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The article researches a stochastic hepatitis B epidemic model with saturated incidence rate, which is perturbed by both white
noise and colored noise. Firstly, we obtain a significant criterion RS

0 which relies on environmental noises. By means of
Lyapunov function approach, we show that there is a stationary distribution if RS

0 > 1. Its condition implies that when white
noise is small, in the stochastic model, there exists a stochastic positive equilibrium state without changing the basic properties
of its corresponding deterministic model. Secondly, we derive sufficient criteria for extinction of the disease. Finally, we
propose a definition of the solution to an impulsive stochastic functional differential equation with Markovian switching (ISFDM).

1. Introduction

Hepatitis B virus is a severe infectious disease that has
emerged as one of the greatest threats to human health in
the 21st century. An estimated 350 million people worldwide
have been infected with hepatitis B virus [1]. The mathemat-
ical model to describe hepatitis B virus transmission and its
dynamics has been extensively explored, which provides
some effective suggestions for further study on the progres-
sion and its control [2–5]. Recently, Khan et al. [6] investi-
gated a hepatitis B epidemic model with saturated
incidence rate:

dS
dt

=Λ −
αSI
1 + γI

− μ0 + νð ÞS,

dI
dt

= αSI
1 + γI

− μ0 + μ1 + βð ÞI,

dR
dt

= βI + νS − μ0R,

8>>>>>>>><>>>>>>>>:
ð1Þ

with Sð0Þ > 0, Ið0Þ > 0, and Rð0Þ > 0. In model (1), the birth
rate is denoted by Λ. The transmission rate of hepatitis B

is given by α, while μ0 and μ1, respectively, demonstrated
the natural and disease-induced death rates. Recovery rate
is denoted by β, while the vaccination and saturation rates
are ν and γ, respectively. According to the theory in [6], model
(1) always has the disease-free equilibrium E0 = ðS0, 0, R0Þ,
where the components are defined as S0 =Λ/ðμ0 + νÞ, and
R0 =Λν/ðμ0ðμ0 + νÞÞ. If R0 < 1, E0 is globally asymptotically
stable. If R0 > 1, E0 is unstable and there exists an endemic
equilibrium E∗ = ðS∗, I∗, R∗Þ which is globally asymptotically
stable, where R0 = αΛ/ððμ0 + νÞðμ0 + μ1 + βÞÞ.

In fact, epidemic models are inherently subject to a
continuous spectrum of disturbances [7–11]. Many
authors demonstrated that the white noise and colored
noise have a great destabilizing influence on the epidemic
transmission. Moreover, considering the effect of environ-
ment noise on the epidemic model has become a popular
trend in controlling the spread of disease [12–16]. In this
respect, some researches on stochastic hepatitis B virus
models have been reported [17–19]. Particularly, in the
epidemic model, the disease transmission rate α represents
an extremely important coefficient [16, 20]. In this paper,
by taking into account the effect of continuous-time Mar-
kov chain on the transmission rate α, we consider a

Hindawi
Journal of Function Spaces
Volume 2022, Article ID 5574983, 8 pages
https://doi.org/10.1155/2022/5574983

https://orcid.org/0000-0002-0639-0746
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5574983


stochastic analogue of the deterministic model (1):

dS = Λ −
α ξ tð Þð ÞSI
1 + γI

− μ0 + νð ÞS
� �

dt + σ1 ξ tð Þð ÞSdB1 tð Þ,

dI = α ξ tð Þð ÞSI
1 + γI

− μ0 + μ1 + βð ÞI
� �

dt + σ2 ξ tð Þð ÞIdB2 tð Þ,

dR = βI + νS − μ0Rð Þdt + σ3 ξ tð Þð ÞRdB3 tð Þ,

8>>>>>><>>>>>>:
ð2Þ

where BiðtÞ are independent standard Brownian motions
and σ2i stand for the intensities of BiðtÞ, i = 1, 2, 3. ξðtÞ, t
≥ 0, is a right-continuous Markov chain on the complete
probability space ðΩ,F ,P Þ with values in a finite space
M = f1, 2,⋯,Ng (see [21, 22]).

