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1 Introduction and conclusions

A remarkable proposal in the Swampland Program of quantum gravity constraints on

effective field theories [1] (see [2–4] for reviews) is the Cobordism Conjecture [5], that is

based on the expected absence of exact global symmetries in quantum gravity. In short, it

states that any configuration in a consistent theory of quantum gravity should not carry

any cobordism charge. In practice, it implies that any configuration in a consistent theory

of quantum gravity should admit, at the topological level, the introduction of a boundary

ending spacetime into nothing,1 in the sense of [6] (see [7, 8] for recent related discussions).

Accordingly, we will refer to such boundaries as walls of nothing. Equivalently, it implies

that any two consistent theories of quantum gravity must admit, at the topological level,

an interpolating configuration connecting them, as a generalized domain wall separating

the two theories. We will refer to such configurations as interpolating domain walls.

1This boundary may be dressed by additional defects, such as D-branes or O-planes in string setups, to

absorb the relevant charges.
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The Cobordism Conjecture is topological in nature. However, it can lead to remarkable

breakthroughs when supplemented by additional assumptions. For instance, the extra

ingredient of supersymmetry of the theory (and possibly of its walls) has led to highly

non-trivial constraints in lower dimensional theories, see e.g. [9, 10].

An important step forward in endowing cobordism walls with dynamics was taken

in [11], in the study of theories with tadpoles for dynamical fields (dubbed dynamical

tadpoles, as opposed to topological tadpoles, such as RR tadpoles, which lead to topological

consistency conditions on the configuration2). These are ubiquitious in the presence of

scalar potentials, and in particular in non-supersymmetric string models. In theories with

dynamical tadpoles the solutions to the equations of motion vary over the non-compact

spacetime dimensions. Based on the behaviour of large classes of string models, it was

proposed in [11] that such spacetime-dependent running solutions must hit cobordism walls

of nothing at a finite distance ∆ in spacetime3 (as measured in the corresponding Einstein

frame metric), scaling as ∆−n ∼ T with the strength of the tadpole T . These examples

included holographic AdS5 × T 1,1 compactifications with RR 3-form flux, type IIB 3-form

flux compactifications, magnetized D-brane models, massive IIA theory, M-theory on K3

with G4 flux, and the 10d non-supersymmetric USp(32) string theory. On the other hand,

interpolating cobordism walls connecting different theories were not discussed. One of the

motivations of this work is to fill this gap.

We argue that, when a running solution in theories with dynamical tadpoles hits a wall,

the behaviour of the configuration across the wall, and in particular the sharp distinction

between interpolating domain walls and walls of nothing, is determined by the behaviour

of scalar fields as one reaches the wall, via a remarkable correspondence:

• When scalars remain at finite distance points in moduli space as one hits the wall, it

corresponds to an interpolating domain wall, and the solution continues across it in

spacetime (with jumps in quantities as determined by the wall properties);

• On the other hand, when the scalars run off to infinity in moduli space as one reaches

the wall (recall, at a finite distance in spacetime), it corresponds to a wall of nothing,

capping off spacetime beyond it.

We also argue that scalars reaching singular points at finite distance in moduli space

upon hitting the wall still define interpolating domain walls, rather than walls of nothing;

hence, walls of nothing are not a consequence of general singularities in moduli space, but

actually to those at infinity in moduli space. This suggests that, in the context of dynamical

solutions,4 the walls of nothing of the Cobordism Conjecture are closely related to the

Swampland Distance Conjecture.5 We indeed find universal scaling relations between the

2Note however that dynamical tadpoles were recently argued in [12] to relate to violation of swampland

constraints of quantum gravity theories.
3For related work on dynamical tadpoles in non-supersymmetric theories, see [13–20].
4Note that, in setups with no dynamical tadpole, one can still have e.g. cobordism walls of nothing

without scalars running off to infinity: for instance, 11d M-theory, which does not even have scalars, admits

walls of nothing defined by Horava-Witten boundaries; similar considerations may apply to potential theories

with no moduli (or with all moduli stabilized at high enough scale).
5The status of the SDC in spacetime dependent running solutions was addressed in [21].
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(finite) distance to the wall in spacetime and the scale of the SDC tower [22]. In addition,

we uncover a universal scaling relation between the curvature scalar in running solutions

and the SDC tower scale that is reminiscent of the Anti de Sitter Distance Conjecture

(ADC) [23].

We illustrate these ideas in several large classes of string theory models, including

massive IIA, and M-theory on CY threefolds. Moreover, we also argue that our framework

encompasses the recent discussion of EFT string solutions in 4d N = 1 theories in [24] (see

also [25]), where saxion moduli were shown to attain infinity in moduli space at the core

of strings magnetically charged under the corresponding axion moduli. We show that EFT

string solutions are the cobordism walls of nothing of S
1 compactifications of the 4d N = 1

theory with certain axion fluxes on the S
1. Our scalings also relate to those between EFT

string tensions and the SDC tower scale in [24].

The paper is organized as follows. In section 2 we present the main ideas in the

explicit setup of running solutions in massive IIA theory, and their interplay with type I’

solutions [26]. In section 3 we carry out a similar discussion for M-theory on CY threefolds

with G4 flux (in section 3.1) and their relation to strongly coupled heterotic strings [27].

In section 3.2 we use it to discuss domain walls across singularities at finite distance in

moduli space, following [28]. In section 4 we discuss the S
1 compactification of general 4d

N = 1 theories. In section 4.1 we introduce dynamical tadpoles from axion fluxes, whose

running solutions hit walls of nothing at which saxions run off to infinity. In section 4.2 we

relate the discussion to the EFT strings of [24]. In section 5 we discuss the moduli space

distances in walls of nothing and interpolating walls in 4d N = 1 theories with non-trivial

superpotentials of the kind arising in flux compactifications. In section 6 we discuss our

proposal in non-supersymmetric string theories, in particular the 10d USp(32) string. In

section 7 we offer some final remarks and outlook. Appendix A provides some observations

on cobordism walls in holographic throats.

2 Cobordism walls in massive IIA theory

Walls of nothing and infinite moduli space distance. In this section we consider

different kinds of cobordism walls in massive IIA theory [29], extending the analysis in [11].

