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Abstract

In this paper, a stochastic SIS epidemic model with nonlinear incidence rate and

double epidemic hypothesis is proposed and analysed. We explain the effects of

stochastic disturbance on disease transmission. To this end, firstly, we investigated the

dynamic properties of the system neglecting stochastic disturbance and obtained

the threshold and the conditions for the extinction and the permanence of two kinds

of epidemic diseases by considering the stability of the equilibria of the deterministic

system. Secondly, we paid prime attention on the threshold dynamics of the

stochastic system and established the conditions for the extinction and the

permanence of two kinds of epidemic diseases. We found that there exists a

significant difference between the threshold of the deterministic system and that of

the stochastic system. Moreover, it has been established that the persistent of

infectious disease analysed by use of deterministic system becomes extinct under the

same conditions due to the stochastic disturbance. This implies that a stochastic

disturbance has significant impact on the spread of infectious diseases and the larger

stochastic disturbance leads to control the epidemic diseases. In order to illustrate the

dynamic difference between the deterministic system and the stochastic system,

there have been given a series of numerical simulations by using different noise

disturbance coefficients.
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1 Introduction

Infectious disease is generally considered as the enemy of human health; in history, the

epidemic of infectious diseases such as smallpox, cholera, AIDS and so on have brought

great disaster to the national economy of a country and people’s livelihood []. In order to

control the spread of infectious diseases, researchers have built a great deal of mathemati-

calmodels to study the dynamical behavior of infectious diseases [–]. Themathematical

models of differential equations play a significant role in describing the dynamic behavior

and have been widely used in biology [–], physics [–], medicine [, ], and so

on [–]. An important mathematical model describing the evolution infectious dis-

eases is called ‘compartmental model’ which was originally established by Kermack and
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Mckendrick to study the spread of the infectious diseases such as Great Plague in London

and the Plague of Mumbai []. In the compartmental system, the population is divided

into three separate compartments, namely, the susceptible compartment S, the infected

compartment I , and the removed compartment R. In the system, the susceptible person

get infected and becomes an infected personmaking contact with an infected person, and

the infected person can be recovered taking treatments, the individuals who reach this

class have permanent immunity for the relevant disease. This type of model is called the

SIR (susceptible-infected-removed)model, which can bemathematically expressed as (see

p. in []):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ṡ(t) = –βS(t)I(t),

İ(t) = βS(t)I(t) – γ I(t),

Ṙ(t) = γ I(t),

()

where S(t), I(t) and R(t) represents the number of susceptible, infected and removed in-

dividuals at time t, respectively, β is the contact rate, γ is the recovery rate, βSI is called

bilinear infection rate. However, some diseases do not conform to the SIR system, such as

influenza, infected individuals do not get permanent immunity for the disease although

they take proper treatments, in this case, there exists a high possibility of recovered in-

dividuals to be re-infected. This type of model is called an SIS model, the mathematical

system can be expressed in the following form (see p. in []):

⎧

⎨

⎩

Ṡ(t) = –dS(t) – βS(t)I(t) + γ I(t),

İ(t) = βS(t)I(t) – (d + γ )I(t),
()

where d is the natural death rate and γ is the recovery rate of the infective individuals.

In systems () and () there has been used the bilinear infection rate, a common nonlin-

ear infection rate. In the previous work, the researchers studied other types of nonlin-

ear infection rates, for example, several epidemic models with saturated infection rates

βSI/( + αS) were discussed by Xu et al. [, ] and Zhang et al. []. A nonlinear in-

cidence rate λSqIp was proposed by Liu et al. [, ], while a nonlinear infection rate

βSIp/( + αSq) was considered by Hethcote et al. []. And a special case p = q =  for

βSIp/( + αSq) was investigated by Ruan and Wang []. The nonlinear infection rate of

the formBeddington-DeAngelis functional response βSI/(+aS+bI) was studied byChen

et al. []. For a more general nonlinear incidence rate, we refer the reader to Wang [].

It is well known that random noise factors play an important role in the transmission

of infectious diseases. Therefore, many scholars [–] have studied the impact of the

stochastic epidemic system, various stochastic perturbation approaches have been intro-

duced into epidemic models and have obtained excellent results. For example, the au-

thors of [–] have considered a stochastic epidemic model with a Markov transform.

A class of epidemic model which shows the effect of the random white noise has been

studied by the researchers in the articles [–]. Further, in [–], the authors studied

a class of stochastic epidemic models, in which the stochastic white noise is assumed to

be proportional to S, I and R. It can be seen following the literature that the authors of the

articles [, ] analysed a stochastic epidemic model with two different kinds of pertur-

bation. A stochastic epidemic model with Lévy jumps has been proposed and studied by
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the researchers [–]; the authors investigated stochastic perturbation around the pos-

itive equilibria of deterministic models (see, for example, [, , –]). Although there

were limited numbers of publications in the recent literature considering time delay and

stochastic behavior, the authors in [] paid attention on the stochastic epidemic model

with time delay.

Recently, Meng et al. [] constructed a nonlinear stochastic SIS epidemic model with

double epidemic hypothesis, in which the saturated incidence rates βiSIi
ai+I

(i = , ) is pro-

posed. Then, based on the previous work, firstly, we propose a deterministic epidemic

model with Beddington-DeAngelis nonlinear incidence rate and double epidemic hypoth-

esis as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Ṡ(t) = A – dS(t) – βS(t)I(t)
+aS(t)+bI(t)

– βS(t)I(t)
+aS(t)+bI(t)

+ rI(t) + rI(t),

İ(t) =
βS(t)I(t)

+aS(t)+bI(t)
– (d + α + r)I(t),

İ(t) =
βS(t)I(t)

+aS(t)+bI(t)
– (d + α + r)I(t),

()

where S(t) denotes the number of the population susceptible to the disease, I(t) and I(t)

are the total population of the infectives with virus VA and VB at time t, respectively. The

recruitment to the susceptible population is to be considered as a constant A, β and β

are the contact rates, d is natural mortality rate, α and α are the rates of disease-related

death, r and r are the treatment cure rates of two diseases, respectively. ai, bi are the

parameters that measure the inhibitory effect. The infection rate βiS(t)Ii(t)
+aiS(t)+biIi(t)

(i = , ) of

susceptible individuals through their contacts with infectious, includes three forms: The

first one is the bilinear incidence rate βS(t)Ii(t) for the case ai = bi = ; the second one is the

saturated incidence rate for the susceptible with the form βS(t)Ii(t)
+aiS(t)

for the case ai > , bi = ;

and the third one is the saturated incidence rate for the infectives with the form βS(t)Ii(t)
+biI(t)

for

the case ai = , bi > . Thus, the nonlinear incidence rates βiS(t)Ii(t)
+aiS(t)+biIi(t)

(i = , ) are more

general and realistic than the saturated incidence rate βS(t)Ii(t)
+aiS(t)

and βS(t)Ii(t)
+biI(t)

, because it takes

into account the inhibition effect of the susceptible and the infectives.