It is widely known that the stability of biomathematical
model has always been a hot issue in recent years [23–26].
Compared with their corresponding deterministic cases,
lots of stochastic models have no traditional positive equi-
librium state. Consequently, the research of ergodic sta-
tionary distribution of s stochastic biomathematical
model has been a research highlight. In addition, model
(2) incorporates white noise as well as colored noise pos-
sessing important practical significance [27]. The main
aim of this article is to prove the existence of stationary
distribution for model (2). Above all, to guarantee exis-
tence and uniqueness of globally positive solution for
model (2), we establish the following conclusion. Since
the proof is standard, we omit it here.

Lemma 1. For any initial value ðSð0Þ, Ið0Þ, Rð0Þ, ξð0ÞÞ ∈ℝ3
+

×M, there exists a unique positive solution ðSðtÞ, IðtÞ, RðtÞ
, ξðtÞÞ ∈ℝ3

+ ×M of model (2) on t ≥ 0 almost surely (a.s.).

2. Existence of a Unique and Ergodic
Stationary Distribution

Theorem 2. If RS
0 > 1, where

RS
0 =

∑k∈Mπkα kð ÞΛ
μ0 + ν +∑k∈Mπk σ21 kð Þ/2� �� �

μ0 + μ1 + β +∑k∈Mπk σ22 kð Þ/2� �� � ,
ð3Þ

then for any initial value ðSð0Þ, Ið0Þ, Rð0Þ, ξð0ÞÞ ∈ℝ3
+ ×M,

model (2) has a unique stationary distribution which is
ergodic.

Proof. In order to prove Theorem 2, we need to validate that
the feasibility of (A1), (A2), and (A3) in Lemma 7 in the
appendix holds. We have assumed (A1) holds in Section 1.
To verify (A3), we need to find a nonnegative C2-function
VðS, I, R, kÞ and a compact set Dε ∈ℝ4

+ such that LV ≤ −1

for all ðS, I, R, kÞ ∈ ðℝ3
+ \DεÞ ×M. Construct a C2-function

V S, I, Rð Þ =M −c1 ln S − c2 ln Ið Þ + ρ kð Þ + S + I + Rð Þρ+1
− ln S − ln I − ln R =MV1 + V2 + V3 + V4 + V5,

ð4Þ

where V1 = −c1 ln S − c2 ln I + ρðkÞ, V2 = ðS + I + RÞρ+1, V3
= − ln S, V4 = − ln I, V5 = − ln R, and 0 < ρ < 2μ0/max

i=1,2,3
fσ̆i2

g, where σ̆i =maxk∈MfσiðkÞg, and constants M, c1, c2, com-
pact set Dε and function ρðkÞ will be determined later.
Employing Itô’s formula [28–34], we can get

LV1 = −
c1Λ
S

+ c1α kð ÞI
1 + γI

+ c1 μ0 + ν + 1
2 σ

2
1 kð Þ

� �
−
c2α kð ÞS
1 + γI

+ c2 μ0 + μ1 + β + 1
2 σ

2
2 kð Þ

� �
= +〠

l∈M
ζklρ lð Þ − c1Λ

S
−
c2α kð ÞS
1 + γI

− 1 + γIð Þ + c1α kð ÞI
1 + γI

+ c1 μ0 + ν + 1
2σ

2
1 kð Þ

� �
+ c2 μ0 + μ1 + β + 1

2 σ
2
2 kð Þ

� �
+ 1 + γIð Þ + 〠

l∈M
ζklρ lð Þ ≤ −3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1c2α kð ÞΛ3

p
+ 1

+ c1 μ0 + ν + 1
2σ

2
1 kð Þ

� �
+ c2 μ0 + μ1 + β + 1

2 σ
2
2 kð Þ

� �
+ γI + c1α kð ÞI

1 + γI
+ 〠

l∈M
ζklρ lð Þ:

ð5Þ

Choose M1ðkÞ = −3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1c2αðkÞΛ3

p
+ 1 + c1ðμ0 + ν + ð1/2Þ

σ2
1ðkÞÞ + c2ðμ0 + μ1 + β + ð1/2Þσ22ðkÞÞ; on the basis of the

irreducibility of generator matrix Γ, one can find that for
Θ = ðΘð1Þ,Θð2Þ,⋯,ΘðNÞÞ, there exists ρ =
ðρð1Þ, ρð2Þ,⋯,ρðNÞÞT satisfying the following Poisson sys-

tem Γρ = ð∑N
k=1πkΘðkÞÞ1

 
−Θ. Let c1 and c2 satisfy

c1 μ0 + ν + 〠
k∈M

πk
σ2
1 kð Þ
2

 !
= c2 μ0 + μ1 + β + 〠

k∈M
πk

σ2
2 kð Þ
2

 !

= ∑k∈Mπkα kð ÞΛ
μ0 + ν +∑k∈Mπk σ21 kð Þ/2� �� �

μ0 + μ1 + β +∑k∈Mπk σ2
2 kð Þ/2� �� � :

ð6Þ

Then,

LV1 ≤ −
∑k∈Mπkα kð ÞΛ

μ0 + ν +∑k∈Mπk σ2
1 kð Þ/2� �� �

μ0 + μ1 + β +∑k∈Mπk σ22 kð Þ/2� �� �
+ 1 + γI + c1α kð ÞI

1 + γI
≤ − RS

0 − 1
� �

+ γI + c1ᾰI = −λ + φ Ið Þ,

ð7Þ
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where

λ = RS
0 − 1,

φ Ið Þ = γI + c1ᾰI,
ð8Þ

and set ᾰ =maxk∈MfαðkÞg. Applying Itô’s formula, one can
obtain

LV2 = ρ + 1ð Þ S + I + Rð Þρ Λ − μ0S − μ0 + μ1ð ÞI − μ0Rð Þ
+ 1
2 ρ ρ + 1ð Þ S + I + Rð Þρ−1 σ2

1 kð ÞS2 + σ22 kð ÞI2�
+ σ23 kð ÞR2� ≤ ρ + 1ð Þ S + I + Rð Þρ Λ − μ0 S + I + Rð Þð Þ
+ max

i=1,2,3
σ̆i

2� � ρ
2 ρ + 1ð Þ S + I + Rð Þρ+1 =Λ ρ + 1ð Þ S + I + Rð Þρ

− ρ + 1ð Þ μ0 −
ρ

2 max
i=1,2,3

σ̆i
2� �� �

S + I + Rð Þρ+1

≤ B −
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

S + I + Rð Þρ+1

≤ B −
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Sρ+1 + Iρ+1 + Rρ+1� �
,

ð9Þ

where

B = sup
S,I,Rð Þ∈ℝ3

+

Λ ρ + 1ð Þ S + I + Rð Þρ − 1
2 ρ + 1ð Þ

	
� μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

S + I + Rð Þ ρ+1ð Þ


<∞:

ð10Þ

Denote

C = sup
S,I,Rð Þ∈ℝ3

+

θ −
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Sρ+1 + Iρ+1 + Rρ+1� �	 

,

ð11Þ

where θ = B + ðμ0 + ν + ð1/2Þσ̆12Þ + ðμ0 + μ1 + β + ð1/2Þσ̆22Þ
+ ðμ0 + ð1/2Þσ̆32Þ. By using Itô’s formula, we also have

LV3 = −
Λ

S
+ α kð ÞI
1 + γI

+ μ0 + ν + 1
2σ

2
1 kð Þ,

LV4 = −
α kð ÞS
1 + γI

+ μ0 + μ1 + β + 1
2σ

2
2 kð Þ,

LV5 = −β
I
R
− ν

S
R
+ μ0 +

1
2σ

2
3 kð Þ:

ð12Þ

Hence, by (7), (9), and (12), we get

LV ≤ −Mλ +Mφ Ið Þ + ᾰI −
Λ

S
−

bαS
1 + γI

− β
I
R
− ν

S
R
+ θ

−
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Sρ+1 + Iρ+1 + Rρ+1� �
,

ð13Þ

where bα =mink∈MfαðkÞg. Here, we choose that the positive
constant M satisfies the following inequality:

−Mλ + C ≤ −2: ð14Þ

For arbitrary ε > 0, define the following bounded closed
set:

Dε = ε ≤ S ≤
1
ε
, ε ≤ I ≤

1
ε
, ε2 ≤ R ≤

1
ε2

	 

, ð15Þ

where ε satisfies the following conditions:

−
Λ

ε
+ K ≤ −1,

−Mλ +Mφ εð Þ + ᾰε + C ≤ −1,

−
β

ε
+ K≤−1,

−
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� � 1

ερ+1
+D≤−1,

−
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� � 1

ερ+1
+ E≤−1,

−
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� � 1

ερ+1
+ F≤−1,

ð16Þ

where

K = sup
S,I,Rð Þ∈ℝ3

+

Mφ Ið Þ + ᾰI + Cf g,

D = sup Mφ Ið Þ + ᾰI + θ −
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Iρ+1 + Rρ+1� �	 

,

E = sup Mφ Ið Þ + ᾰI + θ −
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Sρ+1 + Rρ+1� �	 

,

F = sup Mφ Ið Þ + ᾰI + θ −
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Sρ+1 + Iρ+1
� �	 


:

ð17Þ

Furthermore,

ℝ3
+ \Dε =D1 ∪D2 ∪D3 ∪D4 ∪D5 ∪D6, ð18Þ
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where

D1 = S, I, Rð Þ ∈ℝ3
+, 0 < S < ε

� �
,

D2 = S, I, Rð Þ ∈ℝ3
+, 0 < I < ε

� �
,

D3 = S, I, Rð Þ ∈ℝ3
+, 0 < R < ε2, S > ε, I > ε

� �
,

D4 = S, I, Rð Þ ∈ℝ3
+, S >

1
ε

	 

,

D5 = S, I, Rð Þ ∈ℝ3
+, I >

1
ε

	 

,

D6 = S, I, Rð Þ ∈ℝ3
+, R > 1

ε

	 

:

ð19Þ

Case 1. If ðS, I, RÞ ∈D1, we derive that

LV ≤ −Mλ +Mφ Ið Þ + ᾰI −
Λ

S
−

bαS
1 + γI

− β
I
R
− ν

S
R
+ θ

−
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Sρ+1 + Iρ+1 + Rρ+1� �
≤ −

Λ

ε
+ K ≤ −1:

ð20Þ

Case 2. If ðS, I, RÞ ∈D2, we have

LV ≤ −Mλ +Mφ Ið Þ + ᾰI −
Λ

S
−

bαS
1 + γI

− β
I
R
− ν

S
R
+ θ

−
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Sρ+1 + Iρ+1 + Rρ+1� �
≤ −Mλ +Mφ εð Þ + ᾰε + C ≤ −1:

ð21Þ

Case 3. If ðS, I, RÞ ∈D3, we compute

LV ≤ −Mλ +Mφ Ið Þ + ᾰI −
Λ

S
−

bαS
1 + γI

− β
I
R
− ν

S
R
+ θ

−
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Sρ+1 + Iρ+1 + Rρ+1� �
≤ −

β

ε
+ K ≤ −1:

ð22Þ

Case 4. If ðS, I, RÞ ∈D4, we derive

LV ≤ −Mλ +Mφ Ið Þ + ᾰI −
Λ

S
−

bαS
1 + γI

− β
I
R
− ν

S
R
+ θ

−
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Sρ+1 + Iρ+1 + Rρ+1� �
≤ −

1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� � 1

ερ+1
+D ≤ −1:

ð23Þ

Case 5. If ðS, I, RÞ ∈D5, we conclude

LV ≤ −Mλ +Mφ Ið Þ + ᾰI −
Λ

S
−

bαS
1 + γI

− β
I
R
− ν

S
R
+ θ

−
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Sρ+1 + Iρ+1 + Rρ+1� �
≤ −

1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� � 1

ερ+1
+ E ≤ −1:

ð24Þ

Case 6. If ðS, I, RÞ ∈D6, we have

LV ≤ −Mλ +Mφ Ið Þ + ᾰI −
Λ

S
−

bαS
1 + γI

− β
I
R
− ν

S
R
+ θ

−
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Sρ+1 + Iρ+1 + Rρ+1� �
≤ −

1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� � 1

ερ+1
+ F ≤ −1:

ð25Þ

Then, we can obtain that for a sufficiently small ε, LV
< −1 for any ðS, I, RÞ ∈ℝ3

+ \Dε. Therefore, we can verify
(A3) in Lemma 7 of the appendix. On the other hand, the
diffusion matrix Dðx, kÞ = diag fσ21ðkÞS2, σ22ðkÞI2, σ23ðkÞR2g
of model (2) is positive definite, which implies that condition
(A2) in Lemma 7 holds. This completes the proof.☐

Now, consider the corresponding model (2) without Markov
switching:

dS = Λ −
αSI
1 + γI

− μ0 + νð ÞS
� �

dt + σ1SdB1 tð Þ,

dI = αSI
1 + γI

− μ0 + μ1 + βð ÞI
� �

dt + σ2IdB2 tð Þ,

dR = βI + νS − μ0Rð Þdt + σ3RdB3 tð Þ:

8>>>>>><>>>>>>:
ð26Þ

Define a parameter

R̂0 =
α
Ð∞
0 xπ xð Þdx

μ0 + μ1 + β + σ22/2
� � , ð27Þ

where

π xð Þ =Qx−2− 2 μ0+νð Þð Þ/σ21σ−2+ 2 μ0+νð Þð Þ/σ21
1 e

− 2/σ21
� �

Λ/xð Þ+ μ0+νð Þð Þ, x ∈ 0,+∞ð Þ:
ð28Þ

Similar to Theorem 3.1 in [35], it is easy to obtain the
following result.

Theorem 3. Let ðSðtÞ, IðtÞ, RðtÞÞ be the solution of model
(26). If R̂0 < 1, for any initial value ðSð0Þ, Ið0Þ, Rð0ÞÞ ∈ℝ3,
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then the solution ðSðtÞ, IðtÞ, RðtÞÞ of model (26) satisfies

lim
t⟶+∞

I tð Þ = 0 a:s:, ð29Þ

and the distribution of SðtÞ converges weakly to the measure
which has the density

π xð Þ =Qx−2− 2 μ0+νð Þð Þ/σ21ð Þσ−2+ 2 μ0+νð Þð Þ/σ21ð Þ
1 e

− 2/σ21
� �

Λ/xð Þ+ μ0+νð Þð Þ, x ∈ 0,+∞ð Þ,
ð30Þ

where Q is a constant such that
Ð∞
0 πðxÞdx = 1.

Remark 4. In Theorem 2, we derive RS
0 = R0 when αðkÞ ≡ α

and σiðkÞ ≡ 0. This conclusion accords with practice.

3. Numerical Examples

In this section, we will test our theory conclusion by Mil-
stein’s higher order method in [36].

Example 1. Let the generator of the Markov chain ζij be

Γ =

−
1
2

1
4

1
4

1
6 −

1
3

1
6

1
4

1
4 −

1
2

0BBBBBB@

1CCCCCCA, ð31Þ

in which ζij is a right-continuous Markov chain taking value
in M = f1, 2, 3g. By solving the linear equation πΓ = 0, we
obtain the unique stationary (probability) distribution π = ð
π1, π2, π3Þ = ð2/7, 3/7, 2/7Þ. Choose parameters Λ = 0:232, γ
= 0:9, μ0 = 0:000232, ν = 0:02, μ1 = 0:0000547, β = 0:12, αð1
Þ = 0:0013, αð2Þ = 0:00129, αð3Þ = 0:00132, σ1ð1Þ = 0:01, σ2ð
1Þ = 0:02, σ3ð1Þ = 0:06, σ1ð2Þ = 0:011, σ2ð2Þ = 0:022, σ3ð2Þ =
0:055, σ1ð3Þ = 0:009, σ2ð3Þ = 0:019, and σ3ð3Þ = 0:063. Then,
RS
0 = 1:2226 > 1. In view of Theorem 2, there is a stationary

distribution of model (2), and it is ergodic. Phase portrait
of ðSðtÞ, IðtÞ, RðtÞÞ and histograms of ðSðtÞ, IðtÞ, RðtÞÞ are
plotted in Figure 1.

