion that illustrates

the saturation of the contact-stability constraints. The second

one presents a complex sequence of tasks to make the robot sit

in an armchair using several successive contacts. This motion

is also executed by the real robot. The last experiment presents

a dynamic transition of contacts. First, the setup is detailed.

A. Experimental setup

The inverse formulation of the dynamic equation of mo-

tion (30) is given to the HQP solver. However, since it

computes explicitly both τ and q̈, it solves simultaneously

the forward and inverse dynamics of the robot. Both values

can then be used as control input. The acceleration q̈ can

be integrated in simulation, or provided as control input

to the robot servo control; or the torques can be given as

the robot control, or provided to a dynamics simulator. On

current humanoid robots, such as HRP-2, only the first solution

is possible11. However, this solution has the drawback that

the servo is on the position variables, while, as explained

in the previous section, the robustness mainly relies on the

accuracy of the force variables. In simulation, both solutions

are possible. The second solution is more beneficial, since it

makes it possible to double-check the dynamic computations.

In practice, we have used this last solution. The dynamic

simulator AMELIF [73] was used to resolve the forward

dynamics from the computed torques τ∗. The simulator checks

the collision, computes the acceleration from the collision set

and the torque input using a linear solver and numerically

integrates q̈ using a classical Runge-Kutta of the fourth order.

The current set of contacts is then provided to the control

solver, along with the current position and velocity of the

robot. The control is updated every 1ms. It is computed using

the control framework SOT [33] and the dedicated solver [26].

The result of this simulation is a joint trajectory of the robot,

that complies to the multi-body dynamics. This trajectory is

replayed on the real robot using a position-control mode.

The task set used in the three presented motions is the

following. A first task function is used to control the position

and orientation of one operational point of the robot (e.g.

grippers, head, chest). The task error is the position p and

angle-vector orientation rθ [74] of the operational point with

respect to a reference p∗, rθ∗ expressed in the world frame:

eop =

[
p− p∗

rθ ⊖ uθ∗

]
(47)

11The second solution will be possible with the next humanoid robot
generation, e.g. Romeo [71] or DLR [72].
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The reference acceleration is computed from this error as a

proportional-derivative (PD) control law:

ë⋆op = −λpeop − λdėop (48)

where ėop = Jopq̇ is the velocity in the task space and the

gains λp, λd are used to tune the convergence velocity (usually,

λd = 2
√
λp). For tracking a moving target, a fixed high gain

is used for λp. When reaching a fixed target, an adaptive gain

is typically used:

λp : ||e|| → (λ0 − λ∞)eβ||e|| + λ∞ (49)

where λ0 is the gain when the error is null, λ∞ is the gain far

from the target, and β adjusts the switching behavior between

the gains. A typical setting is (λ0, λ∞, β) = (450, 15, 100). A

second task egaze is used to servo the projection s of one point

of the environment on the right camera plane to a reference

position s∗ [14]:

egaze = s− s∗ (50)

The reference acceleration ë∗ is also defined by (48). The

torque magnitude is also bounded. Since the torques are

included in the vector of optimization variables, it is trivial to

express the torque limits by a simple bound on these variables:

τ ≤ τ ≤ τ (51)

with τ = −τ the maximum torque value.

Similarly, bounds have to be set on the joint positions. Since

the positions are not variables of the solver, the constraint is

set on the joint accelerations:

q ≤ q + TS q̇ +
TS

2

2
q̈ ≤ q (52)

where q and q denote the lower and upper joint-limits respec-

tively, and TS is the length of the preview windows. In theory,

the control sampling time ∆T = 1ms should be used for TS .

In practice, a smoother behavior can be obtained by adjusting

this value TS := ∆T
λs

where λs can be tuned as the gain of the

task. We used λs = 0.1 to generate the following motions.

B. Experiment A: Swing posture

1) Description: The objective of this experiment is to

validate the contact stability constraint. It is inspired by a

biomechanics experiment which aims at testing the human

swinging posture behavior with respect to the same con-

straints [75]. A tracking task is imposed to the robot head

to make it oscillate. Depending on the frequency and the

amplitude of the oscillation, forces are obtained at the contact

points, that may saturate the contact constraint. The task

ehead given by (47) is imposed to the head operational point,

where only the translation on the forward axis is selected.

