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Synopsis

Particle-level simulations are employed to investigate the rheological properties of bidisperse
magnetorheological fluids. These suspensions are treated as nonlinearly magnetizable, neutrally
buoyant, non-Brownian spheres immersed in a nonmagnetizable Newtonian continuous phase. We
examine the effects of particle size ratio, composition, and field strength on the dynamic yield
stress. The dynamic yield stress of bidisperse suspensions is larger than that of monodisperse
suspensions at the same particle volume fraction. The smaller particles cause the larger particles to
form more chainlike aggregates than those formed in monodisperse suspensions. © 2005 The
Society of Rheology. [DOI: 10.1122/1.2085175]

I. INTRODUCTION

Magnetorheological (MR) suspensions are composed of magnetizable particles dis-
persed in nonmagnetizable media. These suspensions exhibit fast and reversible magnetic
field-induced changes in their properties. Induced magnetostatic particle interactions
cause the microstructure to change from a fluidlike state to field-aligned fibrous aggre-
gates. The dramatic field-induced structure evolution gives rise to dramatic changes in
rheological properties, commonly referred as the “MR effect.”” MR suspensions can be
characterized as Bingham fluids, with magnetic field-dependent yield stresses as large as
100 kPa [Ginder et al. (1996); Jolly et al. (1999)]. The tunable rheological properties
make MR fluids attractive for such applications as semiactive shock absorbers, brakes
and clutches, actuators, servo-valves, and precision polishing fluids [Jolly ez al. (1999);
Carlson and Sproston (2000); Klingenberg (2001)]. MR suspensions are the magnetic
analog of electrorheological (ER) suspensions, whose rheological properties are enhanced
by the application of an electric field [Parthasarathy and Klingenberg (1996); Conrad
(1998); Craig (2003)].

Despite the attractive potential of MR based devices, there are still challenges to their

¥ Author to whom correspondence should be addressed; electronic mail: klingen @engr.wisc.edu

© 2005 by The Society of Rheology, Inc.
J. Rheol. 49(6), 1521-1538 November/December (2005) 0148-6055/2005/49(6)/1521/18/$25.00 1521



1522 KITTIPOOMWONG, KLINGENBERG, AND ULICNY

commercialization. One challenge is to obtain the largest possible field-induced yield
stress for a minimum energy input in order to reduce the device volume and cost. In-
creasing the particle concentration is one approach for increasing the yield stress
[Lemaire ef al. (1995); Genc and Phule (2002)]. However, the off-state viscosity, the
suspension viscosity in the absence of an applied field, also increases with volume frac-
tion, which can be problematic in some applications.

Foister (1997) observed that MR suspensions composed of mixtures of magnetizable
particles of two different diameters (average diameters 1.25 and 7.9 um) can exhibit a
larger field-induced yield stress than monodisperse suspensions. Such bidisperse suspen-
sions also possess a lower off-state viscosity, which produces a greater change in the
shear stress when the field is applied. Similar observations were reported by Weiss et al.
(2000) and Ulicny et al. (2003).

Experimental investigations of bidisperse ER suspensions have produced conflicting
results. Wu and Conrad (1998) examined the ER response of suspensions of glass spheres
of two different sizes (average diameters 6 and 100 wm) in silicone oil, exposed to dc
electric fields. Bidisperse suspensions composed of approximately 30-70 vol % small
spheres exhibited smaller yield stresses than monodisperse suspensions composed of
either the small or large spheres. The authors postulated that the reduced yield stress may
be caused by small particles slipping past the large particles. They also note that at large
field strengths, the small particles tended to jump between the electrodes, which suggests
that electrophoretic forces may be important. See et al. (2002) observed the opposite
trend for bidisperse suspensions of sulfonated poly(styrene-co-divinylbenzene) particles
(average diameters 15 and 60 wm) in silicone oil exposed to ac electric fields (50 Hz).
The maximum field-induced shear stresses were obtained for bidisperse mixtures, with
the effect being most pronounced at large shear rates. The authors suggest that the
enhanced stress transfer may be associated with the increase in packing density that can
be achieved with bidisperse suspensions [Cumberland and Crawford (1987)].

The dependence of the MR/ER effect on the particle size distribution may, in some
cases, be a result of a direct dependence on particle size; if the response of monodisperse
suspensions depends on particle size, then one may observe a dependence on the size
distribution. Such a dependence on particle size can arise from a variety of phenomena.

