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Abstract

The Eriksen task is a classical paradigm that explores the effects of competing sensory inputs on

response tendencies, and the nature of selective attention in controlling these processes. In this task,

conflicting flanker stimuli interfere with the processing of a central target, especially on short

reaction-time trials. This task has been modeled by neural networks and more recently by a normative

Bayesian account. Here, we analyze the dynamics of the Bayesian models, which are nonlinear,

coupled discrete-time dynamical systems, by considering simplified, approximate systems that are

linear and decoupled. Analytical solutions of these allow us to describe how posterior probabilities

and psychometric functions depend upon model parameters. We compare our results with numerical

simulations of the original models and derive fits to experimental data, showing that agreements are

rather good. We also investigate continuum limits of these simplified dynamical systems, and

demonstrate that Bayesian updating is closely related to a drift-diffusion process, whose

implementation in neural network models has been extensively studied. This provides insight on how

neural substrates can implement Bayesian computations.
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1 Introduction

The psychological [Laming, 1968, Ratcliff, 1978, Ratcliff et al., 1999] and neural bases of

decision making [Platt and Glimcher, 2001, Schall, 2001, Gold and Shadlen, 2001] have been

widely studied, particularly in constrained situations such as the two-alternative forced-choice

(2AFC) task. In 2AFC, subjects are required to discriminate a stimulus and to give one of two

permissible responses. The sequential probability ratio test (SPRT) is optimal for 2AFC tasks,

whether the objective is to minimize the mean reaction time (RT) for a desired accuracy level

[Wald and Wolfowitz, 1948], or to minimize a linear cost function in accuracy and detection

delay under the Bayesian formulation [Liu and Blostein, 1992]. The SPRT compares the

relative likelihoods of noisy inputs given two possible hypotheses, and reaches a decision when

the cumulative evidence for one of them exceeds a fixed threshold. Performance on 2AFC

tasks seems broadly consistent with the SPRT [Ratcliff and Smith, 2004], and there is evidence
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that competing neural populations sub-serving decision-making may implement a strategy

close to the SPRT [Gold and Shadlen, 2002, Schall, 2001, Gold and Shadlen, 2001, Shadlen

and Newsome, 2001, Roitman and Shadlen, 2002] and [Schall et al., 2002]. Moreover, the

continuum limit of SPRT is an analytically-tractable drift-diffusion model (DDM) [Holmes et

al., 2005], which yields explicit expressions for error rates and reaction times that can be used

to investigate reward-rate maximization in 2AFC [Bogacz et al., 2006], and it has been shown

that various neural network models of decision-making [Cohen et al., 1990, Cohen et al.,

1992, Usher and McClelland, 2001] can be reduced to variants of the DDM [Bogacz et al.,

2006].

The Eriksen flanker task [Eriksen and Eriksen, 1974] is an extension of the classical 2AFC

task in which the decision is complicated by potentially-conflicting distractor inputs. Subjects

are required to discriminate a central target stimulus (e.g. the letter H or S) flanked by

distractors. Flankers can either be compatible with the central target (e.g. HHHHH) or

incompatible (e.g. HHSHH). Subjects display a compatibility effect, being typically slower and

less accurate on incompatible than compatible trials [Eriksen and Eriksen, 1974]. Furthermore,

subjects perform at worse than chance level for short RT’s for incompatible trials only. This

“dip” in accuracy implies that flanker interference is particularly potent shortly after stimulus

presentation. Fig. 1 shows data from two instances of a deadlined Eriksen task. While specific

details of reaction time distributions and relationships between accuracy and reaction time

differ between the two studies, the basic compatibility effect and the dip in accuracy on

incompatible trials are prominent in both.

Since the Eriksen task extends the standard 2AFC task, we suspect that optimal policy in this

case is similar to the SPRT. In this vein, [Yu et al., 2007] modeled the computations underlying

the Eriksen task as iterative Bayesian updating, with the decision being made (and the trial

terminated) when the cumulative posterior for one of the two possible target stimuli exceeds

a fixed threshold. It was also proposed that the apparent suboptimality in performance can be

explained by either an incorrect prior on the relative frequency of compatible and incompatible

trials (compatibility bias model), or by inherent spatial overlap of visual processing neurons

(spatial uncertainty model) [Yu et al., 2007]. Here we reduce the Bayesian models to simpler

dynamical systems and study them analytically and numerically. While the simpler models

closely approximate the original ones in dynamics and perfomance, their analytical tractability

yields explicit expressions for the dependence of inferential and psychometric quantities on

model parameters. We discuss the relationship between exact Bayesian inference and drift-

diffusion processes, emphasising the link that this establishes between Bayesian updating and

the neural substrates that may execute it. Our analysis also reveals the formal similarity of

computations underlying the compatibility bias and spatial uncertainty models, which were

motivated by disparate experimental literature and were formulated differently within the

Bayesian framework.

The paper is organized as follows. After reviewing the Bayesian inference models in Section

2, in Section 3 we derive and analyze the simplified models: uncoupled, linear discrete

dynamical systems. From these we derive explicit criteria on parameters that predict the dip

in accuracy for incompatible trials, and we compare accuracies and RT distributions generated

by the full and simplified models. In Section 4 we show that the DDM is a continuum limit of

the simplified models, and from this derive analytical predictions for mean posterior

probabilities. We also compute accuracy vs. time curves and reaction time distributions under

an approximation that violates the first passage threshold crossing criterion adopted in [Yu et

al., 2007], but permits explicit analysis, and we provide direct comparisons between behavioral

data and predicitions of the full and approximate compatibility bias models. Section 5 contains

a summary and discussion.

