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Abstract

Purpose In this article, we discuss dynamic whole-body (DWB) positron emission tomography (PET) as an imaging tool with

significant clinical potential, in relation to conventional standard uptake value (SUV) imaging.

Background DWBPET involves dynamic data acquisition over an extended axial range, capturing tracer kinetic information that

is not available with conventional static acquisition protocols. The method can be performed within reasonable clinical imaging

times, and enables generation of multiple types of PET images with complementary information in a single imaging session.

Importantly, DWB PETcan be used to produce multi-parametric images of (i) Patlak slope (influx rate) and (ii) intercept (referred

to sometimes as Bdistribution volume^), while also providing (iii) a conventional ‘SUV-equivalent’ image for certain protocols.

Results We provide an overview of ongoing efforts (primarily focused on FDG PET) and discuss potential clinically relevant

applications.

Conclusion Overall, the framework of DWB imaging [applicable to both PET/CT(computed tomography) and PET/MRI

(magnetic resonance imaging)] generates quantitative measures that may add significant value to conventional SUV image-

derived measures, with limited pitfalls as we also discuss in this work.

Keywords PET . Dynamic .Whole-body . Parametric imaging . Kinetic modeling . Systemic disease

Introduction

Positron emission tomography (PET) has established wide

clinical acceptance, particularly for its role in oncology. In

conjunction with the glucose analog 2-deoxy-2-[18F]fluoro-

D-glucose (FDG), PET has become a key tool for the man-

agement of patients with a variety of malignancies as well as

infections and inflammation [1]. In clinical practice, nuclear

medicine physicians review the images and distinguish tumors

from areas of normal physiological uptake, inflammation, or

artifacts based on experience and knowledge of normal vari-

ants [2, 3]. The task is aided with the availability of anatomical

information [4, 5], nowadays provided with widely available

PET/CTscanners [6], and with the more recent advent of PET/

MR scanners [7, 8]. Image analysis is often qualitative, with

physicians providing their impressions, sometimes supported

by semi-quantitative analysis particularly using the standard-

ized uptake value (SUV). In the hands of experienced ob-

servers, this form of image assessment can be highly effective

but it is also time-consuming and somewhat subjective, with

potentially variable interpretations among different observers,
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particularly for small lesions. Overall, this methodology has

documented limitations in visualizing and quantifying PET

tracer uptake for a range of clinical tasks, including assess-

ment of treatment response and distinguishing between malig-

nant vs benign (e.g., inflammatory) uptake, especially for ra-

diotracers which are not tumor specific, such as

fluorodeoxyglucose (FDG) [2, 9–16]. Challenges can be par-

ticularly great in the post-therapy clinical setting, where po-

tentially substantial background activities in tissues make it

difficult to determine if viable tumor is present [17].

Quantitation can be a specific challenge as well, due to the

time dependence of FDG uptake, withmanymalignant tumors

having rising FDG uptake over time, with declines in normal

tissue radiotracer uptake [18].

Current clinical PET protocols mirror the pattern

established for traditional nuclear medicine, in that they are

optimized for qualitative as opposed to quantitative assess-

ment. The radiopharmaceutical is administered to the patient,

who then typically waits for a period of time prior to image

acquisition. This uptake period is to allow for the radiophar-

maceutical to accumulate in the organs of interest, and in some

cases for the tracer to wash out from surrounding organs [1].

However, radiopharmaceutical distribution is a dynamic pro-

cess that varies substantially between tumors and normal or-

gans and among patients [1–3]. The radiotracer uptake periods

used in clinical protocols are somewhat arbitrary, based partly

on convenience, and are not expected to be optimal for all

clinical cases. Further delaying the start of imaging may allow

for greater contrast between the organs of interest and sur-

rounding structures [19]. However, these extended protocols

suffer from additional decay of the radionuclide (leading to

noisy images), and pose restrictions in routine practice

(impacting workflow).

Alternative protocols involving dynamic acquisition of

temporal images allow for more complete measurement of

tracer kinetics. In fact, dynamic imaging has been in use for

a long time in nuclear medicine [planar, single photon emis-

sion computed tomography (SPECT), and PET]. There are

numerous examples in planar imaging (see [20] for some his-

torical perspective), and multiple dynamic procedures contin-

ue to be employed. As an example, bone scintigraphy may be

performed dynamically (i.e., multiple acquired frames) imme-

diately after injection to capture perfusion information [21].

Dynamic SPECT also has a long history, going back as far as

1963 (see review in [22]), having primarily involved rotating

gamma detectors, but more recently, has become significantly

more feasible and popular via dedicated cardiac cameras [23].

There is significant application of dynamic cardiac PET im-

aging in the clinic [24]. In the case of oncologic PET imaging,

quantification of tracer uptake based on compartmental

modeling approaches as applied to PET images can improve

both tumor characterization and treatment response monitor-

ing [9–11, 14, 17, 25–40]. However, despite significant

potential, dynamic PET protocols, especially for oncologic

FDG PET, have not translated to the clinic, partly because of

their increased complexity, particularly those involving con-

current invasive blood sampling. A more significant reason is

that dynamic PET acquisition is generally confined to a single

bed-position limiting coverage to the axial extent of the scan-

ner, typically 15–25 cm. However, given the importance of

whole-body (WB) PET for the assessment of disseminated

disease [41–45], this limited field of view is a major limitation

that has prevented routine adoption of dynamic data

acquisition.

