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We announce a new 4D hyperchaotic system with four parameters. 	e dynamic properties of the proposed hyperchaotic system
are studied in detail; the Lyapunov exponents, Kaplan-Yorke dimension, bifurcation, and bicoherence contours of the novel
hyperchaotic system are derived. Furthermore, control algorithms are designed for the complete synchronization of the identical
hyperchaotic systems with unknown parameters using sliding mode controllers and genetically optimized PID controllers. 	e
stabilities of the controllers and parameter update laws are proved using Lyapunov stability theory. Use of the optimized PID
controllers ensures less time of convergence and fast synchronization speed. Finally the proposed novel hyperchaotic system is
realized in FPGA.

1. Introduction

	e study of chaotic attractors arising in nonlinear dynamical
systems has received much attention as this has potential
applications in many branches of science and engineering.
Chaotic systems are characterized as nonlinear dynamical
systemswhich are irregular, aperiodic, and unpredictable and
have sensitive dependence on the initial conditions [1, 2].
Lorenz discovered a chaotic system while he was studying
3D weather model [3]. Some important paradigms of 3D
autonomous chaotic systems are Rössler system [4], Chen
system [5], Lü system [6], and so forth. Some novel 3D
autonomous chaotic systems are Zhu system [7], Vaidyanat-
han systems [8–10], Pehlivan system [11], Akgul system [12],
Tacha system [13], and so forth.

A hyperchaotic system is mathematically dened as a
chaotic system having more than one positive Lyapunov
exponent implying that its dynamics are expended in many
di�erent directions simultaneously.	us, a hyperchaotic sys-
tem has more complex dynamical behaviours than a chaotic
system [1, 2]. Rössler was the rst to discover a hyperchaotic
system [14]. 	ere are many well-known hyperchaotic sys-
tems such as hyperchaotic Lorentz system [15], hyperchaotic
Chen system [16], hyperchaotic Li system [17], hyperchaotic
Vaidyanathan systems [18–20], and so forth.

Sliding mode control is one of the best robust control
algorithms as discussed in literature [21–23]. Most of the
works were concentrated towards active slidingmode control
assuming that the system parameters are known. Some
authors [24, 25] have derived a methodology to synchronize
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systems assuming the parameters are unknown. Systems with
uncertainty and external disturbance is proposed to realize
chaos control [25] in which the bounds of the uncertainty
and external disturbance are assumed to be unknown. FPGA
implementation of the chaotic generators is more useful for
real-time applications such as secure communications and
cryptography [26]. A new methodology for implementing
integer order integrators in FPGA using Xilinx System
Generator toolbox was proposed [27].

In this paper, we have derived a novel hyperchaotic
system and described the qualitative properties of the system.
	e Lyapunov exponents of the proposed system are having
two positive exponents showing that the system is hyper-
chaotic. 	e bifurcation and bicoherence contours of the
hyperchaotic system are studied to investigate the parameter
dependence and quadratic nonlinearities, respectively.

	e synchronization of hyperchaotic systems has many
applications like secure communications [28, 29], cryptosys-
tems [30, 31], and so forth. In this work, we also derive
new results for the adaptive synchronization of the novel
hyperchaotic systems with unknown parameters using slid-
ing mode control and PID control [32] optimized by genetic
algorithm [33, 34]. 	e main adaptive control results are
established via Lyapunov stability theory [35]. Finally the
novel hyperchaotic system is realized in FPGA using the
Xilinx (Vivado) System Generator toolbox.

2. A Novel Hyperchaotic System

In this work, we propose a novel hyperchaotic system
described by

�̇ = � (� − �) + �,
̇� = 	� − �
,

̇ = �� − �
 + �,
�̇ = �
 + ��,

(1)

where �, �, 
, � are the state variables and �, �, 	, � are
positive constant parameters.

In this work, we show that system (1) is hyperchaoticwhen
we take the parameters as

� = 39,
� = 3,
	 = 22,
� = 1.2.

(2)

For numerical simulations, we take the initial values of
the hyperchaotic system (1) as

� (0) = 0.2,
� (0) = 0.2,

 (0) = 0.2,
� (0) = 0.2.