It is well known that Brownian motion can produce a size-dependent MR and ER
response. For sufficiently small particles and small field strengths, thermal forces tend to
disrupt the field-induced columnar structures. The relative importance of magnetostatic or
electrostatic and thermal forces is expressed by the ratios [Adriani and Gast (1988);
Lemaire et al. (1995); Baxter-Drayton and Brady (1996)]
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where uy=4mX 1077 N/A? is the permeability of free space, u, is the relative perme-
ability of the continuous phase, a is the particle radius, By =(m,—u)/ (1w, +2u.), p, is
the relative permeability of the particles, H, is the applied magnetic field strength, k
=1.381 X 1073 J/K is Boltzmann’s constant, T is the absolute temperature, €,=8.8542
X 107! F/m is the permittivity of free space, e, is the relative dielectric constant of the
continuous phase, B=(0,-0.)/(0,+20,) (dc fields) or (e,—€)/(€,+2¢,) (high-

frequency ac fields), o, and o, are the electrical conductivities of the particulate and
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continuous phases, €, is the relative dielectric constant of the particulate phase, and E|, is
the applied electric field strength. Lemaire er al. (1995) argue that for sufficiently large
A\p, thermal forces should no longer influence the suspension structure, and thus the yield
stress should be independent of particle size (independent of \). Using their experimen-
tal data, they conclude that for Az= 10°, thermal forces are still strong enough produce a
particle size-dependent MR response, but for Az= 10°, the yield stress is particle size
independent. Combining this information with the simulations of Whittle (1990) and
Baxter-Drayton and Brady (1996), the “critical” value of Az marking the transition from
a particle size-dependent response to a particle size-independent response appears to be
between about 4 X 103 and 107. In the experimental studies of bidisperse suspensions
discussed above, we estimate A\g= 107 for Foister’s data, Ap=2 X 10° for Wu and Con-
rad’s data, and A3 =6 X 10° for See et al.’s data. This suggests that Brownian motion is
not playing a role, except perhaps for the smallest field strengths employed (although in
each case, shear stresses for the monodisperse suspensions are larger for the large par-
ticles than for the small particles).

Other factors can also produce a particle size dependence of the MR and ER re-
sponses. Colloidal forces, such as van der Waals attractive and electrostatic repulsive
forces, introduce additional scales that can influence the response [Gast and Zukoski
(1989)]. In ER suspensions, electrophoresis [Boissy et al. (1995)], surface polarization
[Zukoski (1993)], and nonlinear conduction phenomena [Boissy et al. (1996); Felici
(1997); Atten ef al. (2002)] can also produce particle size dependence.

A few simulation studies have explored the effect of particle size distributions in
idealized systems in which the particles experience only field-induced dipolar forces,
hydrodynamic forces, and short-range repulsive forces. Wang er al. (1997) simulated
shear flow of polydisperse ER suspensions confined to a monolayer. The particle diameter
distribution was a truncated Gaussian distribution characterized by the standard devia-
tion. The shear stress decreased monotonically as the standard deviation was increased,
for the two dimensionless shear rates examined. The authors attribute the reduced shear
stress in polydisperse suspensions to weaker chainlike aggregates. Kittipoomwong et al.
(2002) simulated shear flow of bidisperse nonlinearly magnetizable MR suspensions in
three dimensions. The yield stress of bidisperse suspensions was larger than that of
monodisperse suspensions at the same overall volume fraction.

In this article, we extend the simulation studies reported by Kittipoomwong et al.
(2002) to further investigate the role of particle size distribution on the yield stress of
bidisperse MR suspensions in which particles interact only via field-induced magnetic
forces, hydrodynamic forces, and short-range repulsive forces. The model and simulation
method are described in the following section. The yield stress in three-dimensional (3D)
systems is greater for bidisperse suspensions than it is for monodisperse suspensions at
the same overall volume fraction, in agreement with experimental data reported by Fois-
ter (1997). For suspensions confined to a monolayer, the bidisperse suspensions produce
a smaller yield stress than that of monodisperse suspensions at the same overall area
fraction, consistent with the simulation results of Wang er al. (1997); however, in this
case the yield stress scaled by the particle volume fraction within the monolayer is larger
for the bidisperse suspensions, consistent with observations for 3D systems. Examination
of the microstructure reveals that the enhanced stress transfer in bidisperse suspensions is
not associated with an increase in particle packing, but rather with a tendency of the
smaller particles to induce the larger particles to form more chainlike aggregates.
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Il. MODEL
A. Self-consistent mean-field magnetization model

Application of a magnetic field to a suspension of magnetizable spheres induces mag-
netic moments on each sphere. The magnetization of each sphere depends on the applied
external field as well as the disturbance fields emanating from the neighboring magne-
tized spheres which must be resolved self-consistently. In this analysis, the magnetization
inside each sphere is treated as uniform. As a result, the disturbance field generated by
each sphere is treated as a dipolar field. This approximation neglects higher-order multi-
poles [Klingenberg and Zukoski (1990); Bonnecaze and Brady (1992); Siu er al. (2001)],
but approaches the exact solution in the limit of magnetic saturation (i.e., large field
strengths) [Davis (1999)].