In this paper, we argue that a new framework of clinical

dynamic whole-body (DWB) PET imaging is both feasible

and has significant potential. The promising capabilities of

clinical DWB imaging are enabled by ongoing technical de-

velopments: whereas early PET systems required extended

scan durations to acquire adequate count statistics, newer

PET systems achieve equivalent quality at considerably

shorter durations through scintillators and electronics opti-

mized for high sensitivity 3D acquisition as well as time-of-

flight detector systems [27, 46–52]. Combined with iterative

image reconstruction [53], it is now possible to acquire multi-

pass eyes-to-thighs imaging, achieving adequate statistical

quality in less than 5 min for a single pass in FDG WB PET.

Using this multi-pass imaging strategy, it is possible to

acquire and utilize valuable information from DWB images,

providing an additional dimension of kinetic information that

is not available with current clinical protocols. The generation

of distinct kinetic data (time–activity curves, TACs) at the

individual voxel-level in dynamic images enables generation

of parametric images via kinetic modeling, that may hold sig-

nificant value. Furthermore, as elaborated in the methodology

section, a conventional ‘SUV-equivalent’ image can also be

generated for certain protocols, enabling generation of multi-

ple kinds of images from a single imaging protocol.

Overall, additional temporal data provided by DWB acqui-

sition may significantly enhance the existing PET technique

for tumor characterization. This holds significant potential to

enhance diagnostic, prognostic, and treatment response mon-

itoring capabilities of PET and to introduce an additional im-

aging framework in routine clinical practice. A key emphasis

is that dynamic imaging and WB (or multi-bed) imaging are

not mutually exclusive, and can be combined within a single

PET imaging session at reasonable scan times.

Methodology

Addressing challenges

DWB data acquisition itself is not unprecedented in nuclear

medicine. It has been employed for dosimetric assessment of

radiopharmaceuticals, by performing multi-bed multi-pass
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imaging, though commonly this has been performed over sep-

arate imaging sessions. The approach has also been used in

multi-pass WB bone imaging (planar) [54]. In the case of

routine PET imaging, however, dynamic and WB imaging

have been commonly treated as distinct entities. The limited

axial field-of-view of current generation PET scanners means

that WB coverage requires bed translation, making it incom-

patible with conventional dynamic scans that acquire data

continuously over a single bed position. DWB involves

multi-bed, non-continuous (sparse) data acquisition over time

for any given bed position, which can result in generation of

noisy images. A solution to this has been to consider only 2–3

bed positions for dynamic imaging in a single imaging ses-

sion, and to perform quantitative analysis at the region-of-

interest (ROI) level [31, 55–57]. Nonetheless, as alluded to

in the introduction, with current-generation PETscanners, it is

now possible to produce high quality images with frame du-

rations as short as 30 s/bed. This has enabled completion of

multi-pass multi-bed PET acquisitions in reasonable scan

times (e.g., six passes with six or seven beds/pass in 30 min

or less). Figure 1 illustrates a typical DWB PET data acquisi-

tion scheme.

DWB images generated from such a protocol can be com-

bined to generate so-called parametric images of subjects at

the individual voxel level across the body [58–60]. An excel-

lent tool to this end is Patlak kinetic modeling analysis [61,

62], also known as Patlak plot, Gjedde–Patlak plot or Patlak–

Rutland plot, due to parallel formulations by different authors

[63–65]. Patlak analysis has been previously applied to single-

bed dynamic imaging for a number of radiotracers used in

clinical imaging; e.g., 18F-FDG [17, 28–38, 40], 18F-FLT

[66–70], 18F-NaF [71, 72], 68Ga-DOTATATE and 68Ga-

DOTOTOC [73–75]. It is, in fact, particularly suitable for

analysis of DWB images, given the fact that each body posi-

tion is scanned non-continuously in DWB PET. Unlike clas-

sical compartmental model fitting methods [76, 77], Patlak

analysis has the advantages that: (i) it does not require PET

scans to sample the early tracer kinetics, and (ii) it involves a

linear fit, and thus the slope and intercept can theoretically be

determined from as few as two PET measurements of a given

bed position [78]. The latter is true as long as PET images are

obtained after relative equilibrium is reached between the vas-

cular and reversible tissue compartments (e.g., after 5–10 min

for FDG). Indeed, more general kinetic modeling approaches

remain to be carefully validated with DWB, and our subse-

quent discussion focuses mainly on Patlak modeling and

imaging.

Let us consider a sequence of dynamic PET datasets ac-

quired over time, and let us focus on activity concentration

C(t) in the reconstructed images for a given ROI or voxel of

interest. The Patlak formulation is:

C tð Þ

Cp tð Þ
¼ K i

∫
t

0 Cp τð Þdτ

Cp tð Þ
þ V ð1Þ

where CP(t) is the plasma concentration over time or so-called

plasma input function (PIF) (see ‘PIF estimation’ subsection

below), Ki (Patlak slope) is the tracer influx or uptake rate

constant, and V (Patlak intercept) is sometimes referred to as

the distribution volume. It is seen that this is a linear equation,

where the Patlak slope and intercept need to be estimated for

every ROI or voxel of interest. If applied to every voxel, this

will then produce parametric images of Patlak slope as well as

intercept. We also point out that the Patlak intercept V equals

V0 +Vp where (i) V0 is the so-called initial or exchangeable

volume of distribution for the reversible tissue compart-

ment(s) (unmetabolized or unphosphorylated FDG in tissue)

[64, 77, 79], and (ii) Vp is the fractional blood volume present

in the ROI or voxel of interest. To see the Patlak formulation

more explicitly, let us now consider the commonly used two-

tissue compartmental model for FDG as shown in Fig. 2. In

this case, it turns out that [76, 77]:

K i ¼
K1k3

k2 þ k3
ð2Þ

V ¼ V0 þ Vp ¼
K1k2

k2 þ k3ð Þ2
þ Vp ð3Þ

Ki in this case represents the overall rate of tracer uptake

into the final compartment, and has been a parameter of sig-

nificant interest in the literature. In any case, we emphasize

Fig. 1 An example of a multi-pass multi-bed PET data acquisition

protocol. WB imaging can refer to coverage of entire body, or more

routinely, head-to-thigh imaging; e.g., using seven bed positions as

shown in the figure. The example shown is that of step-and-shoot uni-

directional (cranio-caudal) imaging [58, 59], but it is also possible to

perform DWB imaging in continuous-bed-motion as discussed later. It

is also possible to perform bi-directional imaging, while noting that this

would result in differing spaces between temporal samples for different

body positions
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that the two-tissue compartment model [thus Eq. (2) and (3)]

need not be assumed. In fact, Patlak formulation (1) does not

presuppose a fixed number of compartments and is applicable

to models with different numbers of compartments when tis-

sue compartment with no or very small reversibility is as-

sumed. In those cases, Ki and Vwould have different formulas

than Eq. (2) and (3), but their effective meaning would be

similar.

As mentioned above, one may fit and estimate Patlak slope

Ki and intercept V measures at each voxel across the body,

resulting in WB parametric images in DWB data acquisition.

Furthermore, if PET acquisition spans times at which typical

SUV images are obtained (e.g., 50–80 min post-injection),

conventional SUV images may also be generated, either by

summing up the corresponding passes of the DWB PET scan

[80–82] or through a subsequent static WB PET scan at that

time. Figure 3 shows an example where parametric Patlak

slope and intercept images are generated, in addition to

image-summed SUV-equivalent images. Thus, three distinct

PET images can be obtained from a single PET exam. It is

readily seen that the slope image has significantly reduced

background uptake (e.g., in liver), while high background

PET signals are observed in the intercept and SUV images.

It is instructive to link Ki to conventional SUV for FDG-

avid tissues. Let us make two assumptions, namely that: (i) V

is negligible (i.e., specific uptake far outweighs presence of

background uptake), and (ii) the integral of the PIF

(∫
t

0 Cp τð Þdτ ) is proportional to the injected dose D divided

by the weight W of the patient. In this case, re-arranging Eq.

(1), one arrives at [11]:

K i≈
C tð Þ

∫
t

0 Cp τð Þdτ
∝
C tð Þ
D
�

W

¼ SUV ð4Þ

However, both assumptions can fail, resulting in consider-

able errors in estimated uptake rates [9–12, 29, 40]. The first

assumption can be especially invalid in earlier scan times, in

less FDG-avid tumors, or in the presence of substantial blood

volume. Moreover, a high physiologic (non-specific) uptake

may also interfere with disease-specific uptake in the same

tissue, for example when patients fail to adhere to special diet

prior to the PET exam [84]. The second assumption can also

be invalid. An example is when tracer infiltration/

extravasation occurs at injection site, affecting the relationship

between the PIF integral (radiotracer quantity available for

uptake) and the total administered dosage (accounted by

SUV). PIF may also be modified after a treatment regimen

(e.g., chemo or hormone therapy) or by an altered cardiac

output (slow cardiac output may slow clearance of radiotrac-

er). In such cases, SUV calculation would not take PIF mod-

ification into account [11]. The resulting observed changes in

SUV may then be due to the modified PIF (radiotracer quan-

tity available for uptake) rather than an actual change in tumor

uptake. By contrast, quantitative Patlak imaging is better po-

sitioned to account for these changes.

One may also take note of the method of dual-time-point

FDG PET imaging, wherein the percent change in SUV up-

take from an early scan (60 min) to a late scan (90–180 min) is

quantified [85–87]. This method tackles the first assumption

above by providing a framework to quantify rate of specific

tumor uptake, instead of lumping it in with background up-

take. Nonetheless, the above-mentioned problem with the sec-

ond assumption remains in dual-time-point imaging.

Furthermore, dual-time-point imaging requires significantly

increased patient involvement, including waiting in-between

scans and the added scan itself.

Next, we elaborate on some of the challenges in generating

parametric Patlak images.

PIF estimation

One reason dynamic PET imaging is not routinely employed

in clinical imaging is the notion that estimating the PIF is

difficult. This often suggests the need for invasive arterial or

venous blood sampling. Nonetheless, image-derived PIF esti-

mation is a viable alternative [88–90], and in fact is routinely

employed in quantitative myocardial blood flow imaging [91,

92]. Sampling of voxels within the left ventricle or atrium are

common options [93]. The challenge in past applications has

been that, for single-bed dynamic imaging of organs where the

heart is not in the field-of-view, one may need to utilize other

blood pools such as the carotid arteries, ascending aorta, tho-

racic (descending) aorta, or abdominal aorta [94, 95]. These

approaches may involve more difficult ROI placement,

though evidence has been provided that use of ascending or

abdominal aorta may be as effective as, or even more effective

than using the left ventricle for input function estimation [95].

The partial volume effect also contributes differently depend-

ing on blood pool. This is an issue for smaller blood pools, but

is also an issue for the left ventricle or atrium in FDG PET due

to high contrast between myocardium and cavities.

