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Abstract We list different examples of analytic dependence on some parameters of Julia
type sets or attractors of (generated) iterated function systems.
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1 Introduction

By multifunctions we mean in this paper only functions whose values are non-empty compact
sets. Oka [16] was the first to venture beyond the classical theory of multivalued analytic
functions such as branching of analytic functions and Riemann surfaces. He started from
the famous Hartogs theorem which can be expressed in the following way: if f : G — C
is a continuous function defined on a domain G C C, then f is holomorphic if and only if
(G x C)\graph(f) is pseudoconvex (see [15, p. 132]). The idea of Oka was to take a mapping
defined in a domain G in C with values being compact subsets of C and define its graph so
that it is a subset of C> and then say that this mapping is analytic if the complement of the
graph to G x C is pseudoconvex. The idea was nearly forgotten for a long time and then
sprang to attention in papers of different researchers starting from around 1980, when other
definitions were given and compared. The first crucial application of analytic multifunctions
was in uniform algebras — Stodkowski used them to solve the so-called Petczyriski conjecture
for C*-algebras [19]. Then other applications followed, e.g. in the interpolation of Banach
spaces. For a more detailed history, a very good introduction to the subject and applications
see [2].
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Let us give an idea behind the notion. If we have an analytic multifunction A +— K ()
and we know some properties of a set K (Ag), we may see the sets K (1) for A close to Aq as
an analytic perturbation of the set K (1o) and we may ask whether the properties of the sets
were preserved or if not how they were changed.

The word “dynamical” in the title of the paper refers to complex dynamics. From its point
of view, the type of dependence of the special sets (namely Julia sets, limit sets, attractors) on
the parameters involved in their construction is of interest. Analytic multifunction provide
natural tools allowing description of this dependence.

Let us finally also note that some special Julia type sets can be obtained when we iterate
multifunctions (see [9]), but we will not present this approach here.

2 What is an analytic multifunction?

Let X and Y be Hausdorft topological spaces and denote by « (Y') the family of all non-empty
compact subsets of Y. Any mapping K : X — « (Y) is called a multifunction. By its graph
we mean

graph(K) :={(x,y) e X x Y : y € K(x)}.

We say that the multifunction K is upper semicontinuous if for each open subset U of Y the
set{x € X: K(x) C U}isopenin X.If (X, d) is a metric space and Y is compact, given a
multifunction K : X — «(Y) we define its upper semicontinuous regularization K* by

K*(x)::ﬂ U K(t),

r>0teB(x,r)

where B(x,r) :={t € X : d(t,x) < r} (see [3]). It is the smallest upper semicontinuous
multifunction that contains K.
We list now four definitions of analytic multifunctions.

Definition 2.1 [19] Let 2 be an open subset of a complex Banach space E. An upper
semicontinuous multifunction K : @ — «(CV) is (weakly) analytic if for every a €
and for every plurisubharmonic function u in a neighbourhood of {a} x K (a) the function
z > supu({z} x K(z)) is plurisubharmonic.

This definition deals with plurisubharmonic functions therefore the following standard
example is natural here.

Example 2.2 [17] (c.f. also [10]) Let €2 be an open subset of a complex Banach space E and
letu : 2 — [—o00, 00) be a function. Consider the mapping D : Q2 —> «(C) defined by the
formula D(z) :={¢ € C: |¢| < exp(u(z))}. Then D is (weakly) analytic if and only if u« is
plurisubharmonic.

Definition 2.1 was given by Stodkowski [19] who then went to make another stronger
definition of analytic dependence for multifunctions.

Definition 2.3 [20] We say that a subset S of a complex Banach space E has the local
maximum property if there is no holomorphic function f : W — C (where W C E is
open) such that | f| restricted to W N § has a strict local maximum.

Let € be an open subset of a complex Banach space E. An upper semicontinuous mul-
tifunction K : @ — «(CV) is said to be strongly analytic if for any (N + 1)-dimensional
complex affine subspace L of E x CV the set L Ngraph(K) has the local maximum property.
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Before we give an example, we need some notations. Letd > 2, N > 1 and put P; :=
{P : CN — CV|P is a polynomial mapping and degP < d}. This can be viewed as a
complex Banach space (of finite dimension). Denote by P the homogeneous part of P of
degree d. Put

Q:={P ePy: PI({0}) = (0}}.
This set is open in P, (see also the discussion of it in Sect. 5).
Example 2.4 [10, Remark 2] Let ¢ € CV. Then Z; Q23 P P~1(¢) is strongly analytic.

