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ABSTRACT

The purpose of the research reported in this paper is to develop a variational data analysis system that can
be used to assimilate data from one or more Doppler radars. In the first part of this two-part study, the technique
used in this analysis system is described and tested using data from a simulated warm rain convective storm.
The analysis system applies the 4D variational data assimilation technique to a cloud-scale model with a warm
rain parameterization scheme. The 3D wind, thermodynamical, and microphysical fields are determined by
minimizing a cost function, defined by the difference between both radar observed radial velocities and reflec-
tivities (or rainwater mixing ratio) and their model predictions. The adjoint of the numerical model is used to
provide the sensitivity of the cost function with respect to the control variables.

Experiments using data from a simulated convective storm demonstrated that the variational analysis system
is able to retrieve the detailed structure of wind, thermodynamics, and microphysics using either dual-Doppler
or single-Doppler information. However, less accurate velocity fields are obtained when single-Doppler data
were used. In both cases, retrieving the temperature field is more difficult than the retrieval of the other fields.
Results also show that assimilating the rainwater mixing ratio obtained from the reflectivity data results in a
better performance of the retrieval procedure than directly assimilating the reflectivity. It is also found that the
system is robust to variations in the Z–qr relation, but the microphysical retrieval is quite sensitive to parameters
in the warm rain scheme. The technique is robust to random errors in radial velocity and calibration errors in
reflectivity.

1. Introduction

During the past few decades, observations from
Doppler radars have been widely used in diagnostic
studies of convective systems, severe weather detection,
and short-term forecasting. With the deployment of the
NEXRAD network in the 1990s, there has been an in-
creased interest in the possibility of operational cloud-
scale numerical forecasting. One of the major challenges
in cloud-scale numerical weather prediction is obtaining
accurate initial conditions. Doppler radars, which pro-
vide observations of radial velocity and reflectivity with
a spatial resolution of a few hundred meters every 3–
10 min, are practically the only instrument capable of
sampling the four-dimensional structure of storm-scale
flows. To specify the state of the atmosphere using these
data, it is necessary to develop techniques to derive
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detailed meteorological fields that are not directly mea-
sured by Doppler radars. The quantitative information
obtained thereby will not only provide initial conditions
for cloud-scale numerical models but also help improve
operational forecasting skills and enhance our under-
standing of precipitating weather systems.

Over the past few decades, various methods have been
developed to infer detailed information from single or
multiple-Doppler observations. Using observations
from a single-Doppler radar, it has been shown that the
boundary layer flow can be retrieved with reasonable
accuracy (e.g., Tuttle and Foote 1990; Qiu and Xu 1992;
Laroche and Zawadzki 1994; Shapiro et al. 1995). With
the availability of multiple-Doppler radars, researchers
have demonstrated that the three-dimensional wind field
can be derived through the use of the mass continuity
equation (Armijo 1969) and the thermodynamic fields
can then be obtained with the aid of the equations of
motion (Gal-Chen 1978; Hane and Scott 1978; Hane et
al. 1981; Roux et al. 1985).

Methods to diagnose microphysical variables from
radar data have also been examined by a number of
researchers. Rutledge and Hobbs (1983, 1984), followed
by Ziegler (1985, 1988), employed detailed diagnostic
kinematical cloud models to derive the thermodynamic
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and microphysical fields using dual-Doppler synthe-
sized wind fields. Hauser and Amayenc (1986) used the
continuity equation for total water content to diagnose
the microphysical variables, assuming wind and ther-
modynamic fields were given through a dynamic re-
trieval method (Roux et al. 1985). All of the above-
mentioned studies in microphysical retrieval used the
assumption that the cloud system was in steady state.
Verlinde and Cotton (1990) examined the performance
of the microphysical retrieval using an algorithm of the
Rutledge–Ziegler type in a situation where the steady-
state assumption was clearly violated. They found that
the microphysical and thermodynamic fields were either
overestimated or underestimated, indicating that a
knowledge of the time history of the microphysical data
was important in the developing and dissipating stages
of storms.

In recent years, considerable effort has been devoted
to the field of four-dimensional variational (4DVAR)
data assimilation through the use of adjoint models. The
adjoint formalism was first proposed by Le Dimet
(1982) for meteorological applications and was then im-
plemented by Derber (1985), Lewis and Derber (1985),
Courtier (1985), Le Dimet and Talagrand (1986), Tal-
agrand and Courtier (1987), Navon et al. (1992), Zu-
panski (1993), and Zou et al. (1993a,b), among others.
Most of these applications have been for the initiali-
zation of large-scale numerical models. The problem of
4DVAR for the convective scale is different in that it
aims more at the generation of unobserved fields, rather
than at optimal filtering as for the large scale. Sun et
al. (1991) developed the adjoint dynamic retrieval tech-
nique and demonstrated that the three-dimensional wind
and thermodynamic fields could be obtained from ob-
servations of a single-Doppler radar. Applications of this
technique to a gust front case from the Phoenix II ex-
periment showed encouraging results (Sun and Crook
1994). Using a kinematic microphysical model, Verlinde
and Cotton (1993) demonstrated that, given the dynam-
ical variables, the microphysical variables could be re-
trieved using the adjoint technique. The promising re-
sults obtained in these studies has led us to develop a
variational Doppler radar analysis system (VDRAS) that
is aimed at retrieving the three-dimensional wind, tem-
perature, pressure, and microphysical fields in moist
convective flows from single- or multiple-Doppler radar
observations. By fitting a three-dimensional, time-de-
pendent cloud resolving model to a time series of ob-
servations using a 4DVAR data assimilation technique,
the atmospheric state containing dynamically consistent
information of wind, thermodynamics, and microphys-
ics can be determined.

A cloud model contains parameterized moist pro-
cesses that are often characterized by on/off switches.
These processes are often highly nonlinear and discon-
tinuous. Since the adjoint model was initially derived
for differentiable systems of equations, a model with
discontinuous moist processes may present some prob-

lems. Recently, as more and more researchers have be-
gun to include physical parameterization processes in
their 4DVAR systems, the problems related to on/off
switches have drawn attention in the data assimilation
community (Douady and Talagrand 1990; Vukicevic
and Errico 1993; Zou et al. 1993b; Zupanski and Mes-
inger 1995; Verlinde and Cotton 1993; Bao and Kuo
1995, Bao and Warner 1993; Xu 1996a,b; Zou 1995).
Theoretical studies by Bao and Kuo (1995) and Xu
(1996a,b) suggested that a mathematically rigorous ad-
joint of the physical parameterization scheme involving
on/off switches must consider the variation of the
switching time (the physical time into the run at which
the parameterization scheme switches on or off) with
respect to the perturbation of the control variables. Nev-
ertheless, experimental studies by Zou et al. (1993b),
Zou (1995), Verlinde and Cotton (1993), and Zupanski
and Mesinger (1995) showed that their minimization
processes were well behaved while keeping the on/off
switches the same as in the basic state. However, in the
latter two studies, smoothing by fitting a function of
time was applied to eliminate some of the switches.

