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A stochastic prey-predator system in a polluted environment with Beddington-DeAngelis functional response is proposed and
analyzed. Firstly, for the system with white noise perturbation, by analyzing the limit system, the existence of boundary periodic
solutions and positive periodic solutions is proved and the su�cient conditions for the existence of boundary periodic solutions and
positive periodic solutions are derived. And then for the stochastic system, by introducing Markov regime switching, the su�cient
conditions for extinction or persistence of such system are obtained. Furthermore, we proved that the system is ergodic and has a
stationary distribution when the concentration of toxicant is a positive constant. Finally, two examples with numerical simulations
are carried out in order to illustrate the theoretical results.

1. Introduction and Model Formulation

�e Lotka-Volterra model [1–3] is a classical model in the
study of biological mathematics, and the continuous Lotka-
Volterra model which is modeled by ordinary di
erential
equations and delay di
erential equations is widely used
to characterize the dynamics of biological systems [4–13].
�e functional response functions are important in the
population ecological models [14]. In general, functional
responses fall into two categories: one depends only on the
density of the prey, such as Holling I–III [15–17]; the other
depends on the density of both the prey and the predator, such
as Beddington-DeAngelis type [18, 19]. Compared with the
Holling II functional response, the Beddington-DeAngelis
type functional response, � = �12��/(�2 + � +�12�), has an
additional term� in the denominatormodelingmutual inter-
ference among predators. In other words, this type of func-
tional response is a
ected by both predator and prey. Some
biologists believe that if the predators compete with each
other to obtain food, functional response should depend on
the density of both the prey and the predator. Arditi et al. [20]

and Jost et al. [21, 22] used the actual observation data to
verify this point. In particular, having collected observation
data from 19 predator-prey communities, Skalski and Gilliam
[23] found that predator-dependent functional responses
were in agreement with the observation data, and in many
instances, the Beddington-DeAngelis type looked better than
the others. �e Beddington-DeAngelis functional response
has been widely used in the modeling of ecosystems in which
there is mutual interference among predators [24, 25]. In [19],
DeAngelis et al. have extensively investigated the dynamical
properties of the following prey-predator system:

�̇ (	)
= � (	) (�1 − �12� (	)�2 + � (	) + �12� (	) − �1 − 1� (	)) ,

̇� (	) = � (	) ( �12�12� (	)�2 + � (	) + �12� (	) − �2 − 2� (	)) ,
(1)

where �(	) and �(	) represent the density of the prey and the
predator, respectively. �1 is the intrinsic growth rate of the
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prey,�12, �2, and�12 are the consumption rate, the saturation
constant, and the saturation constant for an alternative prey,
respectively. �12 is the conversion rate of nutrients into the
reproduction for the predator. �e parameters �� and � (� =1, 2) are the nonpredatory loss rate and the interspeci�c
competition rate. We refer the reader to [19] for more details.

In many ecosystems, predators tend to be omnivorous,
they have wide variety of food sources. For example, the giant
panda is omnivorous animal, since it can eat both meat and
plant such as bamboos. In the lake ecosystem, some �shes not
only prey on aquatic invertebrates, but also feed on algae and
other aquatic plants. Polis and Strong in [26] and McCann
and Hastings in [27] studied omnivorous nature of animals
in the food chain in 1996 and 1997, respectively. Based on the
above literature, we established a kind of omnivorous model
as follows:

�̇ (	) = � (	) (�1 − �1� (	) − �� (	)� + �� (	) + �� (	)) ,
̇� (	) = � (	) (�2 + �� (	)� + �� (	) + �� (	) − �2� (	)) ,

(2)

where �2 represents the growth rate of � due to omnivorous
nature and �� (� = 1, 2) denote the density-dependent
coe�cient of the prey and the predator, respectively. �, �, �,�, and � are the consumption rate, the saturation constant,
the predator interference, the saturation constant for an
alternative prey, and the conversion rate, respectively. All
parameters are positive in system (2).

It is well known that the biological population is
inevitably a
ected by environment perturbation while the
stochastic population model is more in line with the actual
situation. Recently, various models based on stochastic dif-
ferential equations (SDEs) have extensively been paid the
attention of the researchers (see, e.g., [28–37]). Parameter
perturbation induced by white noise is an important and
common form to describe the e
ect of stochasticity (see,
e.g., [37–48]). In this paper, we consider the white noise
perturbation for the intrinsic growth rates of the prey and
predator; that is, �1 → �1 + �1�̇1(	) and �2 → �2 +�2�̇2(	), where �1(	), �2(	) are mutually independent Brow-
nian motions and �1, �2 denote the intensities of the white
noise. On the other hand, it can be seen from the recent
literature that the environmental pollution has an important
e
ect on the population systems [49–60]. In 1983, Hallam et
al. [61, 62] studied the in�uence of environmental pollution
on the population and established a relationship model
between environmental toxins and population. Subsequently,
Hallam et al. [63, 64] studied the persistence and extinction
of population in polluted environment. �e mathematical
model established by Hallam et al. considered only the toxins
in the organism to cause a decrease in the birth rate or an
individual death, which is reasonable in the case of lower
concentration of the toxicant in the environment. When
pollution is serious, the emission of pollutants may directly
lead to the death of the species; see [65–69]. �e authors
in [68] added the environmental toxic term directly to the
model; this is reasonable in the heavily polluted environment.
For example, in a lake ecosystem, the discharge of large

amounts of industrial waste water may directly lead to the
death of �sh, aquatic invertebrates, and so on. �erefore, we
assume that the emission of pollutants to the environment is
impulsive and directly a
ects the survival of the species in
such an environment, so we get the following system:

d� (	) = � (	)
⋅ (�1 − �1� (	) − �� (	)� + �� (	) + �� (	) − �1�� (	)) d	
+ �1 (	) � (	) d�1 (	) ,

d� (	) = � (	)
⋅ (�2 + �� (	)� + �� (	) + �� (	) − �2� (	) − �2�� (	)) d	
+ �2 (	) � (	) d�2 (	) ,

d�� (	)
d	 = −ℎ�� (	) ,

	 ̸= ��,
Δ� (	) = 0,
Δ� (	) = 0,
Δ�� (	) = !, 	 = ��,

(3)

where �1(	), �2(	) are positive, nonconstant, and continuous
functions of period �, ��(	) stands for the concentration of
the toxicant in the environment, ℎ denotes the loss rate of
toxicant at time 	, � is the impulsive input period and ! is
the impulsive input amount, and �1 and �2 represent the
dose-response of the prey and predator to the environmental
toxicant, respectively.