Secondly, we assume that fluctuations in the environment will manifest themselves

mainly as fluctuations in the saturated response rate

βiS(t)Ii(t)

 + aiS(t) + biIi(t)
→

βiS(t)Ii(t)

 + aiS(t) + biIi(t)
+

σiS(t)Ii(t)

 + aiS(t) + biIi(t)
dBi(t),

where B(t) = (B(t),B(t)) is the standard Brownian motion with intensity σi >  (i = , ).

Finally, a stochastic version of system () is obtained as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dS(t) = (A – dS(t) – βS(t)I(t)
+aS(t)+bI(t)

– βS(t)I(t)
+aS(t)+bI(t)

+ rI(t) + rI(t)) dt –
σS(t)I(t)

+aS(t)+bI(t)
dB(t)

– σS(t)I(t)
+aS(t)+bI(t)

dB(t),

dI(t) = ( βS(t)I(t)
+aS(t)+bI(t)

– (d + α + r)I(t)) dt

+ σS(t)I(t)
+aS(t)+bI(t)

dB(t),

dI(t) = ( βS(t)I(t)
+aS(t)+bI(t)

– (d + α + r)I(t)) dt

+ σS(t)I(t)
+aS(t)+bI(t)

dB(t),

()
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where the parameters of system () have the same biological meaning as in system (). The

rest of the paper, we will dedicate to study the deterministic system () and the stochas-

tic system () with nonlinear incidence rate and double epidemic hypothesis. The main

aims of this paper are (a) to establish a set of most suitable conditions such that diseases

to be died out or to be persistent, and (b) to obtain the thresholds (based on the basic

reproductive number) of the above two SIS epidemic models.

2 Preliminaries and lemmas

In this section, we will give some notations, definitions and some lemmas which will be

used for analysing our main results.

Throughout this paper, let (�,F , {F}t≥,P) be a complete probability spacewith a filtra-

tion {Ft}t≥ satisfying the usual conditions (i.e. it is increasing and right continuous while

F contains all P-null sets R
+ = {xi > , i = , , }). The function B(t) denotes a scalar

Brownianmotion defined on the complete probability space�. For an integrable function

f on [,+∞), define 〈f (t)〉 = 
t

∫ t


f (θ ) dθ .

Definition . ([, ])

(i) The diseases I(t) and I(t) are said to be extinctive if limt→+∞ I(t) =  and

limt→+∞ I(t) = .

(ii) The diseases I(t) and I(t) are said to be permanent in mean if there exist two

positive constants λ and λ such that lim inft→+∞〈I(t)〉 ≥ λ and

lim inft→+∞〈I(t)〉 ≥ λ.

Lemma . For any initial value (S(), I(), I()) ∈ R
+, there exists a unique solution

(S(t), I(t), I(t)) to system () on t ≥ , and the solution will remain in R
+ with probability

, namely, (S(t), I(t), I(t)) ∈ R
+ for all t ≥  almost surely.

Proof Since the coefficients of system () are locally Lipschitz continuous for any given

initial value (S(), I(), I()) ∈ R
+, then by the work of Mao et al. [], there is a unique

local solution (S(t), I(t), I(t)) on t ∈ [, τ ), where τ is the explosion time (see []). To

show that this solution is global, we need to show that τ∞ = ∞ almost surely. To do so, let

ε ≥  such that S() > ε, I() > ε, I() > ε. For any positive ε ≤ ε, define the stopping

time as follows:

τε = inf
{

t ∈ [, τe) : S(t)≤ ε or I(t) ≤ ε or I(t)≤ ε
}

,

where throughout this paper, we set inf∅ = ∞ (in the usual notation,∅ denotes the empty

set). Clearly, τε is increasing as ε → . Set τ = limε→ τε , whence τ ≤ τε almost surely.

If we can show τ = ∞ almost surely, then τe = ∞ and (S(t), I(t), I(t)) ∈ R
+ for all t ≥ 

almost surely. In other words, to complete the proof we only need to show that τ = ∞
almost surely.

If this statement is false, then there is a pair of constants T >  and δ ∈ (, ) such that

P{τ ≤ T} > δ. Hence, there is a positive constant ε ≤ ε such that P{τε ≤ T} for any

positive ε ≤ ε.

Besides, for t < τe, we see that

d
(

S(t) + I(t) + I(t)
)

=
[

A – d
(

S(t) + I(t) + I(t)
)

– αI(t) – αI(t)
]

dt

≤
[

A – d
(

S(t) + I(t) + I(t)
)]

dt ()
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and

S(t) + I(t) + I(t) ≤ max

{

S() + I() + I(),
A

d

}

:= C. ()

Define a function

V
(

S(t), I(t), I(t)
)

= – ln
S(t)

C

– ln
I(t)

C

– ln
I(t)

C

.

Obviously, V is positive definite. Using the Itô formula, we get

dV = LV dt +
σ(I(t) – S(t))

 + aS(t) + bI(t)
dB(t) +

σ(I(t) – S(t))

 + aS(t) + bI(t)
dB(t),

where

LV = –
A + rI(t) + rI(t)

S(t)
+ d + α + r + α + r

+
β(I(t) – S(t))

 + aS(t) + bI(t)
+

β(I(t) – S(t))

 + aS(t) + bI(t)

+
σ 
 (I(t)

 + S(t))

( + aS(t) + bI(t))
+

σ 
 (I(t)

 + S(t))

( + aS(t) + bI(t))
.

