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Abstract 

The problem of axial dynamic pile-soil interaction and its analytical representation using the 

concept of a dynamic Winkler support are revisited. It is shown that depth- and frequency-

dependent Winkler springs and dashpots, obtained by dividing the complex-valued side friction 

and the corresponding displacements along the pile, may faithfully describe the interaction 

effect, contrary to the common perception that the Winkler concept is always approximate. An 

axisymmetric wave solution, based on linear elastodynamic theory, is then derived for the 

harmonic steady-state response of finite and infinitely-long piles in a homogeneous viscoelastic 

soil stratum, with the former type of piles resting on rigid rock. The pile is modelled as a 

continuum, without the restrictions associated with strength-of-materials approximations. 

Closed-form solutions are obtained for: (i) the displacement field in the soil and the pile; (ii) 

the stiffness and damping (“impedance”) coefficients at the pile head; (iii) the actual, depth-

dependent, dynamic Winkler moduli; (iv) a set of fictitious, depth-independent, Winkler moduli 

to match the dynamic response at the pile head. Results are presented in terms of dimensionless 

graphs, tables, and simple equations that provide insight into the complex physics of the 

problem. The predictions of the model compare favourably with existing solutions, while new 

results and simple design-oriented formulas are presented. 
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Notation 

  dimensionless frequency 

  mt h

 resonance of pile-soil system 

  cutoff frequency or first resonance of pile-soil system 

  pile cross-sectional area 

  integration constants 

  pile diameter 

  pile shear modulus, pile Young’s modulus 

  soil shear modulus, soil Young’s modulus 

  body force along pile axis 

  complex-valued Winkler moduli 

 

 

 

average (depth-independent) Winkler modulus 

depth-dependent Winkler modulus 

  complex-valued pile head stiffness 

  static and dynamic pile head stiffness 

  
modified Bessel functions of zero and first order, and first and 

second kind 

 

  pile length, soil thickness 

  amplitude of pile head load 

  radial coordinate 

  radial, tangential, vertical soil displacement 

  shear wave propagation velocity in soil and pile material 

  vertical pile displacement 

  vertical coordinate 

Greek symbols 

  positive variables 

  average (depth-independent) Winkler damping coefficient 
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 depth-dependent damping coefficient 

  pile, soil material damping 

  radiation damping coefficient 

  Euler’s number ( 0.577) 

  overall damping at the pile head 

  compressibility coefficient for soil and pile 

  complex-valued Winkler wavenumber 

  wavelengths in soil and pile material, respectively 

,   pile and soil Poisson’s ratio 

,   pile and soil vertical shear stress 

  soil vertical normal stress 

  cyclic excitation frequency 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: Dynamics, Elasticity, Piles, Soil/structure interaction, Theoretical Analysis, 

Vibration 
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Introduction 

Modelling of dynamic pile-soil interaction has received significant research attention over the 

past four decades. Most studies are either purely numerical in nature (Blaney et al., 1976; 

Roesset, 1980; Syngros, 2004), or employ mixed analytical-numerical formulations of various 

degrees of sophistication (Kaynia & Kausel, 1982; Sanchez-Salinero, 1982; Banerjee & Sen, 

1987; Rajapakse, 1990; Wolf et al., 1992; Ji & Pak, 1996, Seo et al., 2009). Other contributions 

focus on experimental aspects of the problem, both in the field  

(Blaney et al., 1987; Tazoh et al., 1987; El-Marsafawi et al., 1992) and the laboratory 

(Boulanger et al., 1999; Bhattacharya et al., 2004; Knappett & Madabhushi, 2009). Purely 

analytical studies are based primarily on two-dimensional idealizations for wave propagation 

in the soil, associated with the approximate model of Baranov and Novak (Baranov, 1967; 

Novak, 1974; Novak et al., 1978; Veletsos & Dotson, 1986; Mylonakis, 1995; El Naggar, 

2000). On the other hand, analytical solutions based on three-dimensional wave propagation 

theory, which can provide more realistic predictions and shed light into fundamental aspects of 

dynamic pile-soil interaction, have been explored to a lesser degree (Tajimi, 1969; Nogami & 

Novak, 1976; Akiyoshi, 1982; Mylonakis, 2001b; Saitoh, 2005; Anoyatis, 2009). 

