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Abstract— In this paper an analytical study on dynamism and possibili-
ties on slack exploitation by dynamic power management is presented. We
introduce a specific workload decomposition method for work required

for (streaming) application processing data tokens (e.g. video frames) with
work behaviour patterns as a mix of periodic and aperiodic patterns.
It offers efficient and computationally light method for speculation
on considerable work variations and its exploitation in energy saving

techniques. It is used by a dynamic power management policy which has
low overhead and reduces both requirements for buffering space, and
deadline misses (increase QoS). We evaluate our policy in experiments
on MPEG4 decoding of several different input sequences and present

results.

I. INTRODUCTION

One of the main imperatives in design of nomadic devices such as

mobile phones is to increase the battery life time. Low power is also

important for tethered devices such as set-top boxes to increase their

life time e.g. through reduced thermal stress. This demands effective

power management to lower both the power and energy consumption.

In a previous paper [1] we performed an analytical study of slack

(spare capacity) in a SOC, and how it can be used by dynamic-

voltage-and-frequency-based power-management policies. We varied

the granularity (frequency) of power management and observed the

energy and quality (number of deadline misses) impact of the policies

on soft and hard real-time applications. In this paper we extend

that work with an adaptive power-management policy. We observe

the workload of an application as a number of cycles required to

process of input data tokens (e.g. video frames) for several input

sequences. The workload varies and the difference between worst and

average work is considerable (Figure 1). We distinguish fast and slow

changes in workload, as well as frames that differ significantly from

the average case (peaks). Energy-optimal power management would

schedule an averaged frequency for as many frames as possible, and

the peak frames are limitations to averaging. In general, averaging

over longer periods increases the number of misses or/and requires

larger buffers. We propose a speculative policy with peak and phase

detector that utilizes and exploits patterns in workload to save

power and reduce buffer space. We dynamically detect periodic and

aperiodic modes in workload variation. Also, peak amplitude and

their variable inter-arrival distances are dynamically detected. Based

on this, we apply adaptive power management by reducing operating

voltage and frequency. On top of that, we pro-actively generate slack

as an additional slack margin to reduce number of misses that might

happen due to this speculative (non-conservative) approach.

In Section II, we define the architecture and applications in scope,

as well as energy model and power management and concepts of

work and slack. In Section III, we give an extended characterization

of application workload. Section IV discusses the theoretical energy-

optimal policy, followed by Section V with the description of our

peak and phase detection and the resulting policy in Section VI.

Section VII describes experiments and discusses the results. After

reviewing related work in Section VIII, we conclude the paper in

Section IX.

II. SCOPE

A. System architecture and application model

In this paper we focus on power management of a single tile,

consisting of a programmable processor with local memories and

peripherals. Although our power management policies are compatible

with multiple such tiles in a multi-processor SOC [2], we will

not further consider inter-tile power management in the remainder.

Each tile has its own frequency and voltage domain that can be set

independently to a voltage-frequency operating point at run time.

We consider soft real-time streaming applications. In general, such

applications operate on sequences of tokens that each has a deadline

by which they should be processed. Soft real-time applications allow

a limited number of deadline misses, but at the cost of an undesirable

quality degradation. In our case, tokens are compressed video frames,

and the deadlines define when they should be uncompressed and

displayed. The frame rate fFR determines the regular spacing T =
1/fFR of deadlines in time. We assume that the input data and output

space of the application are always available. In Section VII we

present the buffer utilisation within the application and the benefits

of our approach. By assuming no constraints on input data arrival

times and output buffers sizes, we exclude an important part of the

slack, which is a result of any irregularity in input/output operations.

The reason for this is because it would be out of the scope of this

paper, since it is not observable within a single tile, but rather on

the system as a whole. It is actually considerable part of the overall

slack in today’s SoC with can be exploited for power management

as presented in [2].

B. Energy model and power management

In common with many other power management strategies, we use

slack, i.e. unused capacity, to reduce the operating point (frequency

and voltage) of the processor, and thus save energy. In this paper we

assume that the process technology used is optimised to minimise

leakage power, and we can only affect the dynamic energy, which is

dominant in a SOC while it operates.

Dynamic power is given by Pdyn = αCV 2f = αCV 2w/t, where

α is the switching activity, C is the switched capacitance, and V
and f define the voltage-frequency operating point. Alternatively,

work w is the number of cycles executed in time t. The energy

spent is then Edyn = Pdynt = αCV 2w. To minimise energy, the

voltage must be scaled to the lowest value supporting the frequency

required to meet a deadline. A processor can run at a minimum

(maximum) frequency fMin (fMax), requiring a minimum (maximum)

voltage v(fMin) (v(fMax)). Further details of the used energy model

can be found in our previous work [1].