Liu et al. Page 2

Neural Comput. Author manuscript; available in PMC 2009 September 23.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



2 A Bayesian framework for the Eriksen task

We briefly review the compatibility bias and spatial uncertainty inference models for the

Eriksen task proposed by [Yu et al., 2007]. The generative process common to both models

consists of the prior probability distribution over trial type (M = 1 if compatible, M = 2 if

incompatible), and the stochastic relationship between the trial type M and the stimuli s, and

between the stimuli and the noisy inputs into the visual system x. For simplicity, it was assumed

that there are three stimuli, s ≜ {s1, s2, s3}, for “left”, “center”, “right”, respectively; and each

one of three neural units or populations x ≜ {x1, x2, x3} responds to one stimulus. Here the

pairs of left and right flankers are combined in s1 and s3 respectively, and we assume that all

three inputs contain independent noise, both among the units/populations, and over time. Using

integers si = ±1 to denote S and H, and M = 1, 2 to denote compatible and incompatible trials
respectively, we may formally describe the process as:

(1)

(2)

(3)

(4)

(5)

For the compatibility bias model, the prior probability β for compatible trials is assumed to be
higher than the “true” value 0.5, and the inputs are taken to be normally distributed as a function
of their respective stimuli and independent of neighboring stimuli:

(6)

i.e., at each step t the xi(t) are independently drawn from normal distributions with means si

and standard deviations σ. We denote this procedure below by .

In the spatial uncertainty model, the correct prior β = 0.5 is assumed, but the inputs are corrupted
by their neighbors according to:

(7)
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(8)

where a1, σ1 denote influence from the primary stimulus, and a2 and σ2 that from the flankers.

Define  for the posterior probabilities, and  for the
likelihood functions, where i ∈ {-1, +1}, j ∈ {1, 2}. Based on Bayes’ Rule, this yields our
inference model: four discrete-time dynamical equations, coupled through normalization:

(9)

with initial conditions

(10)

To make a decision based on the accumulating inputs, we compare the cumulative marginal
posterior probability,

(11)

against a decision threshold q, a policy closely related to the SPRT [Wald, 1947]. As soon as
P(s2=i|Xt) exceeds q for i=-1 or i=+1, the system chooses the corresponding response (H or S)
and terminates observations for the current trial. The computation for the marginal posterior

probability over compatibility is analogous: .

Examples of accuracies and RTs thus predicted are shown in Fig. 4, below. For these and other
calculations, unless otherwise noted, we adopt the parameter values used in [Yu et al., 2007]:
σ = 9 for the compatibility bias model and σ1 = 7, σ2 = 5, a1 = 0.7, a2 = 0.3 for the spatial
uncertainty model, and q = 0.9 for both.

3 Linearization and parametric dependence

It was shown in [Yu et al., 2007] that certain choices of parameters allow both the compatibility
bias and spatial uncertainty models to capture key properties of the behavioral data in Fig. 1
(see Fig. 4 below). Here we derive general constraints on the parameters in each model that
allow them to reproduce the behavioral data: σ for the compatibility bias model, a1, a2, σ1, and
σ2 for the spatial uncertainty model; and n, the number of distractors. While we cannot analyze
the complex relationship between accuracy and reaction time directly, we wish to at least
constrain parameters so that the mean posterior probability for s2=1 (the correct answer) dips
below that for s2=-1 after one or a few timesteps of observations. Although the relative
probability of a correct response at time t depends not just on the mean but also on higher-order
moments, such an analysis would illuminate the magnitude and range of the effective
parameters. Unfortunately, even this partial analysis is difficult for the original Bayesian
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model, as P(s2|Xt) involves the summation of two exponential functions of the inputs, as in
Eq. (11), and there is no obvious way to derive the expectation of P(s2|Xt) as an explicit function
of the parameters that specify the generation of the inputs x.

Due to such computational intractability, we instead work with a linearized approximation to
the exact posterior update rule of Eq. (9). We will motivate and describe the approximations
for the two Bayesian models, and demonstrate via simulations that the parametric constraints
derived from this approximate scheme provide useful bounds for the original Bayesian models.

3.1 The compatibility bias model

Given our assumption of independent, normally-distributed inputs (Eqs. (4) and (6)), we have

(12)

where each si can take on the value ±1. We now derive an approximation to Eq. (12) that is
linear in the xi(t)’s. Defining

the likelihood function for s2=1 and M=1 (i.e. s1=s2=s3=1) can be approximated as follows:

(13)

The first step uses the fact that quadratic and constant terms cancel in the ratios, the next two
rely on Taylor series expansion of the exponential terms and the binomial series approximation:

and the approximation is justified by the fact that xk(t) ∈ [-1-2σ, 1+ 2σ] with > 99% probability,
if we can assume that σ ≫ 1. This latter assumption is reasonable since we are modeling the
time-scale at which on average many time steps of inputs are needed to perform the
discrimination.

Generalizing the approximation (13) to the other three cases and using the four resulting
expressions in Eq. (9), we obtain the following approximate update rules:
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(14)

in which the denominator

(15)

is the sum of all four numerators and normalizes the posterior distribution, and the common
factors ϴ1ϴ2ϴ3/8 in the numerators and denominator of Eq. (14) have canceled. Initial
conditions are as in Eq. (10). Since this simplified system is still nonlinearly coupled through

the denominator Dt, we work with the joint probability  instead. The
two are related as follows:

(16)

The joint probability  obeys the uncoupled update rule:

(17)

where the sign preceding each xi depends on i and j as in Eq. (14). As is apparent in Eq. (16),

 can be obtained by normalizing  on timestep t, but  cannot be used directly in the
perceptual decision process, since a fixed threshold in the posterior probability space has no

equivalent fixed value in the joint posterior space. However,  is sufficient for deriving bounds
on the generative parameters that on average make the posterior probability for s2=1 dip below
that for s2=-1 after one time step, when the inputs are generated from the incompatible stimulus
array: s= (-1, 1, -1) (the analysis for s=(1, -1, 1) is analogous). Specifically, since P(s2, M|Xt)

=p(s2, M, Xt)/p(Xt), the condition  is equivalent to

. We therefore require

(18)

since the mean values of x1, x2, and x3 are -1, 1,and -1, respectively, and the compatible terms
are weighted by the compatibility prior bias β (and the incompatible ones weighted by 1-β).