The main purpose of this paper is to describe the new
variational Doppler radar analysis system and demon-
strate its ability in retrieving the 3D wind, thermodyn-
amical, and microphysical structure of convective
storms. Issues associated with the adjoint of moist pro-
cesses will also be discussed. We test the retrieval tech-
nique on simulated data of moist convection initiated
from a warm, moist bubble. In Part II of this paper, the
retrieval technique will be tested on airmass storms ob-
served during the Convection and Precipitation/Electri-
fication Experiment. This paper is organized as follows.
Section 2 describes the numerical model and the phys-
ical parameterization schemes. The variational data as-
similation technique used in VDRAS will be described
in section 3. Some special treatments of the moist pro-
cesses in the adjoint model will also be addressed in
this section. In section 4, the control simulation is de-
scribed and the results of retrieval experiments are pre-
sented. In section 5, summary and discussion are given.

2. Numerical model

a. Basic equations

The model contains six prognostic equations. They
are the three momentum equations, the thermodynamic
equation, the rainwater equation, and the total water
equation. Using the anelastic approximation, the mo-
mentum equations are written as

dr̄u ]p9
25 2 1 n¹ r̄u, (2.1)

dt ]x

dr̄y ]p9
25 2 1 n¹ r̄y, (2.2)

dt ]y
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dr̄w ]p9 T9
5 2 1 gr̄ 1 0.61q9 2 q 2 qv c r1 2dt ]z T

21 n¹ r̄w. (2.3)

The mass continuity equation is written as

]r̄u ]r̄y ]r̄w
1 1 5 0. (2.4)

dx dy dz

Here, u, y, and w are the wind velocities and qv, qc, and
qr are mixing ratios for water vapor, cloud water, and
rain water, respectively; T, r, and p are the temperature,
the density of air, and the pressure, respectively. The
primed variables represent the deviations from the initial
unperturbed state whose variables are denoted with
overbars. The quantity n is the eddy viscosity. The per-
turbation pressure p9 is a diagnostic variable that can
be obtained by solving the Poisson equation

2¹ p9 5 2=·(y·=r̄y)

] T9
1 gr̄ 1 0.61q9 2 q 2 q . (2.5)v c r1 2]z T

The thermodynamic equation is written in terms of
liquid water potential temperature, ul, following Tripoli
and Cotton (1981):

2dr̄u L r̄ u dV ql v l Tm r 25 2 1 k¹ r̄u . (2.6)ldt c T u dzp

The variable VTm is the mass-weighted terminal velocity,
which will be described later. The quantity k is the
diffusivity of liquid water potential temperature and Lv

is the latent heat of vaporization. The liquid water po-
tential temperature is a conserved quantity with respect
to condensation and evaporation. It is defined by

Lvu 5 u 1 2 (q 1 q ) . (2.7)l c r1 2c Tp

The equations governing the rainwater qr and total
water content qt are

dr̄q dV qr Tm r 25 R 1 R 1 R 1 r̄ 1 k¹ r̄q , (2.8)c a e rdt dz

dr̄q dV qt Tm r 25 r̄ 1 k¹ r̄q . (2.9)tdt dz

Here, Ra is the transfer rate from cloud water to rain-
water due to autoconversion, Rc is the transfer rate from
cloud water to rainwater due to accretion, and Re is the
evaporation rate resulting from the evaporation of rain-
drops in subsaturated air. The parameterization of these
three quantities will be given later. The total water con-
tent qt is defined by

q 1 q 1 q , if (q $ q )c vs r v vsq 5 (2.10)t 5q 1 q , if (q , q ).v r v vs

The temperature and cloud water mixing ratios are di-

agnosed from the prognostic variables by assuming that
all vapor in excess of the saturation value is converted
to cloud water. These variables are related through

R /cpp lvT 5 u 1 1 (q 1 q ) , (2.11)l c r1 2 1 2p c T0 p

and

(q 2 q 2 q ), if (q $ q )t vs r v vsq 5 (2.12)c 50, if (q , q ),v vs

where qvs is the saturation mixing ratio given by

3.8 T 2 273.16
q 5 exp 17.27 . (2.13)vs 1 2p T 2 35.86

A bisection iteration scheme is used to obtain the tem-
perature from Eqs. (2.11), (2.12), and (2.13). The tem-
perature is computed within 0.018C accuracy, which
generally takes less than 10 iterations.

In this model, the liquid water potential temperature
is chosen as the thermodynamical variable so that only
two prognostic equations are required for the micro-
physics (qr and qt). As will be seen in the following
section, the number of control variables of the opti-
mization problem depends on the number of prognostic
variables in the model. A model system with two mi-
crophysical prognostic equations will obviously reduce
the number of control variables compared to a model
system that requires three microphysical prognostic
equations (e.g., qc, qr, and qv).

All the model variables are scaled by their typical
values and the numerical model is coded in terms of
dimensionless variables. The reason for doing this is to
balance the magnitude of the different variables such
that each variable has a similar weight during the op-
timization, and hence a better convergence rate (e.g.,
Gill et al. 1981).

b. Physical processes

The physical processes allowed in this model are con-
densation and evaporation of cloud water (implicit in
ul), evaporation of raindrops in subsaturated air, auto-
conversion of cloud to rain, accretion of cloud by rain,
and sedimentation of rain.

Autoconversion and evaporation of rain are para-
meterized following Kessler (1969) as

a(q 2 q ), for q . qc crit c critR 5 (2.14)a 50, for q , q ,c crit

0.65R 5 b(q 2 q )(rq ) , (2.15)e v vs r

and we are presently setting a 5 0.001 s21, qcrit 5 1.5
g kg21, and b 5 0.0486 s21. The mass-weighted velocity
of rainwater, required to calculate sedimentation, is cal-
culated assuming a Marshall–Palmer drop-size distri-
bution. It is given by
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VTm 5 5.40a(rqr)0.125. (2.16)

The quantity a is a correction factor defined by a 5
(p0/p̄)0.4, where p̄ is the base-state pressure and p0 is the
pressure at the ground. The rainwater mixing ratio qr is
in units g kg21. Accretion is parameterized using the
expression

Rc 5 gqc ,7/8qr (2.17)

where g is set to 0.002 s21, following Miller and Pearce
(1974).

