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Abstract: In this paper, a chaotic circuit based on a memcapacitor and meminductor is constructed,
and its dynamic equation is obtained. Then, the mathematical model is obtained by normalization,
and the system is decomposed and summed by an Adomian decomposition method (ADM) algorithm.
So as to study the dynamic behavior in detail, not only the equilibrium stability of the system is
analyzed, but also the dynamic characteristics are analyzed by means of a Bifurcation diagram
and Lyapunov exponents (Les). By analyzing the dynamic behavior of the system, some special
phenomena, such as the coexistence of attractor and state transition, are found in the system. In the
end, the circuit implementation of the system is implemented on a Digital Signal Processing (DSP)
platform. According to the numerical simulation results of the system, it is found that the system has
abundant dynamical characteristics.

Keywords: memcapacitor; meminductor; fractional chaotic system; coexistence of attractor; state transition

1. Introduction

Chaotic systems exist widely in nature; that is to say, chaotic systems are universal,
while other systems only exist in a certain range of time and space. In recent years, on
account of the rapid development of mathematical science, physical science and instrument
science, the research of chaotic systems has made great progress. In 1984, L.O. Chua
proposed Chua’s circuit, which first combined chaotic theory with nonlinear circuits [1].
With the in-depth study of chaotic theory, many new chaotic systems have been put
forward by some researchers, and the analysis of the dynamic behavior of chaotic systems
has improved gradually [2–6]. Not only integer-order chaotic systems but also fractional-
order chaotic systems are studied [7–12]. It is undeniable that the study of the dynamics of
chaotic systems by constructing nonlinear circuits is still the focus of chaos research [13–15].

Nonlinear components are important parts of nonlinear circuits, and memristors,
memcapacitors and meminductors are more representative of nonlinear components; there-
fore, the research of memristors, memcapacitors and meminductors is very important. In
1971, Professor Chua proposed a new nonlinear device called a memristor [16]. In 1976,
Professor Chua carried out further research on memristors and divided the memristor
into charge-controlled memristors and magnetic-controlled memristors [17]. In 2009, on
account of the research of memristor, Professor Chua proposed two new nonlinear com-
ponents: a memcapacitor and a meminductor [18]. Due to the memristive characteristics
of memristors, memcapacitors and meminductors, many chaotic oscillators with excellent
performance have been made based on memristors, memcapacitors and meminductors,
and their dynamic characteristics have been analyzed [19–22].

Even though scholars have completed a lot of research on integer-order chaotic systems
based on memristors, memcapacitors and meminductors, there is still little research on
fractional-order chaotic systems based on memristors, memcapacitors and meminductors.
At present, with the continuous study of chaotic systems, more and more scholars have
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begun to explore fractional-order chaotic systems [23,24]. Scholars find that the fractional-
order chaotic system, constructed by introducing fractional differential operators into the
integer-order chaotic system, still exhibits complex, chaotic behavior [25–27]. Because
of the rich, dynamic behavior of the fractional chaotic system, it has a good application
prospect in neural networks [28–34], chaotic secure communication [35–39] and image
encryption [40–45].

At present, the time–frequency conversion method on account of the R-L definition and
the predictor–corrector algorithm based on the Caputo definition are widely used in solving
fractional chaotic systems [46,47]. However, due to the large step size and limited accuracy
of the time–frequency conversion method, many scholars have questioned whether it can
accurately represent the dynamic characteristics and change rules of fractional chaotic
systems [48]. Although the results of the predictor–corrector algorithm are more accurate
than the time–frequency conversion method, and it can study the dynamic behaviors of
the system while the order changes continuously, each iteration of the predictor–corrector
algorithm requires all the previous historical data, which makes for further iterations of the
algorithm, slower solution speed and more memory resources consumed. The Adomian
algorithm is a common algorithm for solving the nonlinear time-domain problem [49].
ADM has the advantages of low algorithm consumption and small order required by the
system. The Adomian algorithm is one of the mainstream methods of studying fractional
systems. In this paper, two theoretical innovations and one experimental contribution are
mainly included:

(1) A novel chaotic system based on a meminductor and memcapacitor is designed, and
its unique dynamic characteristics are revealed.