Hence β > 3/4 is the necessary and sufficient condition for the average posterior probabilty for
s2=1 to dip below that for s2=-1 after one observation, when the true stimuli are the incompatible
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array (-1, 1, -1). More generally, we can show that the constraint is β > (n + 1)/(2n), where n
is the total number of flankers. This makes intuitive sense, for it suggests that the dip is more
prominent or more likely to happen when the subject’s prior compatibility bias is stronger and/
or the number of flankers is larger. Indeed, there is behavioral data suggesting that flanker
interference effects are stronger when there is as a lower frequency of incompatible trials
[Gratton et al., 1992].

These analytical constraints only guarantee a dip in the posterior probability. As shown in
Figure 2 (left), for a particular set of model parameters, the mean accuracy in compatible trials
terminating within 20 timesteps steadily decreases as a function of β, and it drops below .5,
indicating the presence of a dip, for all values of β > 0.82: somewhat higher than β = 0.75, the
lower bound of inequality (18) that results in a dip in posterior probability. A major factor
underlying the discrepancy between the two constraints is that we only considered the mean
of the posterior probability and not the full distribution. The mean accuracy depends not only
on the mean posterior value, but also on higher moments. If the distribution were symmetric
about its mean, then the dip in the mean posterior would directly translate into a dip in accuracy,
but as we will show in Section 4, the distribution of the posterior trajectories is strongly skewed,
and the interaction of that skewness with the decision threshold also plays a role in determining
the presence of the dip in accuracy versus reaction time.

A second reason for the discrepancy is that the theoretical bounds are for the dip to occur in
the posterior after one time step, whereas in the numerical simlations, due to the infrequency
of responses at very short RT’s, all trials that terminate within the first 20 timesteps were used
to estimate accuracy. If the temporal extent of the dip in the posterior distribution is very small
(which is likely in boundary cases), then conditional accuracy may not fall below 0.5 when
averaged over 20 timesteps. The numerically-obtained constraints are therefore likely to be
more conservative than the analytical approximations.

3.2 The spatial uncertainty model

Derivation of iterated maps for the spatial uncertainty model are more tedious than those of
(14) due to the extra “cross-talk” links in the generative model, but they follow from similar

reasoning. Defining , forming the triple product and dividing
through by

(19)

we obtain the approximate update rule:

(20)

where  is again the sum of the numerators and the parameters Ai are
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(21)

Since the prior distribution is uniform, the initial conditions for (20) are

(22)

Again, the constraint

(23)

is satisfied if A4(a1 - 2a2) < 2A3(a1 - a2), or equivalently, if the ratio of means, a1/a2, lies in
the interval

(24)

where  is the ratio of the variances. Intuitively, if the ratio a1/a2 is too large, the
flankers have negligible effects; if it is too small, the inputs lose their spatial selectivity
altogether. More generally, if there are n flankers, the range is

We now compare these constraints with numerical simulations of the full inference model for
the specific noise parameters (σ1=7, σ2=5). We simulated the full model using a range of values
of a1 and a2 (with their sum held at 1), and obtained accuracy of all responses falling within
the first 20 timesteps as a function of a1/a2. As can be seen in Figure 2 (right), the accuracy in
this short-RT bin is less than .5 when a1/a2 falls within (0.70, 3.55), a somewhat more stringent
condition than the analytically derived (approximate) interval (0.67, 3.98).

3.3 Evaluating the cost of linearization

Direct simulations of the linear approximation can be compared with those of the original
inference model. Figure 3 shows the results for the compatibility bias model for a particular
setting of parameters (σ=9), comparing the full inference model with the simplified iteration
of (17). The same sequence of noisy observations xi(t) was used for both processes and in
computing the value of P(s2 = 1|Xt) for the latter at each timestep t, normalization was applied
only at that step. The agreement is remarkably good, validating our linear approximations to
the products of probabilites (5-4) developed in Section 3. The quality of the linear
approximation for the spatial uncertainty model is similarly good (details not shown).

We can also simulate perceptual discrimination based on the linearized evidence accumulation
process, using the first passage criterion for threshold crossing appropriate for free response
conditions. As in [Yu et al., 2007], we adopt the decision threshold q = 0.9 for both the
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compatibility bias and the spatial uncertainty model. The time span, taken here as 200 steps,
is divided into ten bins and sample paths for the full model (9) and the approximate decoupled
system (17) and its analogue for spatial uncertainty are computed. The decoupled results are

then normalized by dividing by the sum  at each t in the current bin (normalization is
not applied for steps 1 through t - 1). The same (unit) step size is used in all cases. Responses
are logged when the first of the probabilities P(s2 = +1|Xt) = P(s2 = +1, M = 1|Xt) + P(s2 = +1,
M = 2|Xt) or P(s2=-1|Xt) = P(s2=-1, M = 1|Xt) + P(s2=-1, M = 2|Xt) crosses q. After collecting
sufficiently many paths (2000 in this case), response time histograms are formed and the
fraction of correct responses in each bin summed to yield accuracy vs. time curves.