Dynamic voltage and frequency scaling (DVFS) utilizes number of

voltage-frequency operating points through power modes at run time
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Fig. 1. MPEG4 sequence decoding (part): work per frame and its compo-
nents.

according to a policy to trade processor performance for energy. A

transition occurs whenever the operating point is changed, to increase

the performance and energy, or decrease them, as required. We define

the granularity of a policy as the shortest time between successive

transitions.

C. Work and slack concepts

The work wi of a frame i is the number of processor cycles

required to fetch, process, and store it. We assume that work depends

only on the input token(s), and that is independent of the operating

point of the processor. This holds when the input and output tokens

of a task, as well as its instructions, are stored in the local memories

of the tile. The application should also not be affected by other

applications, which holds in systems such as CompSOC [3].

The worst-case work of a sequence of frames is wcw = Max∞j=0wj .

The time to finish the work of frame i at a frequency fi is the

actual-case execution time aceti = wi/fi. In order not to miss any

deadline it must be less than the frame rate: aceti ≤ T = 1/fFR.

The absolute deadline of a frame fi is the absolute time at which

it must be produced (displayed). The absolute slack is defined by:

si = (i+1)T−
Pi

j=0
acetj . When a deadline is not met, it is a miss.

In a previous paper we introduced the perfect-predictor policy that

perfectly speculates on the work of future frames and schedules the

average frequency for them, and proven-slack policy that uses only

available proven slack and assumes the worst-case work for each of

coming frames.

III. WORKLOAD CHARACTERIZATION

Work for different input tokens may vary, e.g. the work for a frame

depends on the complexity of its decoding, which strongly depends

on many factors, for example on whether it is an MPEG4 I or P frame.

I frames require considerably more work than B and P frames. The

perfect-predictor policy sets the frequency equal to the cumulative

work of a group of frames divided by the allotted time (T times

group size). This ensures that the last frame in the group finishes on

time. However, all other frames could potentially miss their deadlines.

In general, a frame with more work than the average work will result

in a negative slack, thus in a miss, and a frame with work less than

the average will contribute in a positive slack. But the order within a

group, as well as work amount, also impacts the number of misses.

The worst case is when the frames in a group have decreasing work,
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Fig. 2. Work per frame (detail of Figure 1) with repeating pattern.
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Fig. 3. Number of misses vs. granularity from 1 to 50 for different phases.

in which case all but the last frame miss their deadline. The quality is

then 1/(N −1), for a group length (granularity) of N . The opposite,

non-decreasing order is the best case, with no missed deadlines and

a maximum quality of 1. In practice, it is usually a mix (Figure 2).

Based on these observations, the key idea of this paper is to

determine groups (granularities) of the right size. Additionally, the

phase of groups must be selected such that, ideally, the work of

successive frames in a group increases. In this way, we maximise the

quality.

To confirm our intuition, we did experiments using the perfect-

prediction policy for the granularity range from 1 to 50. The number

of misses increases with the granularity (converging to the number

of misses when the entire sequence is run at the average frequency).

There are two different trends for even and for odd granularities,

explained below. This experiment was repeated with varying starting

phase (offset of the first transition): 0, 1, ...N − 1 for the granularity

N . The result is shown in Figure 3. The difference between adjacent

odd and even phases can be up to 50% of the total number of frames.

To improve clarity of illustration, Figure 4 shows results only for

granularities from 1 to 15 and the points of the same granularity

are connected with a line. The conclusion is that the granularity and

phase of the power management policy both influences the number

of misses. This means that in work per frame distribution there has
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Fig. 4. Number of misses vs. phase for a granularity range 1-15.

a certain periodicity.

According to the traditional spectral analysis, work per frames

can be decomposed into components consisting of low and high

frequencies. The first, we denote as running average since it is

calculated as running average over sufficiently long number of frames

and, the second, we denote as alternating component calculated as a

difference from the original amount of work and the running average.

Successive samples of the alternating component are comparable in

work one to the others, but with changed sign for almost the whole

sequence. Also, the average value of the alternating component is

small compared to running average, so almost every two consecutive

samples are averaged in pairs. However, alternating component

contains peaks that are much bigger than the rest. An example of

work per frame decomposed in such a way is shown by the running

average, alternating component, and peaks in Figure 1.