The reference position is given by a time-varying sinusoid,

around a central point xc = 0.02 and with amplitude of

5cm and frequency 0.3Hz (low frequency), 0.56Hz (medium

frequency) or 0.9Hz (high frequency). The gain is set to

λp := 250 to ensure good tracking. The complete SOT is:

(39) ≺ (22) ≺ (38) ≺ (51) ≺ (52) ≺ ehead ≺ (40).

In theory, the contact points are defined from the 3D model

of the robot. However, in practice, we never consider the real

support polygon, but a smaller one. This simple trick ensures

increased robustness of the motion when trying to replay it

on the robot. For example, on the feet, the support polygon is

often defined as a square of 4cm centered below the ankle

axis [76], [77]. The obtained robustness can be evaluated

afterward with respect to the real support polygon.

The motion is played four times. In the first two executions,

both feet are flat on the ground and the reference is oscillating

at low and medium frequencies respectively. For the next two

executions, the right gripper contact is added and the motion

is played at medium and high frequencies. In the following,

the four motions are referred to as 2pt-low, 2pt-medium, 3pt-

medium and 3pt-high respectively.

2) Results: The experiment is summed up by Figures 3 to

6. The motion is displayed in Fig. 3. The robot is oscillating

forward and backward to follow the head reference. The

two motions 2pt-low and 2pt-medium were already detailed

in [1] where the plots of joint positions and torques can be

found. When only the feet are contacting, the stability of the

motion can be evaluated by displaying the ZMP, plotted in

Fig. 4. At low frequency, the ZMP does not saturate because

the demanded accelerations are small enough. At medium

frequency, the accelerations are larger and the ZMP saturates.

Since the real support polygon is about 20cm wide, there is

a large offset that ensures a good robustness when executing

this motion on the real robot.

The robustness can be evaluated using the criterion proposed

in Section VI-C. The contact constraints of the solver are

projected into the space of the spatial forces expressed at the

waist point. Then the distance of the point ψ∗ (46) to this

constraint set is computed. The result is plotted in Fig. 5. First,

the distance is computed to the constraint set of the solver (the

4cm-wide support polygon). As expected, the distance is null

when the ZMP saturates. More interestingly, the distance can

be computed to the real constraints by taking into account the

true polygon as well as the linearized friction cones at the

contact points. The friction coefficient was set to K = 0.5. In

that case, the robustness criterion is always strictly positive,

showing that the motion is robust to small perturbations or

model uncertainties.

Using only the feet as contacts, it is not possible to follow

the reference at high velocity. A third contact point is added to

increase the stability domain. The contact polygon is a square

of 5cm centered at the gripper terminal point. Contrary to

the ZMP, the robustness criterion VI-C is still valid with non-

coplanar contacts. When the friction cones are not considered

(slidingless contact), it is always possible to find a set of

contact forces following a given CoM acceleration (the system

is said to be in force closure [78]). In that case, the distance to

the constraint set is always infinite. The robustness criterion

is finite when the friction cones are considered. The friction

coefficient at the gripper is set to K = 0.1. At medium

frequency, the motion can be considered as very robust since

the criterion is always very far from 0. If the frequency is in-

creasing, the criterion remains smaller. It then jumps from one

constraint edge to another, which explains the discontinuities.

The computation time depends on the number of contacts,

tasks and active constraints as shown in Fig. 6.
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t=1.2s t=1.7s t=2.1s

Fig. 3. Experiment A: Top: Snapshots of the oscillatory movement 2pt-

medium. Bottom: Feet and ZMP positions at the corresponding instants. The
ZMP saturates on the front when the robot is reaching its top amplitude and
decelerates to go backward. Similarly, the ZMP saturates on the back.
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Fig. 4. Experiment A: ZMP position along the forward (x) axis for the
two motions with only the feet contacts. The support polygon is a 4cm-wide
square centered on the ankle joint. The ZMP does not saturate when the
motion oscillates at low frequency. It saturates at medium frequency.
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Fig. 5. Experiment A: robustness criterion VI-C. For the first two motions
2pt-low and 2pt-medium, the criterion is given with respect to the support
polygon defined in the solver (small contact surface) in bold, and with respect
to the real support polygon taking into account the friction cone (linearized by
twelve facets) in nonbold. This criterion behaves similarly to the distance of
the ZMP to the support polygon. The criterion is plotted for 3pt-medium and
3pt-high. If the solver support polygons are considered, the distance is infinite.
It is only plotted for the distance to the friction cone.
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Fig. 6. Experiment A: Computation time. For the motion 2pt-medium,
the saturation of the force constraints clearly induces an increase of the
computation cost, whereas for 2pt-low the cost remains constant. For 3pt-

medium, the cost is constant (no saturation) but higher in average due to the
additional contact. Finally, the cost of 3pt-high is higher and varies when the
constraints are saturated.