By using (), we can obtain

LV ≤ d + α + r + α + r +
βI(t)

 + aS(t) + bI(t)
+

βI(t)

 + aS(t) + bI(t)

+
σ 
 (I(t)

 + S(t))

( + aS(t) + bI(t))
+

σ 
 (I(t)

 + S(t))

( + aS(t) + bI(t))

≤ d + α + r + α + r + βC + βC + σ 
 C


 + σ 

C

 := C.

Therefore,

dV ≤ C dt +
σ(I(t) – S(t))

 + aS(t) + bI(t)
dB(t) +

σ(I(t) – S(t))

 + aS(t) + bI(t)
dB(t).

Integrating both sides from  to τε ∧ T , by considering expectations, yields

EV
(

S(τε ∧ T), I(τε ∧ T), I(τε ∧ T)
)

≤ V
(

S(), I(), I()
)

+CT .

Set �ε = {τε ≤ T} for any positive ε ≤ ε and then P(�ε > δ). Note that, for every ω ∈ �ε ,

there is at least one of S(τε ,ω), I(τε ,ω), I(τε ,ω) equal to ε, then

V
(

S(τε), I(τε), I(τε)
)

≥ – ln
ε

C

.
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Consequently,

V
(

S(), I(), I()
)

+CT ≥ E
[

I�εV
(

S(τε ∧ T), I(τε ∧ T), I(τε ∧ T)
)]

= P(�ε)V
(

S(τε), I(τε), I(τε)
)

> –δ ln
ε

C

,

where I�ε is the indicator function of �ε . Letting ε →  leads to the contradiction

∞ > V
(

S(), I(), I()
)

+CT = ∞.

Therefore, we must have τ = ∞ almost surely. The proof of Lemma . is completed. �

Lemma . Denote Ŵ = {(S(t), I(t), I(t)) ∈ R
+ : S(t), I(t), I(t) ≤ A

d
, t ≥ }, then Ŵ is an

invariant set on system () or ().

Proof From system () or the system (), we have

d(S(t) + I(t) + I(t))

dt
≤ A – d

(

S(t) + I(t) + I(t)
)

.

This implies that

S(t) + I(t) + I(t) ≤
A

d
+

(

S() + I() + I() –
A

d

)

e–dt .

Then, if we denote Ŵ = {(S(t), I(t), I(t)) ∈ R
+ : S(t), I(t), I(t) ≤ A

d
, t ≥ }, we have S(t) +

I(t) + I(t) ≤ A
d
. Thus, the region Ŵ is positively invariant. �

By Lemma . and the strong law of large numbers for martingales [], we can obtain

the following lemma.

Lemma . Let (S(t), I(t), I(t)) be a solution of system () with initial value (S(), I(),

I()) ∈ R
+. Then

lim
t→+∞



t

∫ t



σiS(τ )

 + aiS(τ ) + biIi(τ )
dBi(τ ) = , lim

t→+∞



t

∫ t



σiS(τ ) dBi(τ ) = , i = , .

3 Dynamics of deterministic system (3)

In this section, we will qualitatively analyse the dynamics of deterministic system ().

Firstly, to find the equilibria of system (), we consider the following set of equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

f := A – dS(t) – βS(t)I(t)
+aS(t)+bI(t)

– βS(t)I(t)
+aS(t)+bI(t)

+ rI(t) + rI(t) = ,

f :=
βS(t)I(t)

+aS(t)+bI(t)
– (d + α + r)I(t) = ,

f :=
βS(t)I(t)

+aS(t)+bI(t)
– (d + α + r)I(t) = .

()
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By direct calculation, there can be obtained the following equilibria for system ():

E:

(

A

d
, , 

)

,

E:
(

S∗
 , I

∗
 , 

)

with

S∗
 =

(d + α + r)( + bI
∗
 )

β – (d + α + r)a
,

I∗ =
Aβ – (Aa + d)(d + α + r)

d(d + α + r)b + (d + α)(β – (d + α + r)a)
,

E:
(

S∗
 , , I

∗


)

with

S∗
 =

(d + α + r)( + bI
∗
 )

β – (d + α + r)a
,

I∗ =
Aβ – (Aa + d)(d + α + r)

d(d + α + r)b + (d + α)(β – (d + α + r)a)
,

E∗:
(

S∗, I∗∗
 , I∗∗



)

with

S∗ =
(Abb +Cb +Cb)BB

dbbBB +CbB(β – Ba) +CbB(β – Ba)
,

I∗∗
 =

S∗(β – Ba) – B

Bb
,

I∗∗
 =

S∗(β – Ba) – B

Bb
,

where

B = d + α + r, B = d + α + r, C = d + α, C = d + α.

For convenience, let us denote following expressions asQ,Q andQ and the combination

of these three conditions are denoted by a single character H ,

Q = (Aba + db +Ca)(R – ) –Ca(R – ) +C

d

A
(R – R) > ,

Q = (Aba + db +Ca)(R – ) –Ca(R – ) +C

d

A
(R – R) > ,

Q =
(

dbbBB +CbB(β – Ba) +CbB(β – Ba)
)

> .

Therefore, there exist a unique positive equilibrium E∗ for system () if H holds. Thus, if

let

R =
βA

(Aa + d)(d + α + r)
, R =

βA

(Aa + d)(d + α + r)
, ()

then we have the following theorem.

Theorem . For system (), the following conclusions are true:

(i) ifR <  andR < , then both diseases go extinct and system () has a unique

stable ‘diseases-extinction’ equilibrium E;
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(ii) ifR >  andR < , then the disease I goes extinct and system () has a unique

stable equilibrium E;

(iii) ifR <  andR > , then the disease I goes extinct and system () has a unique

stable equilibrium E; and

(iv) when condition H holds, and ifR >  andR > , then E∗ is a unique stable

equilibrium, which implies both diseases of system () are permanent.

Proof Let S, I, I be an arbitrary equilibrium of system (), then the Jacobian matrix as-

sociating to the corresponding equilibrium of system () is

J =

⎛

⎜

⎝

a a a

a a a

a a a

⎞

⎟

⎠
.

Here

a = –d –
β(I + bI


 )

( + aS + bI)
–

β(I + bI

 )

( + aS + bI)
,

a = r –
β(S + aS

)

( + aS + bI)
,

a = r –
β(S + aS

)

( + aS + bI)
,

a =
β(I + bI


 )

( + aS + bI)
,

a =
β(S + aS

)

( + aS + bI)
– (d + α + r),

a = ,

a =
β(I + bI


 )

( + aS + bI)
,

a = ,

a =
β(S + aS

)

( + aS + bI)
– (d + α + r).