(3)
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Figure 1: 3D projection of the novel hyperchaotic systemon (�, �, 
)
space.
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Figure 2: 3D projection of the novel hyperchaotic system on(�, �, �) space.

Figures 1–4 show the 3D projections of the novel hyper-
chaotic system (1) on (�, �, 
), (�, �, �), (�, 
, �), and (�, 
, �)
spaces, respectively.

3. Properties of the Novel
Hyperchaotic System

In this section, we discuss the qualitative properties of the
novel hyperchaotic system (1) introduced in Section 2. We
suppose that the parameter values of system (1) are as in the
hyperchaotic case for the system parameters (2).

3.1. Dissipativity. In vector notation, the 4D system (1) can be
expressed as

̇ = � () =
[[[[[
[

�1 (�, �, 
, �)
�2 (�, �, 
, �)
�3 (�, �, 
, �)
�4 (�, �, 
, �)

]]]]]
]
, (4)

where

�1 (�, �, 
, �) = � (� − �) + �,
�2 (�, �, 
, �) = 	� − �
,
�3 (�, �, 
, �) = �� − �
 + �,
�4 (�, �, 
, �) = �
 + ��.

(5)
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Figure 3: 3D projection of the novel hyperchaotic system on(�, 
, �) space.
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Figure 4: 3D projection of the novel hyperchaotic system on(�, 
, �) space.

Let Ω be any region in �4 with a smooth boundary and
also, Φ(�) = Φ�(Ω), where Φ� is the �ow of the vector eld �.
Furthermore, let �(�) denote the hypervolume of Φ(�).

By Liouville’s theorem, we have

�̇ = ∫
Φ(�)

(∇ ⋅ �) �� �� �
 ��. (6)

	e divergence of the vector eld � is easily calculated as

∇ ⋅ � = ��1�� + ��2�� + ��3�
 + ��4�� = −� + 	 − � + � = −�, (7)

where � = � − 	 + � − � = 18.8 > 0.
Substituting (7) into (6), we obtain the rst-order di�er-

ential equation

�̇ (�) = −�� (�) . (8)

Integrating (8), we obtain the unique solution as

� (�) = exp (−��)� (0) ∀� ≥ 0. (9)

Since � > 0, it follows that �(�) → 0 exponentially as� → ∞.	is shows that the novel hyperchaotic system (1) is
dissipative.	us, the system limit sets are ultimately conned
into a specic limit set of zero volume, and the asymptotic
motion of the novel hyperchaotic system (1) settles onto a
strange attractor of the system.

3.2. Equilibrium Points. 	e equilibrium points of the novel
hyperchaotic system (1) are obtained by solving

�1 (�, �, 
, �) = � (� − �) + � = 0,
�2 (�, �, 
, �) = 	� − �
 = 0,
�3 (�, �, 
, �) = �� − �
 + � = 0,
�4 (�, �, 
, �) = �
 + �� = 0.

(10)

	eparameter values are taken as in the hyperchaotic case
(2).

	en the equilibrium points of the novel hyperchaotic
system (1) are found as

$0 =
[[[[[
[

0
0
0
0

]]]]]
]
,

$1 =
[[[[[
[

−8.6394
−16.3034
41.5161
298.8957

]]]]]
]
,

$2 =
[[[[[
[

7.6394
14.4163
41.5161
−264.2990

]]]]]
]
.

(11)

	e Jacobian matrix of the novel hyperchaotic system (1)

at any point ∈ �4 is found as

& () =
[[[[[
[

−� � 0 1
−
 	 −� 0
� � + 1 −� 0

 0 � �

]]]]]
]

=
[[[[[
[

−39 39 0 1
−
 22 −� 0
� � + 1 −3 0

 0 � 1.2

]]]]]
]
.

(12)

	e eigenvalues of &0 = &($0) are easily calculated as

'1 = 1.2,
'2 = −3,
'3 = 22,
'4 = −39.

(13)

	is shows that $0 is a saddle point, which is unstable.
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	e eigenvalues of &1 = &($1) are easily calculated as

'1 = 0.6290,
'2 = −13.9770,
'3,4 = −2.7260 ± 27.2250*.