With reference to simple engineering approximations, the most efficient way of modelling 

dynamic pile-soil interaction is to replace the soil medium by a series of independent Winkler 

springs and dashpots uniformly distributed along the pile axis. The substitution is convenient 

as the multi-dimensional boundary value problem is reduced to that of a simple rod subjected 

to one-dimensional wave propagation in the vertical direction. Although idealized, Winkler 

models are widely accepted by engineers, used for both axially and laterally-loaded piles under 

static or dynamic conditions (Novak, 1974; Randolph & Wroth, 1978; O’Rourke & Dobry, 

1978; Baguelin & Frank, 1979; Scott, 1981; Pender, 1993; Guo, 2000; Reese & Van Impe, 

2000). Their popularity stems primarily from their ability to (Mylonakis, 2001a):  

(1) yield realistic predictions of pile response, (2) incorporate variable soil properties with depth 

and radial distance from the pile, (3) model group effects by employing pertinent pile-to-pile 
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interaction models, (5) require substantially smaller computational effort than more rigorous 

alternatives. 

The fundamental problem in the implementation of Winkler models lies in the assessment of 

the moduli of the Winkler springs and dashpots. Current methods for determining these 

parameters can be classified into three main groups (Mylonakis, 2001a): (A) experimental 

methods, (B) calibration with rigorous numerical solutions, (C) simplified theoretical models. 

Notwithstanding the significance of the above methods, they can all be criticized for certain 

drawbacks. For instance, experimentally-determined Winkler values pertain mostly to large-

amplitude static loads and do not properly account for low-strain soil stiffness, energy 

dissipation and frequency effects (Novak, 1991; Reese & Van Impe, 2000). On the other hand, 

calibrations with rigorous numerical solutions in Group B may encounter numerical difficulties 

in certain parameter ranges, as for instance in the case of long compressible piles, resonant 

frequencies and regions in the vicinity of the pile head and tip. Also, these approaches are often 

limited by analytical and computational complexities associated with the underlying numerical 

procedures, which can make them unappealing to geotechnical engineers. Finally, plane-strain 

models in Group C are unstable at low frequencies (thereby unable to predict static settlements), 

cannot capture resonant frequencies and associated cutoff effects, require empirical adjustments 

and do not account for important factors such as the continuity of the medium in the vertical 

direction and the stiffness contrast between pile and soil (Randolph & Wroth, 1978; Baguelin 

& Frank, 1979; Novak, 1991; Mylonakis, 2001b). 

With reference to methods in Group C, it appears that a rational model capable of providing 

improved estimates of dynamic Winkler stiffness and damping to be used in engineering 

applications would be desirable. In the framework of linear elastodynamic theory, an 

approximate yet realistic analytical solution is presented in this paper for an axially-loaded pile 

in a homogeneous soil stratum. While maintaining conceptual and analytical simplicity, the 

proposed model has distinct advantages over other models in Group C: it is stable at low 

frequencies, accounts for resonant phenomena and cutoff frequency effects, encompasses the 
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continuity of the medium in the vertical direction and the compressibility of the soil material, 

and is free of empirical constants. Apart from its intrinsic theoretical interest, the study provides 

simplified expressions for static and dynamic Winkler moduli which can be used in engineering 

practice. 

 

Problem Definition & Model Development 

The problem considered in this article is depicted in Fig. 1: a vertical solid cylindrical pile 

embedded in a homogeneous soil medium, subjected to an axial harmonic head load of 

amplitude  and cyclic frequency , applied at the pile head. The soil is modelled as a 

continuum, resisting dynamic pile displacements through combined inertial forces and 

compression-shearing in the vertical direction. Soil is assumed to be a linear viscoelastic 

material of Young's modulus , Poisson's ratio  mass density  and linear hysteretic 

damping  expressed through the complex shear modulus . Unlike most 

previous studies, (e.g., Nogami & Novak, 1976; Akiyoshi, 1982), the pile is modelled as a 

continuum, without the limitations associated with strength-of-materials approximations. The 

pile is described by its diameter d, Young's modulus , Poisson's ratio  and mass density 

. Both infinitely-long piles in a half-space and end-bearing piles of finite length , resting on 

rigid rock, are considered. Perfect contact (i.e., no gap or slippage) is assumed at the pile-soil 

interface. Positive notation for stresses and displacements is depicted in Fig. 1. 