The stability of the ‘diseases-extinction’ equilibrium (A
d
, , ) of system () is determined

by the Jacobian matrix

J =

⎛

⎜

⎝

–d r –
βA
d

r –
βA
d

 βS
+aS

– (d + α + r) 

  βS
+aS

– (d + α + r)

⎞

⎟

⎠
,

which has following eigenvalues:

λ = –d < , λ =
βA

Aa + d
– (d + α + r), λ =

βA

Aa + d
– (d + α + r).

According to stability theory, (A
d
, , ) is stable if λ <  and λ < , i.e.,R <  andR < .
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At equilibrium E, the Jacobian matrix can be expressed as

J =

⎛

⎜

⎝

a∗
 a∗

 a∗


a∗
 a∗

 a∗


a∗
 a∗

 a∗


⎞

⎟

⎠
,

where

a∗
 = –d –

β(I
∗
 + bI

∗
 )

( + aS
∗
 + bI

∗
 )


,

a∗
 = r –

β(S
∗
 + aS

∗
 )

( + aS
∗
 + bI

∗
 )


,

a∗
 = r –

βS
∗


( + aS
∗
 )
,

a∗
 = –

β(I
∗
 + bI

∗
 )

( + aS
∗
 + bI

∗
 )


,

a∗
 =

β(S
∗
 + aS

∗
 )

( + aS
∗
 + bI

∗
 )


– (d + α + r),

a∗
 = ,

a∗
 = ,

a∗
 = ,

a∗
 =

βS
∗


 + aS
∗


– (d + α + r),

and one of three eigenvalues of matrix J is given by

λ = a∗
 =

βS
∗


 + aS
∗


– (d + α + r) <
( d
A
S∗
 – )(d + α + r)

 + aS
∗


< ,

where A – dS∗
 = (d + α)I

∗
 >  is used. The other two eigenvalues λ and λ of matrix J

are the roots of the following equation:

λ +
(

a∗
 + a∗



)

λ + a∗
a

∗
 – a∗

a
∗
 = .

Obviously, a∗
 + a∗

 =
β(I

∗
 +bI

∗
 )

(+aS
∗
+bI

∗
 )

 + d +
βbS

∗
 I

∗


(+aS
∗
+bI

∗
 )

 >  and

a∗
a

∗
 – a∗

a
∗


=

(

β(I
∗
 + bI

∗
 )

( + aS
∗
 + bI

∗
 )


+ d

)(

(d + α + r) –
β(S

∗
 + aS

∗
 )

( + aS
∗
 + bI

∗
 )



)

–
β(I

∗
 + bI

∗
 )

( + aS
∗
 + bI

∗
 )



(

r –
β(S

∗
 + aS

∗

)

( + aS
∗
 + bI

∗
 )



)

= (d + α)
β(I

∗
 + bI

∗
 )

( + aS
∗
 + bI

∗
 )


+ d(d + α + r) – d

β(S
∗
 + aS

∗
 )

( + aS
∗
 + bI

∗
 )



=
β(I

∗
 + bI

∗
 )(d + α) + dβS

∗
bI

∗


( + aS
∗
 + bI

∗
 )


> ,

then λ and λ have negative real parts, thus the equilibrium E is stable.
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Similarly, we can show that if R <  and R > , then the equilibrium E of system ()

is stable.

Now, let us prove that the positive equilibrium E∗ is stable asR >  andR > .

Denote the Jacobianmatrix of () at the positive equilibrium E∗ by J = (Jij). Then Jij =
∂fi
∂xj

,

where (xj) = (S, I, I). More precisely,

J∗ =

⎛

⎜

⎝

J J J

J J J

J J J

⎞

⎟

⎠
,

where

J = –
β(I

∗∗
 + bI

∗∗
 )

( + aS∗ + bI
∗∗
 )

–
β(I

∗∗
 + bI

∗∗
 )

( + aS∗ + bI
∗∗
 )

– d

= –J – J – d,

J = r –
β(S

∗ + aS
∗)

( + aS∗ + bI
∗∗
 )

= –
β(S

∗ + aS
∗)

( + aS∗ + bI
∗∗
 )

– (d + α)

= –J – (d + α),

J = r –
β(S

∗ + aS
∗)

( + aS∗ + bI
∗∗
 )

= –
β(S

∗ + aS
∗)

( + aS∗ + bI
∗∗
 )

– (d + α)

= –J – (d + α),

J =
β(I

∗∗
 + bI

∗∗
 )

( + aS∗ + bI
∗∗
 )

,

J =
β(S

∗ + aS
∗)

( + aS∗ + bI
∗∗
 )

– (d + α + r) = –
βbS

∗I∗∗


( + aS∗ + bI
∗∗
 )

,

J = ,

J =
β(I

∗∗
 + bI

∗∗
 )

( + aS∗ + bI
∗∗
 )

,

J = ,

J =
β(S

∗ + aS
∗)

( + aS∗ + bI
∗∗
 )

– (d + α + r) = –
βbS

∗I∗∗


( + aS∗ + bI
∗∗
 )

.

At the positive equilibrium E∗ we have the following characteristic equation:

λ + pλ
 + pλ + p = ,

where

p = –(J + J + J),

p = JJ + JJ + JJ – JJ – JJ,

p = JJJ + JJJ – JJJ.