3. Description of the technique used in VDRAS

a. Definition of the cost function

The four-dimensional variational data assimilation
technique is applied in this analysis system. The objec-
tive is to find an initial state that can, upon model in-
tegration, produce output parameters matching the ob-
servations as closely as possible. A cost function mea-
suring the misfit between the model and data is defined
in terms of the radar observed variables, that is, the
radial velocity and reflectivity. Assuming that the ob-
servational errors of each field are uncorrelated in space
and time, the cost function J1 is given by

ob 2 ob 2J 5 [h (V 2 V ) 1 h (Z 2 Z ) ]O1 y r, i r, i z i
s,t, i

1 J 1 J . (3.1)b p

where s represents the spatial domain and t represents
the temporal domain. The index i stands for the ith radar.
The quantities and are observations of the radialob obV Zr,i i

velocity and reflectivity, respectively, from the ith radar.
Here, Vr,i and Z are their model counterparts. These two
quantities are not direct model outputs but are calculated
using the model outputs of Cartesian velocity and rain-
water mixing ratio qr. The relation between Z and qr is
derived analytically by assuming the Marshal–Palmer
distribution of raindrop size. Assuming n0 5 8 3 106

mm24, the result is

Z 5 2.04 3 104(rqr)1.75, (3.2)

where Z is the reflectivity (units of mm6 m23). If the
reflectivity is in units of dBZ, the Z–qr relation becomes

Z 5 43.1 1 17.5 log(rqr). (3.3)

From Eq. (3.2) or (3.3), a model-predicted reflectivity
can be calculated using the model output qr. On the
other hand, a set of rainwater data can be obtainedobqr

from the reflectivity observations. If we take as ob-obqr

servations, another cost function J2 can be defined as

ob 2 ob 2J 5 [h (V 2 V ) 1 h (q 2 q ) ]O2 y r, i r, i q r r, i
s,t, i

1 J 1 J , (3.4)b p

where qr is the model-predicted rainwater mixing ratio
(units of g kg21). The radial velocity Vr,i in both Eqs.

(3.1) and (3.4) is calculated using the Cartesian velocity
components (u, y, w) from the model integration through
the relation

x 2 x y 2 y z 2 zi i iV 5 u 1 y 1 (w 2 V ) , (3.5)r, i Tmr r ri i i

where VTm is the terminal velocity of the precipitation
given by Eq. (2.16). Here, ri is the distance between a
grid point (x, y, z) and the ith radar location (xi, yi, zi).

Either J1 or J2 can be used as the cost function in a
retrieval experiment. Most experiments presented in
section 4 of this paper used the cost function J2. Ex-
periments using J1 as the cost function will also be dis-
cussed and compared with those using J2.

The quantities hy, hz, and hq in Eqs. (3.1) and (3.4)
are weighting coefficients for radial velocity, reflectiv-
ity, and rainwater mixing ratio, respectively. In the cur-
rent study with simulated data, these weighting coeffi-
cients are simply taken as constants. The value of rz or
rq relative to rv is determined such that the two terms
in the cost function have similar magnitude. It should
be noted that, in both Eqs. (3.1) and (3.4), we have
assumed that the observational errors are uncorrelated
and these errors are evenly distributed in space and time.
In reality, however, this is usually not the case. In Part
II of this study, we will discuss methods to estimate the
error covariance matrix when real data are employed.

In Eq. (3.1) and (3.4), and denote the obser-ob obZ qi r,i

vations of the reflectivity and rainwater mixing ratio
from the ith radar. It is important to note that, although
ideally different radars should give the same observa-
tions of reflectivity, in reality the reflectivity observed
and hence the rainwater estimated by different radars
can have some differences due to instrumentation or
calibration error, attenuation, and beam blockage.

The parameters Jb and Jp in the cost functions J1 and
J2 represent background and penalty terms, respectively.
Since radar data are concentrated only in the region
where scatterers exist, there are no radar observations
outside that region. The flow field in the data-void re-
gion is constrained toward the background provided by
some other sources of observations by adding a back-
ground term Jb to the cost function. The general form
of the background term can be written as

Jb 5 (x 2 xb)T B21 (x 2 xb), (3.6)

where x represents model variables in vector form and
xb stands for the background information. Here, B is the
covariance matrix of the background error. More dis-
cussion on the background term will be given in section
4. The quantity Jp in the cost function represents the
spatial and temporal smoothness penalty functions. The
formulation and effect of these functions were discussed
in Sun and Crook (1994).

A constrained variational problem is constructed by
using either one of the two cost functions J1 and J2 with
the model equations given in section 2 representing the
constraints. The initial conditions (IC) of the numerical



1646 VOLUME 54J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

model are the control variables, assuming the boundary
conditions and the model parameters are given. There-
fore, the variational problem can be stated thus: find a
set of IC of the numerical model that minimizes the cost
function J1 or J2. This problem can be solved by re-
defining it so that it becomes a problem of unconstrained
minimization. Standard procedures on minimization for
problems of this type can be found in textbooks on
optimization (e.g., Gill et al. 1981; Luenberger 1984).
The minimization algorithm used in this study is No-
cedal’s limited memory, quasi-Newton conjugate gra-
dient method (Liu and Nocedal 1989). The objective in
the minimization method is to find a search direction,
dk, and a step length, ak, at the kth iteration that will
lead to a new IC and reduce the cost function, namely,
J ( 1 ak dk) # J ( ). The search direction dk is cal-k kx x0 0

culated using the information of the cost function and
its gradient. The cost function can be computed by in-
tegrating the model forward and the gradient is obtained
by integrating the adjoint model (described in the ap-
pendix) backward in time.

b. Special treatment of the moist processes in the
adjoint model

The cloud model described in the last section contains
a number of physical parameterization processes. These
moist processes have two general characteristics: one is
that they are associated with on/off switches; the other
is that the parameterization schemes are often highly
nonlinear. Since the adjoint model was originally de-
rived for a differentiable system of equations and used
to provide first-order derivative information of the cost
function, moist processes with nondifferentiable on/off
switches and a high degree of nonlinearity can cause
difficulties in the minimization procedure. The first ad-
joint models with full physics were developed by keep-
ing the on/off switches the same as in the basic state
or, in other words, by ignoring the variation of the
switching time caused by the perturbation in IC (Zou
et al. 1993b; Vukicevic and Errico 1993; Zupanski and
Mesinger 1995). Test results by Zou et al. (1993b)
showed that the minimization procedure converged at
a similar rate as the one with the adiabatic version of
their model. Zupanski and Mesinger (1995) demonstrat-
ed that errors caused by discontinuous on/off switches
were reduced by applying a selective vertical smoothing
to the layers of transition in the Betts–Miller cumulus
convective scheme. Using simple differential equations,
Bao and Kuo (1995), Xu (1996a,b), and Zou (1995)
gave rigorous mathematical derivations for physical
processes that contain on/off switches. Their derivations
all showed that additional terms appeared in the adjoint
model if the change in the switching time due to an
initial perturbation was considered. However, Zou
(1995) also argued that, for a discretized numerical mod-
el, the switching time occurs at the same time step for
both perturbed and basic-state solutions in regard to

very small perturbations in the IC. ‘‘Very small’’ per-
turbations mean small enough to be able to ignore the
higher-order terms and large enough to avoid machine
round-off error. It should be noted that, in 4DVAR, the
adjoint model is used for calculating the gradient of the
cost function with respect to the IC and this gradient is
derived for an infinitesimal perturbation. Zou (1995)
showed that the additional terms due to differentiation
of switches indicated by Xu (1996) do not seem to exist
or are very small for a discretized model in her rainfall
assimilation study.

