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Abstract: We propose and analyze a Lotka-Volterra commensal model with an additive Allee effect in this
article. First, we study the existence and local stability of possible equilibria. Second, the conditions for the
existence of saddle-node bifurcations and transcritical bifurcations are derived by using Sotomayor’s
theorem. Third, we give sufficient conditions for the global stability of the boundary equilibrium and
positive equilibrium. Finally, we use numerical simulations to verify the above theoretical results. This study
shows that for the weak Allee effect case, the additive Allee effect has a negative effect on the final density of
both species, with increasing Allee effect, the densities of both species are decreasing. For the strong Allee
effect case, the additive Allee effect is one of the most important factors that leads to the extinction of the
second species. The additive Allee effect leads to the complex dynamic behaviors of the system.
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1 Introduction

Commensalism is a symbiotic relationship between two species in which one species benefits from another
species, while the other species neither gains nor loses. In the past few decades, many scholars have done
work on the dynamic behaviors of the commensalism model, and some essential progress has been
obtained [1–42].

Sun and Wei [1] first time proposed and studied a two species commensalism symbiosis model:
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They investigated the local stability property of four equilibria, among which the boundary equilibria
E 0, 01( ), E k , 02 1( ), and E k0,3 2( ) are unstable, and the unique positive equilibrium E k αk k,4 1 2 2( )+ is always
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locally stable. However, they did not conduct a further study on the global stability of the positive equilib-
rium E k αk k,4 1 2 2( )+ .

Han and Chen [2] proposed the following commensalism model:
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They showed that the system admits a unique positive equilibrium, which is globally asymptotically stable.
In addition, they added feedback control variables into the system (1.2) and found that the feedback control
variable only changes the position of the positive equilibrium but still maintains its property of global
stability.

When the populations have non-overlapping generations, the discrete-time models governed by dif-
ference equations are more appropriate than the continuous ones. Thus, Xie et al. [3] proposed the discrete
commensal symbiosis model. Based on [3], Li et al. [4] proposed the discrete commensal symbiosis model
with the Holling II functional response. They gave some sufficient conditions for the existence of positive
periodic solution of the models they considered. Chen [5] and Yu et al. [6] studied the commensal symbiosis
model with the Michaelis-Menten type harvesting. In [6], Yu et al. studied the global existence of positive
periodic solutions of the system and gave sufficient conditions which ensure the global attractivity of the
positive periodic solution.

On the other hand, in 1931, Allee [23] pointed out that when the population density is too low,
individuals in the population will encounter difficulties in finding mates and resisting natural enemies,
which will lead to a decrease in the birth rate and an increase in the death rate of the population. This
phenomenon is called the Allee effect [24]. Since then, many scholars began to study the ecological model
with the Allee effect. Bazykin [25] proposed a single model with multiple Allee effects for the first time as
follows:
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where r represents the inherent per capita growth rate of the population and K represents the environ-
mental carrying capacity. If m K0 < < , it shows the strong Allee effect when the population is lower than
the threshold, the population growth is negative, and the population is at risk of extinction; otherwise, the
population can survive. While if m 0≤ , it shows the weak Allee effect; the population growth slows down
but there is no risk of extinction.

Furthermore, Dennis [28] proposed the model with the additive Allee effect for the first time as follows:
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Here, we denote the additive Allee effect by m
x a+

, m and a are both constants, and the additive Allee effect
has the following properties:
(1) If m a0 < < , then system (1.4) has the weak Allee effect.
(2) If m a> , then system (1.4) has the strong Allee effect.

Merdan [29] proposed the following predator-prey model:
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Merdan showed that the system subject to an Allee effect takes a much longer time to reach its stable
steady-state solution; also, the Allee effect reduces the population densities of both predator and prey at the
steady state. However, the Allee effect has no destabilizing role.
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For more articles on the Allee effect, please see [23–36].
We mention here that in nature, one of the typical commensal relationships between epiphyte and

plants with epiphyte, as shown in Figure 1, the plant (host) generally speaking, is huge, need more space to
grow, and its density is sparse; this certainly increases the chance of the Allee effect on the plant. Indeed,
recently, Jiao et al. [30] have shown that in a coastal wetland, the plant population does exhibit the Allee
effect. Hence, it is natural to propose and study the commensalism model with the Allee effect.

Recently, Wu et al. [7] added the Holling-type functional response and Merdan-type Allee effect (one
could refer to [29] for more details) to the system (1.2), this leads to the following system:
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They showed that the unique positive equilibrium is globally stable and the Allee effect has no influence on
the final density of the species, and that the stronger the Allee effect (u become large), the system takes
a longer time to reach its steady-state solution.