The Einstein frame 10d effective action for the relevant fields is

S10,E =
1

2κ 2

∫

d10x
√

−GE

{[

R − 1

2
(∂φ)2

]

− 1

2
e

5
2

φF 2
0 − 1

2
e

1
2

φ(F4)2
}

, (2.1)

where the Romans mass parameter is denoted by F0 to suggest it is a 0-form field strength

flux. This theory is supersymmetric, but has a dilaton tadpole

T ∼ e
5
2

φF 2
0 , (2.2)

so the theory does not admit 10d maximally symmetric solutions. The solutions with

maximal (super)symmetry are 1/2 BPS configurations with the dilaton depending on one

coordinate x9, closely related to that in [30]. In conventions closer to [26], the Einstein

frame metric and dilaton are

(GE)MN = Z(x9)
1

12 ηMN , eφ = Z(x9)− 5
6 , with Z(x9) ∼ −F0 x9 , (2.3)
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where we have set some integration constant to zero. The solution hits a singularity at

x9 = 0. The spacetime distance from a general position x9 to the singularity is [11]

∆ =

∫ 0

x9
Z(x9)

1
24 dx9 ∼ Z(x9)

25
24 F −1

0 ∼ F −1
0 e− 5

4
φ ∼ T − 1

2 , (2.4)

in agreement with the scaling relation ∆−2 ∼ T , that was dubbed Finite Distance les-

son in [11]. Following the Dynamical Cobordism proposal therein, the singularity is re-

solved in string theory into a cobordism wall of nothing, defined by an O8-plane (possibly

dressed with D8-branes to match the F0 flux to be absorbed),6 ending the direction x9 as

a boundary.

We now notice that, since Z → 0 implies φ → ∞ as x9 → 0, the dilaton runs off to infin-

ity in moduli space as one hits the wall, as befits a wall of nothing from our discussion in the

introduction. According to the SDC, there is an infinite tower of states becoming massless

in this region, with a scale decaying exponentially with the moduli space distance D as

MSDC ∼ e−λD , (2.5)

with some positive O(1) coefficient λ.

It is interesting to find a direct relation between these quantities and the spacetime

distance to the wall. The distance in moduli space is given by φ =
√

2 D, as can be seen

from the kinetic term for φ in (2.1). From (2.4) we have

∆ ∼ e
− 5

2
√

2
D

, MSDC ∼ ∆
2

√

2
5

λ . (2.6)

Hence the SDC tower scale goes to zero with the distance to the wall with a power-like

scaling.

It is a natural question to ask if this tower of states becomes light in the actual dynam-

ical configuration (rather than in the adiabatic framework of the standard formulation of

the SDC). In this particular setup, the SDC tower corresponds to D0-branes which end up

triggering the decompactification of the M-theory eleventh dimension. In the dynamical

solution, there are a finite number of extra massless states, responsible for the enhancement

of the perturbative open string gauge group to the exceptional symmetries which are known

to arise from the heterotic dual theory [26] (see also [31]). On the other hand, there is no

signal of an infinite tower of states becoming massless simultaneously. The appearance of

the SDC in the dynamical context has thus different implications as compared with the

usual adiabatic formulation.

Let us now turn to another novel, and tantalizing, scaling. The scalar curvature for

the running solution reads

|R| ∼ (−x9)− 25
12 ∼ e

5
√

2
D

. (2.7)

Using this, we can write the SDC tower scale in terms of the scalar curvature as

MSDC ∼ e−λD ∼ |R|−
√

2
5

λ . (2.8)

6This imposes a swampland bound on the possible values of F0 that are consistent in string theory.
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This scaling is highly reminiscent of the Anti de Sitter Distance Conjecture (ADC) of [23],7

even though the setup under consideration is very different.8 Note however that, as in the

ADC, it signals a failure of the decoupling of scales, and hence a breakdown of the effective

field theory near the wall of nothing. This fits nicely with our observation that the wall

can only be microscopically defined in the UV complete theory, and works as a boundary

condition defect at the level of the effective theory.

Interpolating domain walls. There is a well known generalization of the above solu-

tions, which involves the inclusion of D8-branes acting as interpolating domain walls across

which F0 jumps by one unit. The general solution of this kind is provided by (2.3) with a

piecewise constant F0 and a piecewise continuous function Z [26].

The D8-brane domain walls are thus (a very simple realization of) cobordism domain

walls interpolating between different Romans IIA theories (differing just in their mass

parameter). The point we would like to emphasize is that, since Z remains finite across

them, the dilaton remains at finite distance in moduli space, as befits interpolating domain

walls from our discussion in the introduction.

3 Cobordism walls in M-theory on CY3

In this section we recall results from the literature on the strong coupling limit of the

heterotic string, also known as heterotic M-theory [27, 32–34] (see [35, 36] for review and

additional references). They provide straightforward realizations of the different kinds of

cobordism walls in M-theory compactifications on CY threefolds. The discussion general-

izes that in [11], and allows to study the behaviour at singular points at finite distance in

moduli space, in particular flops at conifold points.

3.1 M-theory on CY3 with G4 flux

We consider M-theory on a CY threefold X, with G4 field strength fluxes on 4-cycles. For

later convenience, we follow the presentation in [28]. We introduce dual basis of 2- and

4-cycles Ci ∈ H2(X) and Di ∈ H4(X), and define
∫

Di

G4 = ai ,

∫

Ci
C6 = λ̃i . (3.1)

We also denote by bi the 5d vector multiplet of real Kähler moduli, with the usual Kähler

metric and the 5d N = 1 prepotential

Gij = −1

2

∂2

∂bi∂bj
ln K , K ≡ 1

3!
dijkbibjbk , (3.2)

with dijk being the triple intersection numbers of X. We have the familiar constraint K = 1

removing the overall modulus V , which lies in a hypermultiplet.

7It is possible that the result is ultimately linked to the generalized distance conjectures in [23]; we leave

this as an open question for future work.
8In contrast to the ADC, that considers the limit of vanishing curvature of a family of AdS vacua, in

our setup the scalar curvature blows up as the singularity is approached. However, we do find a power-like

scaling similar to the ADC one.
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The 5d effective action for these fields is

S5 = −M 9
p,11

2
L6
[
∫

M5

√−g5

(

R + Gij(b)∂M bi∂M bj +
1

2V 2
∂M V ∂M V + λ(K − 1)

)

+
1

4V 2
Gij(b)ai ∧ ⋆aj + dλ̃i ∧ ai

]

−
N+1
∑

n=0

α
(n)
i

∫

M
(n)
4

(

λ̃i +
bi

V

√
g4

)

. (3.3)

Here λ is a Lagrange multiplier, and L the reference length scale of the Calabi-Yau. With

hindsight, we include 4d localized terms which correspond to different walls in the theory,

with induced 4d metric g4.