(14)

	is shows that $1 is a saddle-focus, which is unstable.
	e eigenvalues of &2 = &($2) are easily calculated as

'1 = 0.6292,
'2 = −12.5821,
'3,4 = −3.4221 ± 26.9621*.

(15)

	is shows that $2 is a saddle-focus, which is unstable.
Hence, all the three equilibrium points of the novel

hyperchaotic system (1) are unstable.

3.3. Lyapunov Exponents and Kaplan-Yorke Dimension. We
take the parameters of the novel 4D system (1) as in the
hyperchaotic case (2).

	en the Lyapunov exponents of the novel 4D system (1)
are numerically found as

-1 = 1.0623,
-2 = 0.2952,
-3 = 0,
-4 = −20.1063.

(16)

Since there are two positive Lyapunov exponents in (16),
it is clear that the 4D system (1) is hyperchaotic.

We note that the sum of the Lyapunov exponents of
system (1) is negative. In fact,

-1 + -2 + -3 + -4 = −18.7488 < 0. (17)

	is shows that the novel hyperchaotic system (1) is
dissipative.

Also, the Kaplan-Yorke dimension of the hyperchaotic
system (1) is derived as

/�� = 3 + -1 + -2 + -3::::-4:::: = 3.0675, (18)

which is fractional.

3.4. Bicoherence. 	e bicoherence or the normalized bispec-
trum is a measure of the amount of phase coupling that
occurs in a signal or between two signals. Both bicoherence
and bispectrum are used to nd the in�uence of a nonlinear
system on the joint probability distribution of the system
input. Phase coupling is the estimate of the proportion
of energy in every possible pair of frequency components(��, ��). Bicoherence analysis is able to detect coherent signals
in extremely noisy data, provided that the coherency remains
constant for su�ciently long times, since the noise contribu-
tion falls o� rapidly with increasing number of segments;.

	e autobispectrum of a chaotic system is given by
Pezeshki et al. [36].	ey derived the autobispectrumwith the
Fourier coe�cients

? (@1, @2) = $ [B (@1) B (@2) B∗ (@1 + @2)] , (19)

where @	 is the radian frequency and B is the Fourier coe�-
cients of the time series.	enormalizedmagnitude spectrum
of the bispectrum known as the squared bicoherence is given
by

� (@1, @2) =
::::? (@1, @2)::::2D (@1) D (@2) D (@1 + @2) , (20)

where D(@1) and D(@2) are the power spectrums at�1 and �2.
	e motivation to study the bicoherence is twofold. First,

the bicoherence can be used to extract information due to
deviations from Gaussianity and suppress additive (colored)
Gaussian noise. Second, the bicoherence can be used to detect
and characterize asymmetric nonlinearity in signals via
quadratic phase coupling or identify systems with quadratic
nonlinearity. 	e bicoherence is the third-order spectrum.
Whereas the power spectrum is a second-order statistics,
formed from
(�) ∗(�), where(�) is the Fourier trans-
form of �(�), the bispectrum is a third-order statistics formed
from(��)∗(��)∗
(��+��).	e bispectrum is therefore a
function of a pair of frequencies (��, ��). It is also a complex-
valued function.	e (normalized) square amplitude is called
the bicoherence (by analogy with the coherence from the
cross-spectrum).	ebispectrum is calculated by dividing the
time series intoM segments of lengthN seg, calculating their
Fourier transforms and biperiodogram, and then averaging
over the ensemble. Although the bicoherence is a function of
two frequencies the default output of this function is a one
dimensional output, the bicoherence rened as a function of
only the sum of the two frequencies.