Later, Lin [8] considered adding the Merdan-type Allee effect in the first species of the system (1.2),
and they studied the dynamic behaviors of the following system:
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Figure 1: Syngonium podophyllum Schott and host tree, the picture comes from Minjiang Park, a park that lies in Fuzhou city,
P. R. China.
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where bi, aii, i 1, 2= , β and a12 are positive constants, F x x
β x( ) =

+

represents the Allee effect of the first
species. They observed that as the Allee effect increased, the final density of the species affected by Allee
effect also increased. Moreover, the positive equilibrium of the system (1.6) is still globally stable.

Inspired by Wu et al. [7] and Lin [8], we consider replacing the Merdan-type Allee effect with additive
Allee effect on the traditional Lotka-Volterra commensalism model, this leads to the following model:
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where r, b, c, d, e, m, and a are all positive constants. We use the term F y m
y a( ) =

+

to describe the additive
Allee effect of the second species, and F y m

y a( ) =

+

has the following properties:

(a) If m ad0 < < , then the Allee effect in (1.7) is weak;
(b) If m ad> , then the Allee effect in (1.7) is strong.

To the best of the authors’ knowledge, this is the first time to propose and study the commensal model
with the additive Allee effect. Our most important task is to find out the influence of the additive Allee effect
on the system (1.7), especially on the y species. We also want to know if the system (1.7) has similar dynamic
behaviors or any new properties compared with the systems considered in [2,7,8].

The rest of this article is arranged as follows: We investigate the existence of the equilibria in the next
section and then study the local stability property of the equilibria in Section 3. In Section 4, we discuss the
saddle-node bifurcations and transcritical bifurcations. In Section 5, we give sufficient conditions to ensure
the global stability of the boundary equilibrium and the positive equilibrium, respectively. Finally,
the article ends with some numeric simulations and a brief discussion.

2 Existence of equilibria

The equilibria of system (1.7) are given by the system:
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Obviously, system (2.1) always has two boundary equilibria given by E 0, 00( ) and E , 0r
r
b( ). In order to

obtain the other equilibria, we simplify d ey 0m
y a− − =

+

to obtain the equation:

ey ae d y m ad 0,2 ( )+ − + − = (2.2)

For (2.2), let Δ be its discriminant:
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− ; Δ 0< if m m>

∗ and hence (2.2) has
no real roots. Consequently, we can conclude that
(1) If x 0= , y 0≠ , then system (1.7) has boundary equilibria E y0,i i( ), where yi is the root of equation (2.2).
(2) If x 0≠ , y 0≠ , then system (1.7) has positive equilibria E x y,i i i( )∗ ∗ , where yi is the root of equation (2.2),
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Through the above analysis, we know that system (1.7) always has two boundary equilibria given

by E 0, 00( ) and E , 0r
r
b( )

, and for the other possible equilibria, we have the following results:

Theorem 2.1. (The case of weak Allee effect, i.e., m ad< ) System (1.7) has a boundary equilibrium E y0,1 1( )
and a positive equilibrium E x y,1 1 1( )∗ ∗ .

Theorem 2.2. (The case of m ad= )
(1) When ae d 0− < , system (1.7) has a boundary equilibrium E y0,1 1( ) and a positive equilibrium E x y,1 1 1( )∗ ∗ .
(2) When ae d 0− ≥ , system (1.7) has no other equilibria.

Theorem 2.3. (The case of strong Allee effect, i.e., m ad> )
(1) When ae d 0− < ,

(a) if ad m m< <

∗, then system (1.7) has two boundary equilibria E y0,1 1( ), E y0,2 2( ) and two positive
equilibria E x y,1 1 1( )∗ ∗ , E x y,2 2 2( )∗ ∗ .

(b) ifm m=

∗, then system (1.7) has a boundary equilibrium E y0,3 3( ) and a positive equilibrium E x y,3 3 3( )∗ ∗ .
(c) if m m>

∗, then system (1.7) has no other equilibrium.
(2) When ae d 0− ≥ , system (1.7) has no other equilibrium.

3 Local stability of equilibria

In this section, we investigate the local stability of the equilibria. The Jacobian matrix of system (1.7) is
calculated as
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Theorem 3.1.
(1) E 0, 00( ) is always unstable.

(2) For E , 0r
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, we have

(a) if m ad> , then E , 0r
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is a stable node;

(b) if m ad< , then E , 0r
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is a saddle;

(c) if m ad= , E , 0r
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is a stable node for ae d= and a saddle-node for ae d≠ .

Proof. (1) The Jacobian matrix of system (1.7) at E 0, 00( ) is
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whose eigenvalues are λ r 01 = > and λ d m
a2 = − . If m ad> , then λ 02 < and hence E 0, 00( ) is a saddle; if

m ad< , then λ 02 > and hence E 0, 00( ) is an unstable node; if m ad= , then λ 02 = , in this case, the local
stability property of E0 is difficult to be judged directly from the characteristic root.