Consider a collection of magnetizable spheres (bidisperse, diameters o, oy, relative
field-dependent permeability i), immersed in a nonmagnetizable continuous phase (rela-
tive permeability, u.=1), and subjected to a uniform magnetic field H,=H_h (h is a unit
vector in the direction of the applied field). The local field experienced by particle
i (Hy,.;) is the applied external field plus the disturbance fields created by all the other
spheres,

Hloc,i=H0+2Hja (3)

JFi

where H; is the disturbance field created by a particle j at the center of sphere i which can
be wrltten

Here, T is the dipole-dipole interaction tensor [Shkel and Klingenberg (2001)],
1 (o6
T.= - 3—Ll , 5
Y 477( i ) ®)

ij

where r;=r;—r; is the vector separation between the centers of spheres i and j. The

magnetic moment induced on sphere i, m;, is proportional to the local field (H, ),

H, 1
m;= 770_?“2( loc, )= H,- E T 6)
2 /J'p(Hloc z) +2 J#Fi

Evaluating the induced moment on each sphere is a formidable task. According to Eq.
(6), the induced moment depends on the particle permeability via the relative magnetiz-
ability (),

B - Hp(Hioe) = 1 o

- /U“p(Hloc,i) +2 .

However, the particle permeability varies nonlinearly with the local field. In this study,
the field-dependent permeability is described by the Frohlich—Kennelly constitutive equa-
tion [Bozorth (1951)],

(/‘LO - I)Ms/[(l - IBi)Hloc,i]
(MO - 1) + Ms/[(l - Bi)Hloc,i] ’

where M is the saturation magnetization and (1-;)H,.; is the magnetic field strength
within sphere i. u° is the permeability at zero field, chosen to be 10° in this study.

Mp(Hige ) =1+ (8)
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For a bidisperse system, the moments on spheres of diameter o; and o; can then be
written separately,

I-1 I-11
my;=ay;| H,- E Tij tmyp;— 2 Tij mp|s )
| j#i J#i
-1 =11
my; = ay;| H, - 2 Tij'ml,j_ E Tij'mII,j > (10)
| j#i J#i

where a;;=(7/2)a;3; and ay;=(m/2)07,8; are the magnetizabilities of sphere i with
diameter o; and oy, respectively. The notation E;‘;? indicates a summation over all
neighboring spheres j of type B, excluding sphere i of type A.

To make the problem more tractable, the following assumptions are made. First, we
assume that the moments of all spheres of the same size are equivalent, which reduces the
number of unknown moments to two (m; and my). Each induced moment is approxi-
mated to equal to the ensemble average of that particular sphere size. Second, we assume
that each moment is parallel to the applied field (i.e. my=m;h).

Dotting Egs. (9) and (10) with k, and ensemble averaging yields the following equa-
tions for the moment magnitudes of two different diameter particles,

I-1 I-11
m=aq HU—E<h-T-h>m,—2<h-T-h>m,,] (11)
| JjFi JFi
11-1 11-11
my=ay| Hy— > (h-T-hym;— 2 (h-T-hymy | . (12)
| J#i J#i

The above two equations can be resolved for the moment magnitudes as
my;= a])\[Ho, (]3)
my = ayhgH,, (14)
where the local field enhancement factors (\; and \;) are defined

1+ a,”(TzI—II_ Tz—]]

M= , 15
el T+ ageg (T T - T T (15)
N 1+ a1 =T} o
1 s T + g T+ g (T T = 70T
and the terms T, ? are defined
8= X (h-T-h). (17)

J(B)#i(A)

The renormalization procedure proposed by Jeffery (1973) and employed for ER fluids
by Adriani and Gast (1988) was employed to resolve the conditionally convergent sum-
mations of the term (k-T-h). Using this renormalization procedure to first order in
particle volume fraction, the terms T?;B can be rewritten
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_B PA pA “1 2 A-B
T, =3 5(3 cos” 8- 1)(g"(r) - 1)dr, (18)

where gA~? is the pair distribution function for spheres of type A and B, and p* is the
number density of spheres of type A.

B. Simulation method

MR suspensions are modeled as N neutrally buoyant, magnetizable spheres immersed
in a nonmagnetizable continuous phase of viscosity 7. Particles are treated to be homo-
geneously magnetized but may have different diameters of oy and oy with field-
dependent relative permeability w,,.

Consider an MR suspension under the constant applied field H,,. The sphere motion is
determined by Newton’s equation of motion. Ignoring particle inertia, the force balance
for particle i is

> Fr)=0, (19)

forces

where F; is the net force acting on sphere i which depends on the positions of all the
spheres (r;). Forces included in the model are magnetostatic interparticle forces (Fg?ag),
hydrodynamic forces (F?yd), and short-range repulsive forces (F;;p). These forces are
described in more detail below.

