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We use techniques from network science to study correlations in the foreign exchange (FX)
market during the period 1991–2008. We consider an FX market network in which each node
represents an exchange rate and each weighted edge represents a time-dependent correlation
between the rates. To provide insights into the clustering of the exchange-rate time series, we
investigate dynamic communities in the network. We show that there is a relationship between
an exchange rate’s functional role within the market and its position within its community and
use a node-centric community analysis to track the temporal dynamics of such roles. This
reveals which exchange rates dominate the market at particular times and also identifies
exchange rates that experienced significant changes in market role. We also use the community
dynamics to uncover major structural changes that occurred in the FX market. Our techniques
are general and will be similarly useful for investigating correlations in other markets.
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1. Introduction

Complex systems are composed of many interacting

elements and can exhibit numerous forms of ‘emergent’

collective dynamics without the need for any external

organizing principle (Boccara 2003). Such dynamics

typically cannot be explained by studying the constituent

parts in isolation, so a complex system must be analysed

as a whole. Networks provide a tractable framework for

the quantitative analysis of many complex systems by

distilling them to their key elements (Albert and Barabási

2002, Newman 2003, Amaral and Ottino 2004, Caldarelli

2007). In such a representation, the elements of a system

are represented as the network’s nodes and the important

interactions between them are represented as links that

connect the nodes. (In this paper, we use the terms ‘links’

and ‘edges’ interchangeably.)

Financial markets exhibit many of the key properties

that characterize complex systems: they are composed of

many heterogeneous components that interact with each

other and their environment nonlinearly in the presence of

feedback (Mantegna and Stanley 2000, Amaral and

Ottino 2004). An investigation of a financial market can*Corresponding author. Email: dan.fenn@hsbcib.com
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be formulated as a network problem. Indeed, a wide

range of financial assets have been investigated using

network techniques, including equities (Mantegna 1999,

Mantegna and Stanley 2000, Onnela et al. 2003), curren-

cies (McDonald et al. 2005, 2008), commodities

(Sieczka and Holyst 2009), bonds (Bernaschi et al.

2002), and interest rates (Matteo et al. 2004). Network

analyses have the potential to provide new insights into

financial data and the structure of markets, which may in

turn lead to the development of better market models.

In the most common network description of a market,

each node represents an asset, and each weighted link is a

function (the same function for all links) of the pairwise

temporal correlations between the two assets that it

connects (Mantegna and Stanley 2000). In a typical

financial network containing n assets, one can calculate a

correlation coefficient between each pair of assets, so the

network contains n(n� 1)/2 links. Thorough, simulta-

neous investigation of the interactions is therefore diffi-

cult for even moderate values of n, so attaining an

understanding of the market system necessitates some

form of simplification.

The most prevalent method for reducing the complexity

of a financial network is to construct a minimum

spanning tree (MST) (Mantegna 1999, Mantegna and

Stanley 2000, Bouchaud and Potters 2003, Onnela et al.

2003, 2004). An MST is generated using a hierarchical

clustering algorithm (Duda et al. 2001), and it reduces a

network to n� 1 of its most important microscopic

interactions. This approach has resulted in many useful

financial applications, including the construction of a

visualization tool for portfolio optimization (Onnela et al.

2003) and a means for identifying the effect of news and

major events on market structure (McDonald et al. 2008).

Nevertheless, an MST approach has several limitations,

which we discuss in section 6.

An alternative simplification method is to coarse-grain

a network and consider it at various mesoscopic scales.

The properties of a market can then be understood by

considering the dynamics of small groups of similar

nodes. A widely-studied form of mesoscopic structure,

known as a ‘community’ (Newman 2004a, Newman and

Girvan 2004, Danon et al. 2005, Newman 2006a,

Reichardt and Bornholdt 2006, Fortunato and

Barthelemy 2007, Arenas et al. 2008, Porter et al. 2009,

Fortunato 2010) is constructed from subsets of nodes that

are more strongly connected to each other than they are

to the rest of a network. Communities are of considerable

interest to network scientists because they can correspond

to behavioural or functional units (Guimerà and Amaral

2005, Porter et al. 2005, Adamcsek et al. 2006, Traud

et al. 2011), so their identification can lead to a better

understanding of dynamical processes (such as the spread

of opinions and diseases) that operate on networks

(Danon et al. 2005, Porter et al. 2009, Fortunato 2010).

From a financial perspective, communities correspond to

groups of closely-related assets, so community detection

has the potential to suggest possible formulations for

coarse-grained stochastic models of markets.

During the last decade, there has been an explosion of

papers on networks with static connections between

nodes, and research on dynamical systems on such

networks has now also become ubiquitous (Newman

2003, Caldarelli 2007, Barrat et al. 2008). However, there

has been much less research on networks that are

themselves time-dependent (Onnela et al. 2007, Palla

et al. 2007, Mucha et al. 2010), and a characterization of

such networks is essential for a full understanding of

dynamical processes on networks. One of the main

reasons for the limited analysis of time-dependent net-

works is the difficulty of acquiring time-dependent data.

Fortunately, financial markets are one of the most data-

rich complex systems, providing a valuable source of

accurate, high-frequency, time-series data. Financial data

are therefore an important resource for developing tools

and theories for describing time-dependent networks.

In the present work, we investigate community dynam-

ics in a time-dependent foreign exchange (FX) market

network. The FX network possesses a fixed number of

nodes and evolving link weights that are determined by

time-varying pairwise correlations between time series

associated with each node. Therefore, in contrast to some

other studies of financial networks, we analyse a fully-

connected network and do not remove links below some

threshold (Farkas et al. 2007). Community detection in

networks of this kind is closely related to the problem of

clustering multivariate time series (Liao 2005). We also

track communities from the perspective of individual

nodes, which removes the undesirable requirement of

determining which community at each time step repre-

sents the descendant of a community at the previous time

step. Previous dynamic community studies have

attempted to track entire communities (Hopcroft et al.

2004, Palla et al. 2007) but (as discussed in section 7.2)

some of these approaches can lead to equivocal mappings

following community splits and mergers.

We demonstrate that exchange-rate community

dynamics provides insight into correlation structures

within the FX market and uncovers important

exchange-rate interactions. We also show that large

community reorganizations often accompany significant

market events and that the details of such community

adjustments can reveal trading behaviour that leads to

these changes. We find that there is a relationship between

an exchange rate’s functional role within the market and

its position within its community, and we identify

exchange rates that experience significant changes in

market role. Although we focus on the FX market, the

techniques that we present are general and will be

similarly insightful for other asset classes.

This paper builds on the results described in Fenn et al.

(2009), which focused on the period 2005–2008 when the

recent credit and liquidity crisis began. In the present

work, we extend our earlier investigation to two addi-

tional time periods: 1991–1998 (before the introduction of

the euro) and 1999–2003 (following the introduction of

the euro). For each time interval, we identify communities

of exchange rates, and we then compare the structure of

the communities across the different periods. In addition,
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we provide further examples of the effects of major

market events on the dynamics of individual communities

by considering community changes during the 1994

Mexican peso crisis and the 1997–1998 Asian currency

crisis. The present work also extends Fenn et al. (2009) by

comparing the results obtained using community detec-

tion with those produced by traditional clustering tech-

niques. In particular, we demonstrate that the

communities that we uncover are consistent with the

clusters identified using linkage-clustering algorithms

(Duda et al. 2001). Finally, in appendix A, we provide a

detailed analysis of the sensitivity of our results to the

choice of computational heuristic used to identify com-

munities. We obtain the same aggregate conclusions,

although there are differences in the communities identi-

fied using different heuristics.

The remainder of this paper is organized as follows.

In section 2, we discuss the nature of the FX data and use

it to derive a time-dependent network. We detect

communities in the network in section 3 and discuss

robust communities in section 4. We examine the prop-

erties of the communities in section 5, compare the

detected communities to minimum spanning trees in

section 6, and derive the roles of exchange rates within

communities in section 7. We relate the major changes in

community structure over time to significant changes in

the FX market in section 8 and investigate the changes in

the community roles of exchange rates in section 9. In

section 10, we offer some conclusions. In appendix A, we

discuss the effects of using different heuristics to identify

optimal partitions of the FX networks into communities.

2. Data

The FX networks that we construct have n¼ 110 nodes,

each of which represents an exchange rate of the form

XXX/YYY (with XXX 6¼YYY), where XXX,

YYY2 {AUD, CAD, CHF, GBP, DEM, JPY, NOK,

NZD, SEK, USD, XAU}y and we note that

DEM!EUR after 1998. An exchange rate XXX/YYY

indicates the amount of currency YYY that can be

received in exchange for one unit of XXX.z Other authors

have recently studied the FX market by constructing

networks in which all nodes represent exchange rates with

the same base currency, implying that each node can then

be considered to represent a single currency (Górski et al.

2008). Exchange-rate networks formed with reference to a

single base currency are somewhat akin to ego-centred

networks studied in the social networks literature

(Wasserman and Faust 1994). Ego-centred networks

include links between nodes that all have ties to an ego,

which is the focal node of the network. However, this

approach has two major problems for FX networks.

First, it neglects a large number of exchange rates that can

be formed from the set of currencies studied and

consequently also ignores the interactions between these

rates. Second, the network properties depend strongly on

the choice of base currency, and this currency is, in effect,

excluded from the analysis. We therefore construct

networks that include all exchange rates that can be

formed from the studied set of currencies.

The return of an exchange rate with price pi(t) at

discrete time t is defined by

RiðtÞ ¼ ln
piðtÞ

piðt� 1Þ
: ð1Þ

We take the price pi(t) as the mid-price of the bid and ask

prices:

piðtÞ ¼
pbidi ðtÞ þ paski ðtÞ

2
: ð2Þ

We use the last posted price within an hour to represent

the price for the following hour. To calculate a return at

time t, one needs to know the price at both t and t� 1. To

minimize the possibility of a price not being posted in a

given hour, we focus on the FX market’s most liquid

period: 07:00–18:00 UK time. Nevertheless, there are still

hours for which we do not have price data. (This usually

occurs as a result of problems with the data feed.) One can

calculate a return for hours with missing price data by

assuming the last posted price or interpolating between

prices at the previous and next time step (Dacorogna et al.

2001). However, to ensure that all time steps included in

the study are ones at which a trade can actually be made,

we take the stricter approach of omitting all returns for

which one of the prices is not known. In order to ensure

that the time series of exchange rates are directly

comparable, we consequently remove a return from all

exchange rates if it is missing from any rate.