Figures 5 and 6 depict the contours of the bicoherence
of the states � and � for the novel hyperchaotic system (1).
Figure 7 shows the bicoherence contours of all the states
together. Shades in yellow represent themultifrequency com-
ponents contributing to the power spectrum. From Figures
5, 6, and 7, the cross-bicoherence is signicantly nonzero
andnonconstant, indicating a nonlinear relationship between
the states. In Figures 5 and 6 (autobicoherence) the yellow
shades indicate that the nonlinear relationships of the states �
and � are not narrow-band processes. 	e yellow shades and
nonsharpness of the peaks as well as the presence of structure
around the origin in Figure 7 (cross-bicoherence) indicate
that the nonlinearity between the states �, �, 
, � is not
of the quadratic nonlinearity and hence may be because of
nonlinearity of higher dimensions. 	e most two dominant
frequencies (�1, �2) are taken for deriving the contour of
bicoherence. 	e sampling frequency (��) is taken as the
reference frequency. Direct FFT is used to derive the power
spectrum for individual frequencies and Hankel operator is
used as the frequency mask. Hanning window is used as the
FIR lter to separate the frequencies.
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Figure 5: Contour of bicoherence of state � for the novel hyper-
chaotic system.
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Figure 6: Contour of bicoherence of state � for the novel hyper-
chaotic system.
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Figure 7: Contour of bicoherence of all the states of the novel
hyperchaotic system.

For the bicoherence plots we used the pseudocode [37]
given below.

Analysis of the Input Data

F = Felements(�)
if (F < 100) then
Not enough data’

Is the segment length supplied?

if (Felements(Fseg) = 0) then Fseg = F/20
Is the sampling period �� supplied?
if (Felements(��) = 0) then �� = 1.0

Break the Time Series into M Segments of N Length Each

H = F/Fseg
if (H < 1) then
Size(DATA) < Fseg
Fcut = H ∗ Fseg
data = reform(�[0 : Fcut − 1], Fseg, H)
np = +ve frequencies

nf = Fseg/2
Frequency resolution

df = 1.0/(�� ∗ Fseg) df = 1.0/(�� ∗ F seg)
Frequency array

� = (ndgen(nf + 1)) ∗ df

Calculate the Periodogram for Each Segment Using FFT Com-
mand

Calculate mean value (DC component) for each
segment

mean� = total(data, 1)/�oat(Fseg)
Subtract mean (DC component)

data = temporary(data) −
transpose(rebin(mean�,H, Fseg, /sample))
Calculate the Fourier transform of each segment
(row)

this gives DFT(��, ��)
data = �(data, 1, dimension = 1,/overwrite)

Extract only positive frequencies �� : J =0, 1, 2, . . . , nf
DFT = data[0 : nf , ∗]
Calculate the index matrix {J, K} = J + K
indx = indgen(nf + 1)
J = rebin(indx, nf + 1, nf + 1, /sample)
K = transpose(J)
JK = J + K
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Prepare Arrays for Storing Components of Bicoherence

bicoh = |L|2/(� ∗M)
where L = � ∗ � ∗ 
{�+�} is the complex value

� = |� ∗ �|2,M = |�+�|2 and Poij = |�|2 are the
real values

L = makearray(nf + 1, nf + 1, /complex, value = 0.0)
� = makearray(nf + 1, nf + 1, /�oat, value = 0.0)
M = makearray(nf + 1, nf + 1, /�oat, value = 0.0)
Poij = makearray(nf + 1, /�oat, value = 0.0)
Poin = 0.0

Normalize So �at |/NO|2 Is in [�HP/HQ�F]2R
−1 Units
norm = sqrt(2.0 ∗ ��/�oat(F�eg)/mean�[*]2)
� = temporary(�) ∗ norm

Calculate the matrix� ∗ �
�� = �#�
Calculate the matrix{�+�}
�K = �[JK]

Calculate the Triple Term � ∗ � ∗ {�+�}
���� = �� ∗ conj(�K)

Sum over the Ensembles of Each Segment

L = temporary(L) + ����
� = temporary(�) + abs(��)2
M = temporary(M) + abs(�K)2

De�ne Power Spectrum

Poij = temporary(Poij) + abs(�)2 and its Poisson
noise level

Poin = Poin + 2.0/mean�[*]
Normalize the Sums to Get Means

L = temporary(L)/�oat(H)
� = temporary(�)/�oat(H)
M = temporary(M)/�oat(H)
Poij = temporary(Poij)/�oat(H)
Poin = Poin/�oat(H)

Calculate the Bicoherence from |L|2/(� ∗ S)
L = abs(L)2
�M = � ∗M

Masking the Variables to Avoid/0 Errors

mask = where (�M ̸= 0, count)
Prepare array for 2-dimensional bicoherence

bicoh = makearray(nf + 1, nf + 1, /�oat, value = 0)
normalize |bispectrum|2 to get bicoherence
*� (count > 0) �ℎQF �QV*F
bicoh[mask] = L[mask]/�M[mask]
Plot the results.