The magnetostatic interparticle forces are treated in the point-dipole limit. Employing
the self-consistent mean-field magnetization model described in the previous section, the
magnetostatic force on sphere i with diameter o; due to sphere j with diameter o; at
position (r;;, ;) in the point-dipole limit is given by

Fanin |
Fle= F;nag<ﬁ> [(3 cos® ;- 1)e, +sin 26,e,], (20)

ij

where 7,,=(0;+0;)/2 is the minimum sphere separation, r;;= |ri—rj , e, and e, are unit

vectors in the directions of increasing r;; and 6;, respectively, and

37 oo

anag = Eﬂoﬁiﬁjxixsz<#> (21)
min

is the magnitude of the magnetostatic force. Here, \; and A; are the local field enhance-

ment factors evaluated self-consistently as described in the previous section. As men-

tioned in the previous section, this dipole approximation becomes exact at large field

strengths (i.e., in the limit of magnetic saturation).

The shearing surfaces are treated as a constant magnetic potential surfaces. Hence, the
magnetic interaction between a particle and a surface is equivalent to the interaction of
the particle and the dipole images of all other particles reflected about the surface.

The hydrodynamic force on each sphere is treated as Stokes’ drag, ignoring hydrody-
namic interactions between spheres,

dr;
hyd %

F =—37T7;L.0'i{d—t’—U ], (22)
where U” is the ambient fluid velocity. Because we are interested in the behavior of
suspensions at vanishing shear rates (see below), we expect that hydrodynamic interac-
tions would have little impact on the results.
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A hard-spherelike interaction force between particles is represented by the short-range
repulsive function,

Fﬁj‘?p =—FP exp[— Kr’ rmm]e,, (23)
F'min

where the parameter « characterizes the range of the repulsive force, and F,* is the force
magnitude. In this article, the force magnitude F.;? is chosen to be equal to F*¢ and the
parameter « is set to 100. Short-range repulsive forces between each sphere i and a
surface are modeled with a similar short-range function, F}'™'=F"P exp[—k(h;—a;/2)/
o;le,, where h;=L,/2—|z], L, is the bounding surface separation, and e, is the unit
normal vector pointing from the bounding surface into the suspension.

The equation of motion is made dimensionless with the following scales:

n
Ly=0, Fs=&M002LM?’ t,= 144500/ pu,M;, (24)

where o is the diameter of the largest sphere. The force scale is chosen to be the
asymptotic value of F}'* in the limit of magnetic saturation (H,/M — ). The dimen-
sionless equation of motion is

'

d * 1 N N

r; * * *

i re ,wall ,ma; *

= > F P+ FYM 4 2P v ut (25)
Oi Lj#i j#i

where the asterisks denote the dimensionless quantities and the prime on the last sum-
mation indicates that the summation is over all spheres j#i, as well as dipole images.
Equation (25) represents a set of coupled, nonlinear, first-order differential equations
governing the spheres’ motion. Spheres within 0.050; of a bounding surface are consid-
ered stuck and assume the lateral (x or y) velocity of the bounding surface. The motion of
a stuck sphere in the z direction is still governed by Eq. (25), and thus spheres can be
pulled away from a bounding surface. Particles in sheared ER suspensions have been
observed to stick to bounding surfaces [Klingenberg and Zukoski (1990)], and this fea-
ture is required to observe a yield stress in these simulations [Khngenberg et al. (1991)]

Particles are randomly placed in the snnulat10n cell of dimensions L. X L X L Peri-
OdIC boundarles are located at x" = +L /2 and at y*=+L"/2. Shearing surfaces are located
atz"==L./2. The equation of motion [Eq (25)] for each sphere is integrated numerlcally
using Euler s method. Interparticle forces are evaluated with a cutoff radius (r,) of L /2.

The local field enhancement factors (\;) do not vary significantly from one time step
to the next. In order to improve computational speed, we only recalculate the enhance-
ment factors every strain interval of 0.05. The results are found to be insensitive to this
interval.

Rheological properties are evaluated from the particle positions obtained from simu-
lations. The nonhydrodynamic contribution to the shear stress in dimensionless form is

sz == ?2 Zi in’ (26)

where F ; is the dimensionless x component of the nonhydrodynamic force on sphere i, z
is the d1mens10nless z coordinate of sphere i, and V" is the dimensionless simulation cell
volume. The dynamic yield stress, the shear stress in the limit of zero shear rate, is
calculated by the “relaxation” method [Klingenberg er al. (1991)].
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FIG. 1. Dynamic yield stress as a function of normalized field strength for monodisperse suspensions at
different particle volume fractions.