For the period 1991–2003, we derive each exchange rate

XXX/YYY with XXX, YYY 6¼USD from two USD

rates. For example, we find the CAD/CHF price at each

time step by dividing the USD/CHF price by the USD/

CAD price. For the period 2005–2008, we derive each

exchange rate not included in the set {AUD/USD, EUR/

NOK, EUR/SEK, EUR/USD, GBP/USD, NZD/USD,

USD/CAD, USD/CHF, USD/JPY, USD/XAU} from

pairs of exchange rates in this set. For example, we find

the USD/NOK price at each time step by dividing the

EUR/NOK price by the EUR/USD price. Although this

approach appears somewhat artificial, it matches the way

in which many exchange rates are calculated in the actual

FX market. For example, a bank customer wishing to

yThese symbols represent: AUD, Australian dollar; CAD, Canadian dollar; CHF, Swiss franc; EUR, euro; GBP, pounds sterling;
JPY, Japanese yen; NOK, Norwegian krone; NZD, New Zealand dollar; SEK, Swedish krona; USD, US dollar; XAU, gold. We
include gold in the study because it has many similarities with a currency (McDonald et al. 2005).
zFor each exchange rate, market participants can quote both bid and ask prices. Bid/ask prices give the different prices at which one
can buy/sell currency, and the ask price tends to be larger than the bid price. For example, suppose that the exchange rate between
EUR and USD is quoted as 1.4085/1.4086. A trader then looking to convert USD into EUR has to pay 1.4086 USD for each EUR,
whereas a trader looking to convert EUR to USD receives only 1.4085 USD per EUR.
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convert CAD to NZD (or vice versa) will need to be

quoted the CAD/NZD prices. Because this is not a

standard conversion, the bank will not be able to quote a

direct market price but will instead calculate a price using

the more widely traded USD/NZD and USD/CAD

exchange rates. Calculating the exchange rates in this

way implies that there is some intrinsic structure inherent

in the FX market. However, as shown in McDonald et al.

(2005) and demonstrated further in sections 5.2 and 5.3 of

this paper, this ‘triangle effect’ does not dominate the

results.

We determine the weights of the edges connecting pairs

of nodes in the FX networks using a function of the linear

correlation coefficient � between the return time series for

the corresponding exchange rates. The correlation

between the exchange-rate returns Ri and Rj in a time

window of T returns is given by

�ði, j Þ ¼
hRiRji � hRiihRji

�i�j
, ð3Þ

where h�i indicates a time average over T returns and �i is

the standard deviation of Ri over T. We use the linear

coefficient �(i, j) to measure the correlation between pairs

of exchange rates because of its simplicity, but one could

use alternative measures that are capable of detecting

more general dependencies (Schelter et al. 2006). Our

methods can be applied using any choice for �(i, j). The

weighted adjacency matrix A representing the network

has components

Aij ¼
1

2
½�ði, j Þ þ 1� � �ij, ð4Þ

where the Kronecker delta �ij removes self-edges. The

matrix elements Aij2 [0, 1] quantify the similarity of each

pair of exchange rates i and j. For example, two exchange

rates i and j whose return time series are perfectly

correlated will be connected by a link of weight 1.

We exclude self-edges in order to deal with simple

graphs. This approach was also taken in a previous study

of an equities network derived from a correlation matrix

(Heimo et al. 2008). If we include self-edges, the node

compositions of the identified communities are identical if

one makes a small parameter change in the community-

detection algorithm. We discuss the community-detection

algorithm and the effect of including self-edges in sections

3 and 5.

We create a longitudinal sequence of networks by

displacing time windows by Dt¼ 20 hours (approximately

two trading days) and fix T¼ 200 hours (approximately

one month of data). This choice of T, motivated in part

by the example data in figure 1, represents a trade-off

between over-smoothing for long time windows and

overly-noisy correlation coefficients for small T (Onnela

et al. 2003). Figure 2 demonstrates that the choice of Dt

has a similar, but less pronounced, effect on the standard

deviation of the edge weights, and we again select a

compromise value. The time windows we use to construct

the networks overlap, so the single-time networks are not

independent but rather form an evolving sequence

through time.

3. Community detection

Communities consist of cohesive groups of nodes that

are more strongly connected to each other than they

are to the rest of a network. They can represent

functionally-important subnetworks (Girvan and

Newman 2002, Danon et al. 2005, Guimerà and

0.18

0.2

0.22

0.24

0.26

σ
(A

ij)

1993 1994 1995 1996 1997 1998

0.18

0.2

0.22

0.24

0.26

date
1993 1994 1995 1996 1997 1998

(b)

(c)

(a)

(d)

Figure 1. Standard deviation of the edge weights Aij as a function of time for the period 1991–1998. For all panels, Dt¼ 20
(approximately two days). We show this calculation for (a) T¼ 100 hours, (b) T¼ 200 hours, (c) T¼ 400 hours, and (d) T¼ 1200
hours (corresponding to approximately 0.5, 1, 2, and 6 months, respectively).
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Amaral 2005, Porter et al. 2005, Adamcsek et al. 2006,

Porter et al. 2009, Fortunato 2010, Traud et al. 2011).

Most prior studies of financial networks have found

groups of closely-related assets using traditional hierar-

chical clustering techniques (Mantegna and Stanley 2000,

Onnela et al. 2003, McDonald et al. 2005) or by

thresholding to create a binary network (Farkas et al.

2007). In this paper, we identify communities in high-

frequency, time-evolving, weighted networks using a

technique based on the maximization of a quality

function known as modularity (Newman and Girvan

2004). To our knowledge, other papers with similar

approaches have not examined longitudinal networks or

have considered networks of equities rather than

exchange rates (Heimo et al. 2008). Dynamic communities

have been investigated in biophysical data using methods

based on modularity maximization (Shalizi et al. 2007).

However, Shalizi et al. 2007 were concerned with the

dynamics of functional communities that arise from

coordinated behaviours taking place on a network

rather than the community dynamics of the underlying

network. (In section 7.2, we briefly discuss additional

investigations of community dynamics in non-financial

data using other community-detection techniques.)

The identification of communities using graph modu-

larity is based on the idea that random networks are not

expected to demonstrate community structure beyond

fluctuations. Modularity therefore identifies communities

by finding subsets of nodes that are more strongly

connected to each other than one would expect for

some null model. Let C be a partition of the n nodes in A

into disjoint communities. The modularity Q of the

partition C is given by

QðCÞ ¼
1

2m

X

ij

ðAij � PijÞ�ðci, cj Þ, ð5Þ

where ci is the community containing node i and Pij

denotes the expected weight of the link with which nodes i

and j are connected in a null model. The quantity m

represents the total edge weight in the network and is

given by m ¼ 1
2

P

i ki, where ki¼
P

j Aij is the strength

(weighted degree) of node i. We identify communities by

finding the partition C that maximizes Q. The most

popular choice of null model is the Newman–Girvan

(NG) model (Newman and Girvan 2004)

Pij ¼
kikj

2m
, ð6Þ

which preserves the expected strength distribution of the

network and is closely related to the configuration model

(Bollobas 2001). An alternative null model is a uniform

model in which a fixed mean edge weight occurs between

each pair of nodes (Porter et al. 2009).

We construct FX networks by calculating a correlation

coefficient between every pair of exchange rates. This

results in a weighted, fully-connected network. We

include each exchange rate XXX/YYY and its inverse

rate YYY/XXX in the network, because one cannot infer

a priori whether a rate XXX/YYY will form a community

with a rate WWW/ZZZ or its inverse ZZZ/WWW.

However, the return of an exchange rate XXX/YYY is

related to the return of its inverse YYY/XXX by

RXXX
YYY

¼ �RYYY
XXX

:

This implies that the correlation coefficients between

these rates and a rate WWW/ZZZ are related by

�
XXX

YYY
,
WWW

ZZZ

� �

¼ ��
YYY

XXX
,
WWW

ZZZ

� �

:

0.16

0.18

0.2

0.22

0.24

0.26

σ
(A

ij)

1993 1994 1995 1996 1997 1998
0.16

0.18

0.2

0.22

0.24

0.26

date
1993 1994 1995 1996 1997 1998

(b)

(c)

(a)

(d)

Figure 2. Standard deviation of the edge weights Aij as a function of time for the period 1991–1998. For all panels, T¼ 200 hours.
We show this calculation for (a) Dt¼ 10, (b) Dt¼ 20, (c) Dt¼ 50, and (d) Dt¼ 200 (corresponding to approximately 1 day, 2 days, 5
days, and 2 weeks, respectively).
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Consequently, every node has the same strength

ki ¼
X

j

Aij ¼
1

2
ðn� 2Þ, ð7Þ

so the probability of connection in the NG null model

Pij¼ kikj/2m is also constant and is given by

Pij ¼
n� 2

2n
: ð8Þ

In the case of our FX network, the NG model and the

uniform null model are thus equivalent. However, the

methods we present are general and can be applied to

networks with non-uniform strength distributions.

Additionally, every community has an equivalent inverse

community. For example, if there is a community

consisting of the three exchange rates XXX/YYY,

XXX/WWW, and ZZZ/WWW in one half of the

network, there must be an equivalent community

formed of YYY/XXX, WWW/XXX, and WWW/ZZZ

in the other half. The existence of an equivalent inverse

community for each community implies that the FX

network is composed of two equivalent halves at each

time step. However, the exchange rates residing in each

half change in time as the correlations evolve.

An important issue with using modularity as a quality

function to identify communities is that modularity

optimization can fail to find communities that are smaller

than a scale that depends on the total size of a network

and on the extent of interconnectedness between network

communities (Fortunato and Barthelemy 2007). However,

many modularity-optimization techniques can easily be

adapted to other quality functions, and several alterna-

tives have been proposed that avoid this resolution limit

by uncovering communities at multiple scales (Reichardt

and Bornholdt 2006, Arenas et al. 2008, Lancichinetti

et al. 2009).

Reichardt and Bornholdt (2006) proposed a multi-

resolution method in which a network A is represented as

an infinite-range, n-state Potts spin glass in which each

node is a spin, each edge is a pairwise interaction between

spins, and each community is a spin state. The

Hamiltonian of this system is given by

Hð�Þ ¼ �
X

ij

Jij�ðci, cj Þ, ð9Þ

where ci is the state of spin i and Jij is the interaction

energy between spins i and j. The coupling strength Jij is

given by Jij¼Aij� �Pij, where Pij again denotes the

expected weight of the link with which nodes i and j

are connected in a null model and � is a resolution

parameter. One can find communities by assigning each

spin to a state and minimizing the interaction energy in

equation (9). Within this framework, community identi-

fication is equivalent to finding the ground-state config-

uration of a spin glass.