The G4 fluxes ai induce dynamical tadpoles for the overall volume and the Kähler

moduli bi. There are 1/2 supersymmetric solutions running in one spacetime coordinate,

denoted by y, with the structure

ds2
5 = e2Ads2

4 + e8Ady2 ,

V = e6A , bi = e−Af i ,

e3A =

(

1

3!
dijkf if jfk

)

,

(dλ̃
i
)µνρσ = ǫµνρσe−10A

(

−∂11bi + 2bi∂11A
)

. (3.4)

The whole solution is determined by a set of one-dimensional harmonic functions. They

are given in terms of the local values of the G4 fluxes,

dijkf jfk = Hi , Hi = aiy + ci . (3.5)

Here the ci are integration constants set to have continuity of the Hi, and hence of the

fi, across the different interpolating domain walls in the system, which produce jumps as

follows. Microscopically, the interpolating domain walls correspond to M5-branes wrapped

on 2-cycles [C] =
∑

niC
i, leading to jumps in the fluxes that in units of M5-brane charge

are given by

∆ai = ni . (3.6)

Hence, interpolating domain walls maintain the theory at finite distance in moduli

space. This is not the case for cobordism walls of nothing, which arise when eA → 0, and

hence V → 0, which sits at infinity in moduli space. This regime was already discussed (in

the simpler setup of K3 compactifications) in [11], where the cobordism domain was argued

to be given by a Horava-Witten boundary (dressed with suitable gauge bundle degrees of

freedom, as required to absorb the local remaining G4 flux), in agreement with the strong

coupling singularity discussed in [27]. The wall appears at a finite spacetime distance ∆

following the scaling ∆−2 ∼ T in [11]. In what follows, we describe the scaling relations of

the moduli space distance and the SDC tower at these walls of nothing.

Since they are characterized by the vanishing of the overall volume of X, it is enough to

follow the behaviour of V and the discussion simplifies. Restriction to this sector amounts

to setting all fi ≡ f in (3.4), and all Hi ≡ H. Also, since the wall of nothing arises when

H → 0, we can take this location as y = 0 and write

e2A ∼ H(y) ∼ αy . (3.7)

– 6 –
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Using the metric in (3.4), the spacetime distance from a point y > 0 is

∆ =

∫ y

0
(αy)2dy =

1

3
α2 y3 . (3.8)

We are also interested in the traversed distance in moduli space D. Using the kinetic term

in (3.3), the relevant integral to compute is

D = −
∫

1√
2V

dV

dy
dy . (3.9)

Using V ∼ H3, we get as leading behavior near the singularity

D ≃ − 3√
2

log y = − 1√
2

log
3∆

α2
, (3.10)

where in the last equality we used (3.8). This implies

∆ ∼ e−
√

2D , (3.11)

and leads to a power-like scaling of the SDC tower mass

MSDC ∼ ∆
λ

√

2 . (3.12)

Computing the curvature scalar from (3.4), we get

|R| ∼ e2
√

2D . (3.13)

So the SDC tower scale can be expressed, in an ADC-like manner, as

MSDC ∼ |R|−
λ

2
√

2 . (3.14)

We thus recover a similar behaviour to the examples in section 2.

3.2 Traveling across finite distance singularities in moduli space

The setup of M-theory on a CY3 X allows to address the question of whether walls of

nothing could arise at finite distance in moduli space, if the scalars hit a singular point in

moduli space. This is actually not the case, as can be explicitly shown by following the

analysis in [28] for flop transitions.

Specifically, they considered the flop transition between two Calabi-Yau manifolds with

(h1,1, h2,1) = (3, 243), in the setup of a CY3 compactification of the Horava-Witten theory,

namely with two boundaries restricting the coordinate y to an interval. In our more general

setup, one may just focus on the dynamics in the bulk near the flop transition as one moves

along y. Hence we are free to locate the flop transition point at y = 0.

In terms of the Kähler moduli ti = V
1
3 bi of X, and changing to a more convenient

basis

t1 = U , t2 = T − 1

2
U − W , t3 = W − U , (3.15)

– 7 –
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and similar (proper transforms under the flop) for X̃, the Kähler cones of X and X̃ are

defined by the regions

X : W > U > 0 , T >
1

2
U + W , (3.16)

X̃ : U > W > 0 , T >
3

2
U . (3.17)

This shows that the flop curve is C3, and the area is W − U , changing sign across the flop.

Near the flop point y = 0, the harmonic functions for the two CYs X and X̃ have the

form

X at y ≤ 0 X̃ at y ≥ 0

HT = −18y + kT , H̃T = 18y + kT ,

HU = −25y + k0 , H̃U = 24y + k0 ,

HW = 6y + k0 , H̃W = −5y + k0 . (3.18)

Hence

X at y ≤ 0 X̃ at y ≥ 0

HW −U = 31y , H̃W −U = −29y . (3.19)

Even though the flop point is a singularity in moduli space, and despite the sign flip for

W −U , the harmonic functions are continuous and the solution remains at finite distance in

moduli space. This agrees with the picture that it corresponds to an interpolating domain

wall. In fact, as discussed in [28], the discontinuity in their slopes (and the related change

in the G4 fluxes) makes the flop point highly analogous to the above described interpolating

domain walls associated to M5-branes.

The above example illustrates a further important aspect. It provides an explicit

domain wall intepolating between two different (yet cobordant) topologies. It would be

extremely interesting to extend this kind of analysis to other topology changing transitions,

such as conifold transitions9 [38]. This would allow for a further leap for the dynamical

cobordism proposal, given that moduli spaces of all CY threefolds are expected to be

connected by this kind of transitions [39].

We have thus established that physics at finite distance in moduli space gives rise to

interpolating domain walls, rather than walls of nothing, even at singular points in moduli

space. The implication is that the physics of walls of nothing is closely related to the

behaviour near infinity in moduli space and hence to the SDC. In the following section we

explore further instances of this correspondence in general 4d N = 1 theories.

4 S
1 compactification of 4d N = 1 theories and EFT strings

In this section we study a systematic way to explore infinity in moduli space in general 4d

N = 1 theories. This arises in a multitude of string theory constructions, ranging from

9For a proposal to realize conifold transitions dynamically in a time-dependent background, see [37].
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heterotic CY compactifications to type II orientifolds on CY spaces [40]. Our key tool is

an S
1 compactification to 3d with certain axion fluxes. We will show that the procedure

secretly matches the construction of EFT strings in [24] (see also [25]). Actually, this

correspondence was the original motivation for this paper.