In particular, it may be deduced from Example 2.4 that algebroid multifunctions, i.e.
multifunctions of the form

Usir> KM ={zeC:Z"+aiW)" "+ 4+a,(h) =0}

(where U is an open set in CV and aj : U — C are holomorphic) are strongly analytic. For
a proof of this implication one needs a composition theorem.

If E = C, the notions of strong and weak analyticity are identical (see [19,21]). If the
dimension of the space is higher than 1, the strong analyticity implies the weak one but not
vice versa, which is shown by the following example.

Example 2.5 [21] The multifunction

o2 (CeCiigl=1), z#0
S BZH[{ceC:msl}, 2=0

is weakly analytic but is not strongly analytic.
Let us go to a more special case yet.

Definition 2.6 A multifunction is trivially analytic if its graph is the union of the graphs of
a family of holomorphic functions.

Each trivially analytic multifunction is strongly analytic. The significance of such
set-valued mappings is shown in Stodkowski’s theorem stating that any strongly analytic
multifunction can be approximated by a decreasing sequence of locally trivially analytic
multifunctions [22].

Let us define another notion, which has been intensively studied since [13].

Definition 2.7 (see c.f.[1]or [4]) Let A be a subset of C, A an open subset of Cand g € A.
A holomorphic motion of A (parametrized by A and Ag) isamap ® : A x A —> C such
that

(i) Ya e A: themap ®(-,a): A3 A ®(L,a) eCis holgmorphic;
(i) YA € A : the map @, := ®P(A,:) : A 3a+—> P(A,a) € Cis injective;
(iii) the map @, is the identity on A.
It is noteworthy that every motion defined above extends to a holomorphic motion of A x A
(see [1,23]). Therefore we can restrict our attention to holomorphic motions of compact sets.

It follows directly from Definitions 2.7 and 2.6 that if ® is a holomorphic motion of a
compact set A C C and with values in C, then

A3 x> @y (A) € k(C)

is a trivially analytic multifunction: thus analytic multifunctions can be viewed as general-
izations of such holomorphic motions.
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Now we turn to quite another type of definition. It was motivated by holomorphic motions
on the one hand and by some elementary properties of analytic multifunctions on the other.
Namely, we consider now a concept of analyticity of functions defined on open subsets of C
and with compact values included in C. Before we can do this, however, we must first make
another definition, that of a multigauge.

Definition 2.8 [18] Let X and Y be Hausdorff topological spaces, K : X —> «(Y) be
an upper semicontinuous multifunction and M and £ be families of upper semicontinuous
multifunctions. We write

(i) K € MV if there exists a decreasing sequence (K,) in M such thatVx € X : K(x) =
ﬂn Ky (x);

(i) K e MTifVxg e X Vyo € dK (xg) Uy a neighbourhood of xo and L € M such that
L(x) C K(x),x € Up and yg € L(xp).

The family M is called a multigauge if MY = M and MT = M.
The multigauge generated by L is the smallest multigauge containing £ (i.e. the intersec-
tion of all multigauges containing L£).

Now we can define an analytic multifunction.
Definition 2.9 [18] Let Q be an open subset of C. Put
R(Q) :={23z+ {q(2)} € k(C)]| g : @ —> C isa rational function}

(we can take above also g = 00). Let .A(£2) be the multigauge generated by R(€2). We say
that a multifunction K : Q@ — «(C) is analytic in Q if K € A(RQ).

Ransford proposed this definition in [18] and exhibited many properties of the obtained
family. This approach allowed him to tackle the Julia sets of rational and entire functions,
which are not compact in C. Previously, for this special case, meromorphic multifunctions
were defined in [3], but in [18] they are viewed as analytic functions with compact values
in « (C). As should be expected, Ransford showed also that for upper semicontinuous multi-
functions K : 2 — «(C) with 2 C C the notions of analyticity from Definitions 2.1 and
2.9 are identical.

3 Julia sets

Let R be a non-constant rational function of degree at least 2. The Fatou set of R is the
maximal open subset of C on which the family of iterates {R" : n € N} is equicontinuous.
The Julia set of R, denoted by J(R), is the complement of the Fatou set in C (see [5]). Note
that the Julia set is always compact in C, it is also non-empty.

We want to underline a special case: if R = p is a polynomial of degree d > 2, then the
filled-in Julia set of p is the set

K[p]:={z € C: (p"(2));2, is bounded}.

Then J(p) = 0K[p] and on the other hand K[p] is the polynomially convex hull of J(p).
Both sets J(p) and K[p] are compact in C.

And now let us discuss a variant of these definitions. The Fatou set of a non-constant
entire function f is the maximal open subset of C (sic!) on which the family of iterates
{f" : n € N} is equicontinuous. The Julia set J (f) is then defined as the complement of the
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Fatou set relative to C. It is closed, but in general not bounded. Let m denote its closure
in C.