First, we expand system (1.7) in power series up to the third order around E 0, 00( ) and let τ r td d= :

x
τ

x c
r

xy b
r

x

y
τ

d ae
ar

y d
a r

y d
a r

y d
a r

y

d
d

,

d
d

.

2

2
2

3
3

4
4

5

⎧

⎨
⎪

⎩
⎪

= + −

=

−

− + −

(3.1)

650  Xiaqing He et al.



By applying Theorem 7.1 of Chapter 2 in [37], we have

(i) if ae d= , then m 3= , a 0d
a r3 2= − < ; hence E 0, 00( ) of system (3.1) is a saddle, and then E 0, 00( )

of system (1.7) is also a saddle.

(ii) if ae d≠ , then m 2= , a e 0r
d
a2

1
( )

= − + ≠ ; hence E 0, 00( ) of system (3.1) is a saddle-node, and then

E 0, 00( ) of system (1.7) is also a saddle-node.

Obviously, E 0, 00( ) is always unstable.

(2) The Jacobian matrix of system (1.7) at E , 0r
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whose eigenvalues are λ r 01 = − < and λ d m
a2 = − . One could easily see that if m ad> , then λ 02 < , and
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is a stable node; if m ad< , then λ 02 > , and thus E , 0r
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is a saddle; if m ad= , then λ 02 = .

In this case, E , 0r
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is difficult to be judged directly from the characteristic root.
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Now, we apply the transformation:
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where Q U V,1( ) is a power series in U V,( ) with terms U Vi j satisfying i j 3+ ≥ .
From the first equation of (3.3), we have
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By applying Theorem 7.1 of Chapter 2 in [37], we have

(i) If ae d= , then m 3= , a 0dr
a3 2= > , hence E , 0r

b
a( )

of system (3.3) is an unstable node. Since we use the

transformation τ r td d1 = − and r 0− < , the orbits with time go in the opposite direction, so E , 0r
b
a( )

of system (1.7) is a stable node.

(ii) If ae d≠ , then m 2= , hence E , 0r
b
a( )

of system (3.3) is a saddle-node, and then E , 0r
b
a( )

of system (1.7)
is also a saddle-node.
This ends the proof of Theorem 3.1. □
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Theorem 3.2. For i 1, 2, 3= , if E y0,i i( ) exists, then E y0,i i( ) are all unstable.

Proof. For i 1, 2, 3= , the Jacobian matrix of system (1.7) at E y0,i i( ) is
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From Theorems 2.1–2.3, we know that if E1 and E2 exist, then m m<

∗; if E3 exists, then m m=

∗. Next, we will
discuss the eigenvalues of the three equilibria.

(1) For E y0,1 1( ), y d ae
e1

Δ
2=

− + ,

λ y m
y a

e y me e ey m
m

1 0.
d ae

e

2 1
1

2 1 Δ
4

12
⎡
⎣⎢ ( )

⎤
⎦⎥

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎛
⎝

⎞
⎠( )

=

+

− = − < − <

+ +
∗

Consequently, E1 is a saddle if E1 exists.
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Consequently, E2 is an unstable node if E2 exists.
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In this case, E3 is difficult to be judged directly from the characteristic root.

We first shift E y0,3 3( ) to the origin by the transformation x X y Y y,3 3 3= = + and then expand the new
system in power series up to the third order around the origin:
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where H r 0c d ae
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− , Q X Y,2 3 3( ) is a power series in X Y,3 3( ) with terms X Yi j
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where Q X Y,2 3 3( ) are power series in X Y,3 3( ) with terms X Yi j
3 3 satisfying i j 4+ ≥ .
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From the second equation of (3.5), we have
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we know that ae d< , so a 0ae d e
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. By applying Theorem 7.1 of Chapter 2 in [37], the equilibrium

E y0,3 3( ) of system (3.5) is a saddle-node; therefore, E y0,3 3( ) of system (1.7) is also a saddle-node.
In summary, Ei i 1, 2, 3( )= are all unstable.
This ends the proof of Theorem 3.2. □

Theorem 3.3. For the positive equilibrium, we have the following conclusions:
(1) When E x y,1 1 1( )∗ ∗ exists, it is a stable node.
(2) When E x y,2 2 2( )∗ ∗ exists, it is a saddle.
(3) When E x y,3 3 3( )∗ ∗ exists, it is a saddle-node.
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From the proof of Theorem 3.2 we know that
(1) If E1

∗ exist, for the eigenvalue λ2 of J E1( )∗ , we have λ 02 < , so E1
∗ is a stable node.