Tuning � allows one to find communities at different

resolutions. As � becomes larger, there is a greater

incentive for nodes to belong to smaller communities.

The Potts method therefore allows the investigation of

communities below the resolution limit of modularity.

One can write a scaled energy Qs in terms of the

Hamiltonian in equation (9) as

Qs ¼
�Hð�Þ

2m
: ð10Þ

The modularity is then the scaled energy with �¼ 1.

Community detection using modularity optimization is

therefore a special case of the Potts method.

Recently, an alternative version of the Potts method has

been proposed that is able to deal with both positive and

negative links (Traag andBruggeman 2009). One can apply

this technique to FX data using the correlation matrix � as

the network adjacency matrix. Using this approach and a

uniform null model, we found the same robust communi-

ties (see section 4 for a discussion of robust communities) as

we identified using the Potts method and the adjacency

matrix in equation (4). However, the Potts method for

signed adjacency matrices did not identify the same robust

communities when we employed the signed null model of

Traag and Bruggeman (2009).

In this paper, we use the Potts method to detect

communities of exchange rates in FX networks with

adjacency matrices given by equation (4), and we employ

the NG model of random link assignment Pij¼ kikj/(2m)

as a null model.y The number of possible community

partitions grows at least exponentially with the number of

nodes (Newman 2004b), so it is typically impossible

computationally to sample the energy space by exhaus-

tively enumerating all partitions (Brandes et al. 2008).

Several different heuristic procedures have been proposed

to balance the quality of the identified optimal partition

with computational cost (Danon et al. 2005, Porter et al.

2009, Fortunato 2010). We minimize equation (9) at each

resolution using the locally greedy Louvain algorithm

(Blondel et al. 2008). We discuss the effect on our results

of using different optimization heuristics in appendix A.

We find the same aggregate conclusions, although there

are some differences in the communities identified using

different heuristics. We identify the same changes taking

place in the FX market for each of the different

algorithms that we use to minimize energy.

yIf we include self-edges in the network, the strength of each node increases by 1. This, in turn, leads to a constant increase in the
expected edge weights in the null model. For a network with self-edges, the expected edge weight between nodes i and j is given by
Ps
ij ¼ n=½2ðnþ 2Þ�. This constitutes a shift by a constant value of Ps

ij � Pij ¼ 2=½nðnþ 2Þ� � 1:62� 10�4 relative to a network in which
self-edges are excluded. Self-edges always occur within a community, so they will always contribute to the summation in equation (9)
irrespective of exactly how the nodes are partitioned into communities. This implies that self-edges play no role when determining an
FX-network partition that minimizes the interaction energy at a particular resolution.
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4. Robust community partitions

In some networks, similar community structure persists

across a range of resolutions (Reichardt and Bornholdt

2006, Arenas et al. 2008, Fortunato 2010). As one

increases the resolution parameter in the Potts method,

there is an increased energy incentive for nodes to

belong to smaller clusters. Network partitions that are

robust across a range of resolutions are therefore

significant because the communities do not break up

despite an increasing incentive to do so. Communities

in robust partitions have been found to correspond to

communities imposed by construction in simulated

networks and to known groupings in real-world

networks (Arenas et al. 2008, Fortunato 2010). This

suggests that communities that persist over a large

range of resolutions potentially represent important

structures.

We compare network partitions using the normalized

variation of information V̂ (Meilă 2007, see also Traud

et al. 2011). The entropy of a partition C of the n nodes in

A into K communities ck (k2 {1, . . . ,K}) is

SðCÞ ¼ �
X

K

k¼1

pðkÞ log pðkÞ, ð11Þ

where p(k)¼ jckj/n is the probability that a randomly-

selected node belongs to community k and jckj is the size

(set cardinality) of the kth community.y For a partition C,

the entropy therefore indicates the uncertainty in the

community membership of a randomly-chosen node.

Given a second partition C0 of the n nodes into K0

communities, the mutual information I(C, C0) is given by

IðC,C0Þ ¼
X

K

k¼1

X

K0

k0¼1

pðk, k0Þ log
pðk, k0Þ

pðkÞ pðk0Þ
, ð12Þ

where pðk, k0Þ ¼ jck \ ck
0

j=n. The mutual information is

the amount (averaged over all nodes) by which knowledge

of a node’s community in C reduces the uncertainty about

its community membership in C0. The normalized varia-

tion of information V̂ between C and C0 is then given by

V̂ðC,C0Þ ¼
SðCÞ þ SðC0Þ � 2IðC,C0Þ

log n
: ð13Þ

The factor log n normalizes V̂ðC,C0Þ to the interval

[0, 1], with 0 indicating identical partitions and 1

indicating that all nodes are in individual communities

in one partition and in a single community in the

other. We will use equation (13) to compare partitions

in networks with the same number of nodes and

remark that one should not normalize by log n when

comparing the variation of information in data sets

with different sizes (Meilă 2007).

Variation of information is a desirable measure for

quantifying the difference between partitions of a network

because it is a metric on the space of community

assignments and it thus satisfies the triangle inequality.

Therefore, if two partitions are close to a third partition,

they cannot differ too much from each other. It is also a

local measure, so the contribution to V̂ðC,C0Þ from

changes in a single community does not depend on how

the rest of the nodes are clustered (Meilă 2007, Karrer

et al. 2008).

One can identify robust communities by detecting

communities at multiple resolutions and calculating

V̂ðC,C0Þ between the network partitions for consecutive

resolutions. Robust communities are revealed by inter-

vals in which there are few spikes in V̂ðC,C0Þ. In figure

3(a), we show V̂ðC,C0Þ between network partitions

computed at 100 resolutions in the interval � 2 [0.6, 2.1]

separated by D�¼ 0.015. We focus on this interval in

this example because all of the nodes are assigned to

the same community at �¼ 0.6 and all of the nodes

are assigned to singleton communities at �¼ 2.1. One

can also identify robust communities by examining

summary statistics that describe community structure

as a function of the resolution parameter. We consider

the number of communities Nc, the optimized modu-

larity Qs (see equation 10), the entropy S (see equation

11), and the rate of change of the energy with

resolution dH/d� (see equation 9 for the definition of

H). Robust communities correspond to plateaus (con-

stant values) in curves of any of these quantities as a

function of the resolution parameter. In figure 3(a), we

plot curves for each of the summary statistics as a

function of �.

Figure 3(a) contains four principle plateaus, corre-

sponding to partitions of the FX network into Nc¼ 1, 2,

20, and 110 communities. The first and last plateaus,

respectively, represent all nodes in one community and all

nodes in singleton communities. The second plateau

represents one community of exchange rates and a

corresponding community of inverse rates. The Nc¼ 20

plateau occurs over the interval � 2 [1.34, 1.57], in which

there is a single plateau in the Nc plot and a few smaller

plateaus in each of the other plots. In contrast to the other

plateaus, this one was not expected, so the robust

communities over this interval can potentially provide

new insights into the correlation structure of the FX

market. Although the community configuration over this

interval does not have maximal Q (i.e., it is not the

community configuration corresponding to the maximum

value of the traditional modularity, which is the scaled

energy with �¼ 1), it provides an appropriate resolution

yNote that the quantity ck represents the kth community but that ci is the set of nodes in the same community as node i.
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Figure 4. (a) Observed fraction of time steps that the resolution � lies on the main plateau. The vertical lines indicate �¼ 1.41, which
lies in the highest number of main plateaus for the period 1991–2003, and �¼ 1.45, which lies in the highest number of main plateaus
for 2005–2008. These are the resolutions at which we investigate community dynamics over the two periods. For the full period
1991–2008, we show in panel (b) the normalized sampled distribution of the main plateau width (blue) and the normalized sampled
distribution of the �-distance between the main plateau and the fixed resolution (red). We label the x-axis in panel (b) as ‘�-interval’
for both the main plateau width and the �-distance between the main plateau and the fixed resolution value. The distance is exactly 0
for 53% of the time steps. Again for 1991–2008, we show in panel (c) the distribution of the normalized variation of information
between the community structure detected at the fixed resolution and the community structure corresponding to the main plateau
(blue) and the distribution of the normalized variation of information between consecutive time steps (red). The value of V̂ is exactly
0 for 64% of the time steps. The vertical lines give the mean V̂ when (left to right) 1, 2, 5, 10, 20, and 50 nodes are assigned uniformly
at random to different communities (averaged over 100 reassignments for each time step).
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Figure 3. (a) The quantities Nc, S, Qs, and dH/d� (defined in the text), normalized by their maximum values, versus the resolution
parameter � for a single time window beginning on 17 March 1992. The lightly shaded rectangle highlights the main plateau. The
bottom curve gives the normalized variation of information V̂ between partitions at resolutions separated by D� ¼ 0.015.
(b) Position of the main plateau at each time step for the full period 1991–2008. Main plateaus (blue) containing the fixed resolution
(set to �¼ 1.41 for 1991–2003 and to �¼ 1.45 for 2005–2008) and (red) not containing the fixed resolution. The solid black line
separates the pre- and post-euro periods. Panel (b) is separated into two sections because we do not possess data for 2004.
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at which to investigate community dynamics due to its

robustness and the financially-interesting features of the

detected communities. For the remainder of this paper,

we will refer to this plateau as the ‘main’ plateau.

5. Dynamic community detection

5.1. Choosing a resolution

To investigate community dynamics, we first choose a

resolution parameter at which to detect communities at

each time step. One approach is always selecting a

resolution � in the main plateau. As shown in figures

3(b) and 4(a), this plateau occurs over different �-

intervals at different time steps and has different widths.

These intervals need not share common resolution values,

so this method seems inappropriate because one would

then be comparing communities obtained from many

different resolutions. Therefore, we fix the resolution at

the value that occurs within the largest number of main

plateaus. As shown in figure 4(a), this corresponds to

�¼ 1.41 for the period 1991–2003 and to �¼ 1.45 for the

period 2005–2008.y

In order to demonstrate the validity of this technique,

we show in figure 4(b) the distribution of the �-distance

from the fixed resolution to the main plateau, and we

show in figure 4(c) the distribution of the normalized

variation of information between the community config-

uration obtained at the fixed resolution and that corre-

sponding to the main plateau. Both distributions are

strongly peaked at 0. The fixed resolution is a �-distance

of less than 0.05 from the main plateau 91% of the time

for the period 1991–1998, 93% of the time for 1999–2003,

and 88% of the time for 2005–2008. The community

configurations of the main plateau and the fixed resolu-

tion differ in the community assignments of fewer than 5

nodes in 78% of time steps for the period 1991–1998, in

83% of time steps for 1999–2003, and in 88% of time

steps for 2005–2008. For the majority of time steps, the

community configuration at the fixed resolution is hence

identical or very similar to the configuration correspond-

ing to the main plateau. This supports our proposed

method of investigating community dynamics at a fixed �

for each period.