4.1 Cobordism walls in 4d N = 1 theories on a circle

We want to consider general 4d N = 1 theories near infinity in moduli space. According

to [41–43], the moduli space in this asymptotic regime is well approximated by a set of

axion-saxion complex fields, with metric given by hyperbolic planes. We start discussing

the single-field case, and sketch its multi-field generalization at the end of this section.

Consider a 4d N = 1 theory with complex modulus S = s + ia, where a is an axion of

unit periodicity and s its saxionic partner. We take a Kähler potential

K = − 2

n2
log(S + S̄) . (4.1)

The 4d effective action is

S =
M2

P,4

2

∫

d4x
√−g4

{

R4 − n−2

s2

[

(∂s)2 + (∂a)2
]

}

,

=
M2

P,4

2

∫

d4x
√−g4

{

R4 − (∂φ)2 − e−2nφ (∂a)2
}

,

(4.2)

where in the last equation we have defined φ = 1
n log ns.

We now perform an S
1 compactification to 3d with the following ansatz for the metric10

and the scalars

ds2
4 = e−

√
2σds2

3 + e
√

2σR2
0dθ2 ,

φ = φ(xµ) , a =
θ

2π
q + a(xµ) , (4.3)

where xµ denote the 3d coordinates and θ ∼ θ + 2π is a periodic coordinate. Regarding

the axion as a 0-form gauge field, the ansatz for a introduces q units of its field strength

flux (we dub it axion flux) on the S1. We allowed for a general saxion profile to account

for its backreaction, as we see next.

The dimensional reduction of the action (4.2) gives (see e.g. [44])

S3 =
MP,3

2

∫

d3x
√−g3

{

R3 − Gab∂µϕa∂µϕb − V (ϕ)
}

, (4.4)

where

Gab∂µϕa∂µϕb = (∂σ)2 + (∂φ)2 + e−2nφ (∂a)2 , (4.5a)

V (ϕ) = e−2
√

2σ−2nφ
(

q

2πR0

)2

, (4.5b)

and MP,3 = 2πR0M2
P,4 is the 3d Planck mass.

10We omit the KK U(1) because it will not be active in our discussion.
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The last term in the 3d action corresponds to a dynamical tadpole for a linear combi-

nation of the saxion and the radion, induced by the axion flux. We thus look for running

solutions of the 3d equations of motion. We focus on solutions with constant axion in 3d

a(xµ) = 0, for which the equations of motion read

1√−g3
∂ν
(√−g3gµν∂µσ

)

= −
√

2 e−2
√

2σ−2nφ
(

q

2πR0

)2

, (4.6a)

1√−g3
∂ν
(√−g3gµν∂µφ

)

= −n e−2
√

2σ−2nφ
(

q

2πR0

)2

. (4.6b)

We consider solutions in which the fields run with one of the coordinates x3 (which with

hindsight we denote by r ≡ x3). We focus on a particular 3d axion-saxion ansatz

s(r) = s0 − q

2π
log

r

r0
, a(r) = a0 , (4.7)

for which the radion can be solved as

√
2σ =

2

n
(φ − φ0) + 2 log

r

R0
=

2

n2
log

(

1 − q

2πs0
log

r

r0

)

+ 2 log
r

R0
. (4.8)

This, together with (4.7), provides the scalar profiles solving the dynamical tadpole. The

motivation for this particular solution is that it preserves 1/2 supersymmetry, as we discuss

in the next section in the context of its relation with the 4d string solutions in [24].

Note that as r → 0, the radion blows up as σ → −∞, implying that the S
1 shrinks to

zero size, and the metric becomes singular. As one hits this singularity, the saxion goes to

infinity, so we face a wall at which the scalars run off to infinity in moduli space. According

to our arguments, it must correspond to a cobordism wall of nothing, capping off spacetime

so that the r < 0 region is absent; hence the suggestive notation to regard this coordinate

as a radial one, an interpretation which will become more clear in the following section.

The finite distance ∆ to the wall can be shown to obey the scaling ∆−2 ∼ T introduced

in [11].

Note that the asymptotic regime near infinity in moduli space s ≫ 1 corresponds to

the regime

r ≪ r0e
2π
q

(s0−1)
. (4.9)

Hence the exploration of the SDC’s implications requires zooming into the region close to

the wall of nothing.

Let us emphasize that the microscopic structure of the wall of nothing cannot be

determined purely in terms of the effective field theory, and should be regarded as provided

by its UV completion.11 On the other hand, we can use effective field theory to obtain

the scaling relations between different quantities, as in the string theory examples in the

previous sections.

11In particular, possible constraints on q could arise from global consistency of the backreaction.
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The scaling relations. We can now study the scaling relations between spacetime and

moduli space distances, and the SDC tower scale. From the spacetime profiles for σ and

φ, it is easy to check that the contribution from the radion dominates in the r → 0 limit.

The resulting scaling between the moduli space distance D and r is

r ≃ e−D , (4.10)

showing again that D → ∞ as r → 0. On the other hand, the spacetime distance ∆ in the

same limit gives

d∆ ≃ r

R0

(

− q

2πs0
log

(

r

r0

))
2

n2

≃ 1

R0

(

− q

2πs0

)
2

n2

D2/n2
e−2DdD . (4.11)

Upon integration one gets an incomplete gamma function that, after keeping the leading

order in D → ∞, finally gives

∆ ∼ e−2D+ 2
n2 log D . (4.12)

This is an exponential behaviour up to logarithmic corrections. It would be interesting to

relate this to existing results on log corrections to Swampland conjectures (see [45]), but

we skip them for now. The resulting relation allows to write the scalings of the SDC tower

scale as

MSDC ∼ e−λD ∼ ∆
λ
2 , (4.13)

that is again a power-like relation with O(1) exponents.

Let us turn to computing the scaling of the SDC scale with the scalar curvature R.

The general expression for R is rather complicated, but simplifies in the leading order

approximation at r = 0

log |R| ≃ −4 log r ≃ 4 D . (4.14)

Hence, the SDC tower mass scales as

MSDC ∼ e−λD ∼ |R|− 1
4

λ . (4.15)

Amusingly, we again recover a power-like scaling highly reminiscent of the ADC.