Results were averaged over at least five different initial random configurations. Simu-
lations were begun by first integrating the equations of motion with no flow until motion
ceased. Shear flow was then simulated at a shear rate of '=1072 to a strain y=10.
Configurations from these simulations for y=1-10 were allowed to relax, and the yield
stress was determined from the average of the shear stress of the relaxed configurations.
The simulation cell had dimensions (L_i,L;,L:):(lO,S ,5) for monodisperse simulations,
and dimensions (5,5,5) for bidisperse suspensions; for monolayer simulations (y;=0 for
all i), the simulation cell had dimensions (L;:,Lj):(lS,S).

lll. RESULTS
A. Monodisperse suspensions

The effect of the normalized magnetic field strength on the dynamic yield stress was
investigated for particle volume fractions from 0.1 to 0.4 as shown in Fig. 1. The dynamic
yield stress increases monotonically with H,/M, and reaches a plateau as the magneti-
zation saturates (H,/M = 1). For 0.01<H,/M <1, the dynamic yield stress from simu-
lations varies subquadratically with field strength. The subquadratic field strength depen-
dence is qualitatively consistent with experimental results reported by Ginder et al.
(1996) and Rankin et al. (1999), where the scaling 7'00<H$'5 was reported for intermediate
field strengths.

According to Fig. 1, the dynamic yield stress becomes independent of field strength at
large field strengths (H,/M = 1). The dynamic yield stress at H,/M =10 was selected to
represent the dynamic yield stress in the limit of saturated magnetization. The dynamic
yield stresses in the limit of saturation are plotted as a function of particle volume
fraction in Fig. 2. Dimensional values are obtained by multiplying the scaled yield
stresses by 7T,LL,,M§/ 64. The saturation magnetization value u,M,=2 T, corresponding to
that for pure iron [Bozorth (1951)], was employed. The dynamic yield stresses predicted
from the simulations are significantly smaller than the static yield stresses obtained from
the chain model of Ginder and Davis (1994). Quantitative differences are not unexpected
since the simulated structures, while fibrous, are not perfect chains on a lattice. Experi-
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FIG. 2. Yield stress in the limit of magnetic saturation as a function of particle volume fraction for monodis-
perse suspensions.

mental results by Foister (1997) and Rankin ez al. (1999) are included for comparison in
Fig. 2. The dynamic yield stress at ¢=0.1 is less than the experimentally measured value
of approximately 6 kPa reported by Rankin ef al. (1999), but is of similar magnitude.
Comparing with the data of Foister (1997), our simulation results underestimate the yield
stress but exhibit a qualitatively similar volume fraction dependence for low to moderate
volume fractions.

B. Bidisperse suspensions

Simulations in three dimensions were performed for bidisperse suspensions with a
particle diameter ratio o;:0g=2:1. The suspension composition is characterized by the
fraction of large particles by volume, ¢;/(d,+ ¢s), where ¢; and ¢g are the volume
fractions of the large and small particle fractions, respectively. Compositions of
¢/ (dp+ ds)=0,0.25,0.5,0.75, and 1 were investigated at various total volume fractions,
¢=¢p; + g, and normalized field strengths, H,/M,. The dynamic yield stress is plotted as
a function of ¢;/¢ in Fig. 3 for simulations at a total volume fraction ¢=0.4 and a
normalized field strength of H,/M,=1. The dynamic yield stress increases as ¢,/ ¢ is
decreased from 1, reaches a maximum at ¢;/¢=0.5, and then decreases as ¢;/¢ is
decreased further. This behavior is consistent with experimental results reported by Fois-
ter (1997), who observed larger field-induced yield stresses for bidisperse MR fluids than
for monodisperse MR fluids.

The dynamic yield stress is plotted as a function of total volume fraction for simula-
tions of bidisperse suspensions (o :0g=2:1) with ¢;/$=0.75, as well as for monodis-
perse suspensions in Fig. 4 (H,/M,=1). The dynamic yield stresses of the bidisperse
suspensions remain larger than that of the monodisperse suspensions at all concentra-
tions. The dynamic yield stress is plotted as a function of field strength in Fig. 5 for
bidisperse (0 :04=2:1) with ¢;/¢$=0.75 and monodisperse suspensions for a total vol-
ume fraction ¢=0.4. Again, we see that the dynamic yield stresses for the bidisperse
suspensions remain larger than that of the monodisperse suspensions at all field strengths,
even at large field strengths where the magnetization has saturated and the dynamic yield
stresses become independent of field strength.
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FIG. 3. Dynamic yield stress of bidisperse suspensions as a function of the fraction of large particles by volume
(H,/M=1,0,:0¢=2:1,¢=0.4).

0.036

IV. DISCUSSION

The ability to enhance the rheological properties of MR fluids by utilizing polydis-
perse particle size distributions has obvious implications for improving MR devices. By
understanding the mechanisms by which polydispersity achieves this enhancement, one
may be able to exploit these mechanisms to further enhance rheological properties.