(2) By introducing the fractional differential operator into the chaotic system based on
the memcapacitor and meminductor, a new fractional chaotic system is constructed,
and its dynamic characteristics are analyzed.

(3) The fractional chaotic system based on a meminductor and memcapacitor is imple-
mented and demonstrated on a DSP platform.

The rest of the paper is as follows: In the second part, the model of the meminductor
and memcapacitor is given. In the third part, the simple chaotic circuit and dynamic
equation are constructed based on the memcapacitor and meminductor, and the fractional
differential equation is acquired by introducing the fractional differential operator, which
is decomposed by the ADM algorithm. Further, the dynamic behavior is analyzed by a
Bifurcation diagram and LEs. In the fourth part, the system is implemented on a DSP
platform. Finally, the work in the article is summarized.

2. Model of the Meminductor and Memcapacitor
2.1. Model of the Memcapacitor

The memcapacitor is a special kind of nonlinear element. According to Chua’s defini-
tion of a memcapacitor, the model of the memcapacitor is shown as:

v(t) = C−1
M (σ)q(t)

C−1
M (σ) = c + d cos(σ)

σ =
∫ t

t0
q(τ)dτ

θ =
∫ t

t0
i(τ)dτ

, (1)

In order to introduce the memristive characteristics of the memcapacitor more ac-
curately, a sinusoidal current source is added to both ends of the memcapacitor. Denote
the inner control parameters of the memcapacitor as c = 2 and d = 1. The relationship
between the input q and the related output v with respect to the iteration number is shown
in Figure 1a. We obtain a smooth “8” hysteresis curve. When other parameters are kept
constant and only the input frequency is changed, the side lobe area of the curve decreases
as the frequency increases, which also conforms to the definition of the memcapacitor.
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To further understand the basic properties of the meminductor, let the current 
through the meminductor be i = Asin(2πft). If a = 1, b = 1 are the internal parameters; the 
relationship between its output and input is shown in Figure 2a. We obtain a smooth “8” 
hysteresis curve. While keeping the parameters constant and only changing the input 
frequency, the sidelobe area of the curve decreases with increasing frequency, which also 
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= 50 Hz. 

Figure 1. Characteristic curve of the smooth memcapacitor. (a) d = 1, c = 2, f = 20 Hz, (b) d = 1, c = 2,
f = 50 Hz.

2.2. Model of the Meminductor

The meminductor has very special kinetic properties. According to Professor Chua’s
definition, the mathematical model of the meminductor is shown below:

i(t) = L−1
M (ρ)φ(t)

L−1
M (ρ) = a + b cos(ρ)

ρ =
∫ t

t0
φ(τ)dτ

φ =
∫ t

t0
v(τ)dτ

, (2)

To further understand the basic properties of the meminductor, let the current through
the meminductor be i = Asin(2πft). If a = 1, b = 1 are the internal parameters; the relationship
between its output and input is shown in Figure 2a. We obtain a smooth “8” hysteresis
curve. While keeping the parameters constant and only changing the input frequency, the
sidelobe area of the curve decreases with increasing frequency, which also conforms to the
definition of the meminductor.
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3. Dynamical Analysis of Chaotic Systems
3.1. The Model of a Novel Chaotic Circuit

On the basis of the memcapacitor and meminductor mentioned above, a new type of
simple chaotic circuit is involved by connecting the inductor, memcapacitor and memin-
ductor in parallel, and its structure is expressed in Figure 3.