Multi-field generalization. Let us end this section by mentioning that the above simple

model admits a straightforward generalization to several axion-saxion moduli ai, si. One

simply introduces a vector of axion fluxes qi and generalizes the above running solution to

ai = ai
0 +

θ

2π
qi , si(r) = si

0 − qi

2π
log

r

r0
. (4.16)

The corresponding backreaction on σ is

√
2 σ = −K(r) + K0 + 2 log

r

R0
. (4.17)

We leave this as an exercise for the reader, since the eventual result is more easily recovered

by relating our system to the 4d string-like solutions in [24], to which we now turn.
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4.2 Comparison with EFT strings

The ansatz (4.7) is motivated by the relation of our setup with the string-like solutions to

4d N = 1 theories discussed in [24], which we discuss next. This dictionary implies that

those results can be regarded as encompassed by our general understanding of cobordism

walls of nothing and the SDC.

In a 4d perspective, (4.7) corresponds to a holomorphic profile z = reiθ

S = S0 +
q

2π
log

z

z0
. (4.18)

The axion flux in (4.3) implies that there is a monodromy a → a+q around the origin z = 0.

Hence, the configuration describes a BPS string with q units of axion charge. The solution

for the metric can easily be matched with that in [24]. The 4d metric takes the form

ds2
4 = −dt2 + dx2 + e2Zdzdz̄ , (4.19)

with the warp factor

2Z = −K + K0 =
2

n2
log

s

s0
. (4.20)

This matches the 3d metric (4.19) by writing

ds2
3 = e

√
2 σ
(

−dt2 + dx2
)

+ e2Z+
√

2 σdr2 , (4.21)

and (4.8) ensures the matching of the S1 radion with the 4d angular coordinate range.

∫ 2π

0
dθeσ/

√
2R0 =

∫ 2π

0
dθeZr . (4.22)

Hence, in 4d N = 1 theories there is a clear dictionary between running solutions in S
1

compactifications with axion fluxes and EFT string solutions. The compactification circle

maps to the angle around the string; the axion fluxes map to string charges; the coordinate

in which fields run (semi-infinite, due to the wall of nothing) maps to the radial coordinate

away from the string; the saxion running due to the axion flux induced dynamical tadpole

maps to the string backreaction on the saxion, i.e. the string RG flow; the scalars running

off to infinity in moduli space as one hits the wall of nothing map to the scalars running

off to infinity in moduli space as one reaches the string core. Note that the fact that the

wall of nothing is not describable within the effective theory maps to the criterion for an

EFT string, i.e. it is regarded as a UV-given defect providing boundary conditions for the

effective field theory fields.

This dictionary allows to extend the interesting conclusions in [24] to our context.

For instance, the relation between the string tension and its backreaction on the geometry

provides a scaling with the spacetime distance. This is the counterpart of the scaling

relations we found in our 3d dynamical cobordism discussion in the previous section.

On another line, the Distant Axionic String Conjecture in [24] proposes that every

infinite field distance limit of a 4d N = 1 effective theory consistent with quantum gravity

can be realized as an RG flow UV endpoint of an EFT string. We can thus map it into the
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proposal that every infinite field distance limit of a 4d N = 1 effective theory consistent

with quantum gravity can be realised as the running into a cobordism wall of nothing in

some axion fluxed S
1 compactification to 3d. It is thus natural to extend this idea to a

general conjecture

Cobordism Distance Conjecture. Every infinite field distance limit of a effective theory

consistent with quantum gravity can be realized as the running into a cobordism wall of

nothing in (possibly a suitable compactification of) the theory.

The examples in the previous sections provide additional evidence for this general form

of the conjecture, beyond the above 4d N = 1 context.

5 4d N = 1 theories with flux-induced superpotentials

In the previous section we discussed cobordism walls in compactifications of 4d N = 1 theo-

ries on S
1 with axion fluxes. Actually, it is also possible to study running solutions and walls

in these theories without any compactification. This requires additional ingredients to in-

troduce the dynamical tadpoles triggering the running. Happily, there is a ubiquitous mech-

anism, via the introduction of non-trivial superpotentials, such as those arising in flux com-

pactifications. We discuss those vacua and their corresponding walls in this section. The

discussion largely uses the solutions constructed in [46], whose notation we largely follow.

Let us consider a theory with a single axion-saxion complex modulus Φ = a + iv. The

4d effective action, in Planck units, is

S = −
∫

d4x
√−g

[

1

2
R +

|∂Φ|2
4(Im Φ)2

+ V (Φ, Φ)

]

(5.1)

with the N = 1 scalar potential

V (Φ, Φ) = eK
(

KΦΦ |DΦW |2 − 3|W |2
)

. (5.2)

We focus on theories of the kind considered in [46], where the superpotential is induced

from a set of fluxes mI , eI , with I = 0, 1, and is given by

W = eIf I(Φ) − mIGI(Φ) (5.3)

for f I , GI some holomorphic functions whose detailed structure we do not need to specify.

In general, these fluxes induce a dynamical tadpole for Φ, unless it happens to sit at

the minimum of the potential. The results in [46] allow to build 1/2 BPS running solutions

depending on one space coordinate y with

ds2 = e2Z(y)dxµdxµ + dy2 . (5.4)

For the profile of the scalar, the solution has constant axion a, but varying saxion.

Defining the ‘central charge’ Z = eK/2 W and Z∗ its value at the minimum of the potential

(and similarly for other quantities), the profile for the scalar v is

v(y) = v∗ coth2
(

1

2
|Z∗| y

)

. (5.5)
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Note that in [46] this solution was built as ‘the left hand side’ of an interpolating domain

wall solution (more about it later), but we consider it as the full solution in our setup.

Note also that we have shifted the origin in y with respect to the choice in [46].

The backreaction of the scalar profile on the metric is described by

Z(y) = d + e− 1
2

K̂0

[

log

(

− sinh

(

1

2
|Z∗| y

))

+ log cosh

(

1

2
|Z∗|y

)]

, (5.6)

where d is just an integration constant and K̂0 is an additive constant in the Kähler

potential.