In our study, the derivation of the adjoint of physical
processes with on/off switches follows that of Zou
(1993b); that is, the switching times are kept the same
as in the forward integration of the prediction model.
The adjoint model derived in this manner did not seem
to cause any problem in the minimization. We have
found, however, that the high degree of nonlinearity
associated with the parameterization of some of the
physical processes can cause serious problems for the
minimization. Without any modification of the original
parameterization schemes, we have found two schemes
that can cause the minimization process to fail. One is
the evaporation of rain given by Eq. (2.15); the other
is the rainwater fall velocity given by Eq. (2.16). When
the rainwater mixing ratio is close to zero, both param-
eterization schemes yield a very large gradient with re-
spect to the rainwater mixing ratio. This can be easily
shown by taking the derivative of Eqs. (2.15) and (2.16)
with respect to qr to yield

]Re 20.355 0.65br(q 2 q )(rq ) , (3.7)v vs r]qr

and

]VTm 20.8755 0.125 3 5.40a(rq ) . (3.8)r]qr

The large gradient associated with very small values
of rainwater mixing ratio can cause an imbalance of the
gradient among different control variables. The mini-
mization fails to converge due to this type of ill-con-
ditioning. To avoid this problem, the two schemes were
slightly modified. First, the evaporation rate is kept con-
stant for rainwater mixing ratios less than a critical value
qecrit. Second, the rainwater fall velocity is modified such
that the velocity is a constant for rainwater mixing ratios
smaller than 0.05 g kg21. The scheme for evaporation
of rain now becomes

0.65 21b(q 2 q )(rq ) , if q . q g kgv vs r r ecritR 5e 0.65 215b(q 2 q )(rq ) , if q # q g kgv vs ecrit r ecrit

(3.9)

and the rainwater fall velocity is changed to
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FIG. 1. Plot of function F(a) in (3.18) for vertical velocity (a) and
for rainwater mixing ratio (b). The solid curve is for test 1 in which
the original parameterization schemes are used, dotted curve for test
2 in which the evaporation of rain follows Eq. (3.14) with qecrit set
to 0.001 g kg21, and dashed curve for test 3 in which qecrit is set to
0.1 g kg21.

0.125 215.40a(rq ) , if q . 0.05 g kgr rV 5Tm 0.125 2155.40a(0.05r) , if 0 , q # 0.05 g kg .r

(3.10)

The derivatives in (3.12) and (3.13) now become
20.350.65(q 2 q )(rq ) ,v vs r

21]R if q . q g kge r ecrit5 (3.11)
]q 0,r 5

21if q # q g kgr ecrit

and
20.8750.125 3 5.40a(rq ) ,r

21]V if q . 0.05 g kgTm r5 (3.12)
]q 0,r 5

21if 0 , q # 0.05 g kg .r

In this way, the large gradient associated with very small
rainwater mixing ratio is replaced by zero. The value
of qecrit in Eqs. (3.9) and (3.11) will be given later in
this section.

It should be noted that, in the governing equations,
the velocity of rainwater is always multiplied by the
rainwater mixing ratio to produce the precipitation rate,
that is, (dVTmqr)/(dz). As a result, the nonlinearity is
greatly reduced since (dVTmqr)/(dz) } . Other than1.125qr

in the precipitation term, VTm also appears in the cost
functions (3.1) and (3.4) through the model-predicted
radial velocity Vr,i, where its high nonlinearity will cause
some problems.

The modifications described above make a great dif-
ference in the gradient calculation through the adjoint
model but affect the forward model integration negli-
gibly. In the following section, we will not apply these
modifications to the control simulation through which
the data are generated. They will only be used in the
forward model integration and the backward adjoint in-
tegration in the assimilation runs.

As shown in the appendix, the adjoint model is the
transpose of the tangent linear model and is used to
provide first-order derivative information of the cost
function. Therefore, how well the tangent linear model
(TLM) solution approximates the nonlinear model so-
lution determines how valid the gradient of the cost
function is. Following Zou (1995), to verify the cor-
rectness of the TLM, one can define a function F(a),
given by

F (x 1 ah) 2 F (x )n 0 n 0F(a) 5 , (3.13)
aG hn

where F and G are the nonlinear model and the tangent
linear model operators, respectively, as defined in the
appendix. The quantity h is a normalized random vector
and a is a scalar. Here F(a) can be computed for a
particular point or for all the points in the domain. In
the latter case, the rms error for both the nonlinear model

and the tangent linear model was compared. If the TLM
approximates the nonlinear model well, one should ex-
pect to obtain a value of F(a) close to unity for small
values of a at any particular point. In order to examine
how well the tangent linear solution approximates the
nonlinear solution and how the special treatment de-
scribed above affects the tangent linear approximation,
three tests were performed to evaluate F(a). Since the
tests were performed on a CRAY-YMP supercomputer,
which has 64-bit accuracy, we used 10212 as the smallest
value for a. In test 1, the original parameterization
schemes were used. In test 2, the evaporation of rain
follows Eq. (3.14) with qecrit set to 0.001 g kg21. The
last test was similar to the second but the threshold qecrit

was changed from 0.001 g kg21 to 0.1 g kg21. Both the
TLM and nonlinear model integrations started at t 5
41.7 min and the length of the integration was 8.3 min,
or 50 time steps. The results of these three tests are
compared in Fig. 1 by plotting the change of F(a) with
a for (a) vertical velocity and (b) for rainwater mixing
ratio. Here we show F(a) summed over all points in
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FIG. 2. Skew T diagram depicting initial temperature and moisture profiles.

the domain. We have also examined F(a) for some se-
lected points and found similar results. In both Figs. 1a
and 1b, the solid line represents test 1, the dotted line
test 2, and the dashed line test 3. Clearly, without the
modification of the scheme, the TLM approximates the
nonlinear model poorly. The modified scheme (3.14)
with qecrit 5 0.001 g kg21 results in a much better ap-
proximation as long as the perturbation is sufficiently
small. As the threshold value is increased to 0.1 g kg21,
F(a) has a uniform value of 1 for a ranging from 10212

to 1022. These tests indicate that the nonlinearity can
be greatly reduced by modifying the original scheme.
Although test 3 suggests a better approximation of the
TLM to the nonlinear model, we are inclined to choose
a scheme that reduces the nonlinearity and meanwhile
modifies the physics as little as possible. As mentioned
earlier in this section, in 4DVAR the gradient is cal-
culated for an infinitesimal perturbation. As shown in
Fig. 1, the modified scheme (3.11) with a threshold
value of 0.001 g kg21 is able to provide a good ap-
proximation of the TLM to the nonlinear model as long
as the perturbations are very small. These tests also
indicate that with on/off switches, the TLM can still
approximate the nonlinear model very well.