3.5. Bifurcation. In order to understand the dynamical
behaviour of the MNECS, the bifurcation plots are derived
for three cases as follows.

Case 1. Fix � = 3, 	 = 22 and vary � between [25 40].
Case 2. Fix � = 39, 	 = 22 and vary � between [0 3.5].
Case 3. Fix � = 39, � = 3 and vary 	 between [20 25].
Figures 8(a), 8(b), and 8(c) show the bifurcation plots of
the system for the parameters �, �, 	, respectively. As it is
observed from Figures 8(a), 8(b), and 8(c), for the values of38 ≤ � ≤ 39.2, 2.8 ≤ � ≤ 3.1, 20.8 ≤ 	 ≤ 22.3, the
bifurcation plots showdenser points conrming the existence
of two stable positive Lyapunov exponents (hyperchaos)
showing the parameter dependence of system (1).

4. Adaptive Synchronization of
the Novel Hyperchaotic Systems
Using Sliding Mode Control

In this section, we deploy the adaptive sliding mode control
(ASMC) method to derive new results for the complete syn-
chronization of the novel hyperchaotic systems using sliding
mode control.

	e master system is given as

�̇ = � (� − �) + �,
̇� = 	� − �
,

̇ = �� − �
 + �,
�̇ = �
 + ��.

(21)

	e slave systems with the adaptive sliding mode controllers
(X�) are dened as

�̇� = �̂ (�� − ��) + �� + X�,
̇�� = 	̂�� − ��
� + X�,

̇� = ���� − �̂
� + �� + X�,
�̇� = ��
� + �̂�� + X�.

(22)

	e parameters of the slave system are assumed to be
unknown and hence replaced by their respective parameter

estimates �̂, �̂, 	̂, �̂.
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Figure 8: Bifurcation plots versus (a) �; (b) �; (c) 	.

For the complete synchronization of the master and slave
systems, the synchronization errors lim�→∞Q� = 0, where * =�, �, 
, � and Q� is dened as

Q� = *� − *. (23)

	e error dynamics are derived by di�erentiating the syn-
chronization errors

̇Q� = ̇*� − ̇*. (24)

Using themaster system (21) and slave system (22) in the error
dynamics (24),

̇Q� = �̂ (�� − ��) + �� − � (� − �) − � + X�,
̇Q� = 	̂�� − ��
� − 	� + �
 + X�,
̇Q� = ���� − �̂
� + �� − �� + �
 − � + X�,
̇Q� = ��
� + �̂�� − �
 − �� + X�.

(25)

4.1. Control Design. 	e main control objective of this paper
is to design adaptive sliding mode controllers (X�, X�, X�, X�)

such that the synchronization errors lim�→∞Q� = 0. Sliding
mode control methodology is a simple approach to robust
control and good at dealing with dynamic uncertainty [25,
38]. 	e control design procedure consists of two steps: rst
constructing a sliding surface which presents the desired
dynamics [39] and second selecting a switching control law
so as to verify sliding condition.

	e integral sliding surface [38] can be dened as

P� = Q� + K� ∫ Q� (Z) �Z, (26)

where * = �, �, 
, � and K� > 0.
	e time derivate of the sliding surface is given by

̇P� = ̇Q� + K�Q�. (27)

For any initial conditions, the problem of synchronization
of master and slave systems is equivalent to that of the
synchronization errors Q� remaining on the surface P� for all� > 0. When the system operates in the sliding surface, it
satises P = 0 and ̇P = 0.
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	e parameter estimation errors are given by

Q� = �̂ − �,
Q� = �̂ − �,
Q� = 	̂ − 	,
Q� = �̂ − �.