5.2. Testing community significance

The scaled energy (see equation 10) measures the strength

of communities compared with some null model, so large

scaled energies indicate more significant communities. To

ensure that the identified communities are meaningful, we

perform a permutation test (Good 2005) and compare the

scaled energies of the observed network partitions with

the scaled energies for network partitions obtained using

shuffled data. For the period 1991–2003, we generate

shuffled data for each of the USD exchange rates by

randomly reordering the returns of the corresponding

time series. We create shuffled data for each of the non-

USD exchange rates using the shuffled USD time series

and the triangle relations described in section 2. We then

calculate new correlation matrices for these shuffled time

series, form new adjacency matrices, and find the com-

munities and scaled energies for each of the new

networks. Similarly, for the period 2005–2008, we shuffle

the returns for each of the exchange rates in the set

{AUD/USD, EUR/NOK, EUR/SEK, EUR/USD, GBP/

USD, NZD/USD, USD/CAD, USD/CHF, USD/JPY,

USD/XAU} and calculate the return time series for each

of the rates not in this set by applying the triangle

relations to these shuffled time series. This procedure

conserves the return distribution for each of the original

USD exchange rates for the period 1991–2003 and for

each of the rates in the above set for 2005–2008. The

shuffling, however, destroys the temporal correlations.

Any structure in the shuffled data therefore emerges as a

result of the triangle relationships. The shuffled data

therefore provides some insights into the effects of the

triangle relations on the properties of the actual data.

Figure 5(a) shows that the communities identified for

the actual data are significantly stronger than those

generated using shuffled data. The sample mean scaled

energy for the actual data is 0.011 (with a standard

deviation of 0.0061); for the shuffled data, the sample

mean is 0.0039 (with a standard deviation of 0.0013). The

communities that we observe for the actual data are

therefore significantly stronger than the communities for

randomized data in which the structure results from

the triangle effect. This provides strong evidence that the

communities represent meaningful structures within the

FX market, so these communities can provide insights

into the correlation structure of the market. We now

consider properties of these communities in detail.

5.3. Community properties

Figure 5(b) shows that the number of communities into

which the FX network is partitioned exhibits only small

fluctuations during the period 1991–2008. Nevertheless, as

shown in figure 4(c), there is a considerable variation in the

extent of community reorganization between consecutive

time steps. No nodes change community assignment

between some steps, whereas more than twenty nodes

change community assignments between others.

Figure 5(c) shows that the community size distribution is

bimodal for all three periods, and its tail extends to large

community sizes. There is therefore a large variation in the

yIn order to find equivalent communities in the network in which self-edges are included, it is necessary to decrease the resolution
parameter to compensate for the increase in the constant expected edge weight in the null model. If we identify communities in the
network in which self-edges are excluded using the resolution parameter �, then we find identical communities in the corresponding
network with self-edges using a resolution parameter �s ¼ �pij=p

s
ij ¼ �ðnþ 2Þðn� 2Þ=n2, where psij denotes the null model when self-

edges are included. For example, if we identify communities in the network without self-edges using a resolution of � ¼ 1.4500, then
we identify equivalent communities in the network with self-edges using a resolution parameter of �s¼ 1.4495.
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sizes of the communities observed at each time step for all

three periods. However, the minimum between the two

peaks is not as deep for the period 2005–2008, and it has

shifted from a community size of six nodes to a size of eight.

The peak in the size distribution for communities with

10 members occurs as a result of the number of currencies

in the network. For each of the eleven currencies

XXX2 {AUD, CAD, CHF, GBP, DEM, JPY, NOK,

NZD, SEK, USD, XAU}, there are 10 exchange rates

XXX/YYY with XXX as the base currency (and 10 equiv-

alent inverse rates YYY/XXX). We derive most of the

exchange rates in a set of rates with the same base

currency by applying the triangle relation (see section 2)

to pairs of exchange-rate time series; one of the rates is

common across all of the exchange rates in the base-

currency set, and the other rate is different for each rate in

the set. For example, for the period 1991–2003, we derive

the CAD/DEM exchange rate from the USD/CAD and

USD/DEM rates, whereas we derive the CAD/GBP rate

from the USD/CAD and USD/GBP rates. Exchange

rates with the same base currency are, therefore, often

correlated, and they consequently have a tendency to

form communities with 10 members. However, it is not

possible for all currencies to form a 10-member base-

currency community at each time step. If there is no

additional structure beyond these base-currency correla-

tions that emerge as a result of the triangle relation, then

one would expect to observe communities with 1, 2, . . . , 10

members at each time step (and equivalent communities

of inverse rates). Figure 5(c) shows that this size distri-

bution is indeed observed for shuffled data. However,

figure 5(c) also shows that the community-size

distribution for market data is significantly different, so

the community-detection techniques are uncovering addi-

tional FX market correlations. This again demonstrates

that the triangle effect is not dominating the results.

The frequently-observed communities shown in table 1

demonstrate the variation in community size. Some of the

most common communities are single exchange rates,

such as USD/CAD, which are formed of two closely-

related currencies. Table 1 also highlights that communi-

ties often consist of exchange rates with the same base

currency. McDonald et al. (2008) used the relative

clustering strengths of groups of exchange rates with the

same base currency to provide insights into the effects of

important news and events on individual currencies. The

relative sizes of different base-currency communities can

provide similar information. For example, if we observe a

community of ten CHF/YYY exchange rates and a

community of three DEM/YYY rates, then the larger size

of the CHF/YYY community suggests that CHF is more

important than DEM in the market at this time.

It is also worth noting that the most frequently

observed community of 10 exchange rates with the same

base currency is the gold (XAU) community. We include

gold in our study because there are many similarities

between it and a currency. However, gold also tends to be

more volatile than most currencies, so it is unsurprising

that the gold rates often form their own community.

Consequently, the absence of a large gold community at a

given time is an indication that another currency is

particularly influential.

Importantly, the identified communities do not always

contain exchange rates with the same base currency,
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Figure 5. (a) Comparison of the distribution of the scaled energy for 1991–2003 for market data (blue) and 100 realizations of
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which provides insights into changes in the inherent

values of different currencies. For example, consider a

community containing several exchange rates with CHF

as the base currency and several rates with DEM as the

base currency. The fact that the exchange rates are in the

same community suggests that they are correlated. The

structure of this community also provides information

about the inherent values of CHF and DEM. Exchange

rates of the form XXX/YYY quote the value of one

currency in terms of another currency, so if the price of

XXX/YYY increases, it is not clear whether this is

because XXX has become more valuable or because YYY

has become less valuable. However, if one observes that

the price of XXX increases with respect to several

different YYY over the same period, then one expects

that the value of XXX has increased. Therefore, returning

to our example, if one observes a community of several

CHF/YYY and DEM/YYY exchange rates for many

different YYY, then one expects that these rates are

positively correlated. Because the values of CHF and

DEM have increased versus several other currencies, we

expect that the inherent values of both CHF and DEM

have increased.

6. Comparison with linkage clustering

Perhaps the best-known approach for studying a network

of financial assets is to consider the minimum spanning

tree (MST) of the network. This is closely related to a

dendrogram (i.e., a hierarchical tree). MSTs have been

used regularly in studies of equity markets to identify

clusters of stocks that belong to the same market sector

(Mantegna 1999, Bouchaud and Potters 2003, Onnela

et al. 2003, 2004). In this section, we briefly consider the

limitations of this approach for community detection and

describe the additional information that the Potts method

can provide.

MSTs are constructed using the agglomerative hierar-

chical clustering technique known as single-linkage clus-

tering (Duda et al. 2001, Porter et al. 2009).

Agglomerative methods start with n singleton clusters

and create a hierarchy by sequentially linking clusters

based on their similarity. The similarity of clusters c and c0

is usually expressed as a distance D(c, c0), which is

determined by considering the distance dij between each

node i2 c and each node j2 c0. In single-linkage clustering,

the distance between clusters is given by

Dðc, c0Þ ¼ min
i2c
j2c0

dij: ð14Þ

It thus represents an extreme because it joins clusters

based on the minimum distance between nodes in each

cluster. An alternative is average-linkage clustering, for

which

Dðc, c0Þ ¼
1

jcjjc0j

X

i2c

X

j2c0

dij: ð15Þ

Table 1. Examples of frequently-observed communities for the pre-euro period 1991–1998 and for the two post-euro periods
(1999–2003 and 2005–2008). The quantity Fr denotes the fraction of time steps at which each community is observed.

Period Community Fr

1991–1998 USD/CAD 0.62
DEM/CHF 0.45
NZD/{CAD, USD} 0.33
AUD/{CAD, NZD, USD} 0.32
XAU/{AUD, CAD, CHF, DEM, GBP, JPY, NOK, NZD, SEK, USD} 0.28
SEK/{AUD, CAD, CHF, DEM, GBP, JPY, NOK, NZD, USD, XAU} 0.17
DEM/NOK 0.16
AUD/{CAD, NZD, USD, XAU} 0.14
GBP/{CHF, DEM, NOK} 0.12

1999–2003 EUR/CHF 0.88
USD/CAD 0.67
XAU/{AUD, CAD, CHF, EUR, GBP, JPY, NOK, NZD, SEK, USD} 0.64
NOK/{CHF, EUR} 0.59
SEK/{CHF, EUR, NOK} 0.51
GBP/{CAD, USD} 0.24
NZD/{AUD, CAD, CHF, EUR, GBP, JPY, NOK, SEK, USD} 0.21
JPY/{CAD, GBP, USD} 0.17
AUD/{CAD, CHF, EUR, GBP, JPY,NOK, SEK, USD} 0.14

2005–2008 XAU/{AUD, CAD, CHF, EUR, GBP, JPY, NOK, NZD, SEK, USD} 0.91
EUR/CHF 0.65
AUD/NZD 0.39
CAD/{AUD, CHF, EUR, GBP, JPY, NOK, NZD, SEK, USD} 0.39
GBP/{CHF, EUR} 0.35
SEK/{CHF, EUR} 0.33
NZD/{AUD, CAD, CHF, EUR, GBP, JPY, NOK, SEK, USD} 0.26
NOK/{CHF, EUR, SEK} 0.21
GBP/{CHF, EUR, NOK, SEK} 0.20
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For financial networks, the standard measure used for dij
is a particular nonlinear transformation of the correlation

coefficient �(i, j). The distance elements are given by

(Mantegna 1999, Mantegna and Stanley 2000) the

formula

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½1� �ði, j Þ�
p

: ð16Þ

The distance dij takes values in the interval [0,2], and

similar nodes have small values of dij. An MST possesses

n� 1 links and is appealing because it is much simpler to

analyse than the full network with n(n� 1)/2 links. A

dendrogram provides an alternative representation of the

output of a linkage-clustering algorithm that shows the

full hierarchical structure (Duda et al. 2001, Porter et al.