C. Experiment B: sitting in the armchair

1) Description: The second experiment illustrates the pos-

sibilities of multiple non-coplanar contacts during a more

complex sequence of motion. The robot sits in an armchair

(see Fig. 7). First, contacts of the left then right grippers

are found with the armrests to increase the contact stability

domain. Then, the pelvis is brought in contact with the seat.

At the highest priority of the stack, the limits (51) and (52)

ensure that the joints and actuator limits are respected. Two

tasks erh and elh, defined by (47), are set on each robot

gripper to control the position and orientation toward the

corresponding armrest. To prevent a collision when grasping,

an intermediate point is first reached, above the grasping

position. The contact of each gripper with the armrest is

realized by the rear part of the opened gripper. The support

polygon is then a 5cm-wide square. To improve the naturalness

of the motion, a task egaze defined by (50) is set to constrain

the gaze toward the armrest to be grasped. After each grasp,

the gaze is brought back in front of the robot. Finally, the waist

is controlled by a task ewaist also defined by (47) where only

the vertical position and sagittal rotation are active: the waist

is constrained to remain vertical and to move down to the seat.

The complete SOT is defined by: (39) ≺ (22) ≺ (38) ≺ (51) ≺
(52) ≺ ehand ≺ egaze ≺ ewaist ≺ (40), with ehand being the

right or left hand task, when active. The temporal sequence of

tasks is given in Fig. 8. Essentially, the robot looks left and

bends to grasp the left handle; then it looks right and bends

to grasp the right handle; finally, using both handle supports,

it moves the pelvis down to sit.

2) Results: The experiment is summarized in Figures 7 to

13. The key frames of the motion executed by the robot are

given in Fig. 7. The sequence of tasks is summarized in Fig. 8.

On each of the following figures, the chronological sequence

is recalled by vertical stems at the transition instants. During

the motion, the joint range is extensively used. The most

representative joint trajectories are plotted in Fig. 9. The neck

joint reaches its limit while looking left. In reaction, all the

other aligned joints move to overrun the neck limitation (chest

joint of course, but also hip and ankle joints). The right hip

then reaches its limit. In consequence, all the motions of both

legs are stopped, due to a lack of DOF to compensate this limit.

The chest joint absorbs all the subsequent overrun to fulfill

the task. Again, the neck joint reaches its limit when looking

right. This time, the velocity of the joint when it reaches its

limit is higher, which leads to a strong acceleration of the

chest, and consequently brings the neck out of its limit. This

behavior could be damped if necessary by tuning λs in (52).

The chest joint finally reaches its limit at the end of the right-

grasp task, which produces a limited overrun on the other

joints. All the joints are properly stopped at the limit, and can

leave the neighborhood of the limit without being stuck as it

may appear with some avoidance techniques.

The contact with the two armrests is very useful to control

the descent of the waist. The vertical forces on each support

are plotted in Fig. 10. In the beginning, the weight is fully

supported by the two feet, as shown on Fig. 11. After t = 8s,
the left arm is used to sustain the robot. However, the robot
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t=0s t=7s t=15s t=19s

Fig. 7. Experiment B: Snapshots of the motion executed on the real HRP-2 robot. The robot is standing on both feet (t = 0s). It first looks left and grasps
the left armrest t = 7s. It then looks right, grasps the right armrest (t = 15s) and finally sits (t = 19s).
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Fig. 8. Experiment B: Sequence of tasks and contacts. The gaze task focuses
sequentially on the left and right armrests and on a virtual point in front of
the robot. The pre-grasp tasks are set at the vertical 10cm above the grasp
position.
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Fig. 9. Experiment B: normalized joint position (0 and 1 are resp. the lower
and upper limits) of the right and left hip and ankle, chest and neck joints.
The joint limits are properly avoided. When a limit is reached, one or several
joints move in reaction to overcome the saturation.
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Fig. 10. Experiment B: Vertical forces distribution.
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Fig. 11. Experiment B: Position of COM. The three phases correspond to
changes in the number of contacts (first the two feet, then the left gripper and
finally both feet and grippers). Firstly, the COM stays forward, but is finally
moved backward to reach the second armrest and move the pelvis down to
the seat.
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Fig. 12. Experiment B: Robustness criterion VI-C. The distance is computed
with respect to the friction cones. The friction coefficient at the armrests is
roughly estimated to be 5 times less than at the sole. The less robust part
occurs during the final phase, where the waist moves down.
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Fig. 13. Experiment B: Computation time.
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upper body is still in front of the chair, and this contact is not