Figure 4 illustrates the results of such simulations for the compatibility and spatial uncertainty
models. Accuracy vs. reaction time, and empirical distributions of reaction time are shown for
both the full and approximate models. The approximate systems reproduce the characteristic
dip in accuracy for fast incompatible trials for both models, and the accuracy curves and
reaction time distributions predicted by the approximate theory agree well with those of the
full inference models. Note that the use of the first passage criterion for response produces
reaction time distributions that agree with the exact model in details of their shapes: a rise at
short reactions times to a peak, followed by a long tail. The distributions for incompatible trials
are also flatter and shifted rightward compared to those for compatible trials, as in the data of
Figure 1.

4 A continuum limit

The key difficulty in working with the discrete dynamical systems (14) and (20) lies in the

nonlinear coupling of the posteriors  through the denominators Dt and . It can be proved
that individual sample paths generated with the same noise inputs are identical whether
computed by iteration of Eqs. (14) and (20) or by the analogous uncoupled systems Eq. (17),
with posteriors normalised only at the last time step; cf. Eq. (16). (In computing the values for
the approximate model (17) at each step t for Figure 3, normalization was applied only at that
step, but not at steps 1 through t - 1, while the full iteration (9) is normalised at every step.)
However, it does not follow that we may average over many realizations of the unnormalized
process, and then normalize: as discussed further in Section 4.3, since these operations do not
commute. Nonetheless, we can decouple the dynamics by replacing the normalization constant
Dt at each time step with its expectation 〈Dt〉, which does not depend on the inputs, and replacing
that in turn by a constant. We then take continuum limits of the resulting decoupled linear
systems to form stochastic differential equations (SDEs), allowing us to use simple analytical
results to compute properties of interest. As described further in Section 5, these SDEs may in
turn be related to neurally-based models of evidence accumulation.

4.1 Approximating the denominators

We first examine the denominator 〈Dt〉 for the compatibility bias model:

where the approximation comes from assuming that the input-dependent terms (functions of
xk(t)) are independent from the zij terms, which depend on the previous inputs xk(1), ...xk(t).
Although the inputs are conditionally independent (cf. Eq. (5)), they are marginally dependent.
That is, if previous inputs favored a particular setting of s2 and M, then the current one also
tends to do the same. For analytical simplicity, we ignore this statistical dependence. Note that
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in the limit as t → ∞, one of the ’s (corresponding to the actual stimulus setting) converges

to 1 (and the others to 0), and that no matter which  it is,

(25)

More generally, we expect 〈Dt〉 to increase from 1 (D0 is just the sum of the priors) to ,
where μ denotes the mean value of the xj’s. Figure 5 shows exactly this for both compatible
and incompatible stimuli for a particular setting of the model parameters, where s2=1 and
averaged over 105 trials. Convergence is slower for incompatible stimuli, since the
compatibility prior takes time to update from its initial value P(M) = 0.9.

Based on these arguments, and in spite of the fact that Dt can exhibit large variance on individual
trials, we assume Dt ≈ 〈Dt〉 ≈ 1, and approximate the dynamics of Eq. (14) by the following
linear, decoupled system:

(26)

with initial conditions

(27)

Similiar reasoning can be used to derive a linear, decoupled approximation for Eq. (20) for the
spatial uncertainty model. The approximate dynamics for both models can be written as an
iterated linear mapping in the following form

(28)

where the random variables η(t) are drawn from a standard normal distribution, and ai,j and
bi,j are constant parameters whose values depend on the model, the probability being computed,
and the compatibility condition of the given trial.

For the compatibility bias model, from the details presented in §3.1 if the current stimulus array
s(t) is compatible and s2 = 1 we have

(29)

and if s(t) is incompatible and s2 = 1 we have
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(30)

For s2 = -1 all the signs in ai,j above are reversed.

For the spatial uncertainty model with compatible stimulus array and s2 = 1, the calculations
of §3.2 imply:

(31)

and for an incompatible stimulus array and s2 = 1:

(32)

In both cases the standard deviation of the noise is given by

(33)

Figure 6 illustrates normal distributions from which these multiplicative terms in (28) are
drawn.

4.2 Taking the continuum limit

We now take continuum limits of the discrete dynamical systems derived above that will allow
us compute properties of interest analytically. First consider the following finite-difference
limit of the iterated mapping (28):

(34)

where the  represent the four posteriors P(s2, M|Xt). For finite but small δt = 1/k, this
represents a finer-grained discretization in which k steps are taken for every one step of (28),

the deterministic increments being of order δt and the random ones of order  [Higham,
2001]. Taking the limit δt → 0 in Eq. (34), letting yi,j = log(zi,j), and appealing to the Ito formula
[Oksendal, 2002, Section 4.1], we obtain independent, uncoupled SDEs for yi,j(t):
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(35)

with constant coefficients  and Bi,j = bi,j, whose values are specified in
§4.1. Since each zi,j(t) represents a posterior probability, it should take values in the interval
[0, 1], so we shall be interested in sample paths yi,j(t) that start at yi,j(0) < 0 and satisfy -∞ <
yi,j(t) ≤ 0.

4.3 Analytical approximations for the mean posteriors

The SDE (35) describes a drift-diffusion process with constant signal and noise level, which
has been extensively studied (e.g. [Gardiner, 1985,Oksendal, 2002]). In particular, for solutions
(sample paths) started at y(0) = μ0 and t = 0 the probability density function of y at time t is the
following Gaussian distribution:

(36)

where

(37)

(Here and below we drop the subscripts {i, j} in y and z in the understanding that the appropriate
coefficients will be used in the final formulae.) We now transform back into z-space, using y

= log(z) and  to obtain the density:

(38)

The inverse transformation z = exp(y) takes the Gaussian distribution over y into a function
skewed towards z = 1, as illustrated in Figure 7.