The interesting advantage of DWB imaging is that a given

blood pool of choice is naturally scanned at multiple time

Fig. 2 Commonly invoked two-tissue compartmental model for FDG. As

a glucose analog, FDG is taken up by high-glucose-using cells, and

subsequent to phosphorylation of FDG, producing 18F-FDG-6-

phosphate, the radiotracer is nearly trapped and prevented from being

released again from the cell (k4, in the opposite direction to k3, is

commonly assumed to be negligible, thus not shown, and the last

compartment is treated as effectively irreversible). A similar

compartmental model is used for some other radiotracers
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points within the DWB data acquisition protocol.

Subsequently, these measurements can be combined with ei-

ther (i) early dedicated scanning of the blood pool in the pro-

tocol (e.g., making use of the left ventricle, atrium, or aorta

[59, 83]), or (ii) use of population-based PIFs [96–100] to

obtain an estimate for the overall PIF. The resulting PIF is then

inserted into eq. (1) to compute Patlak slope and intercept

images. Note that for many radiotracers beyond FDG, radio-

active metabolites are present in the blood, and image-derived

blood pool measurements may not accurately estimate the

required PIF. Nonetheless, even using non-invasive estimation

may be an improvement compared to existing SUV method-

ology (that simply assumes integral of PIF is proportional to

injected dose divided by body weight), and use of population-

based PIFs can help in better modeling of these effects, but

this needs to be evaluated carefully.

There may be concerns about the validity of using

population-based PIFs for estimation of a patient-specific

PIF. For instance, let us consider DWB FDG imaging per-

formed 50–80 min post-injection with six WB passes

(~5 min/pass). We emphasize three important points:

(1) Population-based PIFs are personalized in DWB im-

aging, since they can be scaled based on the later multi-

time-point scans over the heart (and/or other blood pools)

in each specific subject.

(2) Only an estimate of the integral of PIF, and not actual

PIF values, of the early times (before PET measurements

are performed) are needed in Patlak analysis (see Eq. 1);

thus, there is less sensitivity to accuracy of individual PIF

values at early times before PET imaging.

(3) Finally, and importantly, while the scaled population-

based PIF approach is surely an approximation to the true

PIF shape, conventional routinely-utilized SUV analysis

makes no use of the input function at all, and as discussed

for Eq. 4, it makes an even stronger approximation

(namely of proportionality between the integral of the

PIF and the injected dose divided by weight of the

patient).

In any case, the impact of such a framework on test–retest

repeatability of PET measures [101] remains to be carefully

assessed.

DWB acquisition protocols

Optimal acquisition times for different applications remain

to be determined. A range of time windows have been con-

sidered and tried by different groups. In Table 1, we list a

number of DWB protocols. The majority of these studies

have involved FDG PET/CT, and the applicability of the

technique for other tracers, particularly those with more

complex kinetic properties, will require careful validation.

The studies have involved either step-and-shoot (SS) or con-

tinuous bed motion (CBM), both of which accommodate

DWB PET imaging. There also exist some efforts using

PET/MRI (more on this later).

Fig. 3 Comparison between a

SUV images (70–90 min post

FDG injection) and parametric

images (0–90 min) of b Ki and c

V generated from a human DWB

FDG PET scan using Patlak plot

with image-derived input function

and a linear regression with

spatial constraint algorithm [81].

d Fusion of Ki on V images. Top

and bottom rows show anterior

and more posterior coronal

images of the patient. For routine

clinically-realistic imaging,

shortened DWB protocols are

possible (< 30 min duration) [80,

83], which we also discuss in the

text
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The advantage of imaging immediately post-injection is to

help obtain truly individual PIF estimates. Also imaging early

has the advantage of capturing early tracer dynamics and pro-

ducing better quantification in DWB [102]. Nonetheless,

performing DWB imaging later (at or around 60–90 min

post-injection) has the advantage of higher tracer accumula-

tion in the target, which is why standard FDG SUV imaging is

performed as such. Very importantly, such imaging can addi-

tionally produce estimates for conventional SUV imaging by

summation of dynamic frames [80, 82], and as such, has a

higher chance of more immediate translation to routine clini-

cal imaging.

Tackling noisy images

Dynamic imaging can result in the generation of images that

are noisy, and which also in turn produce noisy parametric

images (e.g., see Fig. 4a,c). This issue is accentuated in

DWB where imaging of a particular region is performed for

only a portion of the total acquisition time. There are a number

of means to tackle this:

(i) Optimized sampling: For a fixed total duration, modify-

ing the number ofWB passes may make a difference in Patlak

imaging [59], but the improvements are likely small and may

be statistically insignificant as long as more than two passes

are used to enablemore accurate estimation of the PIF [114]. If

the PIF is known, accurate estimates may be obtained from

even two passes [78]. In any case, advanced optimization of

sampling (including consideration of unequal durations per

pass) as applied to different kinetic models might be worth

pursuing [55].

(ii) Improved statistical regression: Kinetic parameter esti-

mation, evenwhen applied to simplemodels such as Patlak, can

be enhanced by using advanced statistical modeling, including

(i) weighting of frames by duration and/or counts for more

appropriate weighted fitting, as well as (ii) using regularization,

such as ridge regression or clustering-based methods, to reduce

noise and variability in images [60, 115–119].

(iii) 4D image reconstruction: Dynamic PET commonly

involves independent reconstruction of dynamic frames.