fully used yet. In order to reach the second armrest, the robot

has to move its weight back (see Fig. 11) and use the left-arm

contact to ensure its balance: nearly half of the weight is then

supported by the arm. Finally, the right armrest is grasped, and

the robot distributes its weight on the four contacts equally.

Neither the center of mass (COM) nor the ZMP can give a

proper estimation of the stability, since the motion is neither

quasi-static nor supported by planar contacts. The robustness

estimator presented in Section VI-C is plotted in Fig. 12

with respect to the linearized friction cones at both feet and

grippers. The motion is very stable, except at the end of the

motion, when the waist moves down. At that time, the robot is

using the tangent forces of the grippers on the armrest, which

nearly saturates the friction cone. In consequence, this part of

the motion is the less robust when executed by the real robot.

Indeed, since the armrests do not respect the hypothesis of

rigid contact and due to this lack of robustness, it can be

observed that the toes nearly leave the ground during this

phase of the motion. This effect is very interesting, since it

confirms the relevance of the robustness criterion. Of course,

this undesirable effect could be avoided by setting a more

accurate model of the environment or adding a safety limit to

the positivity constraint in the solver.

Finally, the computation times are plotted in Fig. 13. The

SOT is nearly full. In that case, the computation cost is around

20ms per iteration, i.e. five times the real-time if controlling

the robot at 200Hz. The computation cost depends on the

number of tasks and even more on the number of contacts, as

shown by the computation increase at t = 8s and t = 18s.

D. Experiment C: Dynamic contact transition

1) Description: At the beginning of the motion, the robot

is standing on both feet and its COM is artificially pushed

forward using a task on its chest. The robot is then out of its

domain of quasi-static stability: the only solution to restore

the balance is to change the set of supports. The two grippers

(first the left, then the right) are then sent forward to establish

a contact with the wall, in order to increase the set of support

contacts and to restore the balance. An overview of the motion

is given in Fig. 14. Three tasks of type (47) are used: one task

on the chest, that controls only the translation; another one

on each gripper controls both the translation and the rotation.

The COM is not explicitly controlled. The sequence of tasks

and contacts is given in Fig. 15.

2) Results: The experiment is summarized in Fig. 14 to 18.

If using only quasi-static movements (i.e. reaching while keep-

ing the COM inside the feet support polygon), the maximal

reaching distance of HRP-2 is around 85cm. In this motion,

the wall is positioned 1m in front of the robot, as shown in

Fig. 14. The motions of the COM along with the forward

direction are plotted in Fig. 16. The COM quickly leaves the

support polygon in the beginning of the motion, due to the

artificial motion of the chest. From t = 0.7s, the COM is

out of the support polygon with a positive velocity: it is then

impossible to bring it back to stability without changing the

supports. The balance is restored after t = 2.5s, with the COM

coming back to zero velocity. The stability is evaluated using

the robustness criterion presented in Section VI-C. When only

the feet are in contact, the ZMP is at the forward limit of the

support polygon, which corresponds to a low robustness. The

robustness increases when the first gripper enters into contact.

However, at that time, the tangent forces of the gripper on

the wall are high. The robot can then lose its balance by

rotating on one of the gripper-foot edges, as already observed

in [70]. The second gripper helps to improve the stability

by decreasing the tangent forces at each contact point. The

vertical forces are plotted in Fig. 18. On the grippers, the

vertical direction corresponds to the tangent to the contact.

Between t = 1.9s and t = 2.5s, the tangent forces at the

left gripper are high, at the limit of the friction cones, which

corresponds to a weaker robustness of the motion (the gripper

is close to slide).