Then the equilibrium E∗ is stable if pj >  (j = , , ) and pp > p.
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Note that

p = –(J + J + J)

= J – J + J – J + d

=
βI

∗∗
 ( + bI

∗∗
 + bS

∗)

( + aS∗ + bI
∗∗
 )

+
βI

∗∗
 ( + bI

∗∗
 + bS

∗)

( + aS∗ + bI
∗∗
 )

+ d

= p + p + d > ,

p = –(J + d)J – (J + d)J + JJ + (d + α)J + (d + α)J

= JJ – JJ – JJ + J(d + α) – dJ + J(d + α) – dJ

=
ββS

∗I∗∗
 I∗∗



( + aS∗ + bI
∗∗
 )

(

bbS
∗ + b

(

 + bI
∗∗


)

+ b
(

 + bI
∗∗


))

+
βI

∗∗


( + aS∗ + bI
∗∗
 )

((

 + bI
∗∗


)

(d + α) + dbS
∗)

+
βI

∗∗


( + aS∗ + bI
∗∗
 )

((

 + bI
∗∗


)

(d + α) + dbS
∗)

= p + p + p > ,

p = JJJ + JJJ – JJJ

= –
(

J + (d + α)
)

JJ –
(

J + (d + α)
)

JJ + (J + J + d)JJ

= –(d + α)JJ – (d + α)JJ + dJJ

= (d + α)
β(I

∗∗
 + bI

∗∗
 )

( + aS∗ + bI
∗∗
 )

βbS
∗I∗∗



( + aS∗ + bI
∗∗
 )

+ (d + α)
βbS

∗I∗∗


( + aS∗ + bI
∗∗
 )

β(I
∗∗
 + bI

∗∗
 )

( + aS∗ + bI
∗∗
 )

+ d
βbS

∗I∗∗


( + aS∗ + bI
∗∗
 )

βbS
∗I∗∗



( + aS∗ + bI
∗∗
 )

> .

Then we have

pp – p =
[

(p + p)p + pp + pp + dp
]

+ (pp + pp – p)

= p + q.

It is easy to see that p >  whenR >  andR > . Let us now verify that

q = pp + pp – p

=
βI

∗∗
 ( + bI

∗∗
 + bS

∗)

( + aS∗ + bI
∗∗
 )

βI
∗∗


( + aS∗ + bI
∗∗
 )

((

 + bI
∗∗


)

(d + α) + dbS
∗)

+
βI

∗∗
 ( + bI

∗∗
 + bS

∗)

( + aS∗ + bI
∗∗
 )

βI
∗∗


( + aS∗ + bI
∗∗
 )

((

 + bI
∗∗


)

(d + α) + dbS
∗)

– (d + α)
β(I

∗∗
 + bI

∗∗
 )

( + aS∗ + bI
∗∗
 )

βbS
∗I∗∗



( + aS∗ + bI
∗∗
 )
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– (d + α)
βbS

∗I∗∗


( + aS∗ + bI
∗∗
 )

β(I
∗∗
 + bI

∗∗
 )

( + aS∗ + bI
∗∗
 )

– d
βbS

∗I∗∗


( + aS∗ + bI
∗∗
 )

βbS
∗I∗∗



( + aS∗ + bI
∗∗
 )

=
ββI

∗∗
 I∗∗



( + aS∗ + bI
∗∗
 )( + aS∗ + bI

∗∗
 )

((

 + bI
∗∗


)(

d + α + dbI
∗∗


+ dbS
∗ + αbI

∗∗


)

+
(

 + bI
∗∗


)(

d + α + dbI
∗∗
 + αbI

∗∗
 + dbS

∗

+ dbbS
∗)) > ,

which implies that pp > p. Then it can be concluded that E∗ is stable when it exists. The

proof is completed. �

4 Dynamics of stochastic system (4)

4.1 Extinction

In this section, we are going to explore the conditions which lead to the extinction of two

infectious diseases mentioned in the system () under a white noise stochastic distur-

bance.

Theorem . If

σi >
βi√

(d + αi + ri)
, i = , ,

then two infectious diseases of system () go to extinction almost surely.

Proof Let (S(t), I(t), I(t)) be a solution of system () with initial value (S(), I(), I()) ∈
R
+. Applying Itô’s formula to system () results in

d ln Ii(t) =

(

βiS(t)

 + aiS(t) + biIi(t)
– (d + αi + ri) –

σ 
i S

(t)

( + aiS(t) + biIi(t))

)

dt

+
σiS(t)

 + aiS(t) + biIi(t)
dBi(t), i = , . ()

Integrating both sides of () from  to t gives

ln Ii(t) = –
σ 
i



∫ t



(

S(τ )

 + aiS(τ ) + biIi(τ )
–

βi

σ 
i

)

dτ – (d + αi + ri)t

+
β
i

σ 
i

t +Mi(t) + ln Ii()

≤ –(d + αi + ri)t +
β
i

σ 
i

t +Mi(t) + ln Ii(), ()

whereMi(t) =
∫ t


σiS(τ )

+aiS(τ )+biIi(τ )
dBi(τ ), i = , .

Dividing both sides of () by t, we have

ln Ii(t)

t
≤ –

(

d + αi + ri –
β
i

σ 
i

)

+
Mi(t)

t
+

ln Ii()

t
, i = , . ()
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The functionMi(t) (i = , ) is also known as the local continuous martingale withMi() =

, and by Lemma ., we have

lim
t→+∞

Mi(t)

t
= , i = , .

Since σi >
βi√

(d+αi+ri)
for i = , , taking the limit superior of both sides of () leads to

lim sup
t→+∞

ln Ii(t)

t
≤ –

(

d + αi + ri –
β
i

σ 
i

)

< ,

which implies that limt→+∞ Ii(t) = . This completes the proof of Theorem .. �

Remark . Theorem . shows that when σi >
βi√

(d+αi+ri)
, i = , , two infectious diseases

of system () die out almost surely, that is to say, large white noise stochastic disturbance

can lead to the two epidemics to be extinct. Therefore, we always assume that the white

noise stochastic disturbance is not too large in the rest of this paper.

Let

R
∗
 =

βA

(Aa + d)(d + α + r)
–

σ 
 A



(Aa + d)(d + α + r)

=R –
σ 
 A



(Aa + d)(d + α + r)
,

R
∗
 =

βA

(Aa + d)(d + α + r)
–

σ 
A



(Aa + d)(d + α + r)

=R –
σ 
A



(Aa + d)(d + α + r)
,

where R and R are the threshold of the deterministic system () given in (). Then we

have the following results mentioned in the theorem.

Theorem . Let (S(t), I(t), I(t)) be a solution of system () with initial value (S(), I(),

I()) ∈ R
+. Then if

R
∗
i <  and σi ≤

√

βi(Aai + d)

A
, i = , ,

hold, two infectious diseases of system () go to extinction almost surely, i.e.

lim
t→+∞

Ii(t) = , i = , .