This can result in very noisy images that may challenge robust

kinetic model fitting, and the reconstructed images may also

contain noise-induced bias in low-uptake regions (due to the

Table 1 Listing of a number of DWB (multi-pass) PET protocols investigated or under investigation

Scan times*

(minutes post-injection)

Acquisition protocol Additional notes**

0–100 8 × 12 min/pass PET/CT (SS) 18F-FRP170; [103]

0–45 6 min single-bed (24 dynamic frames); DWB 6 × ~6 min/pass PET/CT (SS) [59, 104, 105]

0–60 6 min single-bed (18 dynamic frames); DWB 6 × 9 min/pass PET/CT (SS) [106]

0–90 6 min single-bed (24 frames); DWB 15 × 5 min/pass PET/CT (SS) [81, 102, 107]

PET/CT (CBM) [108]

0–60 3 min single-bed (15 frames); DWB (11–15) × ~4.5 min/pass PET/CT (CBM) [83]

60–78 ***DWB 4 × 4.5 min/pass or 6 x 3min/pass PET/CT (SS) [80, 82]

PET/CT (CBM) [82, 108]

45–60 Six WB passes (6 × ~2.5 min/pass) PET/CT (CBM) [83]

0–77 ****6 min single-bed (20 frames) over suspected pathology;

17 WB passes (variable WB scan speeds)

PET/CT (CBM); initial scan over

suspected pathology

(instead of heart) [109, 110]

30–55 DWB 5 × 4.5 min/pass PET/MRI [111]

0–90 6 min single-bed (24 dynamic frames); DWB 8 × 10.5 min/pass PET/CT (SS) 68Ga-DOTATOC [112]

0–60 10 min single-bed (26 frames); six WB passes (30s/bed with ten beds) PET/MRI; PET active partially during

MRI sequences [113]

0–95 *****6 min single-bed (nine frames); 19 WB passes

(4 × 2 min/pass, 15 × 5 min/pass)

PET/CT (CBM)

50–80 DWB 6 × 5 min/pass PET/CT (SS)

All studies are for FDG except when indicated otherwise.

*These longer (≥ 90min) scans are used for new clinical applications and/or optimization of data acquisition (e.g., optimal imagingwindow; early vs late

imaging) and are sometimes accompanied with arterial or venous blood sampling for validation purposes

**All studies involve 18F-FDG PET except when indicated

***This protocol is designed for a 60–78 min post-injection acquisition window matching that of some standard-of-care FDG WB PET exams

****This protocol, due to initial scanning over a bed position containing suspected pathology, enables use of models beyond Patlak for that single bed,

while allowing Patlak modeling for all the bed positions

*****The last two efforts (two rows) are under investigation at Yale, Geneva, and Johns Hopkins PET centers
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non-negativity constraint in the OSEM reconstruction algo-

rithm) [120]. Furthermore, accurate kinetic parameter estima-

tion requires modeling of the noise distribution in the recon-

structed images (noise covariance matrix), which can be dif-

ficult and time-consuming to compute [121, 122]. In fact,

space-variant noise variance and inter-voxel correlations are

often neglected in routine kinetic modeling. An alternative

approach is to directly estimate the kinetic parameters from

dynamic sinogram data (see reviews [123–125]). This is done

by (i) processing the dynamic sinograms into a single

sinogram followed by a single reconstruction [126–128], or

(ii) by use of more advanced 4D statistical models [129–134]

which have the advantage of accurately modeling Poisson

noise distributions in the data space. These approaches to cre-

ate parametric images directly from sinogram data are appli-

cable to or were already explored for Patlak imaging in the

past, and in more recent years for whole-body Patlak imaging

[78, 104, 107]. This included ‘nesting’ the Patlak model with-

in the iterative reconstruction framework for accelerated con-

vergence [104] using optimization transfer principles [135]. In

Fig. 4, we show examples (30 min DWB acquisition time

windows) demonstrating that significantly improved images

are produced using the direct approach, compared to conven-

tional indirect parametric image generation. In fact, there is

now a vendor product (FlowMotion™ Multiparametric PET

by Siemens) that implements the accelerated (nested) direct

Patlak reconstruction methodology [135].

Non-compartmental analysis of DWB PET data

DWB images can play a key role in new imaging applications

which perform more thorough assessments of the time course of

radiotracer uptake [103]. It is also possible to use non-

compartmental methods to combine the generated DWB images

to create parametric images. An example is the use of principal

component analysis (PCA) [136] which explains the variance-

covariance structure in a dynamic dataset using a series of linear

combinations of the original variables, and can be applied in our

case to the measured TACs at the voxel level. Such an approach

is data-driven in the sense that it makes no assumptions about the

underlying tracer kinetics and requires no PIF. PCA has been

previously used in the context of dynamic PET at a single bed-

position for improved detection of different signals and regions

present in the images [137–140]. Data shown in Fig. 5 illustrate

an example application to DWB FDG PET. In these data, the

principal component 1 (PC1) image was found to resemble a

low-noise summation image, whereas the PC2 image was

weighted towards increasing TACs, including tumors.

However, onemust be cautious that in some studies, components

may not be fully separated, leading to problems especially for

quantitative applications. Alternatively, it is possible to apply

other non-compartmental methods to dynamic images and

TACs such as independent component analysis (ICA) [141,

142], factor analysis [143–146], spectral analysis [147, 148],

cluster analysis [149] or heterogeneity analysis (e.g., fractal di-

mension) [38]. It remains to be demonstrated whether these

methods, given their subtleties and challenges (such as the chal-

lenge of accurately mapping their derived images to specific

physiological processes) will translate to clinical applications.