The Gaussian distribution over y takes positive values on y > 0 for all t > 0. This presents a
problem, since z = exp(y) > 1 for y > 0, contrary to z’s designation as a probability measure.
Therefore, when computing expected values of P(s2, M|Xt), which requires integration of the
quantity z p(z, t), we replace all values of z > 1 by z = 1 (or values of y > 0 by y = 0 in the
equivalent integral over y). However, to retain analytical tractability, we continue to assume a
Gaussian distribution over y at time t when generating the distribution at time t+1 - that is, we
only replace the inappropriate values of y (or x) in the integral, not in the underlying drift-
diffusion process. The expected (mean) value of z is therefore approximated as
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(39)

which may be evaluated as explained in Appendix A to yield

(40)

Substituting values appropriate for the compatibility bias model from Eqs. (29-30) for the
parameters ai,j and bi,j, and hence for Ai,j, Bi,j, and via Eqs. (37), for μ(t) and σ(t), we obtain
estimates for the four mean posterior probabilities at time t:

(41)

where D(t) is the sum of all four probabilities that normalizes the expressions, and for
compatible stimuli the functions μ(t) and σ(t) are:

(42)

and for incompatible stimuli:

(43)

Here, we also use the fact that all sample paths start with the initial conditions specified in Eq.
(10) and that μ0 = μ(0) = log(z(0)).

As noted at the beginning of this section, normalization and averaging do not commute. This
may be understood in terms of the distributions of Figure 7 as follows. While each sample path
can be computed for the uncoupled processes and normalized at time t to yield the same result
as a sample path of the coupled system (cf. Figure 3), different normalization factors must
typically be applied to the values of different paths zi,j(t) at each time t. This would distort the
distributions p(zi,j, t), thereby changing their means. However, we may appeal to the
observation that the expected value of the denominator remains close to 1 (cf. Figure 5) to
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conclude that this distortion is likely to be small, and proceed by dividing by the sums of the
four mean probability trajectory values at time t to normalize the resulting expressions.

Typical results for mean posterior probabilities are shown in Figure 8. The approximate
predictions developed above are shown as dashed curves and the results of averaging over 5000
simulated trials of the full inference model (9) are shown solid; compatible and incompatible
trials are shown in red and blue respectively. As above, we compute 200 steps for the discrete
iteration of the full system, and we evaluate the corresponding quantities for t ∈ [0, 200] time
units from the formulae above. For P(M) = 0.5 (not shown), joint posteriors for correct
responses increase similarly for both compatible and incompatible cases, but P(M)=0.9 elicts
markedly different behaviors (top left). The compatibility posteriors P(M = 1|Xt) show a
general rise for compatible stimuli and a monotonic fall for incompatible stimuli, but the
posterior probability P(s2 = 1|Xt) shows a significant dip below 0.5 at early times for
incompatible stimuli, while it rises monotonically for compatible stimuli. As discussed in
Section 5, the resulting accuracies exhibit similar patterns to the experimental data, with the
incompatible case showing a dip in accuracy for early responses. Evolutions of the four
individual posterior probabilities are shown in the lower panels of Figure 8.

Figure 8 illustrates that, while the approximations developed here do not capture all the detailed
behavior of the full model, they do provide reasonably good approximations to the average
evolutions of the posteriors over the course of a trial. Time scales are slightly misestimated
and the compatibility posterior P(M=1|Xt) (top right) fails to reproduce the slight dip below
0.9 that occurs for compatible trials at early times, but the relative orderings of all the posteriors
are correctly predicted. Overall, absolute errors in mean posteriors, computed as described at
the end of this section, lie between 0.002 and 0.05, the largest being for P(M=1|Xt) in the case
of incompatible stimuli (top right, lower curves).

Predictions for the spatial uncertainty model follow from the formula (41) in a similar manner,
upon the substitution of values for a and b from Eqs. (31-33), and using the initial conditions
μ0=log(1/4) for all four posteriors (Eq. (22)). For compatible stimuli, the function μ(t) is

(44)

for incompatible stimuli

(45)

and in both cases
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(46)

The above results, presented in Figure 9, are not as good as those for the compatibility bias
model. Nonetheless, the approximate model captures the key features of the evolving posteriors
in the full model rather well, prediciting the relative ordering of the posteriors appropriately
in all cases except the incorrect choices P(HHH) and P(SHS) for incompatible stimuli; in that
case the approximation for P(SHS) diverges from the correct function, increasing rather than
decreasing as t increases (lower right panel), for an absolute error of 0.12. Apart from this case,
however, errors lie between 0.015 and 0.08.

The errors for both models were computed for each mean posterior using the L1 norm as
follows:

(47)

where pt and  denote the posteriors predicted by the full and simplified models respectively.

4.4 Making use of explicit mean posteriors

In addition to providing explicit expressions for posterior probabilities, the continuum limit
also yields approximations for accuracy and reaction time distributions. To estimate accuracy
as a function of response time under the free response protocol assumed by [Yu et al., 2007],

we compute the fraction of mass of the evolving probability density  that exceeds a

given threshold  at each time t (recall Eq. (11)). This procedure overestimates first
passage times, since some of the sample paths that lie beyond the threshold q at time t may
have crossed at earlier times, but it permits some analytical simplification. Without loss of
generality, we shall assume that s2 = 1.

The integral that we need to evaluate is

(48)

where we have used the shorthand notation , and the approximation comes

from assuming  for the uncoupled and linearized approximate
dynamical system - this assumption greatly simplifies the computations, although the
uncoupled processes are not entirely independent since they are activated by common inputs
(x1, x2, x3), albeit in different linear combinations. We also note that the variables zj should be
non-negative (cf. Figure 7). The domain of integration is pictured in Figure 12. The p(zj, t)’s
take the forms derived in §4.3 above and since each is a normalized Gaussian in the logarithmic
y variables, the integral of their product over the entire positive quadrant is 1. Hence we have

(49)
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which is evaluated in Appendix A to yield:

(50)

where

(51)

Unfortunately, the final integral in Eq. (50) cannot be computed analytically, but it can be
evaluated accurately and rapidly by numerical methods.