Moreover, limt→+∞ S(t) = A
d
, almost surely.
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Proof For both sides of (), integrating from  to t first and dividing by t yields

ln Ii(t)

t
=


t

∫ t



(

βiS(τ )

 + aiS(t) + biIi(t)
– (d + αi + ri)

–
σ 
i S

(τ )

( + aiS(t) + biIi(t))

)

dτ +
Mi(t)

t
+

ln Ii()

t

≤
(

βiA

Aai + d
– (d + αi + ri) –

σ 
i A



(Aai + d)

)

+
Mi(t)

t
+

ln Ii()

t

= (d + αi + ri)

(

βiA

(Aai + d)(d + αi + ri)
–

σ 
i A



(Aai + d)(d + αi + ri)
– 

)

+
Mi(t)

t
+

ln Ii()

t
. ()

Taking the superior limit of both sides of () leads to

lim sup
t→+∞

ln Ii(t)

t
≤ (d + αi + ri)

(

R
∗
i – 

)

< ,

which implies that limt→+∞ Ii(t) = , i = , .

Without loss of generality, we assume that  < Ii(t) < εi (i = , ) for all t ≥ , by the first

equation of system (), we have

dS(t)

dt
≥ A –

(

d + βε + βε + σε
∣

∣Ḃ(t)
∣

∣ + σε
∣

∣Ḃ(t)
∣

∣

)

S(t). ()

As ε →  and ε → , taking the inferior limit of both sides of () yields

lim inf
t→+∞

S(t)≥
A

d
. ()

By the proof of Lemma ., we have

lim sup
t→+∞

S(t)≤
A

d
. ()

From () and (), we have

lim
t→+∞

S(t) =
A

d
,

almost surely. This completes the proof of Theorem .. �

Remark . Theorem . and Theorem . show that two diseases will die out if the

white noise disturbance is sufficiently larger or R∗
i <  and the white noise disturbance

is not large. Note that the expressions for R∗
i for i = ,  which are the threshold values

of system () are strictly different compared with the thresholds Ri of system (), This

implies that the conditions which are needed to have Ii(t) for i = ,  gone in extinction in

deterministic system () are stronger than in the corresponding stochastic system ().
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4.2 Permanence in mean

Theorem. Let (S(t), I(t), I(t)) be the solution of system ()with initial value (S(), I(),

I()) ∈ Ŵ, then we have the following.

(i) IfR∗
 > ,R∗

 <  and σ ≤
√

β(Aa+d)
A

, then the disease I goes extinct and the

disease I is permanent in mean,moreover, I satisfies

lim inf
t→+∞

〈

I(t)
〉

≥
(Aa + d)(d + α + r)

β(d + α) + bd(d + α + r)

(

R
∗
 – 

)

.

(ii) IfR∗
 > ,R∗

 <  and σ ≤
√

β(Aa+d)
A

, then the disease I goes extinct and the disease

I is permanent in mean,moreover, I satisfies

lim inf
t→+∞

〈

I(t)
〉

≥
(Aa + d)(d + α + r)

β(d + α) + bd(d + α + r)

(

R
∗
 – 

)

.

(iii) IfR∗
 >  andR∗

 > , then two infectious diseases I and I are permanent in mean,

moreover, I and I satisfy

lim inf
t→+∞

〈

I(t) + I(t)
〉

≥


�max


∑

i=

ai(d + αi + ri)
(

R
∗
i – 

)

,

where

�max =


∑

i=

[

β + β

d
(d + αi) + bi(d + αi + ri)

]

.

Proof Part (i). ByTheorem., sinceR∗
 <  andσ ≤

√

β(Aa+d)
A

,wehave limt→+∞ I(t) = .

SinceR∗
 > , for ε small enough, such that  < I(t) < ε for all t large enough we have

β(A – (d + α)ε)

(Aa + d)(d + α + r)
–

σ 
 A



(Aa + d)(d + α + r)
> .

Integrating from  to t and dividing by t >  on both sides of system () yields

�(t) �
S(t) – S()

t
+
I(t) – I()

t
+
I(t) – I()

t

= A – d
〈

S(t)
〉

– (d + α)
〈

I(t)
〉

– (d + α)
〈

I(t)
〉

≥ A – d
〈

S(t)
〉

– (d + α)
〈

I(t)
〉

– (d + α)ε,

then one can get

〈

S(t)
〉

≥
A – (d + α)ε

d
–
d + α

d

〈

I(t)
〉

–
�(t)

d
.
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Applying Itô’s formula gives

d

((

 + a
A

d

)

ln I(t) + bI(t)

)

=

[

( + a
A
d
)βS(t)

 + aS(t) + bI(t)
–

(

 + a
A

d

)

(d + α + r) –
( + a

A
d
)σ 

 S
(t)

 + aS(t) + bI(t)

]

dt

+ b

[

βS(t)I(t)

 + aS(t) + bI(t)
– (d + α + r)I(t)

]

dt

+
( + a

A
d
)σS(t)dB(t)

 + aS(t) + bI(t)
+
bσS(t)I(t)dB(t)

 + aS(t) + bI(t)

≥
[

( + a
A
d
)βS(t)

 + a
A
d
+ bI(t)

–

(

 + a
A

d

)

(d + α + r) –
( + a

A
d
)σ 

 S
(t)

 + aS(t) + bI(t)

]

dt

+ b

[

βS(t)I(t)

 + a
A
d
+ bI(t)

– (d + α + r)I(t)

]

dt

+
( + a

A
d
)σS(t)dB(t)

 + a
A
d
+ bI(t)

+
bσS(t)I(t)dB(t)

 + a
A
d
+ bI(t)

≥
[

βS(t) –

(

 + a
A

d

)

(d + α + r) – b(d + α + r)I(t) –
σ 
 (

A
d
)

( + a
A
d
)

]

dt

+ σS(t) dB(t). ()

Integrating from  to t and dividing by t >  on both sides of () yields

(

 + a
A

d

)

(ln I(t) – ln I())

t
+ b

I(t) – I()

t

≥ β

〈

S(t)
〉

–

(

 + a
A

d

)

(d + α + r) – b(d + α + r)
〈

I(t)
〉

–
σ 
 (

A
d
)

( + a
A
d
)
+
M(t)

t

≥ β

[

A – (d + α)ε

d
–
d + α

d

〈

I(t)
〉

–
�(t)

d

]