Clinical potential

Assessment of systemic disease

DWB PET is an enabling technology with promising clinical

potential. Specifically, there is significant potential for im-

proved quantification and assessment of systemic disease, in-

cluding cancer, inflammation and infection. Overall, dynamic

imaging and parametrization enable more accurate

Fig. 4 Parametric images for 30 min (6 × 5min/pass) time windows. a

Indirect Ki and b direct Ki images for frames spanning ~10–40 min post-

injection. c Indirect Ki and d direct Ki images for frames spanning ~60–

90 min post-injection. Three iterations (21 subsets) were used, and 6 mm

Gaussian filter post-smoothing was performed. The small tumor (shown

by arrow) at the dome of the liver is seen in early imaging (a, b) but only

on direct Ki image for later imaging (d)
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quantification of uptake, which may be of special significance

for improved diagnosis as well as monitoring of therapy re-

sponse [150]. In the latter, alterations in background physio-

logic uptake or in the PIF following treatment may confuse

therapy assessment in conventional SUV imaging [11]. In

addition, it is expected that quantitative results derived from

the DWB imaging procedure will be less time-dependent than

single-time-point static SUV whole body images.

We also envision the DWB methodology to be of value in

experimental treatments (including phase 1 clinical trials),

where patients with systematic disease (e.g., metastatic bur-

den) undergo imaging and treatment. In such studies, WB

imaging has high significance, and transition to DWB imag-

ing can retain advantages of WB assessment while providing

improved quantification of disease.

DWB imaging may also add value to clinical trials wherein

tracers beyond FDG are utilized, aiming to capture and quan-

tify different aspects of disease than FDG does. This includes

radiotracers for which SUVis not reliable or fully informative.

An example includes PET imaging with tyrosine kinase inhib-

itors (TKIs) [151]. As another example, consider 68Ga-

DOTATOC PET/CT for imaging neuroendocrine tumors

(NET). Dynamic 68Ga-DOTATOC PET has been suggested

as the preferred acquisition mode over conventional static

SUV PET, which may not reflect somatostatin receptor den-

sity accurately at higher values [74]. At the same time, meta-

static NETs can extend well beyond the axial range of a single

PET bed position. Accommodating both these considerations,

Fig. 6 provides evidence of the feasibility of DWB 68Ga-

DOTATOC PET/CT, involving acquisition of dynamic PET

Fig. 5 Three patient examples showing how PCA could potentially be

used to aid assessment of dynamic FDG studies. Each study involved six

dynamic frames. The bladder was suppressed prior to PCA analysis.

Patients A and B had tumors in lung and pelvis respectively, while

patient C had a normal FDG distribution. Note the high contrast seen in

PCA component 2 (column 4), reflecting the increasing FDG uptake
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Fig. 6 An example of DWB 68Ga-DOTOTOC PET/CT imaging. The

protocol involved WB (eyes to mid-thigh) low-dose CT and 68Ga-

DOTATOC injection simultaneous with the start of a 6 min, single-bed,

dynamic PET over the heart, immediately followed by eight sequential

WB PET scans (8 × 7 bed positions × 1.5 min / bed). TACs increased

throughout the ~90 min imaging period. The initial dynamic series over

the heart and negligible myocardial uptake in the WB images suggest

potential for non-invasive image-derived PIF determination, although

this capability needs to be carefully validated. In this dynamic imaging

protocol, the extended scan range enabled by the DWB technique

revealed unexpected metastases in the thoracic vertebrae
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data over an extended axial range. Overall, DWB provides

potentials for improved assessment of disseminated disease.

Study of systemic interactions and responses

The ability for DWB to quantify multiple organs throughout

the body opens up new opportunities for imaging. An area of

significant potential is study of the gut–brain axis. This is

related to findings that bacteria in the gastrointestinal (GI) tract

have the ability to activate neural pathways and central ner-

vous system (CNS) signaling systems [152]. For instance,

there are emerging models of Parkinson’s disease in which

misfolded α-synuclein proteins could propagate from the gut

epithelium to the brain [153, 154]. Another example is the

study of the heart–brain axis, whereby the cardiovascular

and nervous systems interact in complex ways and in both

directions [155]. An interesting recent PET study on mice,

for instance, revealed the brain to be susceptible to acute myo-

cardial infarction and chronic heart failure, potentially induc-

ing neuroinflammation as a precursor to neurodegeneration

[156]. In a patient study of stress-induced atherosclerosis, re-

gional brain FDGPETactivity in the amygdala was associated

with arterial inflammation as measured using FDG, and sig-

nificantly predicted subsequent cardiovascular disease events

[157]. Such studies have significant implications and may be

performed on humans via the DWB framework to provide a

wider set of multi-parametric and co-registered molecular

images.

Application to PET/MRI imaging

Combined PET/MRI instrumentation has the potential to pro-

vide more than merely a radiation-free anatomical context for

PET imaging [158–161]. Although the optimum way to de-

ploy the technology is still under development, a range of

different MR sequences enabling multiparametric MR imag-

ing are available, including T1-, T2-, diffusion-weighted and

dynamic contrast-enhanced MR imaging [162]. Whereas

much PET/CT protocol development has been aimed at reduc-

ing PETacquisition times [163], with simultaneous PET/MRI,

overall scan durations are expected (and accepted) to be lon-

ger to enable multiple MR sequences and to provide a wealth

of information that can potentially complement the PET data.

This increased time provides a great opportunity for DWB

PET. The complementary MR imaging capability may also

enable enhanced PIF estimation, motion correction, and syn-

ergistic kinetic modeling [164, 165].