2009). At the first level of a dendrogram, there are n

singleton clusters. As one climbs the vertical distance scale

of a dendrogram, clusters are combined until all nodes are

contained in a single community at the top of the

dendrogram.

In earlier studies of equity markets, clusters of closely-

related assets were identified based on their proximity on

the branches of an MST (Mantegna 1999, Onnela et al.

2003, 2004) and by finding the disconnected groups of

assets that remained when all tree links weaker than some

threshold were removed (Bouchaud and Potters 2003).

Similar computations have found clusters of assets by

considering an entire network and removing edges below

some threshold or alternatively by starting with a network

with no links and iteratively adding links above an

increasing threshold (Onnela et al. 2004, Garas et al.

2008). In figure 6, we show an example of an MST of

exchange rates. We colour the nodes in this tree according

to their community membership as determined using the

Potts method. The MST is partitioned into two halves,

with communities of exchange rates in one half and

equivalent communities of inverse exchange rates in the

other. In this example, nodes belonging to the same

community are always grouped contiguously in the MST,

but this is not always the case.

The main problem with single-linkage clustering (and,

as a consequence, with MSTs) is that clusters can be

joined as a result of single pairs of elements being close to

each other even though many of the elements in the two

clusters are rather dissimilar. An MST then contains weak

links that might be misinterpreted as being more finan-

cially meaningful than they actually are (Onnela et al.

2004). It is also difficult to determine where the commu-

nity boundaries lie on an MST. For example, a branch of

an MST might include nodes belonging to a single

community or the nodes might belong to several commu-

nities. As an example of this phenomenon, and of the

additional clustering information provided by the Potts

method, consider the branch at the far right of the tree

shown in figure 6. By simply considering this MST, one

might have inferred the existence of a cluster that includes

all of the NOK/YYY rates and USD/CAD. However, the

Potts method highlights the fact that USD/CAD forms a

singleton community and that NOK/XAU belongs to a

community with the XXX/XAU rates. This observation

might provide information as to the relative importances

of NOK and XAU in the market over this period.

Figure 6. A minimum spanning tree for the FX network formed from a time window of returns beginning on 18 September 1991.
The tree is split into two identical halves (indicated by * and h), which are connected via the edge (shown in red) between the
XAU/USD and USD/AUD exchange rates. For each community of exchange rates, there is an equivalent community of inverse
rates in the other half of the tree. We colour each node according to its community membership determined using the Potts method
with � ¼ 1.41, and we show each community of exchange rates in the same colour as the corresponding community of inverse rates.
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In figure 7(a), we show a dendrogram generated using

the same single-linkage clustering algorithm used to

produce the MST in figure 6. If the distances between

different dendrogram levels are reasonably uniform, then

no clustering appears more ‘natural’ than any other

(Duda et al. 2001). However, large distances between

levels (i.e., the same clusters persist over a large range of

distances) might indicate the most appropriate level at

which to view the clusters. This is analogous to investi-

gating communities that are robust over a range of

resolutions. The clusterings observed at some levels of

figure 7(a) correspond closely with the communities

identified using the Potts method, but there is no level

at which they correspond exactly. The levels are also

reasonably evenly distributed along the distance axis.

In the dendrogram in figure 7(b), which we generated

using average-linkage clustering, there is a range of

distances over which the clustering does not change.

The clustering observed over this interval is identical to

the community configuration corresponding to the main

plateau found using the Potts method. Therefore, in this

case, average-linkage clustering and the Potts method

identify the same robust communities.

7. Exchange-rate centralities and community

persistence

Thus far, we have considered the properties of entire

communities. We now investigate the roles of nodes

within communities.
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Figure 7. Dendrograms showing hierarchical clustering of exchange rates for one half of the FX network for a time window of
returns beginning on 18 September 1991. We colour each exchange rate according to its community membership determined using
the Potts method with � ¼ 1.41. We generated the dendrograms using (a) single-linkage clustering and (b) average-linkage clustering.
The dashed grey lines in panel (b) highlight the range over which the communities correspond to the communities of the main
plateau identified using the Potts method.
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7.1. Centrality measures

We describe relationships between a node and its

community using various centrality measures. In the

social networks literature, such measures are used to

measure the roles of nodes within networks and to

identify which nodes are the most important or most

prominent (Wasserman and Faust 1994). Because there

are multiple notions of importance, many different

centrality measures have been proposed (Valente et al.

2008). In the present context, we use centrality measures

to identify exchange rates that occupy important posi-

tions in the FX market.

The betweenness centrality of nodes is defined using the

number of geodesic paths between pairs of vertices in a

network (Freeman 1977, Newman 2003). We calculate

node betweenness by taking the distance between nodes i

and j as

dij ¼
0 if i ¼ j or Aij ¼ 1,

1=Aij otherwise.

�

ð17Þ

The betweenness centrality bi of node i is then given by

bi ¼
X

s

X

t

gist
Gst

, for s, t 6¼ i and s 6¼ t, ð18Þ

where Gst is the total number of shortest paths from node

s to node t and gist is the number of shortest paths from s

to t passing through i. Betweenness centrality is used

widely in social network analysis to quantify the extent to

which people lie on paths that connect others. Nodes with

high betweenness can be construed to be important for

facilitating communication between others in a network,

so betweenness is used to help measure the importance of

nodes for the spread of information around a network

(Valente et al. 2008).

We also consider the community centrality of each

node (Newman 2006a). We employ the scaled energy

matrix J, with components Jij¼Aij� �Pij, where we again

set Pij¼ kikj/(2m)¼ (n� 2)/(2n). Following the notation in

Newman (2006a), the energy matrix can be expressed as

J¼UDUT, where U¼ (u1ju2j� � �) is the matrix of eigen-

vectors of J, and D is the diagonal matrix of eigenvalues

�i. If D has q positive eigenvalues, then one can define a

set of node vectors {xi} of dimension q by

½xi�j ¼
ffiffiffiffi

�i

p

Uij, j 2 f1, 2, . . . , qg, ð19Þ

where [xi]j indicates the jth element of the node vector of

node i. The magnitude jxij is the community centrality.

Nodes with high community centrality play an important

role in their local neighbourhood, irrespective of commu-

nity boundaries.

One can also define a community vector

wk ¼
X

i2ck

xi ð20Þ

for each community ck. Nodes with high community

centrality are strongly attached to their community if

their node vector is also aligned with their community

vector. One defines projected community centrality yi by

(Newman 2006a)

yi ¼ xi � ŵk ¼ jxij cos �ik; ð21Þ

and we refer to the quantity cos �ik as the community

alignment. The community alignment is near 1 when a

node is at the centre of its community, and it is near 0

when it is on the periphery. Nodes with high community

alignment are located near the centre of their community

and have a high projected community centrality, so they

are strongly attached to their community and can be

construed to be highly influential within it. The number of

positive eigenvalues of J can vary between time steps, so

we normalize jxij and yi by their maximum value at each

time step.

7.2. Community tracking

A node’s identity is known at all times and its community

is known at any given time. We can thus track community

evolution from the perspective of individual nodes. We

investigate the persistence through time of nodes’ com-

munities by defining a community autocorrelation. For a

node i with community ci(t) at time t, the autocorrelation

atið�Þ of its community after � time steps is defined by

atið�Þ ¼
j ciðtÞ \ ciðtþ �Þ j

j ciðtÞ [ ciðtþ �Þ j
: ð22Þ

This is a node-centric version of a quantity considered in

Palla et al. (2007) that, importantly, does not require one to

determine which community at each time step represents

the descendant of a community at the previous time step.

Palla et al. (2007) detected communities using a method

known as k-clique percolation. They tracked communities

by defining the descendant of community a at time step t as

the community at tþ 1 that had the maximum edge

overlap with a. Several other approaches have been

proposed for identifying community descendants using

different measures to quantify the node overlap rather than

the edge overlap between communities at different time

steps. See, for example, Toyoda and Kitsuregawa (2003),

Berger-Wolf and Saia (2006), Falkowski et al. (2006), and

Asur et al. (2007). Methods that identify descendent

communities based on maximum node or edge overlap

can, however, lead to equivocal mappings following splits

and mergers. For example, consider a community cf(t) that

splits into two communities, cg(tþ 1) and ch(tþ 1), at the

following time step. If the extent of overlap between cf(t)

and cg(tþ 1) is identical to that between cf(t) and ch(tþ 1),

then one will need to make an arbitrary choice as to which

community represents the descendant of cf(t). See section

4.4.6 of Fenn (2011) for a more detailed discussion of this

point and a review of the community dynamics literature.

In order to avoid this ambiguity, we identify communities

from the perspective of individual nodes instead of

tracking whole communities.
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7.3. Exchange-rate roles

In figure 8(a), we show the mean normalized community

centrality of exchange rates as a function of community

size. (For each community size, we calculated the mean

value of jxij over all nodes that were members of a

community of that size.) The community centrality

increases with community size up to sizes of about 10

members. For larger communities, jxij remains approxi-

mately constant. Nodes with high jxij therefore tend to

belong to large communities, so exchange rates with high

community centrality tend to be closely linked with many

other rates. Table 2 shows the 10 exchange rates that tend

to have the highest values of betweenness centrality,

community centrality, and projected community central-

ity. For all three periods, CHF/NZD, CHF/XAU, and

SEK/XAU have one of the 10 highest community central-

ities, so they are closely tied to many other rates. For 1991–

2003, exchange rates formed from one of the major

European currencies—DEM (and then EUR, after its

introduction) or CHF—and one of the commodity cur-

renciesy also tend to have high community centrality. For

2005–2008, however, XAU rates encompass nearly all of

the exchange rates with the highest values of jxij.
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Figure 8. (a) Mean community centrality versus community size. (b) Mean community alignment versus node betweenness
centrality. (c) Mean community autocorrelation versus projected community centrality. All error bars indicate the standard error
(Berry and Lindgren 1990).