–

(

 + a
A

d

)

(d + α + r)

– b(d + α + r)
〈

I(t)
〉

–
σ 
 (

A
d
)

( + a
A
d
)
+
M(t)

t

=

(

 + a
A

d

)

(d + α + r)

[

β(A – (d + α)ε)

d( + a
A
d
)(d + α + r)

–
σ 
 (

A
d
)

( + a
A
d
)(d + α + r)

– 

]

–

[

β(d + α)

d
+ b(d + α + r)

]

〈

I(t)
〉

–
β�(t)

d
+
M(t)

t
, ()
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whereM(t) =
∫ t


σS(τ ) dB(τ ). The inequality () can be rewritten as

〈

I(t)
〉

≥


�

[(

 + a
A

d

)

(d + α + r)

(

β(A – (d + α)ε)

d( + a
A
d
)(d + α + r)

–
σ 
 (

A
d
)

( + a
A
d
)(d + α + r)

– 

)

–
β�(t)

d
+
M(t)

t

–

(

 + a
A

d

)

(ln I(t) – ln I())

t
– b

I(t) – I()

t

]

≥

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩


�
[( + a

A
d
)(d + α + r)(

β(A–(d+α)ε)

d(+a
A
d
)(d+α+r)

–
σ
 (

A
d
)

(+a
A
d
)(d+α+r)

– ) – β�(t)
d

+ M(t)
t

+ ( + a
A
d
) ln I()

t
– b

I(t)–I()
t

],  < I(t) < ,


�
[a(d + α + r)(

β(A–(d+α)ε)

d(+a
A
d
)(d+α+r)

–
σ
 (

A
d
)

(+a
A
d
)(d+α+r)

– ) – β�(t)
d

+ M(t)
t

– ( + a
A
d
) (ln I(t)–ln I())

t
– b

I(t)–I()
t

],  ≤ I(t),

()

where � = β(d+α)
d

+ b(d + α + r).

By Lemma ., we get limt→+∞
M(t)
t

= . According to Lemma ., one can see that

I(t) ≤ A
d
. Thus, one has limt→+∞

I(t)
t

= , limt→+∞
ln I(t)

t
=  as I(t) ≥  and

limt→+∞ �(t) = .

Taking the inferior limit of both sides of () yields

lim inf
t→+∞

〈

I(t)
〉

≥
( + a

A
d
)(d + α + r)

�

[

β(A – (d + α)ε)

(d + aA)(d + α + r)

–
σ 
 A



(d + aA)(d + α + r)
– 

]

> .

Letting ε → , we have

lim inf
t→+∞

〈

I(t)
〉

≥
d( + a

A
d
)(d + α + r)

β(d + α) + bd(d + α + r)

(

R
∗
 – 

)

.

Similarly, by using arguments as in the part (i), we can establish the results given in part

(ii), and we omit it here.

Part (iii). Notice that

〈

S(t)
〉

=
A

d
–
d + α

d

〈

I(t)
〉

–
d + α

d

〈

I(t)
〉

–
�(t)

d
. ()

Define

V (t) = ln
[

I
(+a

A
d
)

 (t)I
(+a

A
d
)

 (t)
]

+
[

bI(t) + bI(t)
]

.
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Therefore, V (t) is bounded. Then we have

D+V (t) =


∑

i=

[

( + ai
A
d
)βiS(t)

 + aiS(t) + biIi(t)
–

(

 + ai
A

d

)

(d + αi + ri)

–
( + ai

A
d
)σ 

i S
(t)

( + aiS(t) + biIi(t))

]

dt +


∑

i=

( + ai
A
d
)σiS(t) dBi(t)

 + aiS(t) + biIi(t)

+


∑

i=

bi

[

βiS(t)Ii(t)

 + aiS(t) + biIi(t)
– (d + αi + ri)Ii(t)

]

dt

+


∑

i=

biσiS(t)Ii(t) dBi(t)

 + aiS(t) + biIi(t)

≥

∑

i=

[

( + ai
A
d
)βiS(t)

 + ai
A
d
+ biIi(t)

–

(

 + ai
A

d

)

(d + αi + ri)

–
( + ai

A
d
)σ 

i S
(t)

( + aiS(t) + biIi(t))

]

dt +


∑

i=

( + ai
A
d
)σiS(t) dBi(t)

 + ai
A
d
+ biIi(t)

+


∑

i=

bi

[

βiS(t)Ii(t)

 + ai
A
d
+ biIi(t)
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Figure 1 Time evolutions of the deterministic SIS systemwith parameters A = 1, d = 0.1, β1 = 1.2,

β2 = 1.5, a1 = 1, a2 = 1.5, b1 = 2, b2 = 1, α1 = 0.2, α2 = 0.4. (a) Time series for S(t), I1(t), I2(t) with parameters

r1 = 0.9, r2 = 0.9, R1 = 0.9091, R2 = 0.6696. (b) Time series for S(t), I1(t), I2(t) with parameters r1 = 0.3, r2 = 0.9,

R1 = 1.8182, R2 = 0.6696. (c) Time series for S(t), I1(t), I2(t) with parameters r1 = 0.9, r2 = 0.3, R1 = 0.9091,

R2 = 1.1719. (d) Time series for S(t), I1(t), I2(t) with parameters r1 = 0.3, r2 = 0.3, R1 = 1.8182, R2 = 1.1719.

–
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Figure 2 Dynamic behaviour comparisons of S(t), I1(t), I2(t) in the deterministic and the stochastic SIS

systemwith parameters A = 1, d = 0.1, β1 = 1.2, β2 = 1.5, a1 = 1, a2 = 1.5, b1 = 2, b2 = 1, α1 = 0.2,

α2 = 0.4, r1 = 0.3, r2 = 0.3, σ1 = 1.2, σ2 = 1.2. (a) Time series for S(t) and 〈S(t)〉. (b) Time series for I1(t) and

〈I1(t)〉. (c) Time series for I2(t) and 〈I2(t)〉.

By Lemma ., we have limt→+∞
Mi(t)
t

= , for i = , . According to Lemma ., one can

see that limt→+∞ �(t) =  and limt→+∞
V (t)
t

= .