Furthermore, the prey-predator model may be perturbed
by telegraph noise which is distinguished by factors such as
rain falls and nutrition and can be represented by switching
among two or more regimes of environment [40, 60, 70–80].
For example, population growth rates in di
erent seasons are
not the same. �e intraspeci�c competition coe�cient varies
according to the changes in nutrition and food resources.
Generally, the switching between di
erent regimes is memo-
ryless and thewaiting time for the next switch is exponentially
distributed [81, 82]. �erefore, it can be described by a
continuous-time Markov chain �(	) taking values in a �nite
state space S = {1, 2, . . . , �}. Taking into account the
in�uences of white noise and telegraph noise, we propose
the following stochastic di
erential system with impulsive
toxicant input:

d� (	) = � (	) (�1 (� (	))
− � (� (	)) � (	)� (� (	)) + � (� (	)) � (	) + � (� (	)) � (	)
− �1 (� (	)) �� (	) − �1 (� (	)) � (	)) d	 + �1 (� (	))
⋅ � (	) d�1 (	) ,
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d� (	) = � (	) (�2 (� (	))
+ � (� (	)) � (	)� (� (	)) + � (� (	)) � (	) + � (� (	)) � (	)
− �2 (� (	)) �� (	) − �2 (� (	)) � (	)) d	 + �2 (� (	))
⋅ � (	) d�2 (	) ,

d�� (	)
d	 = −ℎ�� (	) ,

	 ̸= ��,
Δ� (	) = 0,
Δ� (	) = 0,
Δ�� (	) = !,

	 = ��.
(4)

For any � ∈ S, ��(�), ��(�), ��(�), ��(�) (� = 1, 2), �(�),�(�),�(�), �(�), and �(�) are all positive constants. In model
(4), the population is inevitably a
ected by severe stochastic
interference such as drought; the parameter switches one state�(	) = � into another state �(	) = # and it will switch into the
next regime until the next major environmental change.

�e rest of this paper is organized as follows. In Section 2,
we provide preliminaries which are used in the following
sections. In Section 3, we show that system (3) admits
a nontrivial positive �-periodic solution by constructing
Lyapunov function. In Section 4, we explore the su�cient
conditions for extinction and permanence in mean of system
(4). Finally, some examples with numerical simulations have
been given to illustrate our theoretical results.

2. Preliminaries

�roughout this paper, let (Ω,F,F�≥0,P) be a complete
probability space with a �ltration F�≥0 satisfying the usual
conditions, ��(	) (� = 1, 2) is one-dimensional Brownian
motion on this space, and �(	) is a right-continuous Markov
chain and independent of the Brownian motion ��(	). �e
state space of this Markov chain is S = {1, 2, . . . , �}. Suppose
that the generator matrix of �(	) is Γ = (&��)1≤�,�≤�, where &��
stands for the transition rate from state � to # and satis�es the
following conditions:

P (� (	 + Δ	) = # | � (	) = �)
= {{{

&��Δ	 + 5 (Δ	) , if � ̸= #,
1 + &��Δ	 + 5 (Δ	) , if � = #;

(5)

here, &�� ≥ 0 if � ̸= #, while &�� = −∑� ̸=� &��, �, # = 1, 2, . . . , �.
As a standing hypothesis, we assume that the Markov chain�(	) is irreducible, which means that system (4) can switch
from one regime to another. Under this assumption, the

Markov chain has a unique stationary distribution 8 =(81, 82, . . . , 8�) which is the solution of the system of linear
equations 8Γ = 0 subject to ∑��=1 8� = 1 and 8� > 0 for all
# ∈ S. Hence, for any vector 9 = (9(1), . . . , 9(�))
, we have
that

lim
�→∞

1	 ∫
�

0
9 (� (<)) �< = ∑

∈S
89 (�) . (6)

Let us consider the following stochastic di
erential equation
with Markov conversion.

d� (	) = � (� (	) , � (	)) d	 +  (� (	) , � (	)) d� (	) ,
� (0) = �0,
� (0) = �0,

(7)

where �(	) = (�1(	), . . . , ��(	))
 ∈ R
�, � : R� × S → R

�, : R� × S → R
�×�, and �(	) is a �-dimensional Brownian

motion de�ned on the underlying probability space.�e �×�
matrix

A (�, �) =  (�, �) 
 (�, �) = (A��)�×� (8)

is called the di
usion matrix. Let D : R� × S → R
� be twice

continuously di
erentiable andLD(�, �) which is de�ned as
follows be the di
usion operator about D(�, �):

LD (�, �) = �∑
�=1
�� (�, �) ED (�, �)E��

+ 12
�∑
�,�=1

A�� E2D (�, �)E��E��
+ ∑
� ̸=∈S

&� (D (�, �) − D (�, �)) .
(9)

Particularly, for one-dimensional stochastic system

d� (	) = � (	) [� (� (	)) − � (� (	)) � (	)] d	
+ F (� (	)) � (	) d� (	) ,

� (0) = �0,
� (0) = �0;

(10)

the following two lemmas can be given from referring to the
articles [72, 77].

Lemma 1. System (10) has a unique continuous positive
solution �(	). When it exists, the solution is global and
stochastically ultimately bounded.

Lemma 2. Suppose that G = ∑∈S 8[�(�)−(1/2)F2(�)] ̸= 0;
then

(i) system (10) is stochastic permanent if and only if G > 0;
(ii) system (10) is extinct if and only if G < 0;
(iii) when G > 0, system (10) is ergodic and there exists a

unique stationary distribution V(⋅, ⋅), such that
G = ∑
∈S
� (�) ∫

R+
�V (d�, �) . (11)
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Next, we consider the following stochastic di
erential
equation:

d� (	) = � (	, � (	)) d	 +  (	, � (	)) d� (	) . (12)

Lemma 3 (see [78]). Suppose that the coe�cients of (12) are�-periodic in 	 and there exists a function D(	, �) ∈ I2 which
is �-periodic in 	, and D(	, �) satis	es the following conditions:

(i) inf |�|>�D(	, �) → ∞ as K → ∞.
(ii) LD(	, �) ≤ −1 outside some compact set.

en there exists a solution for (12) which is a �-periodic

Markov process.

Furthermore, we introduce some results from [80, 83] in
Lemmas 4 and 5, which will be used in next section.