An example application of DWB is shown in Fig. 7, in-

volving Patlak analysis fit to a population-based PIF scaled to

the individual patient, given late samples from the left ventric-

ular blood pool. Given MR images, motion data between dif-

ferent passes were extracted using the non-rigid registration

method [111]. Recently, Johansson et al. [113] used DWB

PET/MR imaging to perform simultaneous WB assessment

of tissue-specific insulin-mediated FDG influx rates via PET,

and tissue depots by MR. Results indicate that DWB FDG

PET/MR is feasible. Additionally, the MRI protocol may be

expanded to perform additional imaging sequences as well as

use of different MR image contrasts.

BBlack-blood PET^ imaging?

Another application that might aptly fit within the DWB

framework is WB imaging of vessel wall inflammation.

Multiple studies have demonstrated the value of FDG PET/

CT for detecting active inflammation in vessel wall [166,

167]. In atherosclerosis, which is a chronic inflammatory re-

sponse to lipid accumulation in the artery wall, the artery

plaques are clinically silent for years. Vulnerable plaques that

fissure or erode to trigger thrombus formation and cause acute

ischemia are the ones that cause dramatic clinical manifesta-

tions. Resident macrophages in plaques show higher metabol-

ic trapping of FDG than the neighboring cells. FDG PET

imaging is typically performed 2 h or more post-injection, to

minimize blood pool activity and to increase the target-to-

background ratio in the walls. The DWB framework poses a

potential, alternative way of inspecting FDG uptake at earlier

times. The methodology is analogous to black-blood MRI

imaging [168, 169], where the blood signal in the vessel lu-

men is saturated, while signal in the vessel walls is visualized.

Similarly, since Patlak images show the rate of uptake in the

region of interest, tracer activity in blood will be saturated,

potentially enabling assessment of inflammation in the walls

of major vessels [170]. Such a framework needs to be careful-

ly assessed and verified, as the imaging of small structures

such as the blood vessel wall may be very sensitive to patient

motion artifacts.

Additional considerations

Towards parametric PET imaging in the clinic

Dynamic PET acquisition enabling quantitative imaging is

well established in the research setting, but has not been wide-

ly adopted in routine clinical imaging. Neurological PET, by

contrast, has witnessed a proliferation of dynamic quantitative

techniques. This is related to the observation that the vast

majority of neuro PET tracers do not have sufficient sensitiv-

ity and specificity for diagnostic or prognostic purposes (e.g.,

see [171]), leading to investigation of quantitative parameter

estimation techniques to enhance the study of subtle task- or

disease-induced neurological alterations. By contrast, given

the successful clinical adoption of tracers such as FDG in

oncologic PET imaging, substantially less work has been de-

voted to quantitative methods in the clinic.
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At the same time, routine clinical PET imaging may signif-

icantly benefit from translation of quantitative methods to its

domain to tackle the aforementioned limitations with conven-

tional SUV imaging. Given the importance of WB PET cov-

erage for clinical applications [41–45], the extension of dy-

namic PET protocols to multi-bed fields-of-view through

DWB PET appears necessary for routine and wide adoption

of parametric PET imaging. The combination of dynamic and

WB PET imaging is very feasible, and parametric images may

also be conveniently generated, as additionally evidenced by

the availability of at least one vendor product supporting such

a framework (FlowMotion™ Multiparametric PET by

Siemens Healthineers). The DWB framework remains to be

employed in a wide setting to identify in which areas it can

add significant value to clinical imaging. An important con-

sideration, in order to more readily enable routine clinical

adoption of DWB PET, is to perform a single multi-bed

DWB PET acquisition from which PET images comparable

to current standard-of-care whole-body PET SUV images are

generated, while also providing parametric PET images to

improve diagnosis and clinical interpretation. This, as we have

indicated in the above discussions, is quite feasible.

An alternative approach is to build PET scanners with very

large axial coverage of the human body, such as the proposed

total-body EXPLORER system [172]. This exciting technol-

ogy, which is in its developmental stages, would readily

enable dynamicWB imaging, with advantages of significantly

increased sensitivity (by a factor of 40 forWB imaging using a

2 m-long total-body system) and continuous temporal cover-

age across the body (enabling application of a wider range of

compartmental kinetic modeling methods). At the same time,

while total-body systems can significantly shorten routine

PET scans given the sensitivity boost, duration of dynamic

imaging can probably not be significantly shortened given

the time needed for redistribution of radiopharmaceuticals.

Overall, it remains to be seen to what extent such systems will

be available and employed in the future. By contrast, the

DWB framework is readily employable in PET imaging

today.

Pitfalls

There are a number of pitfalls in DWB imaging. Routine

single-passWB imaging limits imaging of each bed to a single

contiguous block of time. By contrast, in DWB each bed

position is visited multiple times. This can increase chances

of organ movement or overall body motion in between the

passes. On one occasion, for instance, we observed a lesion

in the bladder, visible in the conventional SUV image, disap-

pear in DWB Patlak imaging. This was found to be related to

expansion of the bladder in the course of the scan and an

inconsistent lesion location. In addition, direct 4D parametric

Fig. 7 DWB applied to simultaneous FDG PET/MRI imaging. Motion

correction was performed on MRI images (using automated B-spline

image registration with normalized cross correlation as a cost function),

and subsequently applied to PET images. The patient shown was imaged

at 30–55 min post-injection of FDG (times shown above are with respect

to scan start time 30 min post-injection). DWB PET/MR consisted of five

beds (stations) per WB pass and a total-l of 5 WB passes (scan time of

40 s/station). The time to complete each WB (head-through-thighs) scan

and to begin another WB pass was approximately 4.5 min. The resulting

parametric Patlak Ki image is shown on the right
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imaging poses enhanced sensitivity to subject motion [173].