Table 2. The 10 exchange rates with the highest values of betweenness centrality, community centrality, and projected community
centrality for each of the three periods. We rank the exchange rates for each centrality according to their mean rank over all time
steps. For each exchange rate XXX/YYY, the corresponding inverse rate YYY/XXX has the same betweenness centrality,

community centrality, and projected community centrality.

1991–1998 1999–2003 2005–2008

Rank b jxj y b jxj y b jxj y

1 NOK/SEK CHF/AUD USD/DEM AUD/NZD SEK/XAU USD/XAU USD/CAD JPY/XAU EUR/XAU
2 AUD/XAU CHF/NZD USD/CHF NZD/CAD CHF/CAD EUR/USD AUD/NZD USD/XAU GBP/XAU
3 AUD/NZD CHF/XAU USD/XAU AUD/CAD EUR/XAU EUR/XAU AUD/CAD NZD/XAU CHF/XAU
4 AUD/CAD CHF/CAD CHF/CAD JPY/CAD NOK/XAU GBP/XAU NOK/SEK CAD/XAU EUR/CAD
5 CHF/SEK DEM/AUD CHF/AUD NOK/SEK CHF/NZD EUR/CAD USD/GBP GBP/XAU SEK/XAU
6 NZD/XAU SEK/AUD CHF/NZD USD/AUD CHF/XAU USD/CHF NZD/CAD SEK/XAU USD/XAU
7 CAD/XAU DEM/XAU DEM/CAD USD/NZD EUR/CAD CHF/XAU USD/JPY CHF/XAU EUR/NZD
8 DEM/SEK SEK/XAU DEM/AUD USD/JPY EUR/NZD NOK/XAU USD/AUD NOK/XAU JPY/XAU
9 NZD/CAD NOK/AUD USD/AUD GBP/JPY SEK/NZD EUR/NZD CHF/NOK CHF/NZD AUD/XAU
10 DEM/NOK DEM/NZD DEM/NZD CHF/SEK NOK/NZD CHF/NZD GBP/AUD AUD/XAU NOK/XAU

yA country is said to have a ‘commodity currency’ if its export income depends heavily on a commodity. For example, AUD, NZD,
and CAD are all considered to be commodity currencies.
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Figure 8(b) shows the mean betweenness centrality

versus the community alignment. We calculate the mean

community position by splitting the range of b into 10

bins containing equal numbers of data points and then

averaging over all community positions falling within

these bins. (The observed relationships are robust for

reasonable variations in the number of bins.) Nodes with

high betweenness centralities tend to have small values for

their community position, implying that nodes that are

important for information transfer are usually located on

the edges of communities. Table 2 shows that for all three

periods, NOK/SEK, AUD/NZD, and AUD/CAD all

tend to have high values of betweenness centrality on

average. They are therefore located on the edges of

communities and are important for information transfer.

Interestingly, for the post-euro period (1999–2008), sev-

eral USD exchange rates also seem to be important for

information transfer, but no USD rates regularly have

high betweenness values for the pre-euro period. In

contrast, XAU exchange rates are important for infor-

mation transfer for the pre-euro period but not after the

euro was introduced.

In figure 8(c), we show the mean community autocor-

relation versus the projected community centrality. We

calculate the mean autocorrelation by splitting the range

of the projected community centrality into 20 bins

containing equal numbers of data points and then

averaging over all autocorrelations falling within each

bin. (Again, the observed relationships are robust for

reasonable variations in the number of bins.) As one

would expect, the community autocorrelation for the

projected community centrality of a given node is smaller

for larger �.More interesting, we find for all values of � that

the mean community autocorrelation increases with

projected community centrality. This suggests that nodes

that are strongly connected to their community are persis-

tently likely to share that community membership with the

same subset of nodes. In contrast, exchange rates with low

values of projected community centrality experience regu-

lar changes in the set of rates with which they are clustered.

Table 2 shows the exchange rates with the highest

projected community centralities, which in turn reveals

the most persistent communities. For 1991–2003,

approximately half of the 10 exchange rates with the

highest projected community centralities also appear in

the list of the 10 rates with the highest community

centralities. For 2005–2008, however, the lists of

exchange rates with the highest community centralities

and projected community centralities are dominated by

the same set of XAU exchange rates (though the

rankings differ). For 1991–2003, the exchange rates with

the highest projected community centralities again

include rates formed of DEM (and EUR) or CHF

and one of the commodity currencies. However, there

are also several USD exchange rates with high values of

projected community centrality that don’t have high

values of community centrality. This suggests that these

USD rates do not have strong links with a large number

of other exchange rates, but that they strongly influence

the rates within their own communities.

A
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1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
0
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date
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0
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σ
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ij
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(c)

Figure 9. (a) Normalized distribution of the link weights at each time step. (b) Scaled energy Qs and standard deviation of the
link weights Aij. (c) Normalized variation of information V̂ between the community configurations at consecutive time steps. The
dashed horizontal lines show (from bottom to top) the mean of V̂ and 1, 2, 3, 4, 5, and 6 standard deviations above the mean V̂. The
solid (magenta) vertical lines in panels (b) and (c) separate the pre- and post-euro periods. The red vertical lines show the time steps
when 22 December 1994, 7 February 1997, and 15 August 2007 enter the rolling time window. These dates correspond, respectively,
to the devaluation of the Thai baht during the Asian currency crisis, the flotation of the Mexican peso following its sudden
devaluation during the tequila crisis, and significant unwinding of the carry trade during the 2007–2008 credit crisis. Each panel is
separated into two sections because we do not possess data for 2004.
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8. Major community changes

We now investigate the insights that short-term commu-

nity dynamics can provide into changes in the FX market.

Figure 9(a) shows a contour plot of the normalized

distribution of the link weights at each time step. The

mean link strength remains constant through time because

of the inclusion in the network of each exchange rate and its

inverse, but [as one can see in figures 9(a,b)] there is a large

variation in the standard deviation of the link strengths.

The scaled energy and standard deviation of link weights

are closely related. This is expected because the standard

deviation increases as a result of the strengthening of

strong ties and the weakening of weak ones.

(a)

(b)

(c)

Figure 10. Schematic representation of changes in community structure in one half of the FX market network for several events. (a)
The Mexican tequila crisis: the depicted reorganization followed 22 December 1994, when the Mexican peso was allowed to float
after a sudden devaluation. (b) The Asian currency crisis: the depicted reorganization followed 2 July 1997, when Thailand devalued
the baht. (c) Carry-trade unwinding: the depicted reorganization followed 15 August 2007, when there was significant unwinding of
the carry trade during the 2007–2008 credit and liquidity crisis. The node colours after the community reorganization correspond to
the communities before the changes. If the parent community of a community after the reorganization is obvious, we draw it using
the same colour as its parent. The nodes drawn as triangles resided in the opposite half of the network before the reorganization of
community structure.
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In figure 9(c), we also show the normalized variation of

information V̂ between the community configurations at

consecutive time steps. Large spikes in V̂ indicate signif-

icant changes in community structure during a single time

step and potentially also indicate important market

changes. The correlation coefficient between V̂ and the

absolute change in Qs between consecutive time steps is

0.39 over the period 1991–2003 and 0.47 over the period

2005–2008. (The absolute change in a quantity 	 from

time t to time tþ Dt is defined as j	ðtþ DtÞ � 	ðtÞj.) The

correlation between V̂ and the absolute change in �(Aij) is

0.28 over the period 1991–2003 and 0.27 for 2005–2008.

Changes in Qs are thus a better indicator than changes in

�(Aij) that there has been a change in the community

configuration of the FX network.

In figure 10, we show three example community-

structure reorganizations—two in which V̂ is more than

four standard deviations larger than its mean and a third

in which it is more than two standard deviations above

its mean.

8.1. Mexican peso crisis

Figure 10(a) shows the reorganization on 22 December

1994, when the Mexican peso was floated following its

sudden devaluation.y This change is accompanied by an

increase in the scaled energy Qs. Although we do not

include the Mexican peso in the set of investigated

exchange rates, it appears that its devaluation was a

sufficiently serious event that it led to major changes in

the community relationships of the studied rates. Before

22 December 1994, the largest community consisted of a

group of exchange rates of the form {AUD, CAD, NZD,

USD, XAU}/{CHF, DEM, GBP, JPY, NOK}. After the

flotation, the largest community consisted of a set of

exchange rates formed from the major European curren-

cies (CHF, DEM, and GBP). It is also noteworthy that

there is only a small gold (XAU) community during this

period, which—as noted previously—often indicates that

another currency is particularly important in the market.

8.2. Asian currency crisis

Figure 10(b) shows the community changes following 2

July 1997, when the Thai baht was devalued during the

Asian currency crisis. Aswith the peso, althoughwe did not

include the baht in the set of studied rates, its devaluation

appears to have had a significant effect on the FX market.

There is a large stable gold cluster during the whole period.

Before 2 July 1997, there is also a large AUD cluster. After

the devaluation, however, this cluster breaks up and the

previously-small GBP cluster increases in size. This sug-

gests that GBP is playing a more prominent market role

after the devaluation. Although the reasons for the changes

in the sizes of the AUD and GBP communities are not

obvious, both adjustments suggest a sharp and significant

change in the correlation structure of the market.

8.3. Credit crisis

The final example, which we show in figure 10(c),

reveals significant community reorganization following

15 August 2007, and it illustrates one of the major effects

on the FX network of the recent credit and liquidity crisis.

yFor a floating exchange rate, the value of the currency is allowed to fluctuate according to the FX market. Prior to its flotation, the
peso had been pegged to the US dollar.

07/01/2005 01/01/2006 07/01/2006 01/01/2007 07/01/2007 01/01/2008 07/01/2008 01/01/2009
0

0.05

0.1

0.15

0.2

0.25

V̂

date

ϒ

(b)

90

100

110

120

130(a)

Figure 11. (a) Carry-trade index W. The vertical line again shows 15 August 2007 and the shaded blocks (from left to right) show Q3
2007, Q4 2007, Q1 2008, and Q4 2008. (b) Normalized variation of information between community configurations at consecutive
time steps for 2005–2008. The horizontal lines show (from bottom to top) the mean of V̂ and 1, 2, 3, and 4 standard deviations above
the mean. The red vertical line in (b) shows 15 August 2007, when there was a marked increase in unwinding of the carry trade.