Observation of the work over time suggests that peaks appear with

a certain periodicity. This periodical behaviour, in case it is regular,

could be beneficial to system design. In particular, they could be the

basis for groups of frames that we assign the same operating point

and phase. For that reason, we focus our approach on determining a

reliable speculation on work of future frames to exploit the described

features of work signal for energy saving purposes.

Depending on work variation, we can distinguish following cases

of work over time a) slowly changing, when the running average is the

dominant component with almost no peaks; b) fast changing, when

the alternating component with peaks is dominant; and c) hybrid,

when on top of the running average there are peaks, distributed in

a regular or irregular way. In this paper, we focus on a hybrid case

with the intention to find peaks, which allows the determination of

periods with the right phase.

The traditional and most common approach in system dimen-

sioning would preferably follow the running average component

as a requirement and then provision enough system resources to

satisfy this trend. That works well unless there are peak frames

that would excess provisioned resources and therefore results in

deadline misses. However, there are methods for improvement, as for

example, resource over-provisioning, or frames skipping or dropping.

They always come at a certain cost, in extra energy spent while

generating so-called over-provisioning slack, or require more space

for buffering the results. Even worse, conservative approaches for the

system design will rely on wcw in order to guaranty that all deadlines
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Fig. 5. Work histogram for 5 different input sequences.

will be met. This results in even more expensive design.

Another approach would be to speculate on the work for future

frames and set the operating point accordingly. On Figure 1, it can

be seen that major part of the frames are close to the average work,

and just some of them are considerably bigger than that trend. Almost

all of them are much lower than the wcw of the whole trace. The

distribution of work of frames of 5 different sequences is illustrated

in Figure 5, showing that the majority of frames are concentrated in

the lower bins of the histogram, much lower than wcw. This can lead

to slack, which in turn can be used to save energy.

IV. ENERGY-OPTIMAL POLICY AND ITS APPLICABILITY

Yao et al. [4] introduce an off-line algorithm to determine the

energy-optimal DVFS schedule for a set of real-time tasks, assuming

active power model as a convex function of processor frequency.

Applying that algorithm to a single task will result in a single average

frequency equal to task’s work divided by the duration of time until

its deadline. For a set of tasks it gives a schedule that always has

the average frequency for processing work over the time intervals

bounded by critical deadlines that limit further averaging. Part of

transition overhead is reduced by this policy too, since the number

of transitions is minimised.

Streaming applications like MPEG4 have equidistant deadlines,

and a convenient assumption would be that the moments when input

data for frames are also equidistant. This holds, in general for the

streams that require the same order of processing and displaying.

This could be ensured by an additional initial delay from the arrival

moment to the moment processing starts. Then, the critical intervals

are bounded by the frames that require more work than the others,

i.e. the peak frames.

The main limitation for applicability of this energy optimal policy

at run-time is that the work of future frames has to be known a priori.

Since that is almost never possible for real systems, speculation has

to be applied. If we can predict the length and work of the next

critical interval, then we can apply the method of [4] at run time.

V. PHASE AND PEAK DETECTION

As explained in Section III, the work sequence can be decomposed

in 3 major components: running average (corresponds to a static or a

DC component), variable alternating component, and peaks that can

be regular or not. Our major concern now is to detect and speculate on



peaks distribution within the workload, their frequency and difference

from the running average.

The algorithm of peak and phase detection is given in Algorithm 1.

After each frame is processed, its work wi is saved in buffer

frames buff of recent M frames (the enqueue operation is denoted by

an arrow). If wi is greater than a threshold, that frame is detected as

a peak and its wi is saved in buffer peaks buff buffer. We also keep

track of the distance between successive peaks in buffer dist buff and

if all of the most recent peaks are equidistant, that is an indication

of the sequence part where peaks regularly repeat. This mode is

denoted as periodic, in contrast to the aperiodic mode. If a peak

is expected but does not appear in the periodical mode, a frame

is declared as a peak but not saved in peaks buff and dist is not

reset. But, when PERIODICITY MARGIN successive peaks do not

appear when expected, then the mode changes from the periodic to

the aperiodic.

Algorithm 1: Peak and phase detection algorithm.