With reference to the cylindrical coordinate system in Fig. 1, the equilibrium of an arbitrary 

soil element in the vertical direction is described by the differential equation 

 

  (1) 

 

where  shear stress on  plane,  vertical normal stress,  soil mass density, 

 vertical soil displacement. 
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Fundamental to the analysis presented herein is the assumption that normal stress, , and shear 

stress, , are controlled exclusively by the vertical displacement component ; the influence 

of radial displacement, , on these stresses is considered negligibly small (Mylonakis, 2001a). 

Based on this physically motivated simplification, the stress-displacement relations for  and 

 are written as 

 

  (2) 

 

  (3) 

 

where  is the complex soil shear modulus and  a dimensionless compression parameter 

that depends solely on Poisson’s ratio. The above approximation is attractive, as it leads to a 

straightforward uncoupling of the governing equations, unlike the case of the classical 

equations of elastodynamics (Graff, 1975). The negative sign in the right–hand side of these 

expressions conforms to the notation for stresses and displacements in Fig. 1. To satisfy the 

above requirements, zero radial stress, , in the soil may be assumed, as discussed in the 

ensuing. 

Equations (2) and (3) were apparently first employed by Nogami & Novak (1976) for the 

analysis of the axial dynamic pile-soil interaction problem. In that work, however, the pile was 

modelled as a rod and the radial displacement of the medium was assumed to be zero. In the 

present study the assumptions would be less restrictive:  is not constant over the pile cross 

section and  is small but not zero; the influence of the latter displacement component in 

vertical equilibrium is incorporated into coefficient . In this study, 

 

  (4) 
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which conforms to the assumption ,  that accounts, approximately, for the partial 

lateral restraint of the soil medium in axisymmetric deformation. This approach was followed 

by Mylonakis (2001a) for the analysis of the corresponding static problem and is extended here 

to the dynamic regime. The assumption of Nogami & Novak (1976), 

, is not adopted here as it leads to a stiffer medium and breaks down 

in the incompressible case ( ). 

Considering forced harmonic oscillations of the type , the 

equilibrium equation (1) can be expressed in the displacement form 

 

 (5) 

 

where  is the cyclic oscillation frequency and  the complex-valued propagation velocity of 

shear waves in the soil. Note that if the variation with depth of vertical normal stress  is 

neglected, the above formula simplifies to 

 

  (6) 

 

which expresses the cylindrical wave equation of the dynamic plane strain−model (Novak, 

1974;  Novak et al., 1978). Setting  in the above expression yields the conventional static 

plane-strain model of Randolph & Wroth (1978) and Baguelin & Frank (1979), the solution of 

which requires introduction of an empirically-determined radius along which soil displacement 

is set equal to zero, to ensure finite displacements in the domain. In the same spirit, Novak 

(1991) considers an empirical minimum frequency in equation (6), to avoid the breakdown of 

the solution at low frequencies. Equation (5) is free of these drawbacks. 

Introducing separation of variables, equation (5) yields the general solution 
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 (7) 

 

where  are the modified Bessel functions of zero order and first and second kind, 

respectively, and  is a positive real variable of dimensions 1/Length.  and  are 

integration constants to be determined from the boundary conditions. Variable  is related to 

 through the frequency-dependent equation 

 

  (8) 

 

Note that in the special case  and  the above expression reduces to the static 

solution of Mylonakis (2001a). 

To ensure bounded response at large radial distances from the pile and satisfy the boundary 

condition of zero normal stress at the soil surface, constants  and  in equation (7) must 

vanish. Accordingly, the solution reduces to 

 

  (9) 

 

in which constant  has merged into constant . 

 

Infinitely-long pile 

Based on the properties of the Fourier transform, the response of the soil medium is obtained 

by integrating equations (3) and (9) over the positive variable  

 

  (10) 
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  (11) 

 

The corresponding equilibrium equation for the pile is 

 

 (12) 

 

in which  is the vertical pile displacement (which varies within a horizontal cross 

section) and  is the propagation velocity of shear waves in the pile material.  is a 

dimensionless compressibility parameter analogous to that in equation (4). In this study, 

 

  (13) 

 

which corresponds to the assumption . This approach is more realistic over equation 

(4) for the pile material, due to pile–soil stiffness contrast. It must be noticed that this 

assumption (like the one in equation (4)) does not satisfy the continuity of the medium in the 

radial direction. Accordingly, the model can be viewed as semi-continuum, since continuity is 

satisfied only in the vertical direction, as ur is unspecified. Nevertheless, this violation is of 

minor importance from a practical viewpoint. The present analysis naturally leads to a solution 

that differs from the one obtained from the classical strength-of-materials modelling involving 

a rod with a stiffness of EpAp. 