1510 D.J. Fenn et al.

D
o
w

n
lo

ad
ed

 b
y
 [

th
e 

B
o
d
le

ia
n
 L

ib
ra

ri
es

 o
f 

th
e 

U
n
iv

er
si

ty
 o

f 
O

x
fo

rd
] 

at
 1

0
:5

8
 0

8
 O

ct
o
b
er

 2
0
1
2
 



This example also demonstrates changes in community

structure that occurred as a result of a trading change that

directly affected the studied rates.

The most important effect of the credit crisis on the FX

market during the period 2005–2008 was its impact on the

carry trade. The carry trade consists of selling low interest

rate ‘funding currencies’ such as JPY and CHF and

investing in high interest rate ‘investment currencies’ such

as AUD and NZD. It yields a profit if interest-rate

differentials between funding and investment currencies

are not offset by commensurate depreciation of invest-

ment currencies (Brunnermeier et al. 2008). The carry

trade is one of the most commonly used FX trading

strategies and requires a strong appetite for risk, so the

trade tends to ‘unwind’ during periods in which there is a

decrease in available credit. A trader unwinds a carry-

trade position by selling his/her holdings in investment

currencies and buying funding currencies.

One approach to quantifying carry-trade activity is to

consider the returns that can be achieved using a carry-

trade strategy. In figure 11(a), we show the cumulative

return index W from trading using a common carry-trade

strategy. We consider a strategy in which one buys equal

weights of the three major currencies with the highest

interest rates and sells equal weights of the three major

currencies with the lowest interest rates. This is a dynamic

trading strategy because the relative interest rates of

currencies change over time. For example, consider the

situation in which the interest rate of currency A (which

initially has the third highest interest rate) decreases below

the rate of currency B (which initially has the fourth

highest interest rate). In order to maintain the strategy of

only holding the three currencies with the highest interest

rates at any time, one would re-balance the carry portfolio

by selling the holding of currency A and buying currency

B. The frequency at which such re-balances occur depends

on the frequency at which the relative interest rates

change. The returns from a carry strategy like this are

widely construed by market participants to provide a

good gauge of carry-trade activity. Large negative returns

result in large decreases in W, which are therefore likely to

indicate significant unwinding of the carry trade.

In figure 11(b), we focus on the period 2005–2008 from

figure 9(c). Again, large spikes indicate significant

changes in the community configuration over a single

time step. Figure 11(b) shows that a significant reorga-

nization of community structure occurred on 15 August

2007. (In figure 10(c), we showed the observed commu-

nities before and after this date.) This community

reorganization is a result of massive unwinding of the

carry trade. Figure 11(a) shows that, leading up to 15

August 2007, there was some unwinding of the carry

trade, so the initial configuration includes a community

containing exchange rates of the form AUD/YYY, NZD/

YYY, and XXX/JPY (which all involve one of the key

carry-trade currencies). In figure 11(a), it is also clear that

there is a sharp increase in carry-trade unwinding

following this date. The right network partition in figure

10(c) highlights this increase as the carry-trade commu-

nity increases in size by incorporating other XXX/JPY

rates as well as some XXX/CHF and XXX/USD rates.

The presence of a large number of exchange rates

involving one of the key carry-trade currencies in a

single community demonstrates the significance of the

trade over this period. Importantly, some of the exchange

rates included in the carry-trade community are also

somewhat surprising and provide insights into the range

of currencies used in the carry trade over this period.

The above discussion illustrates that one can identify

major changes in the correlation structure of the FX

market by finding large values of V̂ between time steps.

Having identified significant changes, one can then gain a

better understanding of the nature of such changes and

potentially also gain insights into trading changes taking

place in the market by investigating the adjustments in

specific communities. We have discussed three examples

in which the observed changes are obviously attributable

to a major FX market event. However, there are also

several time steps in which significant community reor-

ganizations occur for which the cause is much less

obvious, and the investigation of dynamic communities

might help shed light on concomitant market changes.

9. Visualizing changes in exchange-rate roles

In this final section, we investigate changes in the relation-

ships between specific exchange rates and their commu-

nities. We begin by defining within-community z-scores,

which directly compare the relative importances of

different nodes to their community (Guimerà and

Amaral 2005). We describe the roles of individual nodes

at each time step using the within-community projected

community centrality z-score zy and the within-commu-

nity betweenness centrality z-score zb.y If a node i belongs

to community ci and has projected community centrality

yi, then

z
y
i ¼

yi � �yci
�
y
ci

, ð23Þ

where �yci is the mean of yi over all nodes in ci and �y
ci
is the

standard deviation of yi in ci. The quantity z
y
i measures

how strongly connected node i is to its community

compared with other nodes in the same community.

Similarly, if node i has betweenness centrality bi, then

zbi ¼
bi � �bci
�b
ci

, ð24Þ

where �bci is the average of bi over all nodes in ci and �b
ci
is

the standard deviation of bi in ci. The quantity z
b
i indicates

the importance of node i to the spread of information

compared with other nodes in its community. The

positions of nodes in the (zb, zy) plane thereby illuminate

the roles of the associated exchange rates in the FXmarket

yFor a within-community z-score to be well defined, a node must belong to a community containing two or more nodes.
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Figure 12. Node positions in the (zb, zy) plane averaged over all time steps for the periods (a) 1991–1998, (b) 1999–2003, and
(c) 2005–2008. The radii of each elliptical marker equal the standard deviations in the z-scores for the corresponding node, and they
are scaled by a factor of 1/15 for visual clarity.
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and provide information that cannot be gained by simply

considering individual exchange-rate time series.

We remark that our methods are robust with respect to

the choice of measures used to construct the parameter

plane: we obtain similar results using other notions, such

as dynamical importance (Restrepo et al. 2006) instead of

betweenness centrality and the within-community

strength z-score (Guimerà and Amaral 2005) instead of

projected community centrality. Obviously, one can also

do analogous computations using other nodes properties.

9.1. Mean roles

In figure 12, we show the mean position of each

exchange rate over the three periods and highlight

some rates that play particularly prominent roles. For

example, USD/DEM (and then EUR/USD after the

introduction of the euro) regularly had the strongest

connection to its community for 1991–2003, but EUR/

XAU was more strongly connected to its community for

2005–2008. The importance of USD/DEM and EUR/

USD is unsurprising, given that these rates had the

highest daily trading volume (Galati et al. 2002). This

provides a reality check that our methods uncover useful

information about the roles of minor exchange rates.

Other exchange rates, such as NOK/SEK and AUD/

NZD, were less influential within their communities but

were very important for the transfer of information

around the FX network.

The (zb, zy) plots also highlight exchange rates that play

similar roles in the FX market. For example, exchange

rates formed from one of the major European curren-

cies—DEM or CHF—and one of the commodity curren-

cies—AUD, CAD, or NZD (or the commodity XAU)—

are located close together in the upper left quadrant of the

(zb, zy) plane for 1991–2003. This prominent similarity is

not present for 2005–2008.

9.2. Annual roles

We can also gain insights into the temporal dynamics of

exchange-rate roles by examining changes in the positions

of the rates in the (zb, zy) plane over different time

periods. Changes in a node’s position in the (zb, zy) plane

reflect changes in the membership of a node’s community

as well as changes in b and y. In figure 13, we show six

example annual role evolutions. We determine the annual

roles by averaging zy and zb over all time steps in each

year. We see, for example, that the NZD/JPY exchange

rate maintained a consistently influential role within its

community over the full period. Similarly, the EUR/USD

rate maintained the same influential role played by the

USD/DEM rate before the introduction of the euro.

Other rates changed roles during the studied period.

The GBP/USD and GBP/CHF exchange rates evolved in

a similar manner, as they changed from being strongly

influential within their communities before 1994 to being

less influential within their communities but more impor-

tant for information transfer after 1994. The role of both

GBP/AUD and USD/JPY varied significantly over the

period 1991–2008. From 2001 onwards, GBP/AUD

became less influential within its community but more

important for information transfer. Interestingly, the

USD/JPY rate had its highest within-community influ-

ence in the late 1990s during a period of Japanese

economic turmoil. One can construct similar plots to

study role changes of other exchange rates. These role

plots provide a useful tool for visualizing changes in

exchange-rate correlations.

9.3. Quarterly roles

We also investigate higher-frequency changes in exchange-

rate market roles using shorter time intervals. In figure 14,

we show quarterly role changes over the period

1995–1998 for six exchange rates—including USD/DEM
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Figure 13. Annual node-role evolutions in the (zb, zy) plane for the full period (1991–2008).
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and GBP/USD, for which we also show the annual

changes in figure 13. USD/DEM plays a relatively

influential role within its community with both quarterly

and annual time aggregations, whereas there is signifi-

cant variation in the role of GBP/USD with both

quarterly and annual time aggregations. We also show

other examples for which we did not show annual

changes. The role of DEM/JPY varied considerably over

the period 1995–1998: in particular, it was an important

information carrier for the last two quarters in 1996,

whereas it was influential within its community through-

out 1998. In contrast, AUD/JPY moves from being

unimportant for information transfer to being an infor-

mation carrier during 1998. Additionally, AUD/NZD

and AUD/XAU were both always information carriers,

and AUD/NZD was particularly important for infor-

mation transfer during 1998.

Finally, we consider some examples of quarterly role

evolutions for the period 2005–2008, which we discussed

in our recent short paper (Fenn et al. 2009). Figure 15

shows quarterly role changes for four exchange rates

during the period 2005–2008. The USD/XAU rate pro-

vides an interesting example due to the persistence of its

community over this period. For 2005–2008, the USD/

XAU node shifted from being an important information

carrier within the XAU community to being more

influential in this community. This period of higher

influence coincides closely with the period of financial
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Figure 14. Quarterly node-role evolutions in the (zb, zy) plane for the period 1995–1998.
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Figure 15. Quarterly node-role evolutions in the (zb, zy) plane for the period 2005–2008.
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turmoil during 2007–2008. CHF is widely regarded as a

‘safe haven’ currency (Ranaldo and Söderlind 2010), so

one might expect USD/CHF to behave in a similar

manner to USD/XAU. However, CHF is also a key

carry-trade currency. Because CHF is used both as a safe

haven and as a carry-trade currency, the USD/CHF node

does not move in the same direction as USD/XAU in the

(zb, zy) plane. Instead, the USD/CHF exchange rate is an

important information carrier during the 2007–2008

credit crisis. Over the same period, the AUD/JPY and

NZD/JPY exchange rates change from being important

for information transfer to being influential within their

communities. The AUD/JPY and NZD/JPY rates were

most influential within their respective communities

during Q3 and Q4 2007 and during Q1 and Q4 2008.