The solution exhibits a singularity at y = 0, which (since the metric along y is flat) is

at finite distance in spacetime from other points. On the other hand it is easy to see that

the scalar v runs off to infinity as we hit the wall, since

v(y) → 4 v∗ |Z∗|−2 y−2 as y → 0 . (5.7)

We can obtain the scaling of the moduli space distance with the spacetime distance. Using

the kinetic term in (5.1),

D = −
∫

1√
2v

dv

dy
dy ≃ −

√
2 log y ≃ −

√
2 log ∆ . (5.8)

In the last two equalities we have used (5.7) and (5.4) respectively. We thus get a familiar

power-like scaling for the SDC scale

MSDC ∼ ∆
√

2λ . (5.9)

We also recover the ADC-like scaling with the scalar curvature. At leading order in y → 0

one finds

log |R| ≃ −2 log y ≃
√

2D , (5.10)

which gives

MSDC ∼ |R|−
1

√

2
λ

. (5.11)

This all fits very nicely with our picture that the solution is describing a cobordism wall

of nothing, and that the solution for y > 0 is unphysical and not realized. This provides

an effective theory description of the cobordism defects for general 4d N = 1 theories, in

a dynamical framework. It would be interesting to find explicit microscopic realizations of

this setup.

Let us conclude this section by mentioning that it is possible to patch together sev-

eral solutions of the above kind and build cobordism domain walls interpolating between

different flux vacua. In particular in [46] the solution provided ‘the left hand side’ of one

such interpolating domain wall solution whose ‘right hand side’ was glued before reaching

(in our choice of origin) y = 0, hence before encountering the wall of nothing. The partic-

ular solution on the right hand side was chosen to sit at the minimum of the corresponding

potential, for which there is no tadpole and thus the functions D and v are simply set to con-

stants, fixed to guarantee continuity. Consequently, the solutions remain at finite distance

in moduli space, in agreement with our picture for interpolating domain walls. In some

sense, the flux changing membrane is absorbing the tadpole, thus avoiding the appearance

of the wall of nothing. We refer the reader to [46] (see also [25]) for a detailed discussion.
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6 Walls in 10d non-supersymmetric strings

The above examples all correspond to supersymmetric solutions, and even the resulting

running solutions preserve some supersymmetry. This is appropriate to establish our key

results, but we would like to illustrate that they are not restricted to supersymmetric

setups. In order to illustrate that these ideas can apply more generally, and can serve as

useful tools for the study of non-supersymmetric theories, we present a quick discussion

of the 10d non-supersymmetric USp(32) theory [47], building on the solution constructed

in [13] and revised in [11].12

The 10d (Einstein frame) action reads

SE =
1

2κ2

∫

d10x
√

−G

[

R − 1

2
(∂φ)2

]

− T E
9

∫

d10x
√

−G 64 e
3φ

2 , (6.1)

where T E
9 is the (anti)D9-brane tension. The theory has a dynamical dilaton tadpole

T ∼ T E
9 g

3/2
s , and does not admit maximally symmetric solutions. The running solution

in [13] preserves 9d Poincaré invariance, and reads

φ =
3

4
αEy2 +

2

3
log |√αEy| + φ0 ,

ds 2
E = |√αEy| 1

9 e− αEy2

8 ηµνdxµdxν + |√αEy|−1e− 3φ0
2 e− 9αEy2

8 dy2 , (6.2)

where αE = 64k2T9. There are two singularities, at y = 0 and y → ∞, which despite

appearances are located at finite spacetime distance, satisfying the scaling ∆−2 ∼ T intro-

duced in [11]. In this case, there is no known microscopic description for the underlying

cobordism defect, but we can still consider the effective theory solution to study the theory

as we hit the walls.

We consider the two singularities at y = 0, ∞, and look at the behaviour of the

solution near them. The distance from a generic point y to the singularites is given by the

integral [11]

∆ ∼
∫

|√αEy|− 1
2 e− 3φ0

4 e− 9αEy2

16 dy , (6.3)

on the intervals [y, 0] when y → 0, and [y, ∞] when y → ∞. They give (lower and upper)

incomplete gamma functions

∆0 ∼ γ

(

1

4
,
9αEy2

16

)

and ∆∞ ∼ Γ

(

1

4
,
9αEy2

16

)

. (6.4)

By expanding at leading order as y → 0 and y → ∞, one gets

∆0 ∼ y
1
2 and ∆∞ ∼ y− 3

2 e− 9αEy2

16 . (6.5)

The moduli space distance is φ =
√

2D. Its leading behavior is D ≃ −
√

2
3 ln y as

y → 0+ and D ≃ 3αE

4
√

2
y2 as y → ∞. This leads to the scaling relations

y → 0+ : ∆0 ∼ e
− 3

2
√

2
D

,

y → ∞ : ∆∞ ∼ D− 3
4 e

− 3

2
√

2
D ∼ e

− 3

2
√

2
D− 3

4
ln D

. (6.6)

12For other references related to dynamical tadpoles in non-supersymmetric theories, see [14–20].
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In both cases we have the moduli space distance running off to infinity as we approach

the wall. This is in agreement with their interpretation as cobordism walls of nothing.13

Moreover, we recover the a familiar power-like scaling of the SDC mass scale with the same

numerical factors in both cases

MSDC ∼ e−λD ∼ ∆
2

√

2
3

λ . (6.7)

It is interesting to see that one can also recover a standard power-like scaling for both

singularities if the moduli space distance D is compared with the spacetime curvature

scalar R. The latter reads

|R| =
√

αE e
3φ0

2

(

2

9
y−1 +

7

2
αEy +

9

8
α2

Ey3
)

e
9αE

8
y2

. (6.8)

Let us start with the y → 0 singularity. We can approximate the logarithm of the scalar

curvature as

log |R| ≃ − log y ≃ 3√
2

D . (6.9)

This allows to rewrite the SDC scaling in the form of the ADC-like scaling

MSDC ∼ e−λ∆ ∼ |R|−
√

2
3

λ . (6.10)

Let us now turn to the y → ∞ limit. In this case the logarithm of the scalar curvature

is approximated to

log |R| ≃ 9αE

8
y2 ≃ 3√

2
D , (6.11)

thus recovering the same behavior as for the other singularity.

As announced, we find a nice power-like scaling, reminiscent as usual of the ADC

relations. It is amusing that the precise coefficient arises in both the strong and weak

coupling singularities, which may hint towards some universality or duality relation in this

non-supersymmetric 10d model.

7 Final remarks

In this work we have considered running solutions solving the equations of motion of

theories with tadpoles for dynamical fields. These configurations were shown to lead to

cobordism walls of nothing at finite distance in spacetime [11], in a dynamical realization

of the Cobordism Conjecture. We have also discussed interpolating domain walls across

which we change to a different (but cobordant) theory/vacuum. We have shown that the

key criterion distinguishing both kinds of walls is related to distance in field space: walls of

nothing are characterized by the scalars attaining infinite distance in moduli space, while

interpolating domain walls remain at finite distance in moduli space.