Equation (26) for the shear stress reveals that polydispersity can influence the shear
stress in two ways: By affecting the forces on the particles, and by affecting their relative
positions and thus the summation in Eq. (26). Consider first the pair interaction force
magnitude,

0.06
@ monodisperse
O  bidisperse @
0.05 1
T, 0.04 o ¢
®
0.03 1 i
0.02

0.1 0.2 0.3 0.4 0.5 0.6

¢

FIG. 4. Dynamic yield stress of monodisperse and bidisperse suspensions as a function of the total particle
volume fraction (H,/M =1,0,:05=2:1,¢;/¢$=0.75 for bidisperse).
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FIG. 5. Dynamic yield stress of monodisperse and bidisperse suspensions as a function of normalized field
strength (o :0g=2:1,¢=0.4, ¢,/ $p=0.75 for bidisperse).

. Fo H\} o’c?
Fglag’ =—2— = 144)\1)\]B1B]< 0) ( *l 4 | (27)
F, M) \(o; + O'j)

where Uj=0i/UL. Particle sizes affect this magnitude directly via the last term in paren-
theses, and indirectly via the effect of particle size distribution on the microstructure and
thus the local field, \;, and S;. The last term in parentheses becomes largest for a,-*:aj
=1, and thus the direct effect of the particle size ratio on the force magnitude can only act
to decrease the dynamic yield stress (relative to monodisperse suspensions). Next, con-
sider the indirect effect of particle sizes on the quantity N;3;H,/M,. In the limit of large
field strengths, where the particle magnetization saturates, the quantity \;8;H,/M, ap-
proaches the constant value 1/3, independent of particle size. In this limit, we still
observe an increase in dynamic yield stress for bidisperse suspensions relative to that for
monodisperse suspensions at the same total volume fraction. Therefore, the direct and
indirect effects of the relative particle sizes on the magnetostatic force magnitude [Eq.
(27)] cannot explain the enhancement of the dynamic yield stress for bidisperse suspen-
sions.

The enhancement of the dynamic yield stress for bidisperse suspensions must there-
fore arise from the changes polydispersity causes in the microstructure. It is well known
that the maximum packing fraction of polydisperse suspensions is larger than that of
monodisperse suspensions [Cumberland and Crawford (1987)], and thus one might ex-
pect that the larger dynamic yield stresses for bidisperse suspension could arise because,
locally, the particles may pack more tightly. To probe this, the fluctuations in volume
fraction,

oy = (") — ()", (28)

were calculated for the simulated structures. The averages (¢?) and (¢) were evaluated as
follows. The simulation cell was divided into cubes, each of side length Lg. The volume
fraction in each cube was calculated by determining the total volume of particulate
material within the cube, and dividing this by L%. The averages (¢’) and (¢) were
equated with the averages of ¢* and ¢ for all of the cubes. The fluctuations o%ﬁ were then
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FIG. 6. Volume fraction fluctuations as a function of the fraction of large particles by volume for various sizes
of the cubic sampling cell (Lp)(H,/M,=1,0;:03=2:1,¢$=0.4).

averaged over time and different initial configurations. One expects o@, to increase as the
suspension becomes more heterogeneous. For example, for a well-dispersed system, ¢
should be the same in each cube (as long as each cube contains a sufficient number of
particles), yielding (¢?)=(#)? and 0%=0. For a heterogeneous system composed of
close-packed clusters separated by pure suspending fluid, ¢ will vary significantly from
one cube to another, yielding o‘é>0.

The volume fraction fluctuations are plotted as a function of o;/c in Fig. 6 for
simulations with o;:0¢=2:1, o;,+0¢=0.4, H,/M,=1, and several values of LZ (LZ
=Lz/0;). Regardless of the value of LZ, 02(# is largest for monodisperse suspensions
(¢! p=1). Thus, the monodisperse suspensions are the most heterogeneous; and while
bidisperse suspensions could in principle pack more densely in some regions, they do not
in the presence of shear and a magnetic field.

The microstructure of monolayer suspensions is easier to visualize than that of three
dimensional systems. In addition, the lower computational cost of monolayer simulations
allows simulations to be performed at particle size ratios o;:og larger than 2:1. The
dynamic yield stress (left vertical axis) is plotted as a function of particle size ratio o /o
in Fig. 7 for simulations of monolayer, bidisperse suspensions with q’)’z/ ¢'=0.67,
H,/M =1, and a total particle area fraction ¢A=q§’2+ ¢§=0.6. The dynamic yield stress
initially decreases as the particle size ratio (o /o) is increased from 1 (monodisperse) to
2. Although the dynamic yield stress increases for o/ og>2, the dynamic yield stress for
o/ og=06 is still slightly smaller than that of the monodisperse suspension. This is con-
sistent with the simulations results reported by Wang er al. (1997) for polydisperse
monolayer suspensions.