(28)

Let the adaptive sliding mode controllers be dened as

X� = −�̂Q� − �� + � − \�sgn (P�) − �̂P� − K�Q�,
X� = −	̂Q� + ��
� − �
 − \�sgn (P�) − �̂P�

− K�Q�,
X� = −���� + �̂Q� + �� − �� + � − \�sgn (P�)

− �̂P� − K�Q�,
X� = −��
� − �̂Q� + �
 − \�sgn (P�) − ^�P�

− K�Q�,

(29)

where �̂ > 0, \� > 0 are the sliding surface gains and K� is the
controller gain for * = �, �, 
, �.

Let us dene the parameter adaptive laws as

̇̂� = −P� (� − �) ,
̇̂� = P�
,
̇̂	 = −P��,
̇̂� = −P��,

(30)

where ̇̂�, ̇̂�, ̇̂	, ̇̂� are the dynamics of the parameter estimates

�̂, �̂, 	̂, �̂.
4.2. Stability Analysis of the Controller

�eorem 1. Considering that adaptive sliding mode control
input law in (5) is used to control error system in (6) with
update laws of parameters in (7), then error system in (6) is
globally asymptotically stable.

Proof. To check the stability of the controlled system, let us
consider the following Lyapunov candidate function:

� = 1
2 [P2� + P2� + P2� + P2� + Q2� + Q2� + Q2� + Q2�] . (31)

	e derivative of the Lyapunov function is given by

�̇ = P� ̇P� + P� ̇P� + P� ̇P� + P� ̇P� + Q� ̇Q� + Q� ̇Q� + Q� ̇Q�
+ Q� ̇Q�.

(32)

Using (27) and (25) in (32),

�̇ = P� [�̂�� − �̂�� − �� + �� + �� − � + X�
+ K�Q�] + P� [	̂�� − ��
� − 	� + �
 + X�
+ K�Q�] + P� [���� − �̂
� + �� − �� + �
 − �
+ X� + K�Q�] + P� [��
� + �̂�� − �
 − �� + X�
+ K�Q�] + Q� ̇̂� + Q� ̇̂� + Q� ̇̂	 + Q� ̇̂�.

(33)

A�er some mathematical manipulations we arrive at

�̇ = P� [�̂Q� + K�Q� + �� − � + X�]
+ P� [	̂Q� − ��
� + �
 + X� + K�Q�]
+ P� [���� − �̂Q� − �� + �� − � + X� + K�Q�]
+ P� [��
� + �̂Q� − �
 + X� + K�Q�]
+ Q� [P� (� − �) + ̇̂�] + Q� [P�
 + ̇̂�]
+ Q� [P�� + ̇̂	] + Q� [P�� + ̇̂�] ,

(34)

where P� = −\�sgn(P�) − �̂P� is the sliding reaching law [38],* = �, �, 
, �, and �̂ > 0, \� > 0 are the sliding surface gains.
Introducing the parameter update laws (30) and the

adaptive slidingmode controllers (29) in (34), we simplify the
Lyapunov rst derivative as

�̇ = −\� ::::P�:::: − \� :::::P�::::: − \� ::::P�:::: − \� ::::P�:::: − �̂P2� − �̂P2�
− �̂P2� − ^�P2�.

(35)

As can be seen from (35), Lyapunov rst derivative is a
negative semidenite as �̂ > 0 and \� > 0, hence, by Barbalat’s
lemma in Lyapunov stability theory [36, 40], it follows that
the synchronization errors Q�(�), Q�(�), Q�(�), Q�(�) converge
exponentially to zero as � → ∞.

For numerical simulations, we take the initial conditions
of the master system (27) as

� (0) = 1.2,
� (0) = 6.8,

 (0) = 3.9,
� (0) = 5.4.

(36)

We take the initial conditions of the slave system (28) as

�� (0) = 4.7,
�� (0) = 2.6,

� (0) = 1.4,
�� (0) = 1.9.

(37)
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Figure 9: Time-history of the synchronization errors.
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We take the initial conditions of the parameter estimates as

�̂ (0) = 5.2,
�̂ (0) = 3.1,
	̂ (0) = 1.2,
�̂ (0) = 6.4.