Example 2. Select parameters Λ = 0:232, γ = 0:9, μ0 =
0:000232, ν = 0:02, μ1 = 0:0000547, β = 0:12, α = 0:04, σ1 =
0:1, σ2 = 0:08, and σ3 = 0:05. By calculation, R0 = αΛ/ððμ0
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Figure 1: SðtÞ, IðtÞ, and RðtÞ have ergodic property. The pictures in (a) are Markovian chain. The pictures in (c) are the density functions of
model (2) for k ∈M = f1, 2, 3g. The initial value Sð0Þ = 0:8, Ið0Þ = 0:7, and Rð0Þ = 1:1. Step size Δt = 0:001.
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+ νÞðμ0 + μ1 + βÞÞ = 3:87 > 1,
Ð∞
0 xπðxÞdx = 1:16, and R̂0 =

0:377 < 1. It means that there exists a unique endemic equi-
librium of determined model (1), which is globally asymp-
totically stable. Instead, in view of Theorem 3, we have
lim

t⟶+∞
IðtÞ = 0 a:s: and the distribution of SðtÞ in model

(26) converges weakly to the measure πðxÞ (see Figure 2).

4. Concluding Remarks

The paper successfully investigates extinction and stationary
distribution of a stochastic Markov switching hepatitis B epi-

demic model with saturated incidence rate. Besides the effect
of Markovian switching on the deterministic SIRS epidemic
models [37–39], pulse vaccination strategy (PVS) has been
adopted to control the outbreaks and fastly tackle the spread
of disease by wide areas [40]. In order to help future
research, we propose the following definition related to SIR
model by taking into account Markovian switching, impulse,
and infinite delay.

Definition 5. Considering the following impulsive stochastic
functional differential equation with Markovian
switching(ISFDM),

where Yðt + θÞ,−∞<θ ≤ 0, represents Cg-value stochastic

process, Cg = fψ∈Cðð−∞,0� ;ℝdÞ: ∥ψ∥cg = sup
−∞<s≤0

eqs ∣ ψðsÞ∣<
+∞g, gðsÞ = e−qs, q > 0,∣ψðsÞ∣ = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ψ2
1ðsÞ + ψ2

2ðsÞ+⋯+ψ2
dðsÞ

p
,

and ðψ1ðsÞ, ψ2ðsÞ,⋯,ψdðsÞÞ ∈ℝd . Hk>−1, ζðtÞ denotes the
regime switching [41, 42]. For i = 1, 2, μiðθÞ is a measure
on ð−∞, 0�, 0 < t1 < t2<⋯, lim

k⟶+∞
tk = +∞. The initial condi-

tion Y0 ∈ Cg and ζð0Þ = 0, where Y0 = ϑ = fϑðθÞ: −∞<θ ≤ 0g
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Figure 2: The left column reflects the simulation of number variations of SðtÞ, RðtÞ and IðtÞ in model (26) with the initial value Sð0Þ =
0:8, Rð0Þ = 1:1, and Ið0Þ = 0:7 and the noise intensities given in Example 2. The right column reveals the relevant histogram of density
functions of the classes SðtÞ, RðtÞ, and IðtÞ. Step size Δt = 0:001.

dY tð Þ = F1 t, ζ tð Þ, Y tð Þ,
ð0
−∞

Y t + θð Þdμ1 θð Þ
� �

dt + F2 t, ζ tð Þ, Y tð Þ,
ð0
−∞

Y t + θð Þdμ2 θð Þ
� �

dB tð Þ,

t ≠ tk, k ∈N ,
Y t+kð Þ − Y tkð Þ =HkY tkð Þ, k ∈N ,

8>>>><>>>>:
ð32Þ
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is an F0-measurable Cg-valued random variable such that