Figure 11(b) shows that there was significant carry-trade

activity in all of these periods, so it is unsurprising that

two exchange rates that are widely used for this trade

should increase in importance. This provides a further

demonstration that the positions of exchange rates in the

(zb, zy) parameter plane can provide important insights

into the roles of exchange rates in the FX market.

10. Conclusions

To conclude, we have demonstrated that a network

analysis of the FX market is useful for visualizing and

providing insights into the correlation structure of the

market. In particular, we investigated community struc-

ture at different times to provide insights into the

clustering dynamics of exchange-rate time series. We

focused on a node-centric community analysis that allows

one to follow the temporal dynamics of functional roles of

exchange rates within the market. We thereby demon-

strate that there is a relationship between an exchange

rate’s functional role and its position within its commu-

nity. We indicated that exchange rates that are located on

the edges of communities are important for information

transfer in the FX market, whereas exchange rates that

are located in the centre of a community have a strong

influence on other rates within that community. We also

demonstrated that the community structure of the FX

market can be used to determine which exchange rates

dominate the market at each time and identified exchange

rates that experienced significant changes in market role.

Our analysis successfully uncovered significant struc-

tural changes that occurred in the FX market, including

ones that resulted from major market events that did not

impact the studied exchange rates directly. We also

demonstrated that community-structure reorganizations

at specific times can provide insights into changes in

trading behaviour and highlighted the prevalence of the

carry trade during the 2007–2008 credit and liquidity

crisis. Although we focused on networks of exchange

rates, our methodology should be similarly insightful for

multivariate time series of other asset classes.
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Appendix A: Robustness of results—alternative

computational heuristics

In the main text, we detected all communities using the

Louvain locally greedy algorithm (Blondel et al. 2008).

However, as we noted in section 3, several alternative

heuristics exist. We now investigate whether the choice of

heuristic has any effect on the results described in this

paper.

Good et al. (2010) demonstrated that there are extreme

near-degeneracies in the energy function, as the number

of low-energy solutions can scale exponentially or faster

with the number of nodes. Given this, it is unsurprising

that different energy-optimization heuristics can yield

very different partitions for the same network. Good et al.

suggested that the reason for such behaviour is that

different heuristics sample different regions of the energy

landscape. Because of the potential sensitivity of results to

the choice of heuristic, one should treat individual

partitions output by particular heuristics with caution.

However, one can have more confidence in the validity of

partitions if different heuristics produce similar results.

In this section, we compare the results for the Louvain

algorithm (Blondel et al. 2008) with those for a spectral

algorithm (Newman 2006b) and simulated annealing

(Guimerà et al. 2004) for the 563 networks that we

constructed for the period 2005–2008.

A.1. Comparison of partition energies

We begin by comparing the energy H of the optimal

partitions at the resolution �¼ 1.45. Figure A1 shows

the distribution of energies for the different algorithms

and demonstrates that the Louvain algorithm and

simulated annealing find lower-energy partitions than

the spectral algorithm. For the remainder of this section,

we will only compare the Louvain and simulated-

annealing algorithms because of the higher energy of

the spectral partitions.

A.2. Temporal changes in communities

First, we compare the network partitions identified by the

two heuristics for each network. In figure A2, we show the

distribution of the normalized variation of information

between the community partitions identified using the

Louvain and simulated-annealing algorithms. The two

methods identify identical partitions for 19% of the

networks; for 83% of the networks, the partitions differ in
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Figure A1. Distribution of the energy H of the optimal partition for networks over the period 2005–2008 computed using different
optimization algorithms.
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their assignment of nodes to communities by fewer than

10 nodes. There is therefore strong agreement between the

partitions obtained by the two heuristics, but there are

also differences that warrant further investigation.

In section 8, we identified significant changes in

community structure by comparing changes in the

scaled energy Qs (see equation 10) between consecutive

time steps and by calculating the normalized variation of

information between community partitions at consecutive

time steps (see figure 9). The correlation between the

scaled energy Qs of the partitions obtained using the two

optimization heuristics is 0.99, and the correlation

between the changes in Qs between consecutive time

steps for the two heuristics is 0.93. The correlation

between the normalized variation of information between

partitions at consecutive time steps is 0.36. The scaled

energy correlations are clearly extremely high. However,

there are differences in the timings of some major

reorganizations identified by the normalized variation of

information. To compare the timings of major events, we

identify time steps at which the normalized variation of

information between consecutive partitions is more than a

certain number of standard deviations larger than the

mean normalized variation of information between con-

secutive partitions. We find that the algorithms identify

40% of 1-standard-deviation events at the same time steps

and 33% of 2.5-standard-deviation events at the same

time steps. The methods therefore agree reasonably well.

However, the differences also suggest that one should be

cautious when using normalized variation of information

to identify major reorganizations in community structure.

A.3. Example community comparison

One time step at which both heuristics identify a large

change in community structure is 15 August 2007 which,

as described in section 8.3, was a day when there was a

significant increase in carry-trade unwinding. It is worth

considering the communities at this time step in detail to

help assess the similarity of the results for the two

heuristics. In figure A3(a), we show the communities

that we identified using the Louvain algorithm (Blondel

et al. 2008) immediately before and after 15 August

2007; in figure A3(b), we show communities that we

identified using simulated annealing (Guimerà et al.

2004) for the same time steps. Figure A3(a) shows that,

leading up to 15 August 2007, there was some unwinding

of the carry trade, so the initial configuration includes a

community containing exchange rates of the form AUD/

YYY, NZD/YYY, and XXX/JPY (which all involve one

of the key carry-trade currencies). After 15 August 2007,

as the volume of carry-trade unwinding increases, this

community incorporates other XXX/JPY rates as well as

some XXX/CHF and XXX/USD rates. Although the

communities in figure A3(b) for the simulated-annealing

algorithm are not identical to those in figure A3(a), they

are very similar. The main difference is that, for the

simulated-annealing algorithm, there are two carry-trade

communities before 15 August 2007: one community

containing exchange rates of the form AUD/YYY and

NZD/YYY (where we note that AUD and NZD are

both carry-trade investment currencies) and another

community containing exchange rates of the form

XXX/CHF and XXX/JPY (where we note that CHF

and JPY are both carry-trade funding currencies). After

15 August 2007, as carry-trade unwinding increases,

these two communities combine and two other exchange

rates also join the community. The resulting merged

community is very similar to the largest community

identified at the same time step using the Louvain

algorithm.

Figure A3 therefore illustrates that there are only small

differences in the community structures obtained from the

two heuristics. In fact, as figure A2 demonstrates, the two

algorithms agree in the assignment of all but about 10

nodes approximately 80% of the time. Importantly, figure

A3 highlights that the two heuristics reveal similar

changes in the FX market even when there are differences

in the precise community configurations that they

identify.
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Figure A2. Distribution of the normalized variation of information between network partitions identified using the Louvain
algorithm and simulated annealing for networks during the period 2005–2008.
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A.4. Node-role comparison

As an additional comparison, we investigate the effect of

different computational heuristics on exchange-rate roles

(see section 9). In figure A4, we compare quarterly role

evolutions over the period 2005–2008 for the exchanges

rates shown in figure 15. Although there are slight

differences in the positions of the exchange rates in the

(zb, zy) plane for some periods, we obtain the same

aggregate conclusions. For example, for both heuristics,

AUD/JPY is most influential within its community (high

zb) during Q3 and Q4 2007 and during Q1 and Q4 2008,

and it is less influential (but more important for

information transfer) during 2005 and 2006.

The positions in the (zb, zy) plane are similarly close

for all of the other exchange rates. We quantify the

differences in the positions for the two heuristics by

calculating the mean and standard deviation of the

change in position over all exchange rates and over all

time periods. More precisely, we average the change in

position of every node in the (zb, zy) plane over every

quarter. The mean change in position in both the zb and

zy directions is less than 10�4; the standard deviations

are 0.15 and 0.17, respectively. However, because the

changes in position are likely to cancel out (i.e., an

increase in zb for one exchange rate is likely to be offset

by a decrease in zb for another exchange rate), it is more

informative to calculate the mean and standard devia-

tion of the absolute changes in position in the zb and zy

directions. In the zb direction, the mean absolute change

in position is 0.08, and the standard deviation is 0.13; in

the zy direction, the mean absolute change is 0.09, and

the standard deviation is 0.15. The mean differences in

positions in the (zb, zy) plane are therefore very small for

the two heuristics and, as figure A4 demonstrates, both

algorithms uncover the same role changes in the FX

market for the different exchange rates.

Finally, we also checked the relationships shown in

figure 8 for community centrality versus community size,

community alignment versus betweenness centrality,

and community autocorrelation versus projected commu-

nity centrality. Using simulated annealing, we find the

same trends that we uncovered with the Louvain

algorithm.

The results of this section demonstrate that, although

there are differences in the communities identified using

different optimization heuristics, the aggregate conclu-

sions are the same. We identify the same changes taking

(a)

(b)

Figure A3. Comparison of changes in community structure in one half of the FX market network over the same period for
different optimization heuristics. We show a schematic of the communities for the period following 15 August 2007, when there was
significant unwinding of the carry trade during the 2007–2008 credit and liquidity crisis. We identified communities using (a) the
Louvain locally greedy algorithm (Blondel et al. 2008) and (b) a simulated-annealing algorithm (Guimerà et al. 2004). The node
colours after the community reorganization correspond to the communities before the change. If the parent community of a
community after the reorganization is obvious, we draw it using the same colour as its parent. The nodes drawn as triangles resided
in the opposite half of the network before the community-structure reorganization.
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place in the FX market whether we use the Louvain

algorithm or simulated annealing to minimize energy.

The fact that we obtain very similar results using different

optimization techniques, despite these techniques sam-

pling different regions of the energy landscape, gives

confidence that the effects that we uncover are genuine

and that our results are robust. In practice, the Louvain

algorithm is preferable to simulated annealing because of

the computational cost of the latter. For example, on the

machine that we used to perform the computations, the

Louvain algorithm converged on an optimal community

partition for all 563 networks over the period 2005–2008

in 5 minutes and 24 seconds. For the same networks, the

simulated-annealing algorithm took about 36 hours.
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Figure A4. Comparison of the quarterly node-role evolutions in the (zb, zy) plane for the period 2005–2008 for communities
identified using the locally greedy Louvain algorithm (Blondel et al. 2008) and simulated annealing (Guimerà et al. 2004). The plots
with white and blue shading show results for the Louvain algorithm and the plots with pink shading show results for simulated
annealing.
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