(38)

Figure 9 depicts the time-history of the synchronization
errors and Figure 10 shows the synchronized states. Fig-
ure 11(a) shows the time-history of the states. Figure 11(b)
shows the time-history of adaptive sliding mode (ASM) con-
trollers.

5. PID Controller Based on Genetic
Algorithms (GAPID)

Many advanced and intelligent control algorithms have been
developed, however, the PID-type controller [16] remains the
most popular in industry for the simplicity of control law, few
tuning parameters, less time convergence and fast synchro-
nization speed. But nding appropriate parameters values for
the PID controller is still a di�cult task, so in practice control
engineers still o�en use trial and error for the tuning process.
So in practice control engineers still o�en use trial and error
for the tuning process.

PID control consists of three types of control, propor-
tional, integral, and derivative control; they can be imple-
mented in many forms but they are mostly used in feedback
loops.

In this paper we use four PID controllers (X�, X�, X�, X�)
as given in (39) to synchronize the master system states
(�, �, 
, �) with slave system states (��, ��, 
�, ��).

X� = ePQ� + eI ∫
�

0
Q� (Z) �Z + eD

�Q��� , (39)

where X� is the PID controller for * = �, �, 
, �, Q� is the error
signal, and eP, eI, eD are the proportional, integral, and
derivative gains of the PID controller for the synchronization
of the master novel hyperchaos system (21) and the slave
system (22). Tuning of PID controllers involves the selection
of eP, eI, eD gains for better control performance which is
dened with reference to the required performance index.

In this work we will investigate the e�ectiveness of the
PID controller gains when optimized using genetic algo-
rithms (GA). In particular, many PID control based on GA
schemes have been successfully applied to the control and the
synchronization of chaotic systems [41], GA’s [33, 34] are a
stochastic global search method that mimics the process of
natural evolution. It starts with no knowledge of the correct
solution and depends entirely on responses from its environ-
ment and evolution operators (i.e., reproduction, crossover
and mutation) to arrive at the best solution. By starting at
several independent points (population) and searching in
parallel, the algorithm avoids localminima and converging to
suboptimal solutions. A genetic algorithm is typically initial-
ized with a random population consisting of between 20–100
individuals. 	is population is usually represented by a real-
valued number or a binary string called a chromosome. How
well an individual performs a task is measured and assessed
by the objective function.	e objective function assigns each
individual a corresponding number called its tness. 	e
tness of each chromosome is assessed and a survival of the
ttest strategy is applied.	emagnitude of the error is usually
used to assess the tness of each chromosome. Writing an
objective function is the most di�cult part of creating a
genetic algorithm. An objective function could be created
to nd a PID controller that gives the smallest overshoot,
fastest rise time or quickest settling time, however, in order
to combine all of these objectives it was decided to design an
objective function that will minimize the error of the control-
led system. Each chromosome in the population is passed
into the objective function one at a time. 	e chromosome
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Figure 11: (a) Time-history of the synchronized states. (b) Time-history of the ASM controllers.

is then evaluated and assigned a number to represent its
tness, the bigger its number the better its tness.	e genetic
algorithm uses the chromosome’s tness value to create a
new population consisting of the ttest members. 	ere are
two important performance indices ISE (Integrated Squared
Error) and IAE (Integrated Absolute Error) given as

ISE = ∫∞
0
Q2� (Z) �Z,

IAE = ∫∞
0

::::Q� (Z):::: �Z.
(40)

In this paper we use IAE as the objective function and the
tness functions is given as

tness = 1
∑ abs (Q�) where * = �, �, 
, �. (41)

Using the tness function (41) and objective function (40)
in the optimization toolbox of Matlab with the following
options, we derive the optimal ep, ei, ed values for each of
the controllers (X�, X�, X�, X�).

Variable bounds matrix = [−10, 10].
Population size = 80; GA. Generally the bigger the
population size, the better the nal approximation.

Number of generations = 100.
Selection function = stochastic uniform.

Crossover fraction = 0.8.
Mutation function = Gaussian.