(2) If E2
∗ exist, for the eigenvalue λ2 of J E2( )∗ , we have λ 02 > , so E2

∗ is a saddle.
(3) If E3

∗ exist, for the eigenvalue λ2 of J E3( )∗ , we have λ 02 = , we can easily obtain that E3
∗ is a saddle-node

(this proof is similar to Theorem 3.2 (3)).

This ends the proof of Theorem 3.3. □

We use Table 1 to sum up the above conclusions.

4 Bifurcation analysis

From Theorems 2.1 to 2.3, we conjecture that system (1.7) may have saddle-node bifurcations at E3 and E3
∗,

and transcritical bifurcations at the equilibria E0 and Er, respectively. Indeed, we have the following results.

Table 1: Equilibria of system (1.7) in finite planes

Parameters Location of equilibria Types and stability

<m ad E0, Er , E1, ∗E1 E0 unstable node, Er saddle, E1 saddle, ∗E1 stable node

<ae d E0, Er , E1, ∗E1 E0, Er saddle-node, E1 saddle, ∗E1 stable node

=m ad =ae d E0, Er E0 saddle, Er saddle-node
>ae d E0, Er E0, Er saddle-node

< <

∗ad m m <ae d E0, Er , E1, E2, ∗E1 ,
∗E2 E0, E1, ∗E2 saddle, Er ,

∗E1 saddle-node, E2 unstable node

>ae d E0, Er E0 saddle, Er saddle-node
=

∗m m <ae d E0, Er , E3, ∗E3 E0 saddle, Er saddle-node, E3, ∗E3 saddle-node
≥ae d E0, Er E0 saddle, Er saddle-node

>

∗m m E0, Er E0 saddle, Er saddle-node
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Theorem 4.1. When ae d< , system (1.7) undergoes a saddle-node bifurcation around E3 with respect to the

parameter m if m mSN
ae d

e4

2( )
= =

+ .

Proof. The Jacobian matrix at E3 is

J E r cy 0
0 0

.3
3( ) ⎛

⎝
⎞
⎠

=

+

It is obvious that the matrix has a zero eigenvalue, named λ1. Let V and W represent the eigenvectors
corresponding to the eigenvalue λ1 for matrices JE3 and JE

T
3
. By calculation, we can obtain:

V V
V W W

W
0
1 , 0

1 .1

2

1

2
⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( )

= = = = (4.1)

Define

F x y
F x y
F x y

x r bx cxy

y d ey m
y a

,
,
, ,

1

2 ⎜ ⎟

( ) ⎛

⎝
⎜

( )
( )

⎞

⎠
⎟

⎛

⎝

⎜
⎜

( )

⎛
⎝

⎞
⎠

⎞

⎠

⎟
⎟

= =

− +

− −

+

then

F E m ae d
ae d

;
0

,m SN3( )
⎛

⎝
⎜

⎞

⎠
⎟= −

+

(4.2)

D F E m V V

F
x

V F
x y

V V F
y

V

F
x

V F
x y

V V F
y

V
e ae d
ae d

; ,
2

2

0
2 .SN

E m

2
3

2
1

2 1
2

2
1

1 2
2

1
2 2

2

2
2

2 1
2

2
2

1 2
2

2
2 2

2

; SN3

( )( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝
⎜ ( )

⎞

⎠
⎟

( )

=

∂

∂

+

∂

∂ ∂

+

∂

∂

∂

∂

+

∂

∂ ∂

+

∂

∂

= −

+

(4.3)

From (4.1)–(4.3), it follows that

W F E m ae d
ae d

W D F E m V V e ae d
ae d

; 0,

; , 2 0.

T
m SN

T
SN

3

2
3

( )

[ ( )( )]
( )

=

−

+

≠

=

−

+

≠

So, according to Sotomayor’s theorem in [38], system (1.7) undergoes a saddle-node bifurcation around
E3 at m mSN= .

This ends the proof of Theorem 4.1. □

Theorem 4.2. When ae d< , system (1.7) undergoes a saddle-node bifurcation around E3
∗ with respect to the

parameter m if m mSN
ae d

e4

2( )
= =

+ .