4. Retrieving cloud structure of a simulated storm

a. Control simulation

The control experiment was a simulation of moist
convection initiated by a warm, moist bubble. The in-
tegration domain was 33.5 km in both horizontal di-

rections and 10 km in the vertical, with grid intervals
Dx 5 Dy 5 500 m and Dz 5 400 m. The sounding used
for the initial temperature and moisture profiles is shown
by the solid lines in Fig. 2. This is a fairly typical pre-
convective summertime sounding from the Denver re-
gion. The initial velocity fields were assumed zero. To
initiate convection, a warm, moist bubble was inserted
in the center of the domain at a height of 2 km. The
initial impulse was 8 km wide and 4 km deep, with a
temperature excess of 18C and moisture excess of 1 g
kg21. We use the Adams–Bashforth time-differencing
scheme with a time step of 10 s. The boundary con-
ditions for the velocities normal to the boundaries are
assumed zero and, for other variables, their derivatives
normal to the boundaries are assumed zero. The eddy
viscosity n was set to 150 m2 s21, a typical value used
in numerical simulations, and k was set to 3n. The mod-
ifications of the parameterization schemes described in
the last section were not used in the control simulation.

Cloud first started to form in the model at about 17
min when the warm bubble reached the lifting conden-
sation level (about 4 km). The storm was fully devel-
oped at about 33 min with a maximum rainwater mixing
ratio of ;3 g kg21 and maximum vertical velocity of
;16 m s21. Figures 3 and 4 show u, w, T9, qv, qc, and
qr fields in the plane y 5 6 km (center of the storm) at
t 5 29.2 min and t 5 45.8 min, respectively (note that
the plots do not include the boundary points). The qc

and qr fields are overlaid with the velocity vector field.
It should be noted that T9, qv, and qc are diagnosed from
the prognostic variables ul, qt, and qr. The storm shown
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FIG. 5. Locations of the two assumed radars relative to the assimi-
lation domain.

in Fig. 3 is in its developing stage. A mushroom-shaped
cloud is formed and the storm is characterized by a
strong central updraft. The positive temperature excess
is 2.868C. The negative temperature excess above it is
caused by adiabatic cooling. In the dissipating stage of
the storm, as shown in Fig. 4, evaporative cooling pro-
duces negative temperature perturbations near the
ground and drives a downdraft at low levels. The pos-
itive buoyancy in the center of the storm is still sustained
at this time. The cloud is dissipating and rain is falling
to the ground.

In the following sections, the fields shown in Fig. 3
and Fig. 4 will be taken as the actual fields to verify
the accuracy of the retrieval.

b. Retrieval experiments and results

In this section, we will test the ability of VDRAS by
performing a number of ‘‘identical twin’’ experiments.
In our experiments, the ‘‘observations’’ of radial ve-
locities were constructed using the Cartesian velocity
components and rainwater mixing ratio in the control
simulation through Eq. (3.5). The ‘‘observations’’ of
reflectivity were derived from the rainwater mixing ratio
in the control simulation using Eq. (3.2) or (3.3). In
most of the experiments, we assume two radars are
available. The location of the radars relative to the re-
trieval domain are depicted in Fig. 5. With this geom-
etry, the two radar beams are nearly perpendicular. We
have conducted a series of experiments reducing the
angle u (see Fig. 5) up to 208 and found that the de-
pendence of the retrieval on u is quite small. The re-
trieval was performed on a domain of 13 3 13 3 10
km3 with a grid spacing of 500 m in the horizontal and

400 m in the vertical. Although a Doppler radar observes
reflectivity, in most of the following experiments, the
rainwater mixing ratio that can be estimated using a Z–
qr relation will be used as observational data. That is,
the cost function (3.4) is minimized. The problem of
directly assimilating reflectivity data will be discussed
in a later experiment. For practical reasons, the retrieval
experiments were stopped as the cost function leveled
out. This generally occurred between 50 and 100 iter-
ations. We will show results using 100 iterations for all
experiments presented in this paper. The quality of the
retrieval will be assessed by the relative rms error and
by comparing the retrieved fields with the actual fields
at the end of the assimilation window. The relative rms
error is the rms error normalized by the standard de-
viation of the actual field.

1) RETRIEVING THE CLOUD STRUCTURE AT

DIFFERENT STAGES OF THE STORM

Our first two retrieval experiments were intended to
examine the performance of the retrieval at different
stages of storm development. Experiment A was con-
ducted at the developing stage and experiment B at the
dissipating stage of the storm. Both experiments assim-
ilated two sets of data, separated by an interval of 3.33
min. The assimilation window for experiment A was
from t 5 25.8 min to t 5 29.2 min, and for experiment
B from t 5 42.5 min to t 5 45.8 min. The input data
were radial velocity from two radars and rainwater mix-
ing ratio. The objective in the 4DVAR retrieval exper-
iments is to find an initial state (at t 5 25.8 min for
experiment A and at t 5 42.5 min for experiment B)
that will, upon model integration, produce solutions as
close to the observations as possible by minimizing the
cost function J2. Since the quasi-Newton conjugate gra-
dient method used for the minimization is an iterative
method, a first guess of the initial state is needed to
start the minimization procedure. The first-guess fields
for these two experiments and for the rest of the ex-
periments presented in this paper were determined in
the same fashion. Zero fields were given to the first-
guess fields of the velocities. The first guess of the liquid
water potential temperature ul and the total water mixing
ratio qt were determined using the mean soundings
(shown in Fig. 2) and the rainwater field from the control
simulation in the following manner. First, the maximum
values in the first-guess fields of ul and qt were deter-
mined by taking the difference of the mean values be-
tween the surface level and the level at which the rain-
water reaches its maximum shown in the soundings.
These maximum values were estimated in such a manner
because ul and qt are both conserved variables as long
as the rainwater remains in the rising parcel. These max-
ima were then multiplied by qr(x, y, z)/qrmax to yield their
first-guess fields where qrmax is the maximum value in
the rainwater mixing ratio field. Once the first guess of
qt and ul is provided, the perturbation temperature T9,
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cloud water mixing ratio qc, and water vapor mixing
ratio qv can be computed through the diagnostic relations
described in section 2. Figure 6 shows the first-guess
fields of T9, qc, and qv for both experiments.

Starting from the first-guess fields described above,
the retrieval experiments were carried out by minimiz-
ing the cost function J2 with the penalty and background
terms excluded. During the minimization process, the
modified scheme for evaporation of rain was used in
place of the original scheme, and the modified scheme
for rainwater terminal velocity was used in the calcu-
lation of Vr,i [see Eq. (3.5)] in the cost function but not
in the precipitation process [see Eqs. (2.6), (2.8), and
(2.9)]. Figures 7 and 8 present the retrieved fields at the
end of the assimilation window from experiment A and
experiment B, respectively. The relative rms error is
shown at the top of each plotted field. Comparing the
retrieved fields with their corresponding actual fields
shown in Figs. 3 and 4, one can see that, for both ex-
periments, the discrepancies are very small except for
the perturbation temperature field. At the storm dissi-
pating time, however, the retrieved temperature field has
much smaller error than at the developing time. It is
interesting to note that the relative error in retrieved
liquid water potential temperature field ul is not large,
about 2.3% in both experiments. However, the actual
temperature has a much larger relative error. Further
examination revealed that the absolute errors in ul and
in T9 were the same order and the large difference in
their relative errors was caused by the difference of the
standard deviations in these two fields.