In equation (12),  stands for the body forces distributed along the pile. These can be 

determined by resolving the force  acting at the pile head into equivalent distributed loads in 

form of co-sinusoidal components 
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  (14) 

 

in which parameter  is interpreted the same way as in equations (7) to (11). 

Introducing separation of variables and enforcing the boundary conditions of zero normal stress 

at the pile head ( ) and bounded displacements at the pile centreline ( ), the following 

expressions for pile displacement and shear stress are obtained 

 

 (15) 

 

and 

 

 (16) 

 

where  is an integration constant to be determined from the boundary conditions. In full 

analogy with the analysis of the soil material,  is connected to  through 

 

  (17) 

 

Imposing the continuity conditions (equations (10)-(11) and (15)-(16)) for stresses and 

displacements at the pile-soil interface, constants  and  can be determined as solutions to an 

algebraic system of two equations in two unknowns. This yields the solution for pile 

displacement 
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 (18) 

 

which is valid in the region . In the above equation 

 

  (19)(19a,b) 

 

are dimensionless complex parameters with  and ,  and  given by 

equations (8) and (17), respectively. Note that material damping in the pile can be incorporated 

into the above solution by replacing  and  by their complex counterparts 

 and . 

 

End-bearing pile 

For a pile of finite length resting on a rigid stratum, one must consider the additional restriction 

of vanishing soil and pile displacements at the base of the soil layer. Enforcing this condition 

equation (9) yields the discrete values 

 

 (20) 

 

which correspond to the solution of the eigenvalue problem . Under this restriction, 

equations (8) and (17) are rewritten in the discrete form 

 

 (21)(21a,b) 
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In the same spirit as before, the head force P can be resolved into co-sinusoidal  

components as 

 

  (22) 

 

The solution for the end-bearing pile is obtained by replacing the integrals in equations (10), 

(11), (15) and (18) with corresponding infinite sums involving parameters , , ; this 

yields the expression 

 

 (23) 

 

where , , , and  are modified parameters obtained from equations (19a,b) with 

, , and . It is noted in passing that the classical strength-of-materials 

solution based on the assumption that pile cross sections remain plane, is obtained from 

equation (23) by setting  and 

 

 (24)(24a,b) 

 

where  is the pile mass per unit length. This substitution is also valid for infinitely-

long piles. 

In the ensuing and except where specifically otherwise indicated, the Fourier integrals are 

evaluated using dimensionless ( ) values varying between 103 and 104; corresponding 

infinite series are evaluated using 103 terms;  and  are taken equal to 0.25, 0.4 and 0, 

respectively. Pile settlement is evaluated at the pile periphery ( ). As will be shown in 
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the ensuing, for stiff piles , this estimate deviates from settlement at the pile 

centreline  by less than 1%. 

 

Model Validation 

Table 1 compares results for static stiffness of end-bearing piles obtained from the proposed 

model and from available solutions in the literature. The results are presented in terms of 

normalized static pile head stiffness . The performance of the model is satisfactory 

with mean and maximum deviations over the rigorous numerical solution by Kaynia & Kausel 

(1982) not exceeding approximately 3.5% and 8.5%, respectively. 

In Figure 2 additional results for static stiffness of end-bearing piles are compared to available 

numerical approaches including rigorous finite−element and boundary−element solutions. It is 

seen that for soft piles  the numerical results exhibit considerable scattering due 

to the sensitivity of the analyses to the discretisation of the pile. For instance, when a small 

number of elements are used (Poulos & Davis, 1980), an increase in stiffness with increasing 

pile length is observed in some of the solutions for  − obviously an erroneous trend 

for end-bearing piles. In contrast, the present solution exhibits a stable behaviour and agrees 

well with the most rigorous results by El−Sharnouby & Novak (1990). Similar good agreement 

is observed for higher  ratios. 

In the dynamic regime, pile head stiffness may be represented by a complex-valued impedance 

coefficient  which can be cast in the following equivalent forms 

 

 (25) 

 

where  is the storage stiffness and  is the loss stiffness. 