Response accuracy is approximated by the fraction of correct responses that exceed threshold:

(52)

where the denominator approximates the sum of all four probabilities . (The
term P(s2=2|Xt)est is computed in a similar manner to Eq. (50), with the appropriate expressions
for μ(t), σ(t) from §4.3.) The denominator is the cumulative reaction time and so its derivative
with respect to t provides the reaction time distribution. Hence, both accuracy and reaction
time distributions can be approximated semi-analytically. Figure 10 shows the resulting
approximations to the mean posteriors for the compatibility bias model, for a particular setting
of model parameters. The dip in accuracy for incompatible trials is reproduced, and after an
initial rise in accuracy for compatible trials, accuracy slowly declines.

As we have noted, sample paths of the SDE (35) may pass across q and back, possibly
repeatedly, in the interval (0, t), so these results do not directly correspond to the first-passage
decision policy of the Bayesian models in [Yu et al., 2007]. This accounts for differences
between the accuracy curves and reaction time distributions of Figure 1 and the free response
results of §3.3. For example, the compatibility bias free response data of Figure 4 do not show
the mild decline in accuracy for later compatible trials of Figure 10, although the spatial
uncertainty simulations of Figure 4 do show such a decline. Nonetheless, the qualitative
agreement between Figures 10 and 4 is quite good, and since the semi-explicit expression Eqs.
(50-51) replaces lengthy Monte-Carlo simulations of §3.3, it may be helpful in guiding
parameter fits to data.

The posterior probability expressions can also be used to constrain parameter choices, by

requiring the derivative of  at time t = 0 to be negative and finding
corresponding conditions on the parameters. The results of this computation (details not shown)
agree closely with those in Section 3.

4.5 Fitting the models to data

We now briefly describe the results of fitting the full models of Section 2 and the reduced DD
processes of Sections 4.2-4.4 to the data of [Servan-Schreiber et al., 1998], reproduced in Fig.
1B. For the compatibility bias model the parameters fitted are the noise level σ, prior β,
threshold q and step durations δt (for DDM) and ΔT (for the full model), which determine the
overall timescale. For spatial uncertainty, they are σ1, σ2, a1, q and δt, ΔT (as in §3.2, we set
a2 = 1 - a1). To these we add one further parameter, T0, to account for time occupied by sensory
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decoding and motor response mechanisms, which superimposes a rightward shift on the RT
distributions. (Such an “overhead time” might approximate the mean RT on a simple target
detection task).

We employ the same weighted Euclidean error norm as in [Liu et al., 2007] (see Appendix B
for details). The parameter values obtained are as follows. Compatibility bias: σ = 6.5, β = 0.87,
q = 0.98, δt = 0.95 ms, ΔT = 1.04 ms, and T0 = 90 ms. Spatial uncertainty: σ1 = 6.9, σ2 = 5.1,
a1 = 0.71, q = 0.92, δt = 3.4 ms, ΔT = 0.33 ms, and T0 = 95 ms. Note that the noise levels are
consistent with the assumptions of Sections 3 and 4.1-4.2: e.g., 1/σ4 ≪ 1/σ2 (cf. Equation (13)).
The fitting errors are as follows: Compatibility bias: full model 2.5; DDM 2.3. Spatial
uncertainty: full model 2.1; DDM 1.8. In fitting we excluded data points in the first (0 - 100
ms) and the last (900 - 1000 ms)of the 10 RT bins, since no accuracy data is available for the
former, and all trials in which responses exceeded 1000 ms were placed in the latter (note the
uptick in RT distributions at the rightmost data point). However, we computed model data in
that bin and in the next one (1000 - 1100 ms). Since our fitted values of the overhead time
T0 push even the shortest model RTs beyond 100 ms, accuracies cannot be computed for the
0-100 ms bin, unless we assume some premature responses that are initiated before stimulus
onset. For such premature responses, the equal prevalence of H and S in the experiments ensure
that accuracy approaches chance at very short decision times (cf. upper left panels of Figs. 8
and 9). Indeed, this chance performance is unavoidable, independent of the inference or
decision strategy, since the response is deprived of stimulus information and cannot possibly
correlate with stimulus identity.

These results are shown in Fig. 11. Fit qualities are slightly better for the spatial uncertainty
model, and in both cases, perhaps surprisingly, fit errors are slightly smaller for the reduced
DDM than for the full Bayesian procedure. The fit errors are similar to that of 2.4 obtained in
[Liu et al., 2007] for the [Gratton et al., 1988] data (Fig. 1A), using a DDM with variable drift
rates derived from the neural network model of [Cohen et al., 1992]. That model contains 8
free parameters, compared with 5 and 6 respectively in the present cases. Indeed, in [Liu et al.,
2007] 6 parameters are required to describe drift rates in the compatible and incompatible cases,
modeling progressive increase in attention to the central stimulus, and these cases are fitted
separately. In the present study compatible and incompatible trials are fitted simultaneously,
and a single parameter in each model (the compatability prior β, or the weight a1), along with
Bayesian updating, serves to describe the accumulation of evidence.