Lemma 4 (see [80]). LetN(	) ∈ I[Ω × [0, +∞),R+]. 
en
(i) if there are two positive constants O and�0 such that

lnN (	) ≤ �	 − �0 ∫�
0
N (<) d< + �∑

=1
P� (	) (13)

holds for all 	 ≥ O and constants P (� = 1, 2, . . . , �), then
lim sup
�→+∞

1	 ∫
�

0
N (<) d< ≤ ��0 , �.<. if� > 0,

lim
�→+∞

N (	) = 0, �.<. if� < 0,
(14)

(ii) if there are three positive constants O, �, and �0 such
that

lnN (	) ≥ �	 − �0 ∫�
0
N (<) d< + �∑

=1
P� (	) (15)

holds for any 	 ≥ O, then
lim inf
�→+∞

1	 ∫
�

0
N (<) d< ≥ ��0 �.<. (16)

Finally, we give some basic properties of the following
subsystem of system (3),

d�� (	)
d	 = −ℎ�� (	) , 	 ̸= ��, � ∈ Q,

Δ�� (	) = !, 	 = ��, � ∈ Q.
(17)

Lemma 5 (see [83]). System (17) has a unique �-periodic
solution �∗� (	) which is globally asymptotically stable. Here�∗� (	) = !�−ℎ(�−�)/(1 − �−ℎ�), 	 ∈ [��, (� + 1)�), �max =!/(1 − �−ℎ�), and �min = !�−ℎ�/(1 − �−ℎ�).

For convenience and simplicity, de�ne F̂ = min�∈SF�,F̌ = max�∈SF�, and ⟨U⟩� = (1/W) ∫�0 U(<)d<, where U(	) is an
integrable function on [0, +∞). If � is a bounded function
on [0, +∞), de�ne �� = sup�∈[0,+∞)�(	).

3. Existence of Periodic Solutions of System (3)

In this section, we devote our attention to the investigation
of the existence of periodic solutions of system (3). From
Lemma 5, we know that system (17) has a globally asymptoti-
cally stable periodic solution �∗� (	); therefore, the limit system
of (3) is

d� (	) = � (	)
⋅ (�1 − �1� (	) − �� (	)� + �� (	) + �� (	) − �1�∗� (	)) d	
+ �1 (	) � (	) d�1 (	) ,

d� (	) = � (	)
⋅ (�2 + �� (	)� + �� (	) + �� (	) − �2� (	) − �2�∗� (	)) d	
+ �2 (	) � (	) d�2 (	) ,

� (0) = �0,
� (0) = �0,

(18)

where �1(	), �2(	), and �∗� (	) are all positive and continuous
functions of period �.

Now, we discuss the existence of periodic solutions of
system (18).

De�ne

ℎ� = 1� ∫
�

0
(�� − ���∗� (<) − 12�2� (<)) d<, � = 1, 2. (19)

�en,we have the following theorem about periodic solutions
of system (18).

�eorem6. If ℎ1 < 0 and ℎ2 > 0, there exists a prey extinction
periodic solution (0, �∗(	)) of system (18).

Proof. From the �rst equation of system (18), it is easy to see

d� (	) ≤ � (	) [�1 − �1� (	) − �1�∗� (	)] d	
+ �1 (	) � (	) d�1 (	) . (20)

Applying Itô’s formula and then integrating from 0 to 	, we
obtain

ln� (	) − ln� (0) ≤ ∫�
0
(�1 − �1�∗� (<) − 12�21 (<)) d<

− ∫�
0
�1� (<) d< + _ (	) ,

(21)

where _(	) = ∫�0 �1(<)d�1(<) is local martingale. From

strong law of large numbers for martingales (see [84]), we
have

lim
�→∞

_(	)	 = 0, a.s. (22)



Complexity 5

It then follows from (21) by dividing 	onboth sides and letting	 → ∞ that

lim sup
�→∞

ln� (	)	 ≤ ⟨�1 − �1�∗� (<) − 12�21 (<)⟩�
= �1 − !�1�ℎ − 12 ⟨�21 (<)⟩� = ℎ1 < 0;

(23)

namely, �(	) tends to zero exponentially almost surely.
Since lim�→∞�(	) = 0, a.s., from the second equation of

system (18), its limit system is

d� (	) = � (	) (�2 − �2�∗� (	) − �2� (	))
+ �2 (	) � (	) d�2 (	) . (24)

According to�eorem 4.2 in [85], when �2 −�2�∗� (	) > 0 and
⟨�2 − �2�∗� (<) − 12�22 (<)⟩� = �2 −

!�2�ℎ − 12 ⟨�22 (<)⟩�
= ℎ2 > 0,

(25)

(24) has a unique positive �-periodic solution �∗(	).
Overall, when ℎ1 < 0 and ℎ2 > 0, there exists a prey

extinction periodic solution (0, �∗(	)) of system (18).
�e proof of this theorem is completed.

In order to investigate the existence of a nontrivial
positive �-periodic solution for system (18), �rst of all, we
assume following conditions hold.

(e1) ℎ� > 0, � = 1, 2.(e2) �1 = (�1 − �1�min + �1 − �1�max)2 − 4(�1 −�1�max)ℎ1 > 0 and f1 > (�2/4�1ℎ2)�1.(e3) f2 = ��2ℎ1 − �(�2 + �/� − �2�min) > 0 and(f2/��1)(�1 − �1�max) > (�2f1/�2)[−ℎ2 + (�2 + �/� −�2�min)].
�eorem 7. Suppose that (e1), (e2), and (e3) hold, then
there exists a positive �-periodic solution for system (18).

Proof. Obviously, the coe�cients of system (18) are con-
tinuous bounded positive periodic functions in 	. Now, we
show that conditions (i) and (ii) of Lemma 3 hold. De�ne a
nonnegative I2-function
D (	, �, �) = � − �1 − �1�max�1 ln� + �1 − �1�max�1 P1 (	)

− f1�2 ln� + f1�2P2 (	) + &�
š D1 + D2 + D3,

(26)

whereD1 = �−((�1−�1�max)/�1) ln�+((�1−�1�max)/�1)P1(	),D2 = −(f1/�2) ln� + (f1/�2)P2(	), D3 = &�, & = �2(((�1 −�1�max)/�1)ℎ1 + (f1/�2)ℎ2)/(�2 − �2�min + �/�)2, and P�(	) is a
function de�ned on [0,∞) satisfyingP�� (	) = ��−(1/2)�2� (	)−���∗� (	) − ℎ� and P�(0) = 0 (� = 1, 2). Obviously, P�(	)

is a �-periodic function on [0,∞). �erefore, the functionD(	, �, �) is �-periodic in 	 and satis�es

lim inf
→∞,(�,�)∈R2+\��

D (	, �, �) = ∞, (27)

where g = (1/�, �) × (1/�, �). �erefore, condition (i) of
Lemma 3 holds. Next, we will prove that condition (ii) of
Lemma 3 also holds.