Dimensionless parameter  is the equivalent damping ratio.  can be 

interpreted as a spring and  as a dashpot attached parallel to the spring at the pile head. 
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A set of comparisons against results from the rigorous numerical solution of Kaynia & Kausel 

(1982) is presented in Fig. 3, referring to dynamic pile impedance normalized by the static value 

 versus dimensionless frequency . The accord between the proposed model and 

the numerical solution is satisfactory over the whole range of frequencies examined. Evidently, 

the influence of frequency on normalized pile head stiffness becomes more pronounced with 

soft and/or long piles. Also, an increase in frequency beyond a certain value leads to a sudden 

increase in damping due to the emergence of propagating waves in the medium. This threshold 

frequency corresponds to the fundamental resonant frequency of the soil medium in 

compression−extension (cutoff frequency) and is associated with a minimum stiffness value 

. 

For stiff piles , stiffness  appears insensitive to frequency as the ratio  

varies between 1.05 and 0.93. Similarly, damping is less than 0.3 in the range . These 

patterns can be understood given that the vertical response of the system is governed mainly by 

the compliance of the pile rather than the soil. For soft piles , the variation in 

stiffness with frequency is stronger and damping is higher – an anticipated trend since the 

compliance of the system is controlled mainly by the soil medium. Evidently, the increase in 

damping is stronger for long piles and becomes less significant with decreasing slenderness 

ratio . 

The variation of vertical displacement within the pile cross section is depicted in Fig. 4 for two 

end-bearing piles. Despite the low pile-soil stiffness contrast , the variation 

between pile head settlement at the centreline and the periphery is less than five parts in a 

thousand for all cases examined. Analogous differences are observed at the mid-length of the 

pile. 
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Evaluation of Winkler Modulus 

For an infinitely-long pile, the complex Winkler modulus  can be readily obtained by dividing 

the vertical soil reaction per unit pile length (dynamic side friction) with the corresponding pile 

settlement at the pile-soil interface i.e., 

 

 (26) 

 

where the dimensionless parameters  and  are given by equations (19a,b). For an end-

bearing pile the corresponding equation is 

 

 (27) 

 

Τhe above ratios faithfully describe the variation of shear tractions (“side friction”) along the 

pile, contrary to the common perception that the Winkler model is always approximate. Note 

that since Winkler constants are typically employed in conjunction with a rod model for the 

pile, some deviation in the results of the present analysis and a Winkler model is expected, 

when X1 and X2 are used based on equations (19a,b). Identical response will be obtained when 

X1 and X2 are based on equations (24a,b). The complex-valued Winkler modulus for both end-

bearing and infinitely-long piles can be expressed, as before, in the typical form 

,  being the dynamic stiffness per unit pile length and  the corresponding 

damping coefficient. Note that the latter parameter encompasses both material ( ) and radiation 

( ) damping in the soil (i.e., ).  
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With reference to an infinitely long pile, the variation of Winkler modulus with depth is 

presented in Fig. 5 for different frequencies, pile-soil stiffness ratios and soil material damping. 

For static conditions ( ), a decreasing trend with depth is observed in all curves; for small 

 ratios the decrease is, naturally, more rapid. In the dynamic regime Winkler modulus 

exhibits undulations with frequency and depth. This is more pronounced for soft piles and low 

material damping (Fig. 5(a)). An increase in either material damping or pile-soil stiffness ratio 

suppresses the oscillatory behaviour. For stiff piles (Figs 5(b) and 5(d)) a distinct trend is 

observed: an increase in frequency generally leads to higher values of  which vary between 

, over the whole range of depths examined . For high values of material 

damping (Fig. 5(d)), the variation of  is restricted in the range . 

Similar trends are observed for the damping coefficient  in Fig. 6. At zero frequency  

,  varies weakly with depth and is practically equal to soil material damping . For 

stiff piles (Figs 6(b) and (d)), an increase in damping with frequency is evident combined with 

a weak variation with depth. For soft piles (Figs 6(a) and 6(c)) the variation with frequency is 

stronger. The singularity  observed in some of the curves is attributed to a zero k value 

at a certain depth. Accordingly, this effect does not suggest infinite loss of energy at the specific 

point, but merely a 90-degree phase difference between side resistance and pile displacement. 