Both models underestimate mean RTs for compatible trials, producing an excess of points in
the 200-250 ms RT bin. They are also unable to capture the drop in accuracy at the shortest
RTs on compatible trials (left panels), due to the T0 behavior noted above. They do reproduce
this drop on incompatible trials, although the full compatibility bias model does not exhibit the
dip below 50%. The spatial uncertainty model is substantially better in this regard (lower right
panel), although it underestimates accuracy in the 400 - 900 ms part of the RT range for both
the compatible and incompatible cases. In preliminary work we also tried a modified norm that
preferentially weights low RT data: this slightly improved fits of RT distributions, but did not
affect compatible accuracy fits. We also fitted the full and DD models to the data of [Gratton
et al., 1988] (Fig. 1A), obtaining similar fit qualities, although the failure to capture the steady
rise from 50% accuracy at low RTs for compatible trials was more striking in that case (model
results not shown here).

We note that individual subjects exhibit large differences in signal-to-noise ratios and
thresholds (in DDM fits, cf. [Ratcliff et al., 1999, Bogacz et al., 2007]), and that here we have
averaged over all subjects to produce single sets of fit parameters for each model. As illustrated
in Fig. 1, there is also substantial variability in Eriksen data, perhaps due to differing deadlining
protocols. (Deadlines are necessary to produce enough short reaction times and hence obtain
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a significant dip in accuracy on incompatible trials.) The resulting variability in motor
preparation times can affect reaction times, and no allowance for this is made in the inference
model, which describe only cognitive processing. Our additional parameter T0 only partially
accounts for this, and as we have remarked, in the present case it deprives us of accuracy data
in the smallest RT bin.

5 Discussion and conclusions

In earlier work [Liu et al., 2007] a neural network model of the Eriksen task [Cohen et al.,
1992, Servan-Schreiber et al., 1998] was linearized and reduced to a DDM with time-varying
drift, allowing relatively complete analysis that reveals how parameters influence accuracy
curves such as those of Figure 1. However, this network model involves somewhat arbitrary
assumptions on architecture and parameters, and it is not clear how the DDM reduction of
[Liu et al., 2007], with its variable drift rate, relates to the optimal decision theory for the
constant drift case [Bogacz et al., 2006]. The present paper addresses this issue by offering
analytically tractable approximations to two Bayesian inference models (compatibility bias
and spatial uncertainty) proposed in [Yu et al., 2007].

Specifically, the joint signal probability distribution of Eq. (4) is approximated as a linear sum,
and then, by assuming that the sum of the non-normalized posteriors remains close to one and
taking a continuum limit, we obtain analytical expressions for the mean posterior probabilities.
Employing a further approximation in which the net probabilities of having answered correctly
or incorrectly at time t are computed, we derive semi-analytical approximations for accuracy
and reaction time distributions. While the latter correspond more closely to an “interrogation
protocol” [Bogacz et al., 2006,Liu et al., 2007] in which subjects are cued to respond at specific
times, and so differ quantitatively from those computed numerically for free responses
(compare Figures 10 with Figure 4), the overall accuracy curves and individual posteriors
derived from the continuum model reproduce those of the Bayesian model quite well (see
Figures 8-9).

We therefore expect that our analytical approximations will be useful in guiding parameter
selection when fitting models to experimental data. In Section 3, we provide an example of
this by deriving simple parametric constraints that must hold to obtain the dip below 50% in
the posterior probability for early responses. Moreover, although the coefficients differ, the
linearized update rules of both Eqs. (14) and (20) demonstrate that the flanker inputs x1 and
x3 work with the target input x2 for the compatible hypotheses, and against it for the
incompatible hypotheses. This underlying computational architecture gives rise to the same
basic ability of both the compatibility bias and spatial uncertainty models to account for the
dynamics of flanker interference in behavioral data. In Section 4.5 we show that both the
original models and DDM approximations derived from them can be fitted to experimental
data, further strengthening our case.

Our analysis also reveals that a particularly simple stochastic differential equation, the
constant-drift diffusion (DD) process of Eq. (35), approximately describes the evolution of
Bayesian posteriors in log probability space. As described in [Bogacz et al., 2006], this is a
continuum limit of the sequential probability ratio test [Wald, 1947], which is known to be
optimal for identifying noisy signals in two-alternative choice tasks [Wald and Wolfowitz,
1948]. Moreover, it has been shown [Bogacz et al., 2006,Liu et al., 2007] that DD and related
Ornstein-Uhlenbeck processes emerge naturally in linearized reductions of competing leaky
accumulator models [Usher and McClelland, 2001] for 2AFC. In these neural networks the
difference between activities in a pair of units at the output decision or response stage behaves
like the accumulating variable y(t) in Eq. (35)1 [Gold and Shadlen, 2001]. DD models can also
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capture bottom-up (stimulus-driven) and top-down influences such as attention and expectation
of rewards via variable drift rates [Liu et al., 2007,Eckhoff et al., 2007]

Since accumulator models may be derived from biophysical models of spiking neurons [Wang,
2002, Wong and Wang, 2006], in which their activities represent short-term averages of
collective firing rates, this suggests a mechanism by which neural substrates may be able to
perform Bayesian computations. Specifically, in reducing the coupled Bayesian inference
model (9) to a DD process we see how prior information maps into initial conditions, and
evolving posteriors in log probability space are represented by spike rates of groups of neurons.
In connection with the latter, we note that [Bogacz and Gurney, 2007] present computational
and experimental evidence that Bayesian computations involving exponentiation and taking
logarithms (cf. [Yu and Dayan, 2005]), as in Section 4, can be approximated by neurons in the
basal ganglia.
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Appendix

Appendix: Mathematical and data fitting details

A Evaluation of integrals

To evaluate the integrals of Eq. (39) we employ the change of variables

(53)

so that  and the integrals become

(54)

The second expression is a standard error function integral, and the first may be put into the
same form by completing the square in the argument of the exponent:

(55)

followed by the further change of variables

1In N-alternative choice models, linear combinations of variables approximate (N - 1)-dimensional DD processes [Usher and McClelland,
2001, McMillen and Holmes, 2006].
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(56)

This process results in the expressions of Eq. (40).