Table 1: PID controller gain values optimized with GA.

PID controller eP eI eDX� 7.9839 −22.1195 17.4396

X� −75.1076 −0.5207 −2.2663
X� −15.8710 −65.0964 14.4902

X� −63.6645 −15.3596 −6.7482

Stopping criteria = error performance criterion.

Length of the chromosome = 12, decimal codage.

With the same parameter values used in (2) and the same
the initial conditions in (36) and (37), Table 1 shows the PID
gain values a�er running the genetic algorithm (GA) solver
in the optimization tool with the options cited above, we get
the best solutions tracked over generations for the complete
synchronization of the novel hyperchaotic system:

Figure 12 depicts the time-history of the synchronization
errors using genetically optimized PID controllers, Figure 13
shows the synchronized states, and Figure 14 shows the time-
history of the PIDs controllers.

As seen from Figures 8 and 11, in the ASMC method of
synchronization the errors converges at � = 0.3 s whereas
the GAPID controllers based synchronization the errors
converges at � = 0.15 s. 	e states synchronization Figures
9 and 12 and the controllers convergence plots shown in
Figures 11 and 14 clearly indicates that GAPID controllers
are e�cient compared to the ASMC controllers. As can be
seen from Figures 11 and 14, ASM controllers converging
time (� = 200mS) is slower than the GAPID controllers
(� = 160mS). Also the ASM controllers shoot to peak
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Figure 12: Time-history of the synchronization errors.
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Figure 13: State synchronization (�, ��) (control in action at � =0.07 s).

values of [−1000 1000] which when realized in electronic
circuits need special attenuators to suppress the oscillations
whereas in GAPID controllers the shoot values are reduced
comparatively.

6. FPGA Implementation of the Novel
Hyperchaotic System

In this section we discuss about the implementation of the
novel hyperchaotic system in FPGAusing theXilinx (Vivado)
System Generator toolbox in Simulink. Firstly we congure
the available built in blocks of the System Generator toolbox.
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Figure 14: Time-history of the PIDs controller.

	e Add/Subblocks are congured with zero latency and
32/16 bit xed point settings. 	e output of the block is
congured to rounded quantization in order to reduce the bit
latency. For the multiplier block a latency of 3 is congured
and the other settings are the same as in Add/Subblock. Next
we will have to design the integer order integrator which is
not a readily available block in the System Generator. Hence
we implement the integrators using themathematical relation���/�� = limℎ→0[��(F + 1) − ��(F)]/ℎ and the value of ℎ
is taken as 0.001 and the initial conditions are fed in to the
forward register. Figure 15 shows the Xilinx RTL schematics
of the system using Virtex 7-XC7 chips and Figures 16, 17, 18,
and 19 shows the 3D phase portraits of the novel hyperchaotic
system using Xilinx System Generator. Comparing Figures
1, 2, 3, and 4 with Figures 16, 17, 18, and 19 one can clearly
see that the FPGA implemented novel hyperchaotic system
exhibits the same phase portraits for the initial conditions[0.2 0.2 0.2 0.2].

7. Conclusions

In this research work, we rst described a novel hyperchaotic
system and discussed its qualitative properties. Lyapunov
exponents are derived to prove that the system is hyper-
chaotic. Bicoherence plots are drawn to prove the multifre-
quency terms dependency of the novel hyperchaotic systems.
Next, identical hyperchaotic systems are synchronized using
adaptive sliding mode control assuming that the system
parameters are unknown and also genetically optimized PID
controllers. 	e complete synchronization results derived in
this paper have been proved using the Lyapunov stability
theory. A comparison between the ASM controllers and
GAPID controllers are discussed with various plots. Finally
the 4D novel hyperchaotic system is implemented in FPGA
implementation to show that the system is hardware realiz-
able.
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) space.

−30
−20

−10
0

10
20

30

−30
−20

−10
0

10
20

30
40

−200
−150
−100

−50
0

50
100
150
200

x

w

y

Figure 17: 3D projection of the novel hyperchaotic system on(�, �, �) space.
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Figure 18: 3D projection of the novel hyperchaotic system on(�, 
, �) space.
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