Taking the inferior limit of both sides of () yields

lim inf
t→+∞

〈

I(t) + I(t)
〉

≥


�max


∑

i=

(

 + ai
A

d

)

(d + αi + ri)
(

R∗
i – 

)

> .

This completes the proof of Theorem .. �

Remark . Theorem . shows that both diseases will prevail if the white noise distur-

bances are small enough such that R∗
i > , conversely, if the white noise disturbances are

large enough, then both diseases will become extinct. This implies that the stochastic dis-

turbance may cause epidemic diseases to die out.
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Figure 3 Dynamic behaviour comparisons of S(t), I1(t), I2(t) in the deterministic and the stochastic SIS

systemwith parameters A = 1, d = 0.1, β1 = 1.2, β2 = 1.5, a1 = 1, a2 = 1.5, b1 = 2, b2 = 1, α1 = 0.2,

α2 = 0.4, r1 = 0.3, r2 = 0.3, σ1 = 1.1, σ2 = 1.1. (a) Time series for S(t) and 〈S(t)〉. (b) Time series for I1(t) and

〈I1(t)〉. (c) Time series for I2(t) and 〈I2(t)〉.

5 Conclusion and simulations

This paper proposed two SIS epidemicmodels with Beddington-DeAngelis incidence rate

and double epidemic hypothesis from the point of view of deterministic and stochastic as-

pect. The threshold dynamics of both two systemswere investigated and the conditions for

extinction and permanence of both epidemic diseases were obtained. From Theorems .

and ., it can be seen that there is a significant difference between the thresholds of

the stochastic system and the deterministic system, from which it can be concluded that

the conditions for two epidemic diseases to go to extinction in the stochastic system are

weaker than those of the deterministic system.

To illustrate the dynamic difference between the deterministic system and the stochas-

tic system, we next carry out some numerical simulations of these cases with respect to

different noise disturbance intensity using the Euler Maruyama (EM) method [, ].
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Figure 4 Dynamic behaviour comparisons of S(t), I1(t), I2(t) in the deterministic and the stochastic SIS

systemwith parameters A = 1, d = 0.1, β1 = 1.2, β2 = 1.5, a1 = 1, a2 = 1.5, b1 = 2, b2 = 1, α1 = 0.2,

α2 = 0.4, r1 = 0.3, r2 = 0.3, σ1 = 0.2, σ2 = 1.1. (a) Time series for S(t) and 〈S(t)〉. (b) Time series for I1(t) and

〈I1(t)〉. (c) Time series for I2(t) and 〈I2(t)〉.

Choose the parameters in system () and system () as follows:

A = , d = ., β = .,

β = ., a = , a = .,

b = , b = , α = .,

α = ., r = r = ..

A simple computation shows that R = ., R = ., then system () has a stable

infection-free equilibrium E(, , ), which implies that the two diseases of system ()

will die out ultimately (see Figure (a)). If we change r = . to r = ., in this case, by

simple calculation it can be found that R = ., R = ., the infection-free equi-

librium E(., ., ) of system () is stable, which implies that the disease I of system
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Figure 5 Dynamic behaviour comparisons of S(t), I1(t), I2(t) in the deterministic and the stochastic SIS

systemwith parameters A = 1, d = 0.1, β1 = 1.2, β2 = 1.5, a1 = 1, a2 = 1.5, b1 = 2, b2 = 1, α1 = 0.2,

α2 = 0.4, r1 = 0.3, r2 = 0.3, σ1 = 1.1, σ2 = 0.2. (a) Time series for S(t) and 〈S(t)〉. (b) Time series for I1(t) and

〈I1(t)〉. (c) Time series for I2(t) and 〈I2(t)〉.

() will die out ultimately and the disease I of system () will be persistent ultimately

(see Figure (b)). If we update r = . to r = ., in this case, R = ., R = .,

the infection-free equilibrium E(., , .) of system () is stable, which implies

the disease I of system () will die out ultimately and the disease I of system () will be

persistent ultimately (see Figure (c)). If we change r = ., r = . to r = ., r = ., re-

spectively, in this case, R = ., R = ., then () has a stable infection equilibrium

E∗(., ., .), which implies that two diseases of model () will be persistent

ultimately (see Figure (d)).

Next, we consider the effect of stochastic white noise based on the persistent system. Let

us choose both σ and σ as ., in this case, σ and σ satisfy σi >
βi√

(d+αi+ri)
, i = , . By

Theorem ., two diseases of system () will die out ultimately under a large white noise

disturbance (see Figure (b) and Figure (c)). If we reduce both intensities of noise σ, σ

to ., in this case, by simple calculation it can be found that R∗
 = ., R∗

 = .,
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Figure 6 Dynamic behaviour comparisons of S(t), I1(t), I2(t) in the deterministic and the stochastic SIS

systemwith parameters A = 1, d = 0.1, β1 = 1.2, β2 = 1.5, a1 = 1, a2 = 1.5, b1 = 2, b2 = 1, α1 = 0.2,

α2 = 0.4, r1 = 0.3, r2 = 0.3, σ1 = 0.2, σ2 = 0.2. (a) Time series for S(t) and 〈S(t)〉. (b) Time series for I1(t) and

〈I1(t)〉. (c) Time series for I2(t) and 〈I2(t)〉.

σ and σ satisfy σi ≤
√

βi(Aai+d)
A

, where i = , . Then from Theorem ., two diseases of

system () will die out ultimately (see Figure (b) and Figure (c)).

If we reduce the intensity of noise σ to . and keep the other system parameters the

same as that in Figure , by computation, we have R∗
 = ., R∗

 = ., and σ satisfy

σ ≤
√

β(Aa+d)
A

. Then from Theorem ., the disease I(t) of system () will die out ulti-

mately (see Figure (c)) and the disease I(t) of system () will be persistent ultimately (see

Figure (b)). On the contrary, if we keep the intensity of noise of σ = . and reduce the

intensity of noise σ to ., we can conclude that the disease I(t) of system () will die out

ultimately (see Figure (b)) and the disease I(t) of system () will be persistent ultimately

(see Figure (c)). Finally, if we respectively reduce the intensities of noise σ and σ at the

same time, from . to ., by computation, we have R∗
 = ., R∗

 = ., then from

Theorem ., the two diseases of system () will be persistent ultimately (see Figure (b)

and Figure (c)).
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