To evaluate the integral of Eq. (49) we proceed as follows, dropping the explicit reference to
time dependence, which enters the expressions through the mean and standard deviations μ(t),
σ(t). Figure 12 indicates the domain of integration.

(57)

Here we have added subscripts to the time-varying means and standard deviations μj(t), σj(t),
using the same shorthand zj = z1,j as in §4.4 to indicate which of the four cases s2 = ±1; M = 1,
2 enumerated in §4.3 is intended.

B Data fitting method

Data fits were performed using the fmincon() function in MATLAB. Parameters were
determined by adjusting them while seeking minima of a error function, described by a
weighted Euclidean norm, which averages over accuracy and RT data for both compatible and
incompatible trials. The usual Euclidean (L2) distance between vectors u and v with
components uj and vj is

(58)

Vectors describing accuracies and RT histograms were first formed from the data (ACd,
RTd) and corresponding model predictions (ACm, RTm) were formed and their differences
computed by (58). Since the units of accuracy and RT differ, each of these was then weighted
by dividing it by the mean of the data, as indicated by an overbar below. This produces the
nondimensional quantity:

(59)

This error term, representing the sum of percentage differences in accuracy and RT, was then
minimized. Note that the resulting value depends on the number of RT bins in the data, and so
should be normalized with respect to this when comparing fits of data sets with differing
numbers of bins.
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Figure 1.

Accuracy vs. RT in the Eriksen task. Human subjects respond slower and less accurately in
the incompatible condition. In particular, accuracy is below chance (.50) for short RT’s, but
approaches 1 for longer RT’s. (A) Reaction times gauged by electromyographic activities
(EMG), adapted from [Gratton et al., 1988]. (B) Behavioral data from [Servan-Schreiber et al.,
1998]. Details differ, but the compatibility effect and “dip” in accuracy for short-reaction
incompatible trials, are obvious in both data sets.
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Figure 2.

Simulated and analytical approximations of parameter values that produce dips in accuracy vs.
reaction time for incompatible trials. Graphs show accuracy averaged over trials with simulated
reaction times under 20 timesteps, as a function of for the compatibility bias model (left), and
the ratio of means a1/a2 for the spatial uncertainly model (right). Crossings with the 0.5
accuracy line indicate numerically obtained estimates of the “true” parameter constraints;
dashed lines show the approximate constraints of Eqs. (18) and (24).

Liu et al. Page 24

Neural Comput. Author manuscript; available in PMC 2009 September 23.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 3.

Posterior probability P(s2 = 1|Xt) for one sample path of the approximate compatibility bias
model (Eq. (17), dashed), compared with a sample path from the original inference model (Eq.
(9), solid). The same sequence x(t) of observations was used in both cases.
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Figure 4.

Top panels: Accuracy and reaction time distributions for the compatibility bias model for
compatible stimuli (left) and incompatible stimuli (right). Solid and right hand (blue) bar of
each RT bin pair from full inference model of [Yu et al., 2007]; dashed and left hand (yellow)
bars from approximate linearized likelihood model. Bottom panels: Accuracy and reaction time
distributions for the spatial uncertainty model. Results obtained by averaging over 2, 000
simulated trials in each case.
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Figure 5.

Mean values of the denominator 〈Dt〉 for compatible (blue solid) and incompatible (red dashed)
stimuli, each averaged over 105 trials. In both cases the 〈Dt〉 rises monotonically toward its

upper bound .
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Figure 6.

Typical distributions from which the multiplicative factors ai,j + bi,jη(t) in Eq. (28) are drawn
on each time step. Parameter values are σ = 1.8 (top) and a1 = 0.7, a2 = 0.3, σ1 = 1.4, σ2 = 1
(bottom). For illustrative purposes, standard deviations σ, σ1, σ2 are 20% of those used in the
text to reduce overlap of distributions.
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Figure 7.

Probability density functions in logarithmic y-space and the original z-space.
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Figure 8.

Predictions of the full and simplified compatibility bias models in the case that the central
symbol is S (s2=1) and with prior compatibility bias P(M)=0.9. Top left: marginal mean
posterior probabilities P(s2 = 1|M) (correct response) for compatible and incompatible
conditions. Top right: marginal mean posterior P(M = 1) for compatibility. Bottom row:
individual mean posteriors for compatible (left) and incompatible (right) trials. Results from
full inference model, averaged as in Figure 8, shown solid and predictions of the continuum
approximation (41-43) shown dashed. Keys identify individual curves.
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Figure 9.

Predictions of the full and simplified spatial uncertainty models. Top left: marginal mean
posterior probabilities P(s2 = 1|M) (correct response) for compatible and incompatible
conditions. Top right: marginal mean posterior P(M = 1) for compatibility. Bottom row:
individual mean posteriors for compatible (left) and incompatible (right) trials. Results from
full inference model, averaged as in Figure 8, shown solid and predictions of the continuum
approximation (41) and (44-46) shown dashed. Keys identify individual curves.
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Figure 10.

Predictions of accuracy (left) and reaction time histograms (right) computed under the
approximation of Section 4.4. Solid curve and dark boxes indicate compatible trials; dashed
curve and light boxes indicate incompatible trials.
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Figure 11.

Accuracy (upper curves in each panel) and reaction time distributions (lower curves) from the
full (squares) and reduced DD (triangles) models for compatible (left) and incompatible (right)
trials. Upper panels show compatibility bias and lower panels spatial uncertainty model results
respectively. Parameters were fitted to the data of [Servan-Schreiber et al., 1998] (dashed
curves with circles, cf. Fig 1B).
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Figure 12.

The integral of the joint posterior probability distribution is taken over the positive (z1, z2)-
quadrant less the shaded triangular region.
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