The reason why a better temperature retrieval was
obtained at the dissipating stage of the storm is ex-
plained as follows. Part of the retrieved temperature
perturbation is necessary to balance the waterloading
due to cloud and rain. Since the cloud and rainwater
fields are retrieved quite accurately, this part of the tem-
perature perturbation is also retrieved accurately. There-
fore, since the amount of rainwater is greater in the
dissipating stage of the storm, the temperature retrieval
is more accurate at this stage.

2) ADDING BACKGROUND TERM

The objective of 4D data assimilation is to fit a model
solution to observations as closely as possible. However,
observations of the atmosphere are often sparse and
spaced much farther apart than the grid points. On the
convective scale, radar data is generally available at
very fine resolution; however, these observations are
often concentrated in small areas and there are no ob-
servations with a comparable resolution outside these
regions. When the observations are incomplete, other
types of observations or some a priori information need
to be incorporated by adding a background term to the
cost function. The general form of the background term
has been given in Eq. (3.6). On the large scale, some
dynamic balance is often used to provide background

information (e.g., Heckley et al. 1992). On our scale of
interest, however, simple balance equations are not
available. Therefore our focus will be on incorporation
of data from other sources to fill the data-void region.
Since these data usually have much less resolution than
the radar data, they are considered here as background
data. One simple application of adding other data to the
cost function is the use of mean properties observed
before the convection developed. The background term
can be written as

2J 5 h (x 2 x ) , (4.1)Ob x m mm
s,t,m

where xm represents any model variable and xm is the
mean profile of this variable. The quantity h is thexm

weighting constant. It is zero in the data-rich region and
has a specified value in the region of vanishing radar
echoes. This specification of h reduces the error co-xm

variance matrix B into a diagonal matrix. Preliminary
experiments with real data have shown that this back-
ground term is very important in keeping the wind out-
side the convection close to the mean profile, meanwhile
fitting the cloud model to radar observations within the
convection (Sun et al. 1995; Sun and Crook 1995). In
the current study with simulated data, since we have
data everywhere in the domain, this term will not play
as important a role as with real data. However, we still
expect this term can add information to the variable least
constrained by the available radar data, for instance, the
temperature field. To examine the effect of this back-
ground term on the quality of the retrieved temperature
field, experiments A and B were repeated with a back-
ground term added to the cost function. The background
term used in these two experiments is

2J 5 h T9 . (4.2)Ob T
s,t

Note that T9 is the perturbation temperature and its mean
value is zero. Here, hT is zero if qr is greater than 0.01
g kg21 and 0.1 for other values of qr. With this back-
ground term, the retrieved temperature fields in both
experiments were improved. The relative rms errors
were reduced from 45.2% to 38.2% in the developing
stage and from 25.0% to 12.3% in the dissipating stage.
Figure 9 compares the actual temperature field with the
retrieved temperature fields with (Fig. 9c) and without
(Fig. 9b) the background term (4.2) at the dissipating
stage. It is seen that some background noise is removed
and the positive temperature excess is closer to that in
the actual field after the background term is applied.

3) RETRIEVAL USING SINGLE RADAR INFORMATION

Extracting information from single-Doppler radars
has attracted a great deal of attention in recent years.
Various techniques have been developed to determine
the 3D wind and temperature fields from single-Doppler
observations of the dry boundary layer. However, re-
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FIG. 6. First-guess fields of perturbation temperature [(a) and (b)], cloud water mixing ratio
[(c) and (d)], and water vapor mixing ratio [(e) and (f)]. (a), (c), and (e) are at t 5 25.8 min.
(b), (d), and (f) are at t 5 42.5 min.

trieving unobserved variables in a convective storm
from single-Doppler data is far more challenging than
in the boundary layer due to the presence of moist pro-
cesses. In principle, VDRAS can be used to derive in-
formation from a single-Doppler radar. However, how
much information can be obtained from single-Doppler
observations is a question that needs to be answered.

When observations from one radar are used, it is nec-
essary to include the penalty term and the background
term in the cost function to supplement the data inad-
equacy. Experiments at the developing stage and the
dissipating stage both suggested that the inclusion of
these terms helped obtain a more accurate retrieval. Fig-
ure 10 shows the retrieved fields at t 5 45.8 min from
the experiment using single radar information. This ex-
periment was similar to experiment B but used radial
velocity data only from radar 1. The other differences
from experiment B were the implementation of the tem-
poral and spatial smoothness penalty functions and the
background term (4.2) in this experiment. It can be ob-

served from the figure that the main structures of the
storm are captured. However, some discrepancies in
terms of magnitude are noticeable. Compared with the
experiment with data from two radars, the relative rms
error in the thermodynamical and microphysical fields
changed very little. The error in the velocity fields in-
creased rather substantially, from 0.5% to 12.3% for the
horizontal velocity and from 0.9% to 9.1% for the ver-
tical velocity.

4) ASSIMILATING REFLECTIVITY DIRECTLY

In the above experiments, we used rainwater mixing
ratio, which could be obtained through a Z–qr relation,
as input data. We can also assimilate reflectivity data
directly. In this case, the cost function J1 is used. Unlike
the cost function J2 in which qr is a direct model vari-
able, here the reflectivity Z in the cost function is related
to qr through the Z–qr relation (3.2) if Z is in units of
mm6 m23 or (3.3) if Z is in units of dBZ. Two experi-
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FIG. 9. Vertical cross section of the perturbation temperature field
at t 5 45.8 min from control simulation (a), from experiment B
without the background term (b), and from the experiment with the
background term (c).

ments were conducted to examine the performance of
the retrieval when the reflectivity data were used directly
in the cost function. In the first experiment, we assumed
the reflectivity data were in units of mm6 m23 [Eq. (3.2)].
Since the typical value of Z is a few orders larger than
that of the velocity, the value of the weighting coeffi-
cient hz must be properly chosen such that the two terms
in the cost function (3.1) will have a similar magnitude.
Based on this principle, hz was set to 1024 while hv was
set to 1. The retrieval results from this experiment (not
shown) indicated that the error in all of the retrieved
fields had a slight increase as compared with the ex-
periment in which the cost function (3.4) was mini-
mized. We also found that when the reflectivity contains
error, as will be discussed later in this paper, the deg-
radation by using the cost function J1 is more prominent.