We start with an example of a holomorphic motion: the very first one given by Maiié€, Sad
and Sullivan.

Theorem 3.1 [13] Let A be a domain in C and let {R,} be a family of rational functions
Ry, : C —> C depending analytically on the parameter ). € A. Then there exists an open
dense subset A" of A such that for every Ly € A’ there exists a neighbourhood Ay and a
holomorphic motion h : Ao x J(Ry,) —> C such that VA € Ao : b, (J (Ry,)) = J(R;).

In the assertion of this theorem there appears the dense open subset A of the parameter
domain A, which usually is different from the whole set. Baribeau and Ransford addressed
this inconvenience and proved

Theorem 3.2 [3] (c.f. also [18]) Let A be a domain in C.

(1) Let {Ry} be a family of rational maps of degree at least 2 depending analytically on the
parameter A. Then

J*:A3i— J(R)* €k(C)

is analytic.
(2) Let {f,} be a family of non-constant entire functions depending analytically on the
parameter A. Then

T A3r—= J(fi) €x(@©
is analytic.
Let us note a consequence.

Corollary 3.3 Let A be a domain in C. If {p,} is a family of polynomials of degree at least
2 depending analytically on the parameter X, then

K:A>A— K[p)] €k(C)
is analytic.

Let us now move to higher dimensions. Our attention will be restricted here only to
polynomial mappings. Recall the notation of 7P; and its open subset €2 which we used in the
previous section (just before Example 2.4). For P € Q we can define the filled-in Julia set
K[ P] for a polynomial mapping P in the same way as it was done for the polynomials on
the complex plane. Then K[ P] is a non-empty polynomially convex compact subset of CV.

Now we can state a generalization and in the same time a strengthening of Corollary 3.3.

Theorem 3.4 [10] The multifunction
K:Q5 P K[P]ex(CV)

is strongly analytic.

4 Attractors of IFSs

Recall the definition of an iterated function system (IFS for short). It is a finite family of
contracting mappings on a complete metric space (see [8]).
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This section is based on [4], where a special form of IFSs will be considered. The definition
of an IFS is generalized: the family is allowed to be countable. On the other hand, we restrict
our attention to the complex plane. Our setting is therefore as follows.

Let S = {f,},es be afinite or countable family of contractions of C with contraction ratios
{c,} satisfying

C:=supc, <1 and B :=sup|fi(z0)] < oo for some zg € C.
el el
The limit set of the IFS (for definition see [4]) may fail to be compact if / is infinite. But
its closure is always compact. Since the object of study of this paper are compact-valued
functions we will speak here only about the closure of the limit set, which we may define
(c.f. [4, Lemma 1]) as the unique fixed point of the map

k(C) 3 K > | fu(K) € k(©)
el
(here k (C) is equipped with the Hausdorff metric) and which we denote by A(S) and call
the attractor of the IFS S. We say (see [8]) that S satisfies the open set condition (OSC for
short) if there exists a non-empty open set U such that

fiU)CU,vel, and # j= f(U)N f;(U) =9.

We say (see [4]) that S satisfies the closed open set condition (COSC) if there exists a
non-empty open set U such that

fU)CU, tel, and t# j= fU)N f;{U) = 0.
We are ready to state the results. The situation is easier if we assume COSC.

Theorem 4.1 [4] Let A be an open subset of C and let {S,} be a family of IFSs satisfying
COSC and depending analytically on the parameter ). € A. Then for every Ao there exists a
holomorphic motion ® : A x A(S;,) —> C such that ®,(A(S;,)) = A(Sy), A € A.

The next result holds under the weaker assumption of OSC.

Theorem 4.2 [4] Let A be an open subset of C and {S,} be a family of IFSs of injective
contractions satisfying OSC where S;_is of the form Sy = { f, »}. Foreach . € A let U()) be
the set for Sy which arises from OSC. We assume that all of the functions (A, z) — f,.1(2)
are holomorphic in two variables and that there exists a holomorphic function g : A — C
such that g(ko) € U(Xo)\A(Sy,) for some ro and g(A) € U(L), A € A. Then there exists a
neighbourhood Ay C A of Lo and a holomorphic motion ® : Ao x A(Sy,) —> C such that
D, (A(S39)) = A(Sn), A € Ao.

Let us recall that the originals of these theorems from [4] deal also with the limit set but we
omit here this aspect.

The final result of this section does not require COSC nor OSC and does not deal with
the limit set in the original version.