13The interpretation of the y → 0 singularity as a wall of nothing was deemed unconventional, since it

would arise at weak coupling. It is interesting that we get additional support for this interpretation from

the moduli space distance behaviour.
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Hence, cobordism walls of nothing provide excellent probes of the structure of the

effective theory near infinite distance points, and in particular the Swampland Distance

Conjectures. This viewpoint encompasses and generalizes that advocated for EFT strings

in 4d N = 1 theories in [24]. We have found interesting new general scaling relations

linking, for running solutions, the moduli space distance and the SDC tower mass scale to

geometric spacetime quantities, such as the distance to the wall or the scalar curvature.

The latter takes a form tantalizingly reminiscent of the Anti de Sitter Distance Conjecture

(ADC), suggesting it may relate to the generalized distance in [23].

We have illustrated the key ideas in several large classes of string models, most often

in supersymmetric setups (yet with nontrivial scalar potentials to produce the dynami-

cal tadpole triggering the running); however, we emphasize that we expect similar be-

haviours in non-supersymmetric theories, as we have shown explicitly for the 10d non-susy

USp(32) theory.

There are several interesting open question that we leave for future work:

• We have mainly focused on space-dependent running solutions. It is clearly interesting

to consider time-dependent solutions, extending existing results in the literature [13–20],

and exploit them in applications, in particular with an eye on possible implications for

inflationary models or quintessence.

• A particular class of time-dependent solutions are dynamical bubbles. In particular, a

tantalizing observation is that in the original bubble of nothing in [6], the 4d radion

modulus goes to zero size (which lies at infinite distance in moduli space of the S
1

compactification) as one hits the wall. Although the setup is seemingly unrelated, it

would be interesting to understand universal features of bubbles of nothing along the

lines considered in our work.

• The appearance of ADC-like scaling relations in our running solutions possibly signals

an underlying improved understanding of infinite distance limits in dynamical (rather

than adiabatic) configurations. For instance, as shown in [21], the r → ∞ limit in the

Klebanov-Strassler solution [48] avoids the appearance of a tower of states becoming

massless exponentially with the distance. This was related to having a non-geodesic

trajectory in moduli space (see [49] for a general discussion about non-geodesics and

the SDC). However, as dictated by the lack of separation of scales in this model, an

ADC-like scaling is yet respected as the scalar curvature goes to zero in this limit. This

could point to a more universal way of writing the SDC in dynamical configurations.

• In all the examples we find precise numbers relating the parameter in the SDC λ to

the power in the ADC-like scaling. It would certainly be interesting to find a pattern

in these values and possibly relate them to properties of the infinite distance limits

along the lines of [41–43]. On a similar line of thought, it has been argued that in

supersymmetric cases the ADC’s scaling parameter should be 1/2 [23], assuming this

applies to our setup, it would be interesting to extract the SDC’s parameter λ from our

supersymmetric examples with an ADC-like scaling. It would be remarkable that they

match the existing proposals for the value of λ.
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• The ADC-like scaling may also signal some potential interplay with the Gravitino Dis-

tance Conjecture [50, 51]. One expects to find a power relation between the mass of the

gravitino and the scalar curvature of the solution, it would be certainly interesting to

test this and to look for some pattern in the corresponding powers.

• The trajectory in moduli space in spacetime-dependent solutions has a strong presence

in the study of black holes, in particular attractor equations and flows. The attempts to

relate them to the SDC (see e.g. [52]) can have an interesting interplay with our general

framework.

• We certainly expect interesting new applications of our results to the study of non-

supersymmetric strings, and to supersymmetry-breaking configurations in string theory.

We hope to report on these problems in the near future.
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A Holographic examples

In [11] it was shown that Dynamical Cobordism underlies the structure of the gravity

dual of the SU(N) × SU(N + M) conifold theory, namely fractional brane deformation

of AdS5 × T 1,1. This in fact explains the appearance of a singularity at finite radial

distance [53] and its smoothing out into a configuration capping of the warped throat [48],

as a cobordism wall of nothing. In this appendix we provide some examples of other

warped throat configurations which illustrate the appearance of other cobordism walls

of nothing, and cobordism domain walls interpolating between theories corresponding to

compactification on horizons of different topology. The discussion is strongly inspired by

the constructions in [54] (see also [55]).

A.1 Domain wall to a new vacuum

As a first example we consider a configuration in which a running of the conifold theory

hits a wall (given by the tip of a KS throat) interpolating to an AdS5 × S
5 vacuum. The

latter is the maximally symmetric solution of a theory at the bottom of its potential, i.e.

with no dynamical tadpole. We carry out the discussion in terms of the dual field theory,

which translates easily into the just explained gravity picture. The dilaton is constant in

the whole configuration, so we skip factors of gs.
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Consider the conifold theory with SU(N) × SU(N + M) at some scale, i.e. at some

position r there are N units of 5-form flux and M units of 3-form flux. The Klebanov-

Tseytlin solution [53] gives a running for the effective flux

N(r) = N + M2 log(r) , (A.1)

and we get a singu at a value r0 defined by

N + M2 log r0 = 0 ⇒ r0 = e−N/M2
. (A.2)

Naively, the singularity would seem to be smoothed out into a purely geometric background

with a finite size S
3. Indeed, this is the full story if N is multiple of M , namely N = KM :

in the field theory, the SU(KM) × SU(KM + M) theory suffers a cascade of K Seiberg

dualities in which K decreases by one unit in each step. Morally, the cascade ends when

the effective K = 0 and then we just have a pure SU(M) SYM, which confines and develops

a mass gap. This is the end of the RG flow, with no more running, hence the spacetime in

capped off in the IR region of the dual throat.

However, as also noticed in [48], the story is slightly different if N = KM + P . After

the K steps in the duality cascade, one is left over with an SU(P ) gauge theory with

three complex scalar degrees of freedom parametrizing a deformed mesonic moduli space

corresponding to (the symmetrization of P copies of) the deformed conifold. This gauge

theory flows to N = 4 SU(P ) SYM in the infrared, which is a conformal theory. In the

parameter range 1 ≪ P ≪ M ≪ N , the whole configuration admits a weakly coupled

supergravity dual given by a KS throat at which infrared region we have a finite size S
3,

at which P D3-branes (which we take coincident) would be located; however, since P is

large, they backreact and carve out a further AdS5 × S
5 with P units of RR 5-form flux,

which continues the radial direction beyond the KS throat endpoint region. Hence, this

region acts as an interpolating domain wall between two different (but cobordant) theories,

namely the conifold throat (with a dynamical tadpole from the fractional brane charge),

and the AdS5 × S
5 vacuum (with no tadpole, and preserving maximal symmetry). The

picture is summarized in figure 1.