Applying Itô’s formula, one has

LD1 = � [�1 − �1� − ��� + �� + �� − �1�∗� (	)]
− �1 − �1�max�1 [�1 − �1� − ��� + �� + �� − �1�∗� (	)
− �21 (	)2 ] + �1 − �1�max�1 P�1 (	) ≤ −�1�2

+ [(�1 − �1�min) + (�1 − �1�max)] � + ��1� (�1
− �1�max) � − �1 − �1�max�1 ℎ1,

LD2 = − f1�2 (�2 + ��� + �� + �� − �2� − �2�∗� (	)
− �22 (	)2 ) + f1�2P�2 (	) ≤ f1�2�2 � − f1�2 ℎ2,

LD3 = &� [�2 + ��� + �� + �� − �2� − �2�∗� (	)]
≤ & (�2 + �� − �2�min)� − &�2�2.

(28)

�erefore,

LD ≤ −�1�2 + [(�1 − �1�min) + (�1 − �1�max)] �
− �1 − �1�max�1 ℎ1 − &�2�2 + [� (�1 − �1�max)�1�
+ & (�2 + �� − �2�min) + f1�2�2 ]� − f1�2 ℎ2.

(29)

De�ne a bounded closed set

D = {(�, �) ∈ R
2
+ : o ≤ � ≤ 1o , o ≤ � ≤ 1o } , (30)

where 0 < o < 1 is a su�ciently small number such that

[(�1 − �1�min) + (�1 − �1�max)] o ≤ 12 �1 − �1�max�1 ℎ1 + 12 f1�2 ℎ2
− 12
⋅ [(�/�1�) (�1 − �1�max) + f1�2/�2 + & (�2 − �2�min + �/�)]24&�2 ,

(31)
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[� (�1 − �1�max)�1� + & (�2 + �� − �2�min) + f1�2�2 ] o
< − 18�1 [(�1 − �1�min + �1 − �1�max)2 − 4 (�1 − �1�max) ℎ1
− 4�1ℎ2�2 f1] ,

(32)

− �12o2 + t3 ≤ −1, (33)

− �2&2o2 + t4 ≤ −1, (34)

and t3, t4 are quantities to be determined in the rest of the
proof.

Denote

D
1
� = {(�, �) ∈ R

2
+ : 0 < � < o} ,

D
2
� = {(�, �) ∈ R

2
+ : 0 < � < o} ,

D
3
� = {(�, �) ∈ R

2
+ : � > 1o } ,

D
4
� = {(�, �) ∈ R

2
+ : � > 1o } .

(35)

Note that R2+ \ D = D
1
� ∪ D

2
� ∪ D

3
� ∪ D

4
� . Now, we proveLD(	, �, �) ≤ −1, (�, �) ∈ R

2
+ \D.

Case 1. If (�, �) ∈ D
1
� , from (29), it implies that

LD ≤ −&�2 (�

− (�/�1�) (�1 − �1�max) + f1�2/�2 + & (�2 − �2�min + �/�)2&�2 )2

+ [(�/�1�) (�1 − �1�max) + f1�2/�2 + & (�2 − �2�min + �/�)]24&�2
− �1 − �1�max�1 ℎ1 − f1�2 ℎ2 + [(�1 − �1�min) + (�1 − �1�max)] o
≤ t1,

(36)

where t1 = (1/2){[(�/�1�)(�1 − �1�max) + f1�2/�2 + &(�2 −�2�min + �/�)]2/4&�2 − ((�1 − �1�max)/�1)ℎ1 − (f1/�2)ℎ2} < 0.
In fact, from condition (e3), one can get

��1� (�1 − �1�max) + f1�2�2 + & (�2 − �2�min + ��) − 2√&√�2√�1 − �1�max�1 ℎ1 + f1�2 ℎ2
= (f1�2/�2) [−ℎ2 + (�2 + �/� − �2�min)] − (f2/��1) (�1 − �1�max)�2 + �/� − �2�min

< 0;
(37)

that is to say, t1 < 0.
Case 2. If (�, �) ∈ D

2
� , from (29) and (32), we can get

LD ≤ −�1 [� − (�1 − �1�min) + (�1 − �1�max)2�1 ]2

+ 14�1 {[(�1 − �1�min) + (�1 − �1�max)]2

− 4 (�1 − �1�max) ℎ1} − f1�2 ℎ2 + [
� (�1 − �1�max)�1�

+ & (�2 + �� − �2�min) + f1�2�2 ] o
≤ 14�1 {[(�1 − �1�min) + (�1 − �1�max)]2
− 4 (�1 − �1�max) ℎ1 − 4�1f1�2 ℎ2}
+ [� (�1 − �1�max)�1� + & (�2 + �� − �2�min)
+ f1�2�2 ] o ≤ t2,

(38)

where t2 = (1/8�1)[(�1 − �1�min + �1 − �1�max)2 − 4(�1 −�1�max)ℎ1 − (4�1ℎ2/�2)f1]. Using condition (e2), one can gett2 < 0.
Case 3. If (�, �) ∈ D

3
� , then

LD ≤ −�12 �2 − �12 �2 + [(�1 − �1�min) + (�1 − �1�max)]
⋅ � − �1 − �1�max�1 ℎ1 − �2&�2 + [� (�1 − �1�max)��1
+ f1�2�2 + & (�2 − �2�min + ��)]� − f1�2 ℎ2 ≤ −

�12o2
+ t3,

(39)

where

t3 = sup
(�,�)∈R2+

{−�12 �2 + [(�1 − �1�min)

+ (�1 − �1�max)] � − �1 − �1�max�1 ℎ1 − �2&�2
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+ [� (�1 − �1�max)��1 + f1�2�2
+ & (�2 − �2�min + ��)]� − f1�2 ℎ2} .

(40)

By (33), we have LD ≤ −1.
Case 4. If (�, �) ∈ D

4
� , then

LD ≤ −�2&2 �2 − �1�2
+ [(�1 − �1�min) + (�1 − �1�max)] � − �1 − �1�max�1 ℎ1
− �2&2 �2

+ [� (�1 − �1�max)��1 + f1�2�2 + & (�2 − �2�min + ��)]
⋅ � − f1�2 ℎ2 ≤ −&�22o2 + t4,

(41)

where

t4 = sup
(�,�)∈R2+

{−�1�2 + [(�1 − �1�min)

+ (�1 − �1�max)] � − �1 − �1�max�1 ℎ1 − &�22 �2

+ [� (�1 − �1�max)��1 + f1�2�2
+ & (�2 − �2�min + ��)]� − f1�2 ℎ2} .

(42)

By (34), we obtain LD ≤ −1.
�us,

LD ≤ min {t1, t2, −1} ,
(�, �) ∈ R

2
+ \D. (43)

�erefore, the proof of �eorem 7 is completed.

4. Extinction and Persistence in
Mean of System (4)

In this section, we investigate the long-term dynamic behav-
iors of the prey-predator system (4) with white noise and

telegraph noise in a polluted environment and then discuss

the extinction and average persistence of prey and predator.