Theorem 4.3 [4] Let A be an open subset of C and {S,} be a family of IFSs where S, is of
the form S, = { f,,.}. We assume that all of the functions (A, z) — f,.1(2) are holomorphic
in two variables. Then the multifunction

A: A3 A A(S)) € k(C)

is analytic.
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5 Some generalizations

We list here only three generalizations of the results from the previous two sections, namely of
the theorems concerning analytic multifunctions. For some generalizations of those dealing
with holomorphic motions see e.g. [6,7,14].

The first part of this section deals with Julia type sets and is based on [11]. Letd > 2 and
N > 1. Fix any norm || - || on P4 and put

[P] = lilnfl [P(2)|, PePy,.
Zl=

It is easy to check that |[P| > 0 <— p! ({0}) = {0}. We can rewrite therefore
Q={PePy;:|P] >0}

Take a sequence (P,) of polynomial mappings lying in €2. It appears that the natural gener-
alization of the filled-in Julia set of a polynomial mapping is given by

K[(P)]:={zeCN: (Pyo---0Pyo P)(2))>, is bounded]},

which is non-empty, polynomially convex and compact. We call this set the filled-in Julia set
of the sequence (P,).
Take now a function ¢ : N — N and define the set

Ny i=1{(n, j) e N> : j < o(m}.

Consider

E, = [P = [Pnjln.j)eN, : Pn.j € Pa. (n, j) € Ny, ( S})le P Il < OO]
n,j)eN,

and for P € E,, define

IPIl:==sup [Pyl
(n,j)€N,
Then (Ey, || - ||) is a complex Banach space. We are interested in the open set

Qp ::‘PGEQ| inf |_P,,,jj>O].
(n,j)eN,
Note thatif o = 1 = 1, then Ej is a space of sequences (of polynomial mappings). We may
state the first generalization of Theorem 3.4
Theorem 5.1 [11] The multifunction
K : Qe (Py) = K[(Py)] € k(CY)
is strongly analytic.

Put ¥, :={0 :N— N|o < g}.For P = [P, ;] € Q, and 0 € %, take the sequence
(Proys Pro@)s--2) = (Paom)) € 21, We define

kiP1:= | Kl(Poow)l. P €.
oey,

This set is compact and non-empty, but in general not polynomially convex. Therefore we
call it the partly filled-in composite Julia set generated by P. Its polynomially convex hull is
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denoted by K[P] and called the composite (filled-in) Julia set associated with P. Both sets
can be viewed as generalizations of the filled-in Julia sets for polynomial mappings.

Theorem 5.2 [11] Let 0 : N — N be a function. Then the multifunction
k:Q,3 P> k[P]ek(CV)

is strongly analytic and the multifunction
K:Q,3 P> K[P]ex(C")

is (weakly) analytic.

It could also be the case that this last multifunction is in fact strongly analytic too, but this is
not known.

The last part of this article is about a generalization of IFSs and is based on [12]. Let
L(CN) denote the space of all bounded linear operators on CV, furnished with the usual
operator norm || - ||. Let 7 (CV) be the space of all continuous affine operators on CN. Every
operator T : CcN — €V in F(CM) has the natural decomposition 7 = T + T (0) with
T e L(CN). Hence F(CN) = £(CN) @ CV and the natural norm in F(CV) is given by the
formula || T|| = | T + |T(0)].

Take now a function ¢ : N — N. In a similar way as before we put

E, = [T = [Tn,j](n,j)ENg tThj € f(CN)v (n,j) €Ng, sup T, ;ll < OO}
(n,j)eN,

and for T € E,, define

TN := sup [T ll
(n,j)eN,
It can be shown that (E,, || - ||) is a complex Banach space. For T € E, we put T := [f"n,j].

We are interested in the open set
Q, = {T € E,| IT| < 1}.

Note again that E is a space of sequences (of affine operators). Fix a sequence (7,,) € Q1.
Then for each n the mapping 77 o - - - o T}, is a contraction in C" and hence by the Banach
contraction principle it has the unique fixed point b[T} o - - - o T,] € CV. It can be shown that
the limit

al(T,)] = nli)n;o b[Tio--0T,]

exists. Now for o € X, and T € Q,, in a similar way as before, we consider the sequence
(Th,6(n)) € 21. We define finally for T € €2, the set

A(T) == A{al(Th,om))] : 0 € o}

This set is compact and can be viewed as a generalization of some attractors defined in the
previous section. Hence we call it the attractor of T. We are ready to state the last theorem
of this article.

Theorem 5.3 [12] Fix a function o : N — N. Then the multifunction
A:Qy 3T A(T) e k(CV)

is trivially analytic.
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