Additional results are provided in Figs 7 to 9 referring to end-bearing piles. Pile displacement, 

soil reaction and associated Winkler modulus (ratio of soil reaction to pile displacement) are 

plotted as functions of depth. Static behaviour is examined in Fig. 7 for different  and 

 ratios. High values of pile slenderness lead to faster attenuation of both pile displacement 

and soil reaction with depth. The trend is, understandably, more pronounced for soft piles  

( , Figs 7(a) and 7(b)). For short piles , displacements tend to attenuate 

almost linearly with depth, which suggests a column-like behaviour. On the other hand, for long 

piles linearity is lost and displacements die out exponentially. For very long piles  

a strong gradient (boundary layer) in tractions and displacements is observed near the pile head, 

which is noticeable up to approximately the mid−depth of the profile. On the other hand, for 



 19 

very short piles  the whole pile length contributes to attenuation of displacement and 

side friction. In all cases, peak soil reactions and displacements always occur at the pile head 

and become zero at the tip. Their ratio (modulus k), however, is always finite at the tip. 

The boundary layer phenomenon observed at  can be understood in light of the requirement 

for maximum soil reaction near the pile head (to resist the applied load), and zero soil reaction 

(to satisfy the boundary condition of the traction-free surface). Evidently, soil reaction has to 

jump from zero to maximum over an infinitesimal distance, generating this pattern (Pak & Ji, 

1993; Syngros, 2004). 

With reference to Winkler modulus (Figs 7(c) and 7(f)), a decreasing trend with depth is 

observed in all curves. For short piles,  is always larger than in more slender piles of the 

same  ratio. The effect of pile-soil stiffness contrast on  is stronger in long piles: for 

 and ,  varies between ; for ,  varies 

between . On the other hand, for short piles,  depends solely on slenderness ratio; 

for  it varies between  regardless of . 

Figures 8 and 9 present corresponding results in the dynamic regime. It is observed that 

displacements tend to attenuate faster with increasing frequency. This is anticipated given the 

increasing contribution of pile and soil inertia with frequency, which amplifies soil reaction and 

increases phase angle between excitation and response. The effect is understandably more 

pronounced in soft (Fig. 8(a)) than in stiff piles (Fig. 9(a)). Soil reactions tend to attenuate faster 

with depth than pile displacements – an anticipated trend in light of the properties of the 

Boussinesq point load solution. [Recall to this end that for a point load  acting at the surface 

of a halfspace stresses attenuate in proportion to , whereas displacements attenuate in 

proportion to ]. This is naturally more pronounced in soft piles (Figs 8(b) and 9(b)). 

Dynamic soil resistance is more sensitive to frequency than displacements, exhibiting a slower 

attenuation with depth with increasing a0. The variation with depth of dynamic spring  

(Figs 8(c) and 9(c)) and dashpot (Figs 8(f) and 9(f)) values resembles that of an infinitely-long 
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pile. For stiff piles,  varies between  over the whole pile length and the range of 

frequencies examined (Fig. 8(c)). For soft piles the variation is stronger, ranging from 

 (Fig. 9(c)). 

The undulations in the attenuation of dynamic Winkler modulus with depth observed in  

Figs 8(c) and 9(c) can be understood in light of the wavelengths of the vertically propagating 

compressional waves in the pile and the soil. These are given in normalized form by the 

expressions 

 

  (28) 

 

  (29) 

 

referring to the soil and the pile, respectively. These functions are plotted in Fig. 10 together 

with numerical data extracted from Figs 8(c) and 9(c). The observed wavelengths in pile 

response are associated with waves propagating in the soil rather than the pile material. 

 

Average Dynamic Winkler Modulus 

Given the complexities associated with the variation of Winkler modulus with depth, it is 

convenient to adopt a fictitious, depth-independent modulus, to be used in engineering 

calculations. This is achieved by equating the dynamic displacement at the pile head obtained 

from the proposed theory to that obtained from a Winkler approach (Mylonakis, 2001a). 

Although this naturally introduces some error in the analysis (especially regarding the 

distribution of internal stresses in the pile), it is desirable as it greatly simplifies the solution. 

Assuming  to be constant within a homogeneous layer, the following closed-form solution 

exists for the response of an end-bearing pile (Novak, 1974; Pender, 1993; Mylonakis, 1995) 
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 (30) 

 

where   is a complex wavenumber associated with the attenuation 

of pile response with depth. Setting the response at the pile head in equations (23) and (30) to 

be equal, the following implicit solution for  is obtained 

 

 (31) 

 

which can be solved in an iterative manner for  and  once the value on the right hand side is 

established. 