According to Lemma 5, the periodic solution �∗� (	) of the
toxicant input is globally asymptotically stable, so the limit

system of (4) is

d� (	) = � (	) (�1 (� (	)) − �1 (� (	)) � (	)
− � (� (	)) � (	)� (� (	)) + � (� (	)) � (	) + � (� (	)) � (	)
− �1 (� (	)) �∗� (	)) d	 + �1 (� (	)) � (	) d�1 (	) ,

d� (	) = � (	) (�2 (� (	))
+ � (� (	)) � (	)� (� (	)) + � (� (	)) � (	) + � (� (	)) � (	)
− �2 (� (	)) � (	) − �2 (� (	)) �∗� (	)) d	 + �2 (� (	))
⋅ � (	) d�2 (	) ,

� (0) = �0,
� (0) = �0,
� (0) = �0.

(44)

In order to obtain the threshold conditions of persistence and
extinction of system (44), we assume that

(�1): �1 = ∑�=1 8(�1(�)−(1/2)�21(�)−�min�1(�)) < 0,
(�2): �2 = ∑�=1 8(�2(�) + �(�)/�(�) − (1/2)�22(�) −�min�2(�)) < 0,
(�3): �3 = ∑�=1 8(�2(�)−(1/2)�22(�)−�min�2(�)) < 0,
(�4): �4 = ∑�=1 8(�1(�) − �(�)/�(�) − (1/2)�21(�) −�max�1(�)) > 0,
(�5): �5 = ∑�=1 8(�1(�) − (1/2)�21(�) − �max�1(�)) >0.

�eorem 8. Given initial value (�(0), �(0), �(0)) ∈ R
2
+ ×S for

system (44), then
(i) if (�1) is established, the prey population will be extinct,
(ii) if (�2) is established, the predator population will be

extinct,
(iii) if (�1) and (�3) are established, both the prey and the

predator will die out.
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Proof. (i) By Itô’s formula, we get

d ln� (	) = (�1 (� (	)) − �1 (� (	)) � (	)
− � (� (	)) � (	)� (� (	)) + � (� (	)) � (	) + � (� (	)) � (	)
− �21 (� (	))2 − �1 (� (	)) �∗� (	)) d	
+ �1 (� (	)) d�1 (	) ≤ (�1 (� (	)) − �21 (� (	))2
− �1 (� (	)) �min) d	 + �1 (� (	)) d�1 (	) ;

(45)

then,

ln� (	) − ln� (0)	
≤ 1	 ∫

�

0
(�1 (� (	)) − �21 (� (	))2 − �1 (� (	)) �min) d	

+ 1	 ∫
�

0
�1 (� (	)) d�1 (	) .

(46)

By the ergodic theory of theMarkov chain and the strong law
of large number, we have

lim sup
�→∞

ln� (	)	
≤ �∑
=1
8 (�1 (�) − 12�21 (�) − �min�1 (�)) = �1,

a.s.;
(47)

from (�1), we know
lim
�→∞

� (	) = 0. a.s. (48)

(ii) Similarly, from the second equation of system (44), we
have

d ln� (	) = (�2 (� (	)) − �2 (� (	)) � (	)
+ � (� (	)) � (	)� (� (	)) + � (� (	)) � (	) + � (� (	)) � (	)
− �22 (� (	))2 − �2 (� (	)) �∗� (	)) d	
+ �2 (� (	)) d�2 (	) ;

(49)

then,

ln� (	) − ln� (0)	 ≤ 1	 ∫
�

0
(�2 (� (	)) + � (� (	))� (� (	))

− �22 (� (	))2 − �2 (� (	)) �min) d	 + 1	
⋅ ∫�
0
�2 (� (	)) d�2 (	) ;

(50)

further,

lim sup
�→∞

ln� (	)	
≤ �∑
=1
8 (�2 (�) + � (�)� (�) − 12�22 (�) − �min�2 (�))

= �2, a.s.;
(51)

from (�2), we know
lim
�→∞

� (	) = 0. a.s. (52)

(iii) By the condition (�1), one can get lim�→∞�(	) = 0
a.s., so that the limit system of the second equation of system
(44) is

d� (	) = � (	)
⋅ (�2 (� (	)) − �2 (� (	)) � (	) − �2 (� (	)) �∗� (	)) d	
+ �2 (� (	)) � (	) d�2 (	) ≤ � (	)
⋅ (�2 (� (	)) − �2 (� (	)) � (	) − �2 (� (	)) �min) d	
+ �2 (� (	)) � (	) d�2 (	) .

(53)

�rough Lemma 2, if (�3) holds, we obtain
lim
�→∞

� (	) = 0. a.s. (54)

�is completes the proof of the theorem.

Remark 9. If ��(�) (� = 1, 2) remains unchanged and��(�) (� = 1, 2) or �min increases so that �1 < 0 or �2 < 0,
then condition (�1) or (�2) is established.�at is to say, if the
intrinsic growth rate and the predation intensity are relatively
�xation, the increase of white noise intensity or pollutant
concentration will lead to the extinction of the biological
population.

Next, we will discuss the persistence of system (44).
Applying Itô’s formula to the �rst equation of system (44),
one can get

d ln� (	) ≥ (�1 (� (	)) − �1 (� (	)) � (	) − � (� (	))� (� (	))
− �21 (� (	))2 − �1 (� (	)) �max) d	
+ �1 (� (	)) d�1 (	) ;

(55)
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then,

ln� (	) − ln� (0)	 ≥ 1	 ∫
�

0
(�1 (� (	)) − �1 (� (	)) � (	)

− � (� (	))� (� (	)) −
�21 (� (	))2 − �1 (� (	)) �max) d	

+ 1	 ∫
�

0
�1 (� (	)) d�1 (	) ,

(56)

when 	 is large enough, we derive
ln� (	)	
≥ �∑
=1
8 (�1 (�) − � (�)� (�) − 12�21 (�) − �max�1 (�))

− �̌1	 ∫
�

0
� (	) d	 − o,

(57)

where o is a su�ciently small positive number. In view of (�4)
and Lemma 4, we deduce

lim inf
�→∞

1	 ∫
�

0
� (	) d	 ≥ �4�̌1 , a.s. (58)

�at is, the prey population of system (44) will be persistence
in mean under condition (�4).

Furthermore, the persistent property of the predator
species of system (44) can be investigated as follows.

From the �rst equation of system (44), we have

d� (	) ≤ � (	)
⋅ (�1 (� (	)) − �1 (� (	)) � (	) − �1 (� (	)) �∗� (	)) d	
+ �1 (� (	)) � (	) d�1 (	) .