Proof. The Jacobian matrix at E3
∗ is

J E bx cx
0 0

.3
3 3

⎜ ⎟( ) ⎛
⎝

⎞
⎠

=

−
∗

∗ ∗

It is obvious that the matrix has a zero eigenvalue, named λ1. Let V and W represent the eigenvectors
corresponding to the eigenvalue λ1 for matrices JE3

∗ and JE
T

3
∗. By calculation, we can obtain:

V V
V

c
b W W

W, 0
1 .1

2

1

2
⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )( )

= = = = (4.4)
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Define

F x y
F x y
F x y

x r bx cxy

y d ey m
y a

,
,
,

,1

2
⎜ ⎟

⎜ ⎟

( ) ⎛
⎝

( )
( )

⎞
⎠

⎛

⎝

⎜
⎜

( )

⎛
⎝

⎞
⎠

⎞

⎠

⎟
⎟

= =

− +

− −

+

then

F E m ae d
ae d

;
0

,m SN3( )
⎛

⎝
⎜

⎞

⎠
⎟= −

+

∗ (4.5)

D F E m V V

F
x

V F
x y

V V F
y

V

F
x

V F
x y

V V F
y

V
e ae d
ae d

; ,
2

2

0
2 .SN

E m

2
3

2
1

2 1
2

2
1

1 2
2

1
2 2

2

2
2

2 1
2

2
2

1 2
2

2
2 2

2

; SN3

( )( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝
⎜ ( )

⎞

⎠
⎟

( )

=

∂

∂

+

∂

∂ ∂

+

∂

∂

∂

∂

+

∂

∂ ∂

+

∂

∂

= −

+

∗

∗

(4.6)

From (4.4)–(4.6), it follows that

W F E m ae d
ae d

W D F E m V V e ae d
ae d

; 0,

; , 2 0.

T
m SN

T
SN

3

2
3

( )

[ ( )( )]
( )

=

−

+

≠

=

−

+

≠

∗

∗

So, according to Sotomayor’s theorem in [38], system (1.7) undergoes a saddle-node bifurcation around
E3

∗ at m mSN= .
This ends the proof of Theorem 4.2. □

Theorem 4.3. When ae d< , system (1.7) undergoes a transcritical bifurcation around E0 with respect to the
parameter m if m m adTC= = .

Proof. The Jacobian matrix at E0 is

J E r 0
0 0 .0( )

( )
=

It is obvious that the matrix has a zero eigenvalue, named λ1. Let V and W represent the eigenvectors
corresponding to the eigenvalue λ1 for matrices JE0 and JE

T
0
. By calculation, we can obtain:

V V
V W W

W
0
1 , 0

1 .1

2

1

2
⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( )

= = = = (4.7)

Define

F x y
F x y
F x y

x r bx cxy

y d ey m
y a

,
,
,

,1

2
⎜ ⎟

⎜ ⎟

( ) ⎛
⎝

( )
( )

⎞
⎠

⎛

⎝

⎜
⎜

( )

⎛
⎝

⎞
⎠

⎞

⎠

⎟
⎟

= =

− +

− −

+

then

F E m; 0
0 ,m TC0( )

( )
= (4.8)

DF E m V
a a

;
0 0

0 1 0
1

0
1 ,m TC0( )

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟( )

=

−

=

−

(4.9)
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D F E m V V

F
x

V F
x y

V V F
y

V

F
x

V F
x y

V V F
y

V
d ae

a
; ,

2

2

0
2 .TC

E m

2
0

2
1

2 1
2

2
1

1 2
2

1
2 2

2

2
2

2 1
2

2
2

1 2
2

2
2 2

2

; TC0

( )( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝
⎜ ( )

⎞

⎠
⎟

( )

=

∂

∂

+

∂

∂ ∂

+

∂

∂

∂

∂

+

∂

∂ ∂

+

∂

∂

= − (4.10)

From (4.7)–(4.10), it follows that

w F E m

w DF E m V
a

w D F E m V V d ae
a

; 0,

; 1 0,

; , 2 0.

T
m TC

T
m TC

T
TC

0

0

2
0

( )

[ ( ) ]

[ ( )( )]
( )

=

= − ≠

=

−

≠

So, according to Sotomayor’s theorem in [38], system (1.7) undergoes a transcritical bifurcation around
E0 at m mTC= .

This ends the proof of Theorem 4.3. □

Theorem 4.4. When ae d< , system (1.7) undergoes a transcritical bifurcation around Er with respect to the
parameter m if m m adTC= = .

Proof. The Jacobian matrix at Er is

J E r cr
b

0 0
.r( )

⎛

⎝
⎜

⎞

⎠
⎟=

−

It is obvious that the matrix has a zero eigenvalue, named λ1. Let V and W represent the eigenvectors
corresponding to the eigenvalue λ1 for matrices JEr and JE

T
r. By calculation, we can obtain:

V V
V

c
b W W

W, 0
1 .1

2

1

2
⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )( )

= = = = (4.11)

Define

F x y
F x y
F x y

x r bx cxy

y d ey m
y a

,
,
,

,1

2
⎜ ⎟

⎜ ⎟

( ) ⎛
⎝

( )
( )

⎞
⎠

⎛

⎝

⎜
⎜

( )