According to the memristive characteristics of the memcapacitor and meminductor
and Kirchhoff’s law, the equation of state is expressed as:
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dq
dt = −iL − (a + b cos(ρ))ϕ
dϕ
dt = (c + d cos(σ))q
L diL

dt = (c + d cos(σ))q
dσ
dt = q
dρ
dt = ϕ

, (3)
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In Equation (3), q represents the amount of charge collected at both ends of the memca-
pacitor, Φ represents the magnetic flux passing through the meminductor, iL represents the
current passing through the inductor, δ represents the integration of charge q in the time
definition and ρ represents the integration of magnetic flux Φ in the time definition. Set
q = x, Φ = y, iL = z, δ = u and ρ = w by dimensionless processing; the model of the chaotic
system is shown as follows: 

.
x = −z− (a + b cos(w))y
.
y = (c + d cos(u))x
.
z = e(c + d cos(u))x
.
u = x
.

w = y

, (4)

While the initial condition of the system is (10, 5, 10, 0.1, −1), four different types
of chaotic attractors can be obtained under different parameters. The phase diagram is
expressed in Figure 4.

3.2. Introduction of the ADM Algorithm

According to the analysis of the fractional differential algorithm, the Caputo definition
is used to calculate the fractional differential equation in this paper. The expression is as
follows:

Dq
t0

f (t) =
1

Γ(1− q)

∫ t

t0

(t− τ)−q f ′(τ)dτ, (5)

where Dq
t0

, represents the Caputo derivative operator of order q. The inverse operator of
Dq

t0
, is Jq

t0
, and its definition is as follows:

Jq
t0

f (t) =
1

Γ(q)

∫ t

t0

(t− τ)q−1 f (τ)dτ, (6)

On the basis of the ADM decomposition, the fractional differential equation can be
obtained as follows: Dq

t0
x(t) = f (x(t)). The f (x(t)) is expressed as:

Dq
t0

x(t) = Lx(t) + Nx(t) + g(t), (7)
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where Lx(t) represents the linear part of the equation, Nx(t) represents the nonlinear part of
the equation and g(t) shows the constant. Apply the Jq

t0
, to both sides of this equation:

Jq
t0

Dq
t0

x(t) = x(t)− x(t0), (8)
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Then, the ith nonlinear function is expressed as:
Ai

j =
1
i! [

di

dλi N(vi
j(λ))]λ

= 0

vi
j(λ) =

i
∑

k=0
(λ)kxi

j

, (9)

where i = 0, 1, . . . , ∞; j = 1, 2 . . . , n. The nonlinear function N is denoted as:

Nx =
∞

∑
i=0

Ai(x0, x1, . . . , x1), (10)

Subsequently, the solution of the equation can be obtained as follows:

x =
∞

∑
i=0

xi = Jq
t0

L
∞

∑
i=0

xi + Jq
t0

∞

∑
i=0

Ai + Jq
t0

g + x(t0), (11)

where xi can be expressed:

x0 = Jq
t0

g + x(t0)

x1 = Jq
t0

Lx0 + Jq
t0

A0(x0)

x2 = Jq
t0

Lx1 + Jq
t0

A1(x0, x1)

· · ·
xi = Jq

t0
Lxi−1 + Jq

t0
Ai−1(x0, x1, x2, . . . xi−1)

, (12)
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3.3. Analysis of This New Fractional Chaotic System

In this paper, a simple circuit is constructed by a meminductor, memcapacitor and an
inductor in parallel. By introducing a fractional differential operator into a chaotic system,
we can obtain a five-dimensional fractional chaotic system. The expression of the system
can be expressed as follows:

Dq
t0

x1 = −x3 − (a + b cos(x5))x2

Dq
t0

x2 = (c + d cos(x4))x1

Dq
t0

x3 = e(c + d cos(x4))x1

Dq
t0

x4 = x1

Dq
t0

x5 = x2

, (13)

where b, d, e, c and a delegate the parameters; x1, x2, x3, x4 and x5 represent the state
variables; and there is a nonlinear function f (x) = cos(x) in the system. In order to make the
calculation result more accurate, the nonlinear function is decomposed in advance, and the
decomposition result is as follows:

A0
1 = cos x0

1
A1

1 = −x1
1 sin x0

1
A2

1 = −x2
1 sin x0

1 −
1
2! x1

1x1
1 cos x0

1
A3

1 = −x3
1 sin x0

1 − x2
1x1

1 cos x0
1 +

1
3! x1

1x1
1x1

1 sin x0
1

A4
1 = −x4

1 sin x0
1 − x3

1x1
1 cos x0

1 −
1
2! x2

1x2
1 cos x0

1
+ 1

2! x1
1x1

1x2
1 sin x0

1 +
1
4! x1

1x1
1x1

1x1
1 cos x0

1

, (14)