A.2 Domain wall to a new running solution

Running can lead to an interpolating domain wall, across which we find not a vacuum,

but a different running solution (subsequently hitting a wall of nothing, other interpolating

domain walls, or just some AdS vacuum). We now illustrate this idea with an example

of a running solution A hitting a domain wall interpolating to a second running solution

B, which subsequently hits a wall of nothing. The example is based on the multi-flux

throat construction in [54] (whose dimer picture is given in [56]). It is easy to devise other

generalizations displaying the different behaviours mentioned above.

Consider the system of D3-branes at the singularity given by the complex cone over

dP3. The gauge theory is described by the quiver and dimer diagrams14 in figure 2.

14For references, see [55, 57–59].
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Figure 1. Domain wall interpolating between the conifold theory with fractional branes, and an

AdS vacuum. Figure a) shows a heuristic intermediate step of a KS solution with a number P of left-

over probe D3-branes. If P is large, the appropriate description requires including the backreaction

of the D3-branes, which lead to a further AdS throat, to the left of the picture in figure b). Hence

the running of the dynamical tadpole in the right hand side ends in a domain wall separating it

from an AdS vacuum.

Figure 2. The quiver and dimer diagrams describing the gauge theory on D3-branes at the tip of

the complex cone over dP3.

We can add fractional branes, i.e. rank assignments compatible with cancellation of

non-abelian anomalies. There are several choices, corresponding to different fluxes on the

3-cycles in the dual gravitational theory. Some of them correspond to 3-cycles which can

be grown out of the singular origin to provide a complex deformation of the CY. These

are described as the splitting of the web diagram into sub-webs in equilibrium, see [56]. In

particular we focus on the complex deformation of complex cone over dP3 to a conifold,

see the web diagram in figure 3.

There are two kinds of fractional branes, associated to M and P . In the gravity dual,

these correspond to RR 3-form fluxes on 3-cycles (obtained by an S
1 fibration over a 2-cycle

on dP3), and there are NSNS 3-form fluxes in the dual 3-cycles. These are non-compact,

namely they span a 2-cycle (dual to the earlier 2-cycle in dP3) and the radial direction. For

more details about the quantitative formulas of this kind of solution, see section 5 of [60].
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Figure 3. a) Web diagram of the complex cone over dP3 splitting into three sub-webs. b) Rank

assignment (fractional branes) that trigger those complex deformations.

Figure 4. a) Quiver of the dP3 theory in the last step of the first cascade, which turns into the

conifold upon strong dynamics of the nodes 1 and 4. b) Same story in the dimer picture.

If we focus in the regime15 P ≪ M , then the larger flux M implies a larger correspond-

ing component of the H3 flux, which means a faster running of the corresponding 5d NSNS

axion. The axion associated to the flux P also runs, but more slowly. In the field theory,

the duality cascade is controlled by M , so that N is reduced in multiples of M (at leading

order in P/M). When N is exhausted we are left with a rank assignment as given in fig-

ure 4a. The result of the strong dynamics triggered by M can be worked out in field theory

as in [54] or using dimers as in [56]. All the info about this last description is in figure 4b.

The result is a conifold theory with M regular branes and P fractional branes. This is

the standard KS story (with just different labels for the branes): M decreases in sets of P

until it is exhausted, then the running stops due to strong dynamics. In the gravity dual, we

15Note that in [54] the regime is the opposite, but both kinds of fractional branes are similar, so the result

is the same up to relabeling.
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Figure 5. Domain wall interpolating between the theory on dP3 with (M + P ) fractional branes,

and a conifold theory with M regular branes and P fractional ones. The running of one of the

dynamical tadpoles in the dP3 theory stops at the wall but the other continues running until it

reaches the S
3 at the bottom of the KS throat.

have a KS throat sticking out and spacetime ends on the usual S
3 (alternatively, if M is not

a multiple of P , there is a number P of leftover D3-branes, which, if large, can trigger a fur-

ther AdS throat as in section A.1. A sketch of the gravity dual picture is shown in figure 5.

Note that this kind of domain wall interpolates into two topologically different com-

pactifications. As we cross it, the compactification space changes, and the spectrum of

light fields changes (at the massless level, one of the axions ceases to exist). In this sense,

it is a cobordism domain wall connecting two different quantum gravity theories [5].

A.3 Cobordism domain walls to disconnected solutions

The construction of singularities admitting complicated patterns of complex deformations

(or resolutions) can be carried out systematically for toric singularities, using the tech-

niques in [55]. This can be used to build sequences of domain walls realizing a plethora

of possibilities. For our last class of examples, we consider cobordism domain walls to

disconnected theories.

This has already been realized in the geometry used in [61] to build a bifid throat, i.e.

two throats at the bottom of a throat, see figure 6. These had been proposed in [62] as

possible hosts of axion monodromy inflation models (see [63–67] for additional references).

Actually, a far simpler way of getting a running solution with a domain wall to a

disconnected set of e.g. vacua is to consider the KS setup in section A.1, with the P

leftover D3-branes split into two stacks P1 and P2 of D3-branes at separated locations

on the S
3 (with P1, P2 ≫ 1). This corresponds to turning on a vev v for a Higgsing

SU(P ) → SU(P1) × SU(P2) (with P1 + P2 = P ) with a scale for v much smaller than the

scale of confinement Λ of the original SU(KM + P ) × SU(KM + M + P ) theory. In the

gravity dual, we have a running solution in the holographic direction, towards low energies;

upon reaching Λ, we have the S
3 domain wall, out of which we have one AdS5 × S5-like
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Figure 6. Picture of a bifid throat. It represents a domain wall implementing a cobordism between

one theory and a disconnected set of two quantum gravity theories.

Figure 7. Picture of a bifid throat with two AdS tongues. It represents a domain wall implementing

a cobordism between one theory and a disconnected set of two AdS theories.

vacuum (with flux P ), until we hit the scale v, and the single throat splits into two AdS5×S
5

throats (with fluxes P1, P2). If v ≃ Λ, the splitting of throats happens in the same regime

as the domain wall ending the run of the initial solution. This is depicted in figure 7.
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