⎛
⎝

⎞
⎠

⎞

⎠

⎟
⎟

= =

− +

− −

+

then

F E m; 0
0 ,m r TC( )

( )
= (4.12)

DF E m V
a

c
b b

a
;

0 0

0 1
0

,m r TC( )
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟( )

=

−

=

−

(4.13)

D F E m V V

F
x

V F
x y

V V F
y

V

F
x

V F
x y

V V F
y

V
b d ae

a
; ,

2

2

0
2 .r TC

E m

2

2
1

2 1
2

2
1

1 2
2

1
2 2

2

2
2

2 1
2

2
2

1 2
2

2
2 2

2

;

2

r TC

( )( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝
⎜⎜

( )
⎞

⎠
⎟⎟

( )

=

∂

∂

+

∂

∂ ∂

+

∂

∂

∂

∂

+

∂

∂ ∂

+

∂

∂

= − (4.14)

From (4.11)–(4.14), it follows that

w F E m

w DF E m V b
a

w D F E m V V b d ae
a

; 0,

; 0,

; , 2 0.

T
m r TC

T
m r TC

T
r TC

2
2

( )

[ ( ) ]

[ ( )( )]
( )

=

= − ≠

=

−

≠
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So, according to Sotomayor’s theorem in [38], system (1.7) undergoes a transcritical bifurcation around
Er at m mTC= .

This ends the proof of Theorem 4.4. □

5 Global stability of equilibria

In Theorem 3.3, we have proved that E1
∗ is locally asymptotically stable if E1

∗ exists. In Theorem 3.1, we have
shown that Er is locally asymptotically stable if m ad> . In this section, we will provide some sufficient
conditions for the global stability of E1

∗ and Er.

Lemma 5.1. [39] If a 0> , b 0> , and x b axx
t

d
d ( )≥ − , then when t 0> and x 0 0( ) > we have

x t b
a

liminf .
t

( ) ≥

→+∞

If a 0> , b 0> , and x b axx
t

d
d ( )≤ − , then when t 0> and x 0 0( ) > we have

x t b
a

limsup .
t

( ) ≤

→+∞

Theorem 5.1. The positive equilibrium E1
∗ of system (1.7) is globally asymptotically stable if one of the

following conditions holds.
(1) m ad< ;
(2) m ad= and ae d< .

Proof. From Table 1, we find that in addition to E0 and Er, system (1.7) also has a boundary equilibrium E1
and a positive equilibrium E1

∗ when (1) or (2) holds. Under these conditions, E0, Er, and E1 are all unstable,
but E1

∗ is locally asymptotically stable. Obviously, all x x, 0 0{( )∣ }≥ , y x0, 0{( )∣ }≥ , and x y x y, 0, 0{( )∣ }> >

(the interior of R2
+

) are positively invariant subsets of the system (1.7). If we prove that there are no closed

orbits in the interior of R2
+

, then we can obtain that E1
∗ is globally asymptotically stable. Now, let us consider

the Dulac function B x y, xy
1

2( ) = . Then

D BF
x

BF
y

a y bx d my am
xy y a

a y bx dy ad m a y
xy y a

2 2 0,1 2
2

2 2

2 2

2 2
( ) ( ) ( ) ( )

( )
( ) ( )( )

( )
=

∂

∂

+

∂

∂

= −

+ + − −

+

= −

+ + + − +

+

<

where

F x r bx cxy,1 ( )= − +

F y d ey m
y a

.2 ⎜ ⎟
⎛
⎝

⎞
⎠

= − −

+

According to the Bendixson-Dulac discriminant [38], system (1.7) has no limit cycle in the first quad-
rant, so E1

∗ is globally asymptotically stable.
This ends the proof of Theorem 5.1. □

Remark 5.1. Theorem 5.1 shows that for the weak Allee effect case, the stability of E1
∗ is not affected, that is,

systems (1.2) and (1.7) admit a positive equilibrium E1
∗, which is globally asymptotically stable. We also find

that the values of x1
∗ and y1 depend on the value of a and m, which means that the additive Allee effect has

an effect on the final density of the species.
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From

y m
m ae d em

d
d

1
4

0,1
2

( )

( )
= −

+ −

<

y a
a

ae d
ae d em

d
d

1
2

1
4

0,1
2

( ) ⎡

⎣
⎢

( )

( )
⎤

⎦
⎥= − +

+

+ −

>

and

x
r cy

b
,1

1
=

+

∗

we conclude that as m increases and a decreases, the Allee effect is increasing, and the final density of both
species are decreasing.

Theorem 5.2. The equilibrium Er of the system (1.7) is globally asymptotically stable if one of the following
conditions holds
(1) m ad= and ae d= ;
(2) ad m m< <

∗ and ae d> ;
(3) m m=

∗ and ae d≥ ;
(4) m m>

∗.