(59)

Consider the following stochastic di
erential equations:

d� (	) = � (	)
⋅ (�1 (� (	)) − �1 (� (	)) � (	) − �1 (� (	)) �∗� (	)) d	
+ �1 (� (	)) � (	) d�1 (	) ,

� (0) = � (0) ,
(60)

d� (	) = � (	)
⋅ (�1 (� (	)) − �1 (� (	)) � (	) − �1 (� (	)) �max) d	
+ �1 (� (	)) � (	) d�1 (	) ,

� (0) = � (0) .
(61)

Obviously, �(	) ≤ �(	), �(	) ≤ �(	). Using Lemma 2, if �5 >0, system (61) is ergodic and there exists a unique stationary
distribution !�, such that

�∑
=1
�1 (�) ∫

R
+
�!� (d�, �)

= �∑
=1
8 (�1 (�) − 12�21 (�) − �max�1 (�)) .

(62)

Applying Itô’s formula to (60) and then integrating from 0 to	, we get
ln� (	) − ln� (0)	 = 1	 ∫

�

0
(�1 (� (	)) − �21 (� (	))2

− �1 (� (	)) �∗� (	) − �1 (� (	)) � (	)) d	 + 1	
⋅ ∫�
0
�1 (� (	)) d�1 (	) .

(63)

From the �rst equation of system (44), it yields that

ln� (	) − ln� (0)	
= 1	 ∫

�

0
(�1 (� (	)) − �21 (� (	))2 − �1 (� (	)) �∗� (	)) d	

− 1	 ∫
�

0

� (� (	)) � (	)� (� (	)) + � (� (	)) � (	) + � (� (	)) � (	)d	
− 1	 ∫

�

0
�1 (� (	)) � (	) d	 + 1	 ∫

�

0
�1 (� (	)) d�1 (	) .

(64)

Due to �(	) ≤ �(	), one can get

1	 ∫
�

0
(� (	) − � (	)) d	 ≤ 1	 ∫

�

0

�̌
�̂�̂1� (	) d	. a.s. (65)

From the second equation of system (44) we have

ln� (	)	 = ln� (0)	 + 1	 ∫
�

0
(�2 (� (	)) − �22 (� (	))2

− �2 (� (	)) �∗� (	)) d	 − 1	 ∫
�

0
�2 (� (	)) � (	) d	

+ 1	 ∫
�

0

� (� (	)) � (	)� (� (	)) + � (� (	)) � (	)d	 − 1	
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⋅ ∫�
0
( � (� (	)) � (	)� (� (	)) + � (� (	)) � (	)

− � (� (	)) � (	)� (� (	)) + � (� (	)) � (	)) d	 − 1	
⋅ ∫�
0
( � (� (	)) � (	)� (� (	)) + � (� (	)) � (	)

− � (� (	)) � (	)� (� (	)) + � (� (	)) � (	) + � (� (	)) � (	)) d	
+ 1	 ∫

�

0
�2 (� (	)) d�2 (	) ≥ ln� (0)	 + 1	

⋅ ∫�
0
(�2 (� (	)) − �22 (� (	))2 − �2 (� (	)) �max) d	

+ 1	 ∫
�

0

� (� (	)) � (	)� (� (	)) + � (� (	)) � (	)d	 − (�̌2 +
̌��̌

�̂2�̂1
+ ̌��̂̌��̂ ) 1	 ∫

�

0
� (	) d	 + 1	 ∫

�

0
�2 (� (	)) d�2 (	) .

(66)

By Lemma 4, if

(�6): �6 = ∑�=1 8(�2(�) − (1/2)�22(�) − �max�2(�)) +∑�=1 8 ∫R+(�(�)�/(�(�) + �(�)�))!�(d�, �) > 0
holds, then

lim inf
�→∞

1	 ∫
�

0
� (	) d	 ≥ �6�̌2 + ̌��̌/�̂2�̂1 + ̌��̌/�̂�̂ a.s. (67)

In summary, one gets the following.

�eorem 10. Given initial value (�(0), �(0), �(0)) ∈ R
2
+ × S

for system (44), then
(i) if (�4) is established, the prey population will be

persistent in mean,
(ii) if conditions (�5) and (�6) are satis	ed, the predator

population will be persistent in mean.

Remark 11. (i) It can be seen from �4, in the case where the
intrinsic growth rate and the predation intensity are relatively
constant, only by reducing the intensity of white noise or
pollutant concentration, so that (�4) can be established to
ensure the lasting survival of the prey population.

(ii) Obviously, �4 < �5; if the prey population is persistent,
the predator population is persistent as long as the white
noise interference intensity or the toxin concentration is small
enough, such that (�6) is established. As can be seen from
condition (�6), the omnivorous nature of � contributes to its
permanence.

In system (4), if the concentration of the toxicant in the
environment remains unchanged, that is, ��(	) = � is a positive

constant, then the system can be converted into the following
system:

d� (	) = � (	) (�1 (� (	)) − �1 (� (	)) � (	)
− � (� (	)) � (	)� (� (	)) + � (� (	)) � (	) + � (� (	)) � (	)
− ��1 (� (	))) d	 + �1 (� (	)) � (	) d�1 (	) ,

d� (	) = � (	) (�2 (� (	))
+ � (� (	)) � (	)� (� (	)) + � (� (	)) � (	) + � (� (	)) � (	)
− �2 (� (	)) � (	) − ��2 (� (	))) d	 + �2 (� (	))
⋅ � (	) d�2 (	) ,

� (0) = �0,
� (0) = �0,
� (0) = �0.

(68)

Lemma 12 (see [77]). System (7) is ergodic and positive
recurrent if the following conditions are satis	ed:

(i) For � ̸= #, &�� > 0.
(ii) For each � ∈ S,

� ����f����2 ≤ f
A (�, �) f ≤ �−1 ����f����2 (69)

for all f ∈ R
�, with some constant � ∈ (0, 1] for all � ∈ R

�.
(iii) 
ere exists a bounded open set D ⊂ R

� with a
smooth boundary satisfying that, for each � ∈ S, there is a
twice continuously di�erentiable nonnegative function D(⋅, ⋅) :
D
� → R and that for some � > 0, LD(�, �) ≤ −�, for any(�, �) ∈ D

� × S.
Moreover, the Markov process (�(	), �(	)) has a unique

ergodic stationary distribution !(⋅, ⋅). Hence, for any Borel
measurable function e(⋅, ⋅) : R

� × S → R, if∑∈S ∫R� |e(�, �)|!(�, �)d� < ∞, then

�( lim
�→∞

1	 ∫
�

0
e(� (<) , � (<)) d<

= ∑
∈S

∫
R
�
e(�, �) ! (�, �) d�) = 1.