For an infinitely-long pile, setting  in equation (30) and using equation (17), the 

following explicit solution is obtained 

 

 (32) 

 

Equations (31) and (32) are extensions of the static counterparts in Mylonakis (2001a). 

Results obtained from the above averaging procedures are plotted in Figs 11 and 12. Soil 

impedances are depicted in Fig. 11. For infinitely-long piles, both stiffness and damping 

coefficients increase with frequency. Higher values of material damping result in lower Winkler 

stiffnesses and higher damping (Figs 11(a) and 11(c)). For piles of finite length the behaviour 

is more complex due to the existence of a sequence of resonant frequencies in compression 

extension. These frequencies can be well approximated by the expression 
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  (33) 

 

where  is given by equation (4). The first resonance obtained from the above equation for 

 is the cutoff frequency, acutoff, which is inherently associated with the emergence of 

propagating waves in the medium. For frequencies below cutoff ( ), stiffness is 

insensitive to material damping and damping coefficient is practically equal to . Near cutoff 

frequency, stiffness drops dramatically (reaching zero for an undamped medium), and damping 

exhibits a jump due to the emergence of wave radiation. Beyond cutoff frequency, the 

behaviour resembles that of an infinitely-long pile. 

To explore the role of cutoff frequency on average dynamic Winkler moduli, Fig. 12 presents 

results for well separated values of  and , plotted as functions of  and . 

Several trends are worthy of note: for frequencies below cutoff, the real part of Winkler 

modulus decreases monotonically with frequency. Over the same frequency range, the 

imaginary part is independent of frequency and practically equal to material damping. Beyond 

cutoff, waves start to propagate in the medium resulting in a sudden increase in damping. 

As shown in Fig. 12(b), for dimensionless frequencies a0 above approximately 0.5 the stiffness 

of Winkler springs becomes insensitive to soil thickness L. This is an anticipated behaviour 

since the waves emitted from the periphery of the oscillating pile tend to spread out in a 

horizontal manner without regard for the vertical dimension (Gazetas & Makris, 1991; 

Mylonakis, 2001b). 

The above graphical representations of Winkler impedances suggest that: (1) spring and 

damping below cutoff are best represented in the form  and  as functions of  

(Figs 12(c) and 12(e)); (2) beyond cutoff, these parameters are best represented in the form 

 and  as functions of  (Figs 12(b) and 12(f)), yet may require a different representation 

of frequency near cutoff. 
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Simple Representation of Winkler Stiffness and Damping 

With reference to applications, simple relations for dynamic Winkler moduli were developed 

based on the analytical integration scheme proposed by Mylonakis (2001b), which were 

simplified by the authors and extended in the dynamic regime. 

For frequencies below cutoff ( ), the following analytical formula was derived 

to approximate the variation of dynamic Winkler moduli with frequency 

 

  (34)(34a) 

 

  (34b) 

 

where ,  is Euler’s number; 

, the last parameter being the compressibility factor in equation (4). 

Static stiffness  can be well approximated by the semi-analytical formula: 

 

 (35) 

 

which provides an alternative to equation (27) in Mylonakis (2001a). 

For frequencies above cutoff ( ), the corresponding expression is 

 

 (36) 

 

The successful normalization of spring stiffness by  and  in equations (34a) and (35) 

conform to the observations in Figs 11 and 12, respectively. The above expressions are 
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presented graphically in Figs 13 and 14. The agreement between the approximate formulas and 

the numerical results cannot be overstated. Worth mentioning is the replacement of  by 

 in representing both stiffness and damping beyond cutoff, as evident in  

Fig. 14. It should be noticed that the two frequency variables are equivalent at high frequencies. 

To avoid the difficulties associated with evaluating the complex arithmetic in equations (34a) 

and (36), real-valued expressions are provided in Appendix. 

 

Conclusions 

Dynamic pile-soil interaction was analytically investigated through an approximate 

elastodynamic model by combining the concepts of a continuum and a Winkler medium. The 

proposed model yields solutions for the complex-valued shear tractions along axially-loaded 

end-bearing piles resting on rigid rock, embedded in a homogeneous viscoelastic soil stratum. 

Rigorous numerical solutions from the literature were employed to validate the predictions of 

the analytical model. 

The main conclusions of the study are: 

1. The model has sufficient predictive power and yet does not involve empirical constants. 

It compares well with rigorous numerical solutions for a wide range of frequencies, pile 

lengths and pile-soil stiffness ratios. 