In the second experiment, the reflectivity was as-
sumed to be in units of dBZ. That is, Z in the cost

function is related to qr through the Z–qr relation (3.3).
The advantage of using reflectivity in units of dBZ is
that it typically has values similar to that of radial ve-
locity. However, it was found that the minimization had
difficulty converging. This difficulty was caused by the
large gradient of the cost function associated with very
small qr as explained in the following. When taking the
derivative with respect to qr in the adjoint model, the
second term in the cost function (3.1) will lead to the
following variation:

17.5
obdJ 5 · · · 1 2r (Z 2 Z ) 3 dq 1 · · · · (4.3)1 z i rrq Ln10r

The variable qr appears in the denominator, which will
result in a very large gradient when qr is small. One
way to circumvent this problem is to set the term in
(4.3) to zero if qr is less than a specified value qrc mean-
ing that the data are not assimilated when they are small-
er than qrc. Since we want to keep as much data as
possible, a small value of qrc is desirable. Several ex-
periments were conducted to determine the best value
for qrc and it was found that it could not be smaller than
0.1 g kg21. The experiment with reflectivity as input
data and qrc 5 0.1 g kg21 shows that the retrieved fields
are quite close to those in the experiments that assimilate
qr except for the qr field. In Fig. 11, we compare the
retrieved qr field from the experiment in which J1 is
minimized with the retrieved field from experiment A
(in which J2 is minimized) and the actual field at t 5
29.2 min. It is observed that the retrieved qr field has
some substantial difference from the actual field. Its
relative rms error is 20.7%, much larger than that from
experiment A, which is only 0.7%. It should be noted,
however, that most of this error is distributed in the
region where the rainwater mixing ratio is smaller than
qrc (0.1 g kg21).

5) SENSITIVITY TO Z–qr RELATION

The Z–qr relation (3.2) used in this study was derived
by assuming the Marshall–Palmer drop-size distribu-
tion. In practice, various empirical Z–qr relations have
been used. It is natural to ask how sensitive the retrieval
is to variation in the Z–qr relation. To answer this ques-
tion, an experiment was conducted using a different
rainwater mixing ratio field as the input data. Taking
the reflectivity field derived from Eq. (3.2) as the actual
or observed reflectivity, a new qr can be obtained by
using an empirical Z–qr relation

Z 5 2.4 3 104 r .1.82qr (4.4)

Equation (4.4) is obtained by eliminating the rainfall
rate between the Marshall–Palmer expressions for the
Z–R and qr–R relationships (Battan 1973). The qr field
computed from (4.4) contains an error from 15% to 32%
for qr ranging from 1 to 5 g kg21. Experiments were
conducted with these perturbed qr input data at both the
developing stage and the dissipating stage. The back-
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FIG. 10. Similar to Fig. 7, but from the experiment with only one radar information.

ground term (4.2) was included in these experiments.
Except for the qr and T9 fields, the retrieved fields
showed very little change compared with their corre-
sponding experiments in which the exact qr was used.
At the developing stage, the temperature retrieval was
also affected very little by the inaccurate qr data, while
the error in the retrieved temperature field increased
from 12.3% to 28% at the dissipating stage. This is
partly due to the fact that more error was added to the
qr field at the dissipating stage because qr has greater
magnitude at that time. Another reason is that the tem-
perature retrieval is more dependent on the qr data at
the dissipating stage. The retrieved temperature field and
qr field at the dissipating stage are shown in Fig. 12 and
compared with their actual fields.

6) SENSITIVITY TO MOIST PROCESSES

The parameterized moist processes contain several
constants that are empirically determined. In order to
investigate the impact of the moist processes on the
retrieval, several retrieval experiments were conducted
by alternately neglecting some of the moist processes.
At the developing stage, the neglect of either the ac-

cretion or the autoconversion process mainly affected
the rainwater field with the relative rms error increasing
from 0.7% to 4.8% and 7.0% respectively. The error in
the cloud water field increased slightly and in the other
fields remained the same. The neglect of the accretion
process at the dissipating stage had a strong influence
on both the rainwater and the cloud water fields and a
slight influence on the perturbation temperature field.
Figure 13 shows the retrieved fields of qc and qr. The
cloud water content is twice that in the actual field and
the rainwater content decreases substantially. In the next
experiment, we tested the sensitivity to the precipitation
process by assuming zero fall velocity. As the fall ve-
locity was set to zero, the radial velocity was overes-
timated. In this case, not only the microphysical and
thermodynamical retrieval but also the velocity retrieval
were affected. Figure 14 displays the retrieved fields
from the experiment with zero fall velocity. It is shown
that both the cloud water and the central vertical velocity
are overestimated and the downdrafts are underesti-
mated. The rain remains in the upper levels. Another
experiment to test the sensitivity to the precipitation
process was conducted by changing the exponential val-
ue in Eq. (2.16) from 0.125 to 0.2. The results show an
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FIG. 11. Vertical cross section of the retrieved rainwater mixing
ratio at t 5 29.2 min from control simulation (a), from experiment
A assimilating the rainwater mixing ratio (b), and from the experiment
directly assimilating reflectivity (c).

increase in relative rms errors with a similar magnitude
for all of the retrieved fields.

The above experiments indicate that the retrieval of
cloud water and rainwater are rather sensitive to some
of the physical parameterization constants. A possible
method for determining more accurate constants is to
treat them as control variables so that they can be ad-
justed in a similar fashion to the initial conditions. How-
ever, an effort to ‘‘tune’’ these parameters by including
them as control variables turned out to be unsuccessful.
A possible explanation for this lack of success is that
the data are insufficient to uniquely define solutions of
the parameters in moist physics. Therefore, it is im-
portant to implement good physical parameterization
schemes in order to obtain a reliable microphysical re-
trieval.

7) SENSITIVITY TO OBSERVATIONAL ERRORS

In the above experiments, we have assumed that the
radial velocity and reflectivity data were error free. In
reality, however, observations can contain various er-
rors. In this section, we test the sensitivity of the re-
trieval to observational errors, in particular, random
noise in radial velocity and calibration error in reflec-
tivity. To examine the performance of the retrieval with
random noise in radial velocity, an experiment was con-
ducted by adding a 20% random error to the radial ve-
locity data from both radars, namely, yre 5 yr(1 1 0.2e),
where e represents the random error field in the range
of 61. Results from this experiment showed that the
relative errors in the retrieved velocity fields increased
slightly, from 0.63% and 1.1% to 1.6% and 4.1% for
the horizontal components and the vertical component,
respectively, while the changes in the other fields were
negligibly small.

The calibration error in reflectivity typically ranges
from 1 to 3 dBZ. In order to test the sensitivity of the
retrieval to reflectivity calibration error, we added a
3-dBZ error to the reflectivity data and then tested the
performance of the retrieval. It was found that the re-
trieved fields of T9, qc, and qr were rather sensitive to
the calibration error while the other fields had very little
change. In Fig. 15, we display the retrieved fields of T9,
qc, and qr (the right three panels) and compare them
with the retrieval with error-free data (the left three pan-
els). As a result of the 3-dBZ calibration error, the rain-
water mixing ratio is increased by more than 2 g kg21,
which consequently produces errors in the perturbation
temperature and the cloud water.