ϑ∈M2ðð−∞, 0� ;ℝdÞ which is the family of all F0-measur-
able, ℝd-valued processes ψðtÞ, t∈ð−∞,0� such that E

Ð 0
−∞

jψðtÞj2dt<+∞. An ℝd-value stochastic process YðtÞ defined
on ℝ is called a solution of Equation (32) with initial condi-
tion above when YðtÞ satisfies the following criterion:

(i) YðtÞ is F t-adapted and continuous on ð0, t1Þ and
ðtk, tk+1Þ, k ∈N ; F1ðt, ζðtÞ, YðtÞ,

Ð 0
−∞Yðt + θÞdμ1ðθÞÞ

∈L1ð�ℝ+ ;ℝdÞ and F2ðt, ζðtÞ, YðtÞ,
Ð 0
−∞Yðt + θÞdμ2

ðθÞÞ ∈L2ð�ℝ+ ;ℝd×mÞ. Here, the interpretations of
L1ð�ℝ+ ;ℝdÞ and L2ð�ℝ+ ;ℝd×mÞ can be found in
[43]. BðtÞ stands for a m-dimension standard Brow-
nian motion

(ii) For each tk, k ∈N , Yðt+k Þ = lim
t⟶t+k

YðtÞ and YðtkÞ = Y

ðt−k Þ = lim
t⟶t−k

YðtÞ a.s.

(iii) YðtÞ satisfies the equivalent integral equation of (32)
for almost every t ∈ ½0,∞Þ \ tk and satisfies the
impulsive criterion at each t = tk, k ∈N with proba-
bility one

Remark 6. Liu and Wang [44] give a new definition of a solu-
tion of an impulsive stochastic differential equation (ISDE).
We propose Definition 5, which generalizes the definition
of a solution of ISDE to ISFDM, because time memory and
Markovian switching are very important in the fields of
infectious disease, biological engineering, chemical engineer-
ing, etc.

Appendix

Let ðXðtÞ, ξðtÞÞ be the diffusion process described by the fol-
lowing equation [(31)]:

dX tð Þ = b X tð Þ, ξ tð Þð Þdt + σ X tð Þ, ξ tð Þð ÞdB tð Þ, X 0ð Þ = x0, r 0ð Þ = γ,
ðA1Þ

where bð·, · Þ: ℝ ×M⟶ℝn, σð·, · Þ: ℝ ×M⟶ℝn×n, and
Dðx, kÞ = σðx, kÞσTðx, kÞ = ðdijðx, kÞÞ. For each k ∈M, let V
ð·, kÞ be any twice continuously differentiable function; the
operator L can be defined by

LV x, kð Þ = 〠
n

i=1
bi x, kð Þ ∂V x, kð Þ

∂xi
+ 1
2 〠

n

i,j=1
d x, kð Þ ∂

2V x, kð Þ
∂xi∂xj

+ 〠
N

l=1
ϑklV x, lð Þ:

ðA2Þ

According to theorems in [27], it follows the following
lemma which provides a criterion for the ergodic stationary
distribution of the solution ðXðtÞ, ξðtÞÞ to model (A1).

Lemma 7 ([22]). If the following conditions are satisfied:
(A1) ϑij > 0 for any i ≠ j.
(A2) For each k ∈M,Dðx, kÞ = ðdijðx, kÞÞ is symmetric

and satisfies λjϖj2 ≤ hDðx, kÞϖ, ϖi ≤ λ−1jϖj2 for all ϖ ∈ℝn,
with some constant λ ∈ ð0, 1� for all x ∈ℝn.

(A3) There exists a nonempty open set D with compact
closure, satisfying that, for each k ∈M, there is a nonnegative
function Vð·, kÞ: Dc ⟶ℝ such that Vðx, kÞ is twice contin-
uously differential and that for some α > 0,LVðx, kÞ ≤ −α, ð
x, k ∈Dc ×MÞ, then ðxðtÞ, ξðtÞÞ of system (A1) is positive
recurrent and ergodic. That is to say, there exists a unique
stationary distribution.
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