However, monolayer suspensions at fixed area fraction do not possess the same vol-
ume fraction within the monolayer as the particle size ratio is varied, and thus it is not
clear how to compare results for monolayer bidisperse suspensions of different particle
diameter ratios. Since the yield stress of 3D systems nominally increases with volume
fraction (roughly linearly for bidisperse suspensions; Fig. 4), we also plot T:/¢> versus
o;/og in Fig. 7 for the monolayer simulations, where the volume fraction in the mono-
layer is defined for a simulation cell with thickness o7 in the vorticity direction. While
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FIG. 7. Dynamic yield stress of monolayer monodisperse and monolayer bidisperse suspensions as a function
of particle size ratio (H,/M,=1,¢"=0.6, ¢,/ ¢"=0.67 for bidisperse).

T:/ ¢ initially decreases as o/ o0y is increased from 1 to 2, 7':/ ¢ then increases, becoming
greater than that for monodisperse suspensions for o;/o¢=4. This enhancement is con-
sistent with that observed for 3D systems, and suggests that the mechanisms may be
similar.

Snapshots of the simulated microstructure for monolayer suspensions with different
particle size ratios are presented in Fig. 8 (H,/M,=1,¢"=0.6, d)ﬁ/ ¢"=0.67). The mono-
disperse structure appears to consist of large clusters as well as single particle width
chains. The bidisperse suspension with o;/0¢=5 appears to consist largely of single
particle width chains of large spheres separated by the smaller spheres. Thus the enhance-
ment of TZ/ ¢ for bidisperse suspensions appears to be associated with a tendency of the
larger particles to form more chainlike aggregates.

SIS & C}

D ~.;i

FIG. 8. Snapshots of monolayer monodisperse and monolayer bidisperse suspensions with different particle
size ratios (darker shade represents periodic images, H,/M,=1,¢*=0.6, ¢/ ¢*=0.67 for bidisperse).
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To quantify the degree of structural anisotropy in two- and three-dimensional systems,
we analyzed the statistics of the second-order mass moment tensor. The second-order
mass moment of the kth cluster composed of n, spheres is defined

2% mile; —x 9 —x )
Ik = . (29)

n
Eizkl m;

Here x; is the location of the i™ sphere in the cluster, x,*=m, 'S/ mx; is the center of
mass of the kth cluster, and mizwpmo*? /6 is the mass of the ith sphere. p,, is the mass
density of the particulate material, which is treated as a constant. Clusters were identified
using the algorithm described by Sevick et al. (1988), defining two spheres as touching
for [x;—x;| < 1.05r,.

The anisotropy of an aggregate can be described in terms of the eigenvalues of the
mass moment tensor. Labeling these eigenvalues I¥, 115, and 1§ in order of decreasing
magnitude (I’f and 115 for monolayer systems), the degree of anisotropy can be quantified
by the ratio

Ik
k 1
rati (30)
o B+ (1)

and I’r‘ano_lk / Ik in monolayer systems. For a perfectly ahgned chain, I ,;,— %, whereas
for a cubic aggregate of spheres on a cubic lattice, /;,=1/ VZ
The inverse of the eigenvalue ratios in a given configuration with N, clusters were

averaged according to

rano Z (Irano (3 1)

so that the presence of a single straight chain with /,;,> 1 did not skew the results. These
values were then averaged over time and different initial configurations. In evaluating the
ratios, we considered clusters consisting of both small and large spheres, as well as
clusters of only the large spheres (i.e., by ignoring the small spheres).

The average eigenvalue ratio, (I} )~!, for monolayer systems is plotted as a function
of particle size ratio in Fig. 9 [H,/M =1, ¢} + ¢3=0.6, ¢/ (f + ¢3)=0.67]. The average
eigenvalue ratios are on the order of one when all spheres are considered when identify-
ing clusters, indicating that these clusters possess a low degree of anisotropy. However,
when considering only large spheres in the monolayer suspensions, the average eigen-
value ratio is significantly larger, indicating a high degree of anisotropy as observed in
the snapshots of Fig. 8. A similar trend was found for 3D simulations. The average
eigenvalue ratio is plotted as a function of ¢;/¢ for 3D systems in Fig. 10 (H,/M,
=1,0,:04=2:1,¢$=0.4). A much larger value of (I} )" is obtained for clusters of only
the large spheres at ¢;/¢=0.5 and 0.75, compared to that of the monodisperse systems.
At these compositions, approximately 70% of the large spheres are in percolating clusters
of large spheres. This is similar to the structure observed for the large diameter spheres in
the monolayer system with o;/0¢=5 depicted in Fig. 8. However, as the small particles
become the majority component at ¢;/$=0.25, there are no longer percolating clusters
of large spheres. Increased values of average eigenvalue ratio are also observed for
bidisperse suspensions with ¢;/¢$=0.75,0,:09=2:1 at total volume fractions ranging
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FIG. 9. Average eigenvalue ratio for monolayer systems as a function of particle size ratio for clusters
considering all spheres, and for clusters considering only large spheres (HU/MS=1,¢’L\+ ¢’S‘=0.6,¢’L\/(¢’L‘
+¢)=0.67).

from 0.2 to 0.5. Thus, the enhanced yield stress observed for bidisperse suspensions as
depicted in Fig. 4 is associated with the presence of more highly anisotropic clusters of
large spheres than observed in monodisperse suspensions.