The above experiments indicate that the 4DVAR re-
trieval technique can tolerate random velocity errors bet-
ter than reflectivity calibration errors. Although larger
sensitivity was found in the latter experiment, the main
structure of the storm was still captured. From this point
of view, the technique is quite robust to both types of
observation errors.

5. Summary and discussions

In this paper, a variational Doppler radar analysis sys-
tem (VDRAS) was described. The basic components of
VDRAS include a forward cloud model with warm rain
parameterization and its adjoint. The ability of VDRAS
in determining the dynamical and microphysical vari-
ables within convective storms was examined through
a series of identical-twin experiments. These experi-
ments demonstrated that detailed cloud structures in a
convective storm could be retrieved by fitting the nu-
merical model to radial velocity and rainwater data using
information from dual- or single-Doppler radars. The
experiments also demonstrated that the adjoint model
developed by keeping the on/off switches the same as
in the basic state did not cause any problem in the min-
imization procedure. The problems of high nonlinearity
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FIG. 12. Vertical cross sections of perturbation temperature [(a) and (c)] and rainwater
mixing ratio [(b) and (d)] at t 5 45.8 min. (a) and (b) are from the control simulation and
(c) and (d) are from the experiment in which a different Z–qr relation (4.6) is used.

FIG. 13. Comparison of the retrieved rainwater mixing ratio (c) and cloud water mixing
ratio (d) from the experiment in which the accretion process is neglected with their actual
fields [(a) and (b)] at t 5 45.8 min.

associated with some of the physical processes could
be avoided by slightly modifying the schemes.

It was also found that assimilating rainwater mixing
ratio obtained from the reflectivity data using a Z–qr

relation resulted in a better performance of the retrieval
procedure compared to direct assimilation of reflectiv-
ity. When the reflectivity data in units of dBZ were
directly assimilated, the nonlinearity introduced to the

cost function through the highly nonlinear Z–qr relation
could cause problems in the minimization procedure.
Since any Z–qr relation contains approximations, we
varied the constants in the Z–qr relation to test the sen-
sitivity of the retrieval to these variations. It was shown
that the retrieval was rather robust to the error caused
by the change in the Z–qr relation.

Retrieval of the temperature field presented more
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FIG. 14. Similar to Fig. 7, but from the experiment in which the rainwater fall velocity is
assumed zero.

challenges compared to that of other variables in the
model, especially in the initial developing stage of the
storm. Although the inclusion of a background term
based on the environmental temperature helped reduce
the error, the error in the temperature retrieval remained
the largest. It is obvious that more information is needed
to improve the temperature retrieval. This information
could be some additional constraints based on physical
plausibility or observations from other sources, for in-
stance, aircraft or surface mesonet data. Unfortunately,
these data are not generally available except for some
specially designed field experiments.

When only single-Doppler information was provided,
the retrieved thermal and microphysical fields were
slightly degraded. Although the error in the retrieved
velocity fields increased noticeably, their structures
were retrieved reasonably well. If the model accurately
represents the atmosphere, then the retrieval technique
is quite powerful in differentiating the water vapor,
cloud water, and rainwater even with observations from
only one radar. However, the experiments in which the
parameters of some physical processes were neglected
suggested that poor representation of a moist process
could have a large impact on the retrieval of the mi-

crophysical fields. Attempts to tune these parameters
did not show any success with the amount of available
data. Therefore, it is important to implement good phys-
ical parameterization schemes in order to obtain a re-
liable microphysical retrieval.

VDRAS was also tested on radial velocity data with
a 20% random error and reflectivity data with a 3-dBZ
uniform error (to mimic calibration errors), respectively.
Results suggested that the technique was able to retrieve
the general structure of the storm when the data con-
tained errors at those magnitudes. However, the retrieval
was more sensitive to the reflectivity calibration error
than to the random noise in the radial velocity fields.
In these experiments, the error statistics were not used
to determine the error covariance matrix in the cost
function due to the difficulty in calculating the inverse
matrix. For simplicity, a constant diagonal matrix was
used to approximate the error covariance matrix. In the
current simulated data study, this approximation did not
appear to affect the retrieval results to a great extent.
However, better approximations may be required to suc-
cessfully assimilate observational data.

In the second part of this two-part paper, VDRAS will
be applied to real observations of convective storms.
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FIG. 15. Vertical cross section of perturbation temperature [(a) and (b)], cloud water
mixing ratio [(c) and (d)], and rainwater mixing ratio [(e) and (f)]. The left column is for
the experiment with error-free data and the right column is for the experiment with cal-
ibration error.

Although in the current paper we have showed that
VDRAS was able to handle certain errors in the input
data, the observational data will provide the truest test
of the retrieval scheme. Another important issue that
can be addressed by experiments with real data will be
the model’s representativeness to the motion in the at-
mosphere. Preliminary study with some real data has
shown promise (Sun et al. 1995; Sun and Crook 1995).
Further analyses and verification by aircraft observa-
tions will be presented in Part II of this paper.
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APPENDIX

Calculating the Gradient of the Cost Function
Using the Adjoint Model

The numerical model described in section 2 can be
represented in vector form as

]x
5 F(x),

]t (A.1)
x(t ) 5 x .0 0

The vector x contains the six prognostic variables (u, v,
w, ul, qr, qt). The discretized form of (A.1) can be written
as

x(tn) 5 Fn(x)x(t0), (A.2)

where x(tn) represents the model forecast at time tn and
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x(t0) the initial conditions of the prognostic variables.
Here, Fn(x) denotes the operator matrix to obtain x(tn)
from the initial condition x(t0).

Let dx(tn) denote the first-order variation of x(tn) re-
sulting from the perturbation dx(t0), then the tangent
linear model (TLM) of (A.2) can be written as

dx(tn) 5 Gn(x)dx(t0), (A.3)

where Gn(x) is the linear operator of the TLM. The
adjoint model can be obtained by taking the transpose
of the tangent linear model, that is,

dx9(t0) 5 (x)dx9(tn),TGn (A.4)

where dx9 represents the adjoint variable and (x) isTGn

the operator of the adjoint model. As shown by Tala-
grand and Courtier (1987), the inhomogeneous adjoint
equation is constructed by adding a forcing term to
(A.4), that is

dx9(t0) 5 (x)dx9(tn) 1 =H(x)dt,TGn (A.5)

where H(x) represents the integrand of the cost function
(3.1) or (3.4) and = represents differentiation with re-
spect to x. Talagrand and Courtier (1987) showed that
the final result dx9(t0) obtained from (3.11) is equal to
the gradient of the cost function with respect to the IC.

The adjoint model represented by Eq. (A.5) contains
six prognostic equations. The prognostic variables in
these equations are the sensitivities or the gradients of
the cost function with respect to their corresponding
prognostic model variables.
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