Proof. From Table 1, we find that the system (1.7) has two boundary equilibria E1 and Er when system (1.7)
satisfies one of conditions (1)–(4). Under these conditions, E0 is always unstable and Er is locally asymp-
totically stable. Next, we will prove that Er is globally asymptotically stable.

First, let us consider the system

y
t

y d ey m
y a

d
d

,⎜ ⎟
⎛
⎝

⎞
⎠

= − −

+

(5.1)

we will show that under the assumption of Theorem 5.2, the equilibrium y 0= of the system (5.1) is globally
asymptotically stable. Indeed, define the Lyapunov functionV y= , it is obvious that the functionV is zero
at y 0= and is positive for all other positive values of y. The time derivative of V along the trajectories
of (5.1) is

V
t

y d ey m
y a

y
y a

ey d ae y ad md
d

.2
⎜ ⎟
⎛
⎝

⎞
⎠

[ ( ) ]= − −

+

=

+

− + − + −

When system (1.7) satisfies one of the conditions (1)–(4), we always have 0V
t

d
d ≤ for all y 0≥ , and 0V

t
d
d = if

and only if y 0= . Therefore,V satisfies Lyapunov’s asymptotic stability theorem [40], so y 0= of the system
(5.1) is globally asymptotically stable.

Noting that the second equation of the system (1.7) is only related to y, and independent of x. Therefore,
under the assumption of Theorem 5.2, we can conclude that

y tlim 0.
t

( ) =

→+∞

(5.2)

Hence, for any sufficiently small ε 0> , there exists an integer T 0> such that

ε
c

y t ε
c

t T, .( )− < < ≥

Then, it follows from the first equation of system (1.7):

x r bx ε x
t

x r bx ε t Td
d

, .( ) ( )− − ≤ ≤ − + ≥
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Applying Lemma 5.1 to the above inequality leads to

r ε
b

x t x t r ε
b

liminf limsup .
t t

( ) ( )
−

≤ ≤ ≤

+

→+∞
→+∞

Letting ε 0→ , we obtain

x t r
b

lim .
t

( ) =

→+∞

(5.3)

From (5.2) and (5.3), we can conclude that

x t y t r
b

lim , , 0 .
t

( ( ) ( )) ⎛
⎝

⎞
⎠

=

→+∞

Consequently, Er is globally asymptotically stable.
This ends the proof of Theorem 5.2. □

6 Numeric simulations

In this section, we use numerical simulations to verify the above theorem.

Example 6.1. We consider the following system:

x
t

x x xy

y
t

y d y m
y a

d
d

0.5 ,

d
d

.⎜ ⎟

( )

⎛
⎝

⎞
⎠

= − +

= − −

+

(6.1)

In this system, corresponding to the system (1.7), we take b c e 1= = = , r 0.5= .
(1) For a d m0.3, 2, 0.2,= = = we obtainm ad< ; then E0 is unstable, Er and E1 are saddle points, and E1

∗ is
a stable node (Figure 2).

(2) For a d m0.1, 2, 0.2,= = = we obtain m ad= and ae d< ; then E0 is unstable, Er is a saddle-node, E1 is
a saddle, E1

∗ is a stable node (Figure 3(a)). For a d m0.3, 0.3, 0.09= = = , we obtain m ad= and ae d= ;
then E0 is a saddle, and Er is a stable node (Figure 3(b)). For a d m2, 0.2, 0.4= = = , we obtain m ad=

and ae d> ; then E0 and Er are saddle-nodes (Figure 3(c)).
(3) For a d m0.1, 1, 0.2= = = , we obtain ad m m< <

∗ and ae d< ; then E0, E1 and E2
∗ are saddle points, Er

and E1
∗ are stable nodes, and E2 is an unstable node (Figure 4(a)). For a d m0.2, 0.1, 1= = = , we obtain

ad m m< <

∗ and ae d> , then E0 is a saddle, Er is a stable node (Figure 4(b)).
(4) For a d m0.5, 1.5, 1,= = = we obtain m m=

∗ and ae d< ; then E0 is a saddle, Er is a stable node, and E3
and E3

∗ are saddle-nodes (Figure 4(c)). For a d m1.5, 0.5, 1= = = , we obtainm m=

∗ and ae d> , then E0

is a saddle, Er is a stable node (Figure 4(d)).
(5) For a d m0.5, 1.5, 1.2= = = , we obtain m m>

∗; then E0 is a saddle, Er is a stable node (Figure 4(e)).