The tendency of the large particles to form more chainlike aggregates is also reflected
in the pair distribution function, g(r, 6). For a bidisperse suspension, different pair dis-
tribution functions can be defined for the distributions of separations of centers of spheres
of different types. For example, g““(r) is the pair distribution function for only the large
spheres in a bidisperse system. The pair distribution function of a monodisperse suspen-
sion [g(r, )] and the large-large component of the pair distribution function (g“) of a
bidisperse suspension are presented in Fig. 11. For both suspensions, ¢=0.2 and

10
—@— all spheres
g | —O— only large
spheres

. T

0.0 0.25 0.50 0.75 1.00

/9

FIG. 10. Average eigenvalue ratio for 3D systems as a function of the fraction of large particles by volume for
clusters considering all spheres, and for clusters considering only large spheres (H,/M,=1,0,:05=2:1,¢
=0.4).
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FIG. 11. Pair distribution functions of a monodisperse suspension and a bidisperse suspension (large-large
component). For both suspensions, ¢=0.2 and H,/M,=1. For the bidisperse suspension, o;:03=2:1 and
¢! p=0.75.

H,/M=1. For the bidisperse suspension, o :0s=2:1 and ¢,/ ¢$=0.75. Both g and g‘*
exhibit similar patterns of a dense liquid structure with a region of high probability
density represented by a dark ring near r/o;=1. For the monodisperse suspension, a
second ring can be seen at r/o; =~2. For the bidisperse suspension, g““(r, 6) is signifi-
cantly more anisotropic with a larger probability density near » sin #=0. This is consistent
with the analysis of the mass moment eigenvalue ratios where bidisperse systems produce
more chainlike aggregates of the large spheres.

The observation that higher yield stress in bidisperse MR suspensions, compared to
monolayer suspensions of the same volume fraction, are associated with the formation of
chainlike aggregates of large spheres does not provide an explanation for why such
microstructures produce larger stresses. The stress transfer capabilities of isolated clusters
of different shapes (i.e., thin versus thick columns) has been debated [Klingenberg et al.
(1991); Kraynik er al. (1992); Gulley and Tao (1993); Anderson (1994)]; the situation
here is more complicated because the clusters are not isolated. The mechanisms by which
these microstructures produce larger stresses thus remain unknown.

The addition of small particles has also been predicted to influence the microstructure
of ferrofluids. In this case, the smaller particles tend to reduce the length of chainlike
aggregates of the larger spheres, in contrast to the results reported here in which the
aggregate length in the field direction does not change, but the smaller particles tend to
inhibit the lateral aggregation of large-sphere chains. Different results, however, are not
unexpected since ferrofluids and MR fluids differ in several important respects. Ferrofluid
particles are much smaller (diameters <10 nm), Brownian, and have permanent magnetic
moments. In the modeling studies reported by Kantorovich (2003); Wang and Holm
(2003), and Ivanov and Kantorovich (2004), the magnetic interactions between small
particles are negligible compared to their thermal energy, and interactions between small
and large particles are relatively weak. Aggregate size reduction appears to arise from a
poisoning effect, where small particles attach to the ends of the large-particle chains;
competition between magnetic interactions and Brownian motion prevent further growth.
In MR fluids where Brownian motion is negligible, chain growth is not inhibited, and
thus it is not surprising that different effects of the small particles are observed.

V. CONCLUSION

We have employed a particle-level simulation technique to probe the effect of particle
size distribution on the yield stress of MR suspensions. The particles are modeled as
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neutrally buoyant nonlinearly magnetizable spheres immersed in a Newtonian continuous
phase. Simulations of monodisperse suspensions produce yield stresses with a field-
strength dependence qualitatively consistent with experimental results. Simulations of
bidisperse suspensions in three dimensions predict that the yield stress for suspensions of
mixtures of small and large spheres is larger than that of monodisperse suspensions at the
same volume fraction, in agreement with experimental results reported by Foister (1997).

The microstructure is characterized by the fluctuations in concentration, by the
second-order mass moments of clusters within the suspensions, and by the pair distribu-
tion functions. We find that the enhanced stress transfer in bidisperse suspensions is not
associated with an increase in particle packing, but rather with a tendency of the smaller
particles to induce the larger particles to form more chainlike aggregates.
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