(70)

Recently, the ergodicity and stationary distribution have
been explored bymany authors. In the following, we give suf-
�cient conditions for the existence of stationary distribution
of system (68) and prove the following theorem by showing
that system (68) satis�es the three conditions in Lemma 12.
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�eorem 13. Assume that for � ̸= #, &�� > 0 and
(�1): ∑∈S 8(�1(�)−�(�)/�(�) −�21(�)/2−��1(�)) >0,
(�2): ∑∈S 8(�2(�) − �22(�)/2 − ��2(�)) > 0

hold; then the stochastic process (�(	), �(	), �(	)) of system (68)

is ergodic and has a unique stationary distribution in R
2
+ × S.

Proof. By the assumption &�� > 0 for � ̸= # in �eorem 13,
condition (i) in Lemma 12 is satis�ed. Let (�, �, �) =
diag(�1(�)�, �2(�)�); then

A (�, �, �) =  (�, �, �) 
 (�, �, �)
= diag (�21 (�) �2, �22 (�) �2) . (71)

De�ne a bounded open subset as follows:

g = (o, 1o ) × (o, 1o ) ⊂ R
2
+, (72)

where 0 < o < 1 is a constant. Let � = min{1,_1, 1/_2};
here _1 = min(�,�,)∈�×S{�21(�)�2 + �22(�)�2} and _2 =
max(�,�,)∈�×S{�21(�)�2 + �22(�)�2}. For (�, �, �) ∈ g × S, we

have

� ����f����2 ≤ f
A (�, �, �) f = �21 (�) �2f21 + �22 (�) �2f22
≤ �−1 ����f����2

(73)

for all f ∈ R
2. �us condition (ii) in Lemma 12 holds.

�erefore, it remains for us to verify condition (iii) in
Lemma 12.

De�ne a I2-function on R
2
+ × S,

D (�, �, �) = (1 − ��) �−� + (1 − ��) �−�
+ (� + 2) (� +_) š D4 + D5, (74)

where D4 = (1 − ��)�−� + (1 − ��)�−�, D5 = (� + 2)(� +_), � is a su�ciently small positive constant satisfying � <
min(1/�, 1/�), and_ ≥ 1 + (1/4�̂1�̂2)( ̌�1 − ��̂1 + ̌�2 − ��̂2 +̌�/�̂)2. �, � are quantities to be determined below.

An application of the operatorL to D4 yields
LD4 (�, �, �) = −� (1 − ��) �−� (�1 (�) − �1 (�) �
− � (�) �� (�) + � (�) � + � (�) � − ��1 (�)) + 12� (1
+ �) (1 − ��) �21 (�) �−� − �∑

� ̸=
&� (�� − �) �−�

− � (1 − ��) �−� (�2 (�)

+ � (�) �� (�) + � (�) � + � (�) � − �2 (�) � − ��2 (�))
+ 12� (1 + �) (1 − ��) �22 (�) �−�
− �∑
� ̸=
&� (�� − �) �−� ≤ � (1 − ��)

⋅ [−(�1 (�) − � (�)� (�) − ��1 (�) −
�21 (�)2 )

−∑
� ̸=
&� (�� − �) + 12��21 (�)

− ��1 − ��∑� ̸=&� (�� − �)] �
−� + � (1 − ��)

⋅ [− (�2 (�) − ��2 (�) − 12�22 (�)) −∑� ̸=&� (�� − �)

+ 12��22 (�) − ��1 − ��∑� ̸=&� (�� − �)] �
−� + � (1

− ��) �1 (�) �1−� + � (1 − ��) �2 (�) �1−�.
(75)

De�ne the vectors f = (f1, f2, . . . , f�)
 and � = (�1,�2, . . . , ��)
 with f = −(�1(�) − �(�)/�(�) − ��1(�) −(�21/2)(�)), � = −(�2(�) − ��2(�) − (1/2)�22(�)). As the
generator matrix Γ is irreducible, for each f and �, there
exists � = (�1, �2, . . . , ��)
 and � = (�1, �2, . . . , ��)
,
respectively, which is a solution of the Poisson system [78]

(Γ�) − f = −
�∑
�=1
8�f�,

(Γ�) − � = − �∑
�=1
8���.

(76)

�erefore we have

− (�1 (�) − � (�)� (�) − ��1 (�) −
�212 (�))

−∑
� ̸=
&� (�� − �)

= −∑
∈S
8 (�1 (�) − � (�)� (�) −

�21 (�)2 − ��1 (�)) ,
(77)

− (�2 (�) − ��2 (�) − 12�22 (�)) −∑� ̸=&� (�� − �)

= −∑
∈S
8 (�2 (�) − �22 (�)2 − ��2 (�)) .

(78)
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Combining (75), (77), and (78), we obtain

LD4 (�, �, �) ≤ � (1 − ��)
⋅ [−∑
∈S
8 (�1 (�) − � (�)� (�) −

�21 (�)2 − ��1 (�))

+ 12��21 (�) − ��1 − ��∑� ̸=&� (�� − �)] �
−� + � (1

− ��) [−∑
∈S
8 (�2 (�) − �22 (�)2 − ��2 (�))

+ 12��22 (�) − ��1 − ��∑� ̸=&� (�� − �)] �
−� + � (1

− ��) �1 (�) �1−� + � (1 − ��) �2 (�) �1−�.

(79)

Similarly, for D5(�, �), we calculate
LD5 = (� +_)�(�1 (�) − �1 (�) �
− � (�) �� (�) + � (�) � + � (�) � − ��1 (�)) + (� + 2)
⋅ � (�2 (�) + � (�) �� (�) + � (�) � + � (�) � − �2 (�) �
− ��2 (�)) ≤ −�̂1�2 +_( ̌�1 − ��̂1) � − �̂2�2

+ 2( ̌�2 − ��̂2 + ̌�̂�) �.

(80)

From conditions (�1) and (�2), we can choose � su�ciently
small such that

− ∑
∈S
8 (�1 (�) − � (�)� (�) −

�21 (�)2 − ��1 (�))
+ 12��21 (�) − ��1 − ��∑� ̸=&� (�� − �) < 0,

− ∑
∈S
8 (�2 (�) − �22 (�)2 − ��2 (�)) + 12��22 (�)

− ��1 − ��∑� ̸=&� (�� − �) < 0.

(81)

SoLD =LD4 +LD5 can be estimated as follows:

LD ≤ � (1 − ��)
⋅ [−∑
∈S
8 (�1 (�) − � (�)� (�) −

�21 (�)2 − ��1 (�))

+ 12��21 (�) − ��1 − ��∑� ̸=&� (�� − �)] �
−� + � (1

− ��) �1 (�) �1−� − �̂1�2 +_( ̌�1 − ��̂1) � + � (1
− ��) [−∑

∈S
8 (�2 (�) − �22 (�)2 − ��2 (�))

+ 12��22 (�) − ��1 − ��∑� ̸=&� (�� − �)] �
−� + � (1

− ��) �2 (�) �1−� − �̂2�2 + 2( ̌�2 − ��̂2 + ̌�̂�) �
= �1 (�) + �2 (�) .