VIII. CONCLUSION

This paper proposes a complete solution to perform task-

space (operational-space) inverse dynamics while taking into

account various tasks, unilateral constraints such as joint

position or torque limits and preserving the contact stability.

Complex motions can be composed from several tasks, con-

straints and contacts, by ensuring a strict hierarchy between

conflicting references. Several models of unilateral contacts

can be considered. The most usual one is the rigid point

contact. We have also proposed a reduced formulation to

express rigid planar contacts. The contact condition has been

shown to be equivalent to the ZMP-inside-the-support-polygon

constraint in the particular case of the humanoid robot standing

on a flat floor. To quantify the quality of the generated motion

in terms of distance to the contact-stability constraints, a

generic criterion has been proposed, that can handle the rigid

slidingless point contact, the rigid planar contact, but also

friction cones.

The effectiveness of the approach has been demonstrated by

generating different motions for the humanoid HRP-2. These

motions have been generated off-line because the motion-

generation algorithm is close to but still not real-time. They are

fully consistent with the robot dynamics and can be replayed

directly by the robot, as it was shown by making the real

HRP-2 sit down in an armchair.

The future of this approach would be to apply the algorithm

directly on the robot as a closed-loop control. This would

require technical contributions to accelerate the solver compu-

tation cost, but also to consider an effective dynamic sensor-

based control.

APPENDIX A

GENERALIZED INVERSE

The notation Q# denotes any reflexive generalized inverse

of Q [46], i.e. that respects the two first conditions of Moore-

Penrose:

QQ#Q = Q

Q#QQ# = Q#
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t=0.0s t=1s t=2s t=4s

Fig. 14. Experiment C: Snapshots of the dynamic contact transition.
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Fig. 15. Experiment C: Sequence of tasks and contacts. On each gripper, an
intermediate point is used to ensure that the final contact motion is performed
along the normal to the wall. The contact polygons of the feet and grippers
are the same as previously.
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Fig. 16. Experiment C: Trajectory of the COM along the X-axis (forward
direction). The grey rectangle marks the limit of the foot support. The COM
starts inside the support polygon, quickly leaves it when the chest is thrown
forward and finally converges to a fixed position when the grippers contact
the wall and stabilize the motion.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

D
is

ta
nc

e 
to

 th
e 

co
ne

Fig. 17. Experiment C: Robustness criterion VI-C. The distance is computed
with respect to the friction cones. The friction coefficient of the gripper with
the wall is set to the same value than at the sole contact.
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Fig. 18. Experiment C: Vertical forces (normal forces for the feet, tangent
forces for the gripper).

In general, Q# is chosen among the possible inverses as the

one which minimizes the norm in both the task space and

the control parameter (referred to as the pseudoinverse in

the paper, and denoted by .+); i.e. it verifies the two second

conditions of Moore-Penrose:

QQ# is symmetrical.

Q#Q is symmetrical.

Alternatively, one of these two (or both) conditions can be

relaxed to impose a different metric in the task space or on

the control parameter. In particular, a weighted generalized

inverse [45] can be chosen to impose a given minimum R-

norm in the control space ||u||2R = uTRu, where R is a

given symmetric positive definite matrix; in that case, the

inverse is given by Q#R =
√
R(Q

√
R)+ = RQT (QRQT )+,

where
√
R is any decomposition such that

√
R

T√
R = R, for

example the Choleski decomposition. A weighted generalized

inverse can also impose a minimum L-norm in the task

space ||ė∗ − Qu||2L = (ė∗ − Qu)TL(ė∗ − Qu); in that

case, it is QL# = (
√
LQ)+

√
L = (QTLQ)+QTL. Of

course, both R and L norms can be imposed by QL#R =√
R(

√
LQ

√
R)+

√
L.

APPENDIX B

HQP COMPLEXITY

Consider a HQP whose variable x is of dimension n and

whose constraints have the following form: Ax ≤ b. The

choice of an active set A defines an equality-only HQP

(eHQP), with fewer constraints whose form are Aix = bi,
where Ai (resp. bi) are the rows of A (resp. b) selected by

A. The eHQP solution can be computed by a set of pseudoin-

verses following (2). The active-search algorithm [52], [26]

uses a heuristic to find the optimal active set, for which the

eHQP computes the optimal x. The algorithm is presented in

Alg. 1, see [26] for more details.