2. Dynamic Winkler modulus is, like its static counterpart, depth-dependent even in 

homogeneous soil (equations (26), (27)). It varies between 0.5 – 3  depending on 

frequency, damping, slenderness and pile-soil stiffness contrast. 

3. A boundary- layer phenomenon in shear tractions at the pile-soil interface is observed 

close to the pile head, which is attributed to the counteracting requirements for zero and 

maximum side resistance near the soil surface. This effect, however, appears to be of 

limited practical significance. 

4. Pile-soil interaction is mainly governed by wave propagation in the soil, not in the pile. 

Accordingly, the observed wavelengths in the variation of k values along the pile in Figs 
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8(c) and 9(c) do not depend on pile-soil stiffness contrast (equation (28)). 

5. In the high frequency range, storage stiffness of Winkler springs is independent of pile 

slenderness as wave propagation becomes gradually two dimensional. For the pile-soil 

configurations examined in this study, all impedance curves converge for dimensionless 

frequencies above approximately 0.5 (Fig. 12(b)). 

6. The asymptotic equations derived by Mylonakis (2001b) for static Winker modulus were 

extended to account for dynamic stiffness and damping above and below cutoff 

(equations (34) and (36)). These expressions provide good approximations of dynamic 

Winkler impedances (Figs 13 and 14). 

7. It was discovered that the Winkler spring stiffness below cutoff is best normalized by the 

corresponding static stiffness  as function of dimensionless frequency ratio  

(or ) (Fig. 13). On the other hand, beyond cutoff frequency, dynamic Winkler 

stiffness is best normalized by soil shear modulus , expressed as function of 

incremental frequency  (Fig. 14). These properties stem from the 

dependence of the solution on the fundamental resonant frequency near cutoff, and the 

gradual transformation of the wave-field from three-dimensional to two-dimensional with 

increasing frequency beyond resonance. 

As a final remark, it is fair to mention that the proposed model is limited by the assumption of 

linearity in soil and the pile material, as well as perfect bonding at the pile-soil interface. 

Exploring these effects lies beyond the scope of this paper. 
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Appendix 

Equations (34) and (36) can be cast in the real-valued form by the expressions: 

(a) Below cutoff : 

 

  (A-1a) 

 

   

(A-1b) 

 

(b) Above cutoff : 

 

  (A-2a) 

 

  (A-2b) 

 

where 

 

 (A-3) 

 

  (A-4) 

 

,  (A-5a,b) 

 

 

  



 29 

List of Captions 

 

 
Figure 1. System considered: main parameters and notation 
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Figure 2. Static pile head stiffness of end-bearing piles. Comparison of the proposed 

analytical model with results from published numerical solutions 

 



 31 

 
Figure 3. Comparison of dynamic pile head stiffness and damping obtained with the proposed 

analytical model and from the rigorous solution of Kaynia & Kausel (1982);  
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Figure 4. Variation of vertical displacement within the pile cross section at three elevations, 

for two end-bearing piles. Results are normalized with respect to pile head settlement at the 

centerline; ,  
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Figure 5. Variation with depth of dynamic Winkler spring modulus for an infinitely long pile 
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Figure 6. Variation with depth of Winkler damping coefficient for an infinitely long pile 
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Figure 7. Variation with depth of static displacement, soil reaction and Winkler spring 

modulus for end-bearing piles of different slenderness L/d;  (a to c), 

 (d to f) 
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Figure 8. Variation with depth of dynamic displacement, soil reaction and Winkler moduli for 

end-bearing piles; ,  
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Figure 9. Variation with depth of dynamic displacement, soil reaction and Winkler moduli for 

an end-bearing; ,  
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Figure 10. Dependence of P-wavelengths in pile and soil on excitation frequency for different 

pile-soil stiffness ratio 

 

 
Figure 11. Effect of soil material damping on average dynamic Winkler impedances for both 

infinitely-long and end-bearing ( ) pile;  
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Figure 12. Dynamic Winkler impedance coefficients for end-bearing piles of different 

slenderness  and pile-soil stiffness ;  
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Figure 13. Depth-independent Winkler modulus for end-bearing piles. Comparison of the 

rigorous analytical solution with the approximate expression in equation (34a) 
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Figure 14. Depth-independent Winkler moduli for end-bearing piles. Comparison of the 

rigorous analytical solution with the approximate expression in equation (36) using two 

different representations of frequency [In the plane strain model, ] 