(82)

It is easy to see that

LD ≤ �1 (�) + �2 (�)
≤ {{{

�1 (�) + ��2 (�) �→ −∞, if � �→ 0 or � �→ +∞,
��1 (�) + �2 (�) �→ −∞, if � �→ 0 or � �→ +∞.

(83)

Consequently, we derive that, for a su�ciently small o,
LD (�, �, �) ≤ −1, ∀ (�, �, �) ∈ g� × S. (84)

Using Lemma 12, we obtain the conclusion that (�(	), �(	),�(	)) is ergodic and positive recurrent; that is, system (68) is
positive recurrent and has a unique stationary distribution.

�is completes the proof of �eorem 13.

5. Conclusions and Numerical Simulations

In this article, we discussed the dynamics of stochastic prey-
predator models with Beddington-DeAngelis functional
response in polluted environment.

Firstly, for system (3), there are the following properties:(1) If ℎ1 < 0 and ℎ2 > 0, the limit system of (3) has a prey
extinction periodic solution (0, �∗(	)).(2) If conditions (e1), (e2), and (e3) are established, the
limit system of (3) has a positive periodic solution.

Secondly, system (4) possesses the following properties:(1) If �1 < 0, the prey population �(	) will be extinct.(2) If �2 < 0, the predator population �(	) will be extinct.(3) If �1 < 0 and �3 < 0, then prey population and
predator population will die out.(4) If �4 > 0, the prey population �(	)will be persistent in
mean.(5) If �5 > 0 and �6 > 0, the predator population �(	) will
be persistent in mean.

To verify the correctness of the theoretical analysis,
numerical simulations are employed in the following exam-
ples.
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Figure 1: Sample paths of �(	) and �(	) with initial conditions �(0) = 2.5 and �(0) = 0.8.

Assume that the Markov chain �(	) take values in S ={1, 2} with the generator

Γ = (−1 1
2 −2) . (85)

By the linear equations 8Γ = 0, we can see (81, 82) =(2/3, 1/3)which is the stationary distribution of �(	). Further-
more, in the following examples, we suppose � = 0.5 andℎ = 0.1, consistently.
5.1. 
e Existence of Periodic Solutions of System (3)

Example 14. Assume �1 = 1.2, �2 = 2.3, �1 = 0.18, �2 = 0.22,�1 = 0.5, �2 = 0.8, � = 0.3, � = 0.5, � = 1.4, � = 0.8, and� = 1.8.
Case 1. We choose the density of white noise as the following:�1(	) = 0.09+0.8 sin((28/�)	), �2(	) = 0.1+0.01 sin((28/�)	),
and let ! = 0.45.

Note that ℎ1 = −0.5841 < 0, ℎ2 = 0.3150 > 0. �e
conditions of �eorem 6 hold, so there exists a boundary
periodic solution (0, �∗(	)) of system (3) (see Figure 1).

Case 2. We change the density of the white noise to �1(	) =0.02 + 0.2 sin((28/�)	), �2(	) = 0.07 + 0.1 sin((28/�)	), and! = 0.13. �is gives ℎ1 = 0.7218 > 0, ℎ2 = 1.7230 > 0, �1 =0.0634 > 0, and f2 = 0.2024 > 0; choose f1 = 0.1 according
to f1 > (�2/4�1ℎ1)�1 and (�2f1/�2)[−ℎ2+(�2+�/�−�2�min)] <(f2/��1)(�1 − �1�max).

From �eorem 7, we know that there exists a positive �-
periodic solution of system (3) (see Figure 2).
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Figure 2: Sample paths of �(	) and �(	) with initial conditions�(0) = 0.8 and �(0) = 2.5.

5.2. 
e Extinction and Persistence of System (4)

Example 15. Choose parameters (�1(1), �2(1)) = (2.3, 1.5),�(1) = 0.06, �(1) = 0.3, (�1(1), �2(1)) = (1.8, 1.6), �(1) = 0.4,�(1) = 0.6, �(1) = 0.3, and (�1(1), �2(1)) = (0.4, 0.2), if� = 1, and (�1(2), �2(2)) = (2.5, 1.3), �(2) = 0.08, �(2) = 0.2,(�1(2), �2(2)) = (1.8, 1.6), �(2) = 0.4, �(2) = 0.8, �(2) = 0.4,
and (�1(2), �2(2)) = (0.5, 0.3), if � = 2.
Case 1. Let ! = 0.15, (�1(1), �2(1)) = (1.7, 2.1), and(�1(2), �2(2)) = (1.4, 0.9); we note �1 = −0.1911 < 0,
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Figure 3: Sample paths of �(	), �(	) with initial value �(0) = 2.8 and �(0) = 2.2.
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Figure 4: Sample paths of �(	), �(	) with initial value �(0) = 0.4 and �(0) = 0.3.

�2 = −0.0210 < 0, and �3 = −0.8543 < 0. �e conditions
of �eorem 8 are satis�ed, so the prey and predator are both
extinct (see Figure 3).

Next we only change the density of the white noise to(�1(1), �2(1)) = (0.3, 0.2) and (�1(2), �2(2)) = (0.5, 0.4) and
keep ! = 0.15. Simple calculation shows that �4 = 0.8622 > 0,�5 = 0.9622 > 0, and �6 > 0.6757 > 0. �e conditions
of �eorem 10 are satis�ed, so the prey and predator are
persistent (see Figure 4).

It is easy to see from Figures 3 and 4 that the increase of
the intensity of white noise can result in the extinction of prey
and predator.

Case 2. Let ! = 0.55, (�1(1), �2(1)) = (0.6, 0.5), and(�1(2), �2(2)) = (0.45, 0.55), which gives �1 = −2.4356 < 0,�2 = −0.3701 < 0, and �3 = −1.2035 < 0. �(	) and �(	) are
extinct (see Figure 5).

Next we only change the amount of toxicant to ! = 0.12
and keep (�1(1), �2(1)) = (0.6, 0.5) and (�1(2), �2(2)) =(0.45, 0.55), We note �4 = 1.0467 > 0, �5 = 1.1467 > 0, and�6 > 0.7255 > 0. �us �(	) and �(	) are persistent in mean
(see Figure 6).

Figures 5 and 6 show that the increase of the amount
of toxicant can also result in the extinction of the prey and
predator.
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Figure 5: Sample paths of �(	), �(	) with initial value �(0) = 6 and �(0) = 4.
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Figure 6: Sample paths of �(	), �(	) with initial value �(0) = 1.6 and �(0) = 1.4.
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