Input: work of the last frame {wi}
Output: period N, isPeak, mode, wavg

// After processing of frame i;
frames buff← wi;

wavg :=
P

1≤j≤M
wj/M ;

∆w := wi − wavg;

if ∆w ≥ treshold then
isPeak = true;

peaks buff← ∆w;

treshold := THRESHOLD RATIO · (min ∆w in peaks buff);

dist buff← dist;

dist := 0;

if all ∆nk in dist buff are equal then
mode := periodic;

N := ∆nk;

else
dist := dist + 1;

if dist ≥ N · PERIODICITY MARGIN then
isPeak := false;

mode := aperiodic;

N := DEFAULT N;
else

isPeak := mod(dist, N) = 0;

However, as the running average varies over time, slow variations

(or drift) can affect the detection of peaks and therefore, the period

and phase detection. To prevent this, the peak threshold is dynami-

cally adapted according to the size of recent peaks. It is calculated

as a ratio of minimal work stored in the peak buff buffer, but it will

not go below a default value. The reason for this is the fact that any

lower difference between a peak and the current running average will

not necessarily bring any benefit to power management.

VI. POWER MANAGEMENT POLICY BASED ON PEAK AND PHASE

DETECTION

When peak and phase information is available, they can be used

by power management. The basic observation is that peak work is

significantly larger than the average work. If the operating frequency

is lower than required for the peak frame (which is our aim), then a

peak has negative slack. In other words, it consumes slack that has

been built up by one or more frames that used less than the average

work. If the accumulated slack is insufficient, it results in a deadline

miss. We minimise power by averaging the operating frequency over

as many frames as possible, subject to frame deadlines.

Our power management policy uses the period, or time between

peaks, determined by Algorithm 1, and sets a single operating point

for the entire group of frames in that period. The operating point is

equal to the average frequency, such that the last frame in the group

is guaranteed to meet its deadline, but intermediate frames may miss

theirs. However, and crucially, it also aligns the group such that the

peak frame is at the end of the period. The work of the preceding

frames is therefore (on average) smaller than the average work in

the period, and they build up slack, which is then used by the peak

frame. Positioning the peak frame at another place in the group will

likely result in a deadline miss for the peak frame (and perhaps even

some following frames).

In more detail: after completing processing a peak frame, we

change the operating point, according to

fnew =
N · wavg

N · T + (si−1 − smargin)
, (1)

where N is the number of frames corresponding to granularity (length

of the period), wavg is running average work, T = 1/fFR is the time

interval between two successive deadlines, si−1 is current absolute

slack (remaining slack after all previous frames up to frame i have

been processed), and smargin is slack margin that is not being

immediate reused, preventing some misses on frames that come

immediately after a peak. The slack margin is the amount of slack

conservatively preventing occasional misses that might happen due to

this speculative approach. Note that the slack margin is a fixed offset,

and only causes a higher operating point once: if it is not used, it is

carried over to the next period. (Essentially, all deadlines are met by

a margin.)

A free interpretation of the previous formula would be that current

proven slack is being re-used in coming period of N frames ending

with the next peak expected. Depending on the mode of the power

manager, the period will be either a default period in the aperiodic,

or the detected period in periodic mode. N ·wavg is the speculation on

the work in coming period ending with the first next peak, including

the work of the peak. Since the expectation for work of each of the

frames is equal and their deadlines are equidistant, the deadline of the

last frame in period is the most critical among them, and therefore the

whole work of a period has to be finished by the end of the period.

The energy optimal frequency for this period is the average frequency

over this period, like fnew is calculated. Not shown in Equation 1,

fnew is maximized at fMax and minimized at fMin. Similarly, fnew is

set to fMax if the result of Equation 1 is negative, which means that

the deadline of the last frame was missed, and processing needs to

catch up as soon as possible.

Our heuristic power management policy can lead to misses for

several reasons. First, the cumulative work of the new period (minus

the slack carried over from the previous period) is larger than forecast.

This happens when the running average increases, e.g. due to a scene

change, as can be observed in Figure 1, around frame 120. Or, the

peak is larger than expected, and the accumulated slack is insufficient.

Second, the period is shorter than expected, i.e. the peak occurs

earlier than forecast. This happens infrequently in our traces. The

use of previously generated slack and the slack margin reduce or

even eliminate the impact of the mispredictions. It may be possible

to improve the power management policy to deal with these effect,

e.g. by dynamical tuning of the other parameters in the peak and
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Fig. 6. Remaining slack at transition vs. given slack margin.

phase detector.

