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A topological anomaly present at zero energy is shown to give rise to a peculiar and singular behavior of
the dynamic and static conductivity in two-dimensional honeycomb lattices. A calculation in a self-consistent
Born approximation reveals that this singular dependence prevails although being somewhat smoothed out
even if level broadening effects are taken into account.

§1. Introduction

Since the discovery of carbon nanotubes,1) transport
properties of the carbon network of the nanometer scale
have attracted much attention. There have been a lot
of experimental works focusing on the transport mea-
surement in various nanotube structures and theoretical
calculation of the conductance of carbon nanotubes.2)

A carbon nanotube consists of coaxially rolled two-di-
mensional graphite sheets characterized by a honey-
comb lattice. Therefore, the theoretical investigation on
transport properties of honeycomb lattices is instructive
for the comprehensive understanding of the transport
property of nanotubes. Further, a honeycomb lattice
can be realized at semiconductor heterostructures with
hexagonal antidot arrays.

In a previous work,3,4) the density of states and the
static magnetoconductivity were calculated by the quan-
tum transport theory, in which short- and long-range
scatterers were taken into account. It was found that
the quantum theory provides conductivity exhibiting
almost singular behavior in the vicinity of vanishing
Fermi energy. In this paper, this behavior is shown to be
a manifestation of zero-mode anomalies due to a topo-
logical singularity through the study of the dynamical
conductivity.

In §2 an effective-mass scheme is reviewed briefly. In
§3 the dynamical conductivity is calculated in a simplest
relaxation-time approximation and it is shown that its
frequency dependence is scaled by the Fermi energy
and therefore becomes singular for the vanishing Fermi
energy. In §4 effects of level broadening are included
in a self-consistent Born approximation. It is shown
that singularities prevail even in the presence of level
broadening in the case of weak scattering. A summary
and conclusions are given in §5.

§2. Effective-Mass Description

In a honeycomb lattice such as a two-dimensional
graphite, a unit cell contains two atoms denoted as A and
B as shown in Fig. 1. Two bands having approximately
a linear dispersion cross the Fermi level at K and K’
points of the first Brillouin zone, whose wave vectors are
given by K =(2π/a)(1/3, 1/

√
3) and K ′=(2π/a)(2/3, 0)

with a being the lattice constant. Under the half-filled
condition, electronic properties are governed by states
in the vicinity of K and K’ points. The Schrödinger

equation for such states is given by5)

H0F = εF , (2.1)

with

H0 =




0 γ(k̂x−ik̂y) 0 0
γ(k̂x+ik̂y) 0 0 0

0 0 0 γ(k̂x+ik̂y)
0 0 γ(k̂x−ik̂y) 0


 ,

(2.2)
where γ is a band parameter, k̂ (=−i~∇) is the wave vec-
tor operator, and F is a four-component wave function.

The eigenfunction of H0 is given by

F K
sk(r) =

1√
2L

exp(ik·r)




s
eiϕ(k)

0
0


 , (2.3)

and

F K′
sk (r) =

1√
2L

exp(ik·r)




0
0

eiϕ(k)

s


 , (2.4)

where L2 is the area of the system, ϕ(k) is the angle of
the wave vector k, and s denotes the bands (s= +1 for
the conduction band and s =−1 for the valence band).
The corresponding energy is given by

εsk = sγk, (2.5)

with k= |k|.
The first two components of the wave function F

describe the amplitudes at a site A and B associated
with the K point, and the next two those associated with
the K’ point. The (4, 4) Hamiltonian H0 is completely
separable into (2, 2) components for the K and K’ points
in the absence of scatterers. The (2, 2) Hamiltonian for
the K point is written as γ(~σ·k̂) in terms of Pauli’s spin
matrices ~σ=(σx, σy).

We consider two different kinds of scatterers. First,
the range of the scattering potential is smaller than the
lattice constant of the two-dimensional graphite. When
such a short-range scatterer is present at an A site rA

i ,
the effective Hamiltonian has been calculated as6)

UA
i (r) =




1 0 eiφA
i 0

0 0 0 0
e−iφA

i 0 1 0
0 0 0 0


uA

i δ(r−rA
i ), (2.6)
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with φA
i = (K ′ −K) · rA

i and uA
i being the strength.

Similarly, for a scatterer located at a B site rB
i ,

UB
i (r) =




0 0 0 0
0 1 0 eiφB

i

0 0 0 0
0 e−iφB

i 0 1


 uB

i δ(r−rB
i ), (2.7)

where φB
i =(K ′−K)·rB

i .
Next, the range is larger than the lattice constant

but much smaller than the typical electron wavelength
(which is infinite at ε=0). In this case matrix elements
between K and K’ points can be neglected and the
potential is given by a diagonal matrix, i.e.,

Ui(r) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


uiδ(r − ri), (2.8)

where ri is the impurity position. This type of scatterers
is called long-range, although the potential is given by a
δ function.

§3. Dynamical Conductivity
The current operator is given by

j = −eγ

h̄
~σ, (3.1)

for the K point. The corresponding matrix elements are
calculated as

(sk|jx|s′k′) = −eγ

h̄

1
2
(
seiϕ(k) + s′e−iϕ(k)

)
,

(sk|jy|s′k′) = −eγ

h̄

−i
2

(
seiϕ(k) − s′e−iϕ(k)

)
,

(3.2)

for the K point. The dynamical conductivity is isotropic
and given by

σ(ω) =
1
L2

(eγ

h̄

)2 h̄

i

×
∑
ss′k

f [εs(k)]−f [εs′(k)]
[εs(k)−εs′(k)][εs(k)−εs′(k)+h̄ω+iδ]

,

(3.3)
where f is the Fermi distribution function, δ is a posi-
tive infinitesimal, and a factor two has been multiplied
because of the presence of the K and K’ points. When the
Fermi energy lies in the conduction band (εF =γkF ≥0)
at zero temperature, we have

σ(ω) =
(eγ

h̄

)2 h̄

i

(
− |εF |

2πγ2(h̄ω+iδ)

− 1
L2

∑
|k|>kF

h̄ω+iδ
γ|k|[(h̄ω+iδ)2−4γ2k2]

)
.

(3.4)
The relaxation time in the absence of a magnetic

field is defined as

1
τ0

=
2π

h̄

∑
j′=K,K′

∑
s′k′

|〈jsk|U |j′s′k′〉|2δ(εsk − εs′k′),

(3.5)
where U is the effective Hamiltonian for scatterers. In

the case of short-range scatterers it is given by

1
τ0

=
1
2
[
nA

i 〈(uA
i )2〉 + nB

i 〈(uB
i )2〉] |ε|

h̄γ2
, (3.6)

where nA
i and nB

i are the concentration of scatterers in
a unit area and 〈. . .〉 means the average. The relaxation
time for long-range scatterers is given by

1
τ0

= ni〈(ui)2〉 |ε|
2h̄γ2

, (3.7)

When we assume u2 = 〈(uA
i )2〉 = 〈(uB

i )2