On account of ADM decomposition, the iterative formula of this kind of chaotic system
is as follows: 

c0
1 = x0(1)

c0
2 = x0(2)

c0
3 = x0(3)

c0
4 = x0(4)

c0
5 = x0(5)


c1

1 = −c0
3 − (a + b cos c0

5)c
0
2

c1
2 = (c + d cos c0

4)c
0
1

c1
3 = e(c + d cos c0

4)c
0
1

c1
4 = c0

1
c1

5 = c0
2

, (15)


c2

1 = −c1
3 − ac1

2 − (b((−c1
5 sin(c0

5))c
0
2 + cos(c0

5)c
1
2))

c2
2 = cc1

1 + (d((−c1
4 sin(c0

4))c
0
1 + cos(c0

4)c
1
1))

c2
3 = ecc1

1 + e(d((−c1
4 sin(c0

4))c
0
1 + cos(c0

4)c
1
1))

c2
4 = c1

1
c2

5 = c1
2

, (16)



c3
1 = −c2

3 − ac2
2 − (b((−c2

5 sin(c0
5)− 0.5c1

5c1
5 cos(c0

5)
Γ(2q+1)
Γ(q+1)2 )c0

2

+(−c1
5 sin(c0

5)c
1
2

Γ(2q+1)
Γ(q+1)2 ) + cos(c0

5)c
2
2))

c3
2 = cc2

1 + (d((−c2
4 sin(c0

4)− 0.5c1
4c1

4 cos(c0
4)

Γ(2q+1)
Γ(q+1)2 )c0

1

+(−c1
4 sin(c0

4)c
1
1

Γ(2q+1)
Γ(q+1)2 ) + cos(c0

4)c
2
1))

c3
3 = ecc2

1 + e(d((−c2
4 sin(c0

4)− 0.5c1
4c1

4 cos(c0
4)

Γ(2q+1)
Γ(q+1)2 )c0

1

+(−c1
4 sin(c0

4)c
1
1

Γ(2q+1)
Γ(q+1)2 ) + cos(c0

4)c
2
1))

c3
4 = c2

1
c3

5 = c2
2

, (17)
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5)

Γ(3q+1)
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Therefore, the solution of the system can be expressed as follows:

x̃j(t) =
5

∑
i=0

cj
i
(t− t0)

iq

Γ(iq + 1)
, (20)

To verify the correctness of the ADM algorithm, set the order of the system as q = 1;
make the system parameters a = 2, b = 11, c = 20, d = 5 and e = 1; keep the initial value
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of the system as (1, 10, 1, 0.1, −10); and make the parameters before and after the ADM
decomposition and the initial value consistent. The simulation results are shown in Figure 5:
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Keep the parameters and initial values of the system unchanged before and after ADM
decomposition. By analyzing the phase diagrams of chaotic attractors before and after
ADM decomposition, it can be found that the phase diagrams of chaotic attractors before
and after ADM decomposition are basically consistent, which also proves the correctness
of the ADM algorithm.

When the initial state of the phase diagram is (10, 5, 10, 0.1, −1), the parameters of the
system are b = 11, c = 20 and the order q of the system is 0.95; some different types of chaotic
attractors can be obtained under different parameters. The phase diagram is expressed in
Figure 6:
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3.4. Equilibrium Point Set and Stability

So as to study the equilibrium point, the left side of this system of equations repre-
sented by Equation (14) is equal to 0, and the result is as follows:

0 = −x3 − (a + b cos(x5))x2
0 = (c + d cos(x4))x1
0 = e(c + d cos(x4))x1
0 = x1
0 = x2

, (21)

The equilibrium is obtained as a line equilibrium point set, Q (0, 0, 0, m, n), meaning
that this system has infinite equilibria. On the basis of Equation (21), the Jacobi matrix JE at
the equilibrium point set is:

JE =


0 −(a + b cos(n)) −1 0 0

(c + d cos(m)) 0 0 0 0
e(c + d cos(m)) 0 0 0 0

1 0 0 0 0
0 1 0 0 0

, (22)

According to the Jacobi matrix of the system, the characteristic equation is obtained as
follows:

λ3(λ2 + (c + d cos(m))(a + b cos(n)) + e(c + d cos(m))) = 0, (23)

According to Equation (23), it can be seen that there are three zero eigenvalues and
two nonzero eigenvalues in the system. For example, Q1 (0, 0, 0, 10, 10), with parameters as
a = 2, b = 11, c = 20, d = 10 and e = 1, we can obtain λ1 = 0, λ2 = 0, λ3 = 0, λ4 = 12.58 and
λ5 = −12.58. According to the Routh–Hurwitz Stable theorem, the system is unstable at
any equilibrium point, and chaos may occur.

3.5. The Impacts of Parameters

Set the order as q = 0.95; the parameters as a = 2, b = 11, d = 10 and e = 1; and the initial
conditions as (10, 5, 10, 0.1, −1). Only the parameter c is changed. Figure 7 shows the LEs
of the system and its corresponding bifurcations when the parameter is c = (5, 50).
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exponent spectrum, (b) bifurcation diagram.

Different types of chaotic attractors can be found in the bifurcation diagram, and
through the LEs, it can be observed that the state changes very frequently. The Lyapunov
exponents and bifurcation diagrams can correspond to each other.

The order is kept unchanged; the initial value is set as (10, 5, 10, 0.1, −1); and the
parameters are set as a = 2, b = 11, c = 20 and e = 1. When only the parameter d of the
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system changes, the Lyapunov exponent and its corresponding bifurcations can be obtained
through numerical simulation, and the results are expressed in Figure 8.
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Figure 8. Lyapunov exponent spectrum and bifurcation diagram with parameter d, (a) Lyapunov
exponent spectrum, (b) bifurcation diagram.

Through comparing the bifurcation diagram and the LEs, we can see that they com-
pletely correspond to each other, and with the change of the parameters, the state of the
chaotic system also changes frequently.

So as to show the dynamic characteristics of the chaotic system designed by us more
directly, set the parameters as a = 2, b = 11, c = 20, d = 10 and e = 1; the initial condition as
(10, 5, 10, 0.1, −1); and the order q of the system as [0.6, 1]. The Bifurcation diagram and
the LEs of the state variable x are expressed in Figure 9.
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Figure 9. Lyapunov exponent spectrum and bifurcation diagram with order q, (a) Lyapunov exponent
spectrum, (b) bifurcation diagram.

From the LEs, we know that the LEs of this chaotic system are very high, and they
change very frequently with the change of order. From the bifurcation diagram of the
chaotic system, many different types of chaotic attractors can be observed. This also proves
the complex dynamic characteristics of the chaotic system from one side.

3.6. State Transition

State transition is a special dynamic phenomenon. Some special systems have the
phenomenon of an unstable state; that is to say, when the system changes with time, the
state will also change, and the system will show different dynamic behaviors. This special
phenomenon also exists in the chaotic system constructed in this paper. Set the initial
conditions as (10, 5, 10, 0.1, −1); the parameters as a = 2, b = 11, c = 20, d = 10 and e = 1; and
the order as q = 0.95. The timing diagram and phase diagram of variable x1 with t = (0, 500)
are expressed in Figure 10. We can observe trajectories going from one state to another.
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Taking the initial conditions of the system as (10, 5, 10, 0.1, −1); the parameters as
b = 11, a = 2, d = 10, e = 1 and c = 20; and the order as q = 0.95, we obtain the phase diagram
corresponding to the time sequence diagram, and the results are expressed in Figure 12.
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3.7. Coexistence of Attractors