VII. EXPERIMENTAL RESULTS

We benchmark our approach on an MPEG4 decoder running on

an ARM946 processor operating at 86 MHz. Input streams are

sequences containing I and P frames of 176x144 pixels resolution,

with a frame rate of 25 frames per second. The work sampling

frequency is 32.57 kHz providing work samples further transformed

into number of processor cycles grouped per frame. Based on this, we

analytically evaluate the effects of our power management policies.

We use 5 different input streams with different characteristics (e.g.

scene change dynamism, complexity, level of compression). To model

the overhead of transitions between operating points and policy

execution, we include 20 µsec of inactive period, and 1 msec of

execution at every power manager invocation. The power manager

runs at the current operating point at the time of its invocation.

Since peak and phase detection algorithm is neither complex nor

computationally expensive, compared to the application, we add no

overhead for it. Comparing to the state-of-the-art techniques, the

overhead assumption of the power management overhead is quite

pessimistic and larger than in a real system.

The configuration of the peak and phase detector follows: the

capacity of buffers are 20 for frames buff, 3 for peaks buff and

dist buff. THRESHOLD RATIO is 60%, PERIODICITY MARGIN is

5, and DEFAULT N is 5.

For different input sequences, Figure 6 shows the average amount

of slack available at the transition moments for different values of the

slack margin. Both slack and slack margin are expressed in time in

units of T = 1/fFR. Once the targeted amount of slack is generated,

the system runs at the frequency that adapts to the work, and tries

to keep that slack. The slack does not accumulate further and thus

extra energy is not consumed.

Figure 7 shows the number of frames decoded on time, normalized

to the total number of frames in the input sequence. For a slack

margin of 0.5T or bigger, there are just few misses, while for lower

values the number of misses is between 50% and 90%.

Maximum buffer fillings are shown in Figure 8. These values

exclude any buffer filling at the start of the sequence, before the power

manager has started. The values are low and differ up to at most two

frames from the given slack margin. From Figure 6 and 8 we conclude

that the maximal and average buffer fillings are very close. This

confirms that presented policy keeps the system operating frequency
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very close to the current work requirements, without generating extra

slack, while keeping the number of misses low.

In the experimental sequences, when in a periodic mode, the

phase and period detector detects 12 frames as the most common

granularity. The average energy consumption per frame for all traces

is 2.43 J, which is around 30% lower than energy consumption

running without any power management, including its negligible

energy overhead.

VIII. RELATED WORK

A wide range of heuristics and power management policies have

been developed based on history and pattern matching of workload

of an application. One of them is presented in [5], but since it was

matching very complex patterns, in general it does not perform well.

Our pattern is simpler and performs well if applied on appropriate

use-case. The speed of DVFS infrastructure is increasing [6], enabling

power management at very fine granularity. This was the motivation

for the previous and this work. Azevedo [7] uses the compiler to

place the checkpoints in program code at the boundaries of basic

blocks, which represents fine granularity solution that uses variable

granularity but in a limited range. AbouGhazaleh [8] presents the

collaboration between compiler and operating system and by inserting

instrumentation code into the program code to vary the granularity.



The same authors propose theoretical solution for choosing the

optimal granularity in [9]. Choi [10] presents DVFS technique for an

MPEG decoder with sub-frame granularity by differentiating between

invariable and variable parts of a decoder. Son [11] proposes weighted

average to speculate on future work of an MPEG decoder, very

similarly to a PID-based control system. Gheorghita et al. in [12]

proposed application scenarios to be used with power management.

That method can be combined with our peak detector if there is

suitable workload pattern within a scenario and different settings can

be given to the peak detector depending on a specific scenario.

IX. CONCLUSIONS

In this paper we introduce a dynamic power management policy

that removes slack in the system and uses it to reduce power

and energy consumption for soft real-time applications. We also

present the analysis and the characteristics of the workload of an

MPEG4 decoder. Analysis results in workload decomposition into

slow and fast-changing components, and with periodic peaks. We

have developed a phase and period detector that observes application

workload and detects periodical patterns and speculates on the future

work. It also dynamically aligns the application workload peaks and

the power management transitions.

This power management policy lowers the energy consumption up

to 30% on average, in comparison to the system execution without

applying any power management. The result is comparable with

the results of static and conservative approach published before [1].

Additionally, it reduces the maximal and average buffer space needed

for processed frames before displaying, as well as the amount of

the slack in the system. These values are parameters in our policy,

and they can be changed to trade the number of misses and energy

consumption.
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