As for outward patient movements, it is our experience that a

well-trained team of technologists can help significantly min-

imize such issues with cooperative patients. It may also be

worth exploring the use of inflatable individually molded

cushions [174]. Finally, it is worth exploring motion-

correction methods if notable motion occurs. An example of

this was achieved in Fig. 7 in the context of PET/MRI

imaging.

Another limitation is related to the fact that routine clinical

PET scans are nowadays performed with increasingly shorter

durations (< 20min forWB imaging). These typically involve

the use of six to seven beds with 2–3 min/bed, given the

impressive performance of new-generation PET scanners.

However, to properly capture reasonable kinetics in tracer

redistribution, ~30 min (or possibly more time) may be re-

quired. This issue remains to be carefully assessed. With the

availability of DWB as an enabling technology, it remains to

be shown whether significantly improved clinical task perfor-

mance can be obtained, taking into account the economics of

PET imaging as well a busy working clinic.

We also note that standard Patlak analysis is based on

assumption of irreversible kinetics (e.g., in Fig. 2, k4 is

assumed negligible). This may not be an entirely correct

assumption for FDG (see references and discussion in

[105]), leading to underestimation of the Patlak slope if

imaging is performed at later times [102]. Solutions to

this include use of pre-determined k4 values [115], or the

generalized Patlak model that takes this reversibility into

account and estimates it. The latter maintains advantages

of Patlak imaging (not requiring early or continuous PET

imaging), while providing more accurate quantitation

[105]. Nonetheless, it results in a greater number of

noisy images due to the added complexity of the model.

This may in part be tackled by direct 4D parametric

imaging [104]. Furthermore, an approach has been to

perform early imaging over a single bed position cover-

ing suspected pathology, followed by multi-pass WB im-

aging. In this case, it is possible to employ more elabo-

rate compartmental kinetic models (estimating the indi-

vidual rate constants) for the particular bed position,

while performing Patlak imaging for all imaged WB

bed positions [109].

We also note that standard FDG Patlak modeling may be

especially inaccurate for certain organs. In particular, liver is

better modeled by a dual-input kinetic model, given the dual

blood supply from the hepatic artery and the portal vein [175],

and kidney involves very complex kinetics [176]. At the same

time, SUV modeling also neglects such complex models, in

fact to an even larger extent that standard Patlak analysis. In

the case of the liver, for instance, Patlak analysis is actually

applicable [175] but greater accuracy is gained by having a

modified PIF as applied to the model.

Summary of advantages

DWB imaging has a number of potential advantages that are

of interest:

1) It combines the abilities to visualize and quantify radio-

tracer uptake across the body, enabling opportunities for

improved imaging and quantification of systemic disease

as well as systemic interactions and responses.

2) It can minimize time dependence of SUV activity: SUV

uptake (Eq. 4) changes in time in direct proportion to

changes in image uptake. Given variable scan times in-

herent in a busy clinical practice, this is an issue, and the

proposed measures may be less subject to such alterations

in exact acquisition times.

3) It can remove background uptake, allowing small and less

FDG avid tumors to be identified. This is in contrast to the

Bsea of background^ situation in conventional single-pass

SUV imaging. This may be particularly helpful in the

upper abdomen, especially the liver.

4) The parametric values may go to Bzero^, unlike back-

ground activity in traditional PET imaging, resulting in

a larger dynamic range for PET.

5) Images with improved quantification may be obtained

with significantly less wait-time in some settings (e.g.,

in comparison to dual-time-point imaging).

6) For certain DWB acquisition protocols, conventional

SUV images are readily obtained by summation of mul-

tiple passes through the subject, while also providing

multiple parametric images. Overall, a single imaging

session can be used to generate complementary images

while retaining benefits of conventional SUV imaging.

Challenges to wide usage

There are a number of challenges to wide usage of DWB PET.

The most important one appears to be additional scanning

time required (cost and logistics). PET imaging centers are

moving towards increasingly shorter scan durations. While

30 min imaging was routine in previous years, with new gen-

eration PET scanners, WB imaging with total times less than

20 min is becoming more routine. This poses a challenge to

DWB PET imaging, which will probably require longer scan

times. It remains to be determined by our community when

the trade-off is justified, as applications for DWB PET are

more extensively evaluated. A practical idea proposed (by

Dr. Rich Carson) has been to employ DWB PET imaging

for the first patient of the day, which does not incur additional

cost, in the sense that instead of waiting in the uptake room,

part or all of that time is spent on the scanner, to accumulate

sufficient data and evidence for new applications.
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Another challenge to wider usage of DWB PET is the per-

ception that population-based PIF estimationmethods can bring

about significant lack of accuracy.What we have emphasized in

this work is that the prevalent SUV quantitation framework

makes an even more simplistic approximation for the PIF, thus

suffering from greater inaccuracy. Nonetheless, it does remain

to be seen whether the DWB PET methodology results in sig-

nificantly increased variability (reduced precision). This is also

related to the fact that kinetic modeling (even linear regression

in Patlak) within DWB PET can result in noisier (and less

reproducible) images. This potential trade-off between in-

creased quantitative accuracy and reduced precision will need

to be carefully assessed for different clinical applications.

Conclusion

DWB PET is a powerful imaging framework that enables

improved visualization of specific tracer uptake vs back-

ground uptake, and may produce more accurate quantitative

measures of disease. It can be employed to complement con-

ventional whole-body SUV images with other highly quanti-

tative parametric images, such as that of influx rate of uptake.

Given the impressive performance of current-generation clin-

ical PET scanners, DWB PET imaging appears fully feasible

and has the potential to add significant value to clinical imag-

ing and clinical research.
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