Example 6.2. We consider the following system:

x
t

x x xy

y
t

y d y m
y a

d
d

0.4 0.4 ,

d
d

.⎜ ⎟

( )

⎛
⎝

⎞
⎠

= − +

= − −

+

(6.2)

In this system, corresponding to system (1.7), we take c e 1= = , b 0.4= , r 0.4= .
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(1) For a d m0.5, 0.6, 0.32= = = , we obtain ad m m< <

∗ and ae d< ; then system (1.7) has two different
boundary equilibria E0 and Er (Figure 5(a)).

(2) For a d m0.5, 0.8, 0.4= = = , we obtain ad m m< =

∗ and ae d< ; then system (1.7) has four different
equilibria E0, Er, E3 and E3

∗ (Figure 5(b)).
(3) For a d m0.1, 1, 0.3= = = , we obtain ad m m< <

∗ and ae d< ; then system (1.7) has six different
equilibria E0, Er, E1, E2, E1

∗, and E2
∗ (Figure 5(c)).

Figure 5 shows that system (1.7) undergoes saddle-node bifurcations at E3 and E3
∗, respectively.

Figure 3: The phase portraits of system (1.7) when =m ad.

Figure 2: The phase portraits of system (1.7) when <m ad.
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Example 6.3. We consider the following system:

x
t

x x xy

y
t

y d y m
y a

d
d

0.3 0.3 ,

d
d

.⎜ ⎟

( )

⎛
⎝

⎞
⎠

= − +

= − −

+

(6.3)

In this system, corresponding to system (1.7), we take c e 1= = , b 0.3= , r 0.3= .
(1) For a d m0.4, 1, 0.48= = = , we obtain ad m m< <

∗ and ae d< ; then system (1.7) has six different
boundary equilibria E0, Er, E1, E2, E1

∗, and E2
∗ (Figure 6(a)).

(2) For a d m0.6, 0.8, 0.48= = = , we obtain ad m m= <

∗ and ae d< ; then system (1.7) has four different
equilibria E0, Er, E1, and E1

∗ (Figure 6(b)).
(3) For a d m0.6, 0.8, 0.4= = = , we obtain m ad m> >

∗ and ae d< ; then system (1.7) has four different
equilibria E0, Er, E1, and E1

∗ (Figure 6(c)).

Figure 6 shows that system (1.7) undergoes transcritical bifurcations at E0 and Er, respectively.

Figure 4: The phase portraits of system (1.7) when >m ad.
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Figure 5: The saddle-node bifurcation of system (1.7). (a) >

∗m m , (b) <

∗m m , and (c) =

∗m m .

Figure 6: The transcritical bifurcation of system (1.7). (a) < <

∗ad m m , (b) = <

∗ad m m , and (c) < <

∗m ad m .
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7 Conclusion

In this article, we proposed and studied a commensalism model with the additive Allee effect. We study the
dynamics behaviors under three conditions, i.e., m ad< , m ad= , and m ad> .

For the case m ad< , system (1.7) has four equilibria, of which three boundary equilibria are always
unstable, and the unique positive equilibrium E1

∗ is globally asymptotically stable. Compared with system
(1.2), the weak Allee effect in the system (1.7) has no influence on its stability but changes the position of the
equilibria, when the Allee effect increases, the final density of x and y species are decreasing.

For the case m ad= , if ae d< , then the situation is the same as m ad< ; if ae d= , system (1.7) has two
boundary equilibria E0 and Er, in which E0 is unstable and Er is globally asymptotically stable, which
means that the second species will be driven to extinction. If ae d> , system (1.7) has two boundary
equilibria E0 and Er, both of them are unstable.

For the case m ad> , we have two new findings. The first one is that system (1.7) has at least two
boundary equilibria and at most six equilibria, this means that the additive Allee effect affects the number
of equilibria and their stability. The other is that Er is always stable, and Er is globally asymptotically stable
under some sufficient conditions, this shows that the additive Allee effect will cause the extinction of the
second species.

In addition, from Theorems 4.1 to 4.4, we also proved that system (1.7) has saddle-node bifurcations at
E3 and E3

∗, respectively, and transcritical bifurcations at E0 and Er under some suitable assumptions,
respectively.

Through the above analysis, we can conclude that when the additive Allee effect is weak, both species x
and y can survive, and the additive Allee effect only affects the position of the equilibria. However, when the
additive Allee effect presents as a strong Allee effect, the dynamic behaviors of two species have changed,
and the second species even faces the risk of possible extinction, which is quite different from the findings
in [2,7,8]. Moreover, in some conditions, system (1.7) has saddle-node bifurcations and transcritical bifur-
cations, which are also not found in [2,7,8].

It seems that different types of Allee effect expression may make results in different dynamic behaviors,
it seems interesting to investigate the commensalism model with additive Allee effect and functional
response; we leave this for future investigation.
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