The coexistence of attractors is a special dynamical behavior in chaos research and
has become the focus of chaotic system research in recent years. While the parameters
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are kept constant and only the initial value is changed, the orbit will gradually approach
different stable states of point, quasi-periodic, periodic or chaotic. A special phenomenon
exists in the chaotic system constructed in this paper; the the parameters of the system is
set as b = 11, a = 2, d = 10, e = 1 and c = 20, and the order q of the system is 0.95. When the
system changes with the initial state, the state of the system can be observed, where the
blue, red and yellow orbits express the states with the initial states of (5, 70, 5, 0.1, −1),
(5, 20, 5, 0.1, −1) and (5, 10, 5, 0.1, −1), respectively. The results of the numerical simulation
are expressed in Figure 13a.
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By keeping the order of the system unchanged and setting the parameters as a = 0.3,
b = 11, c = 20, d = 10 and e = 7, chaotic attractors of different orbits are obtained by changing
the initial state, in which the blue, red and yellow orbits represent initial values of (5, 10, 5,
0.1, −1), (5, 10, 25, 0.1, −1) and (5, 10, 45, 0.1, −1), respectively. The result is expressed in
Figure 13b.

4. Digital Circuit Implementations

In order to prove the effectiveness of the system, a DSP platform is used to implement
the system in this paper. DSP is a digital signal processing technology. Due to the DSP
implementation having better environmental tolerance ability and the parameters of the
system also having better control ability, we chose to implement this chaotic system with
DSP. The DSP chip we chose is the TMS320F28335 chip to make it easier for the oscilloscope
to capture images. The generated sequence is transformed into an analog sequence through
the D/A converter, and then the signal is transmitted to an oscilloscope (EDS102C) by the
D/A converter (8552). The implementation process is shown in Figure 14:
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In the circuit implementation, DSP is only suitable for processing discrete systems,
so if we choose to implement the system on the DSP platform, we need to discretize the
continuous chaotic system first. Therefore, we discretize the continuous chaotic system and
use an ADM decomposition method to convert it into discrete chaotic sequences. Then, we
use C language to write the iteration relationship to the DSP. The stack design is used here
to ensure that the data are not corrupted. The programming process is shown in Figure 15.
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Figure 15. Programming flow of DSP implementation.

According to the above process, taking the initial conditions of the system as (10, 5, 10,
0.1, −1); the parameters as d = 10, c = 20; and the order as q = 0.95, the phase diagram of the
attractor of DSP can be obtained, and the result are expressed in Figure 16.
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In order to verify the correctness of the circuit implementation, we make the initial
value of the system (10, 5, 10, 0.1, −1); keep the order of the system as 0.95; and set the
parameters of the system as d = 10, c = 20. The numerical simulation results of the chaotic
system on the MATLAB platform are shown in Figure 17:

Through comparison, it can be found that the results of the circuit implementation
are completely consistent with the results of the numerical simulation, which proves
the effectiveness of the circuit simulation. This also provides technical support for our
application in practical projects such as chaotic secure communication, chaotic image
encryption and neural networks.

Hardware devices such as the D/A converter [USA: Texas Instruments, Dallas, Texas],
oscilloscope [China: Uni-Trend Technology, Dongguan, Guangdong] and F28335 chip
[USA: Texas Instruments, Dallas, Texas] used in the DSP simulation are shown in Figure 18.
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5. Conclusions

In this paper, a simple chaotic circuit on account of a memcapacitor and meminductor
is studied. The circuit consists of a meminductor, an inductor and a memcapacitor in
parallel. Due to the special dynamical behaviors of the memcapacitor and meminductor,
the system has complex, dynamic behavior. Thus, the fractional-order chaotic system is
obtained by introducing the fractional differential operator, and the Adomian algorithm
is used to solve it. The stability of the equilibrium point of the fractional-order chaotic
system is analyzed, and the LEs and bifurcation diagrams based on order q and parameters
c and d are studied in detail. As the order changes, the system exhibits a larger Lyapunov
exponent. Then, some special phenomena, such as state transition and the coexistence of a
chaotic attractor, are found by analyzing the dynamical behavior of the system. In addition,
DSP implementation is also carried out to verify the numerical results. Because of its rich
dynamical behaviors, the system has good applications in neural networks, chaotic secure
communication and image encryption.
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