Basically, the eHQP routine costs o(mn2) where m is

the number of rows of the problem, which is approximately

o(n3) when the eHQP is nearly square. If p is the number

of iterations in the loop Row #3, then the complexity12 is

roughly o(pn3).
In the case presented in this paper, the HQP is called at

each iteration of the robot. Between two iterations, the HQP

values vary slightly. Because the HQP is a continuous function

of the constraints, the active set also varies slightly. If using

the optimal active set of the previous robot time to initialize

the current active search, then the number of HQP iterations p
remains small (experimentally, p is null 99% of the time, and

is never more than 10).

Consider now the robotics HQP presented in the paper. The

number of DOF is denoted by n. In the inverse-kinematics

HQP, the size of the variable is the number of DOF of

the system n, and the robot is generally nearly completely

constrained. The cost of the inverse kinematics by HQP is

thus o(pn3), with experimentally p < 10.

12In fact, only the first eHQP call is in o(n3), the following ones can be
updated for o(n2).
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Algorithm 1 HQP active search

1: Input: A, b,A0

2: A := A0

3: repeat

4: Ai := AA, bi := bA
5: x∗, w := eHQP (Ai, bi)
6: if ∃k /∈ A, wk > 0, then

7: A+ = k
8: continue

9: end if

10: if ∃k ∈ A, wk < 0, then

11: A− = k
12: continue

13: end if

14: until never

15: return x∗

For inverse dynamics with q the size of the contact variable,

the cost is o(p(2n + q − 6)3). For the reduced planar model

when only the feet are in contact, q = 20, which makes N =
36 + 30 + 20 for the HQP variable.

APPENDIX C

PROOF OF EQUIVALENCE

The equivalence is proved between the scheme proposed in

Section IV and the control law proposed in [59].

a) Control scheme: The development of [59] are first

recalled. The task Jacobian subject to a contact is defined by:

Jt|c = JPc
T (53)

where the subscript t|c indicates that the task quantities are

projected in a contact consistent space. Left-multiplying (25)

by (Jt|c
#A−1

)T =
(
A−1Jt|c

T (Jt|cA
−1Jt|c

T )−1
)T

, the task-

space dynamic evolution is obtained:

Λt|cë + µt|c = Qt|cS
T τ (54)

with Λt|c = (Jt|cA
−1Jt|c

T )−1, Qt|c = (Jt|c
#A−1

)TPc and

µt|c = Qt|cb + (Jt|c
#A−1T

Jc
T (JcA

−1Jc
T )−1J̇c − Λt|cJ̇)q̇.

The reference torques are obtained by inverting (54):

τ∗ = ((Jt|c
#A−1

)TPcS
T )#f∗

= J⋆T f∗
(55)

where J⋆ = Jt|c(SPc
T )# and F = Λt|cë + µt|c. This

final equation corresponds to the standard map from the end-

effector forces f∗ to the joint torques by the transpose of the

Jacobian of the robot.
b) Proof of equivalence: Control law (55) can be shown

to be equivalent to the control law proposed in Section IV.
On the one hand, since SPT

c is full row rank, (55) can be
rewritten:

τ
∗ = (SPT

c A
−1

PcS
T )−1

SP
T
c A

−1
PcJ

T (JPT
c A

−1
PcJ

T )−1
ë
∗

(56)

On the other hand, the scheme proposed in Section IV can

be written:

τ = (JA−1PcS
T )#W ë∗ (57)

with W a user-defined weight matrix. Developing the weighted

inverse gives [45]:

τ =WSPT
c A

−1JT (JA−1PcS
TWSPT

c A
−1JT )−1ë∗

The weight is chosen as W = (SA−1PcS
T )−1 =

(SPT
c A

−1PcS
T )−1 [57]. Since A−1Pc = PT

c A
−1 =

PT
c A

−1Pc [59], the equivalence between (56) and (57) is

brought to prove that:

JA−1PcS
T (SA−1PcS

T )−1SPT
c A

−1JT = (JPT
c A

−1PcJ
T )

We can recognize the term (SPT
c )#A−1

=
A−1PcS

T (SA−1PcS
T )−1 in the previous equality. It

thus reduces to:

J(SPT
c )#A−1

SPT
c A

−1JT = (JPT
c A

−1PcJ
T ) (58)

In [59], it is proved that (SPT
c )#SPT

c = PT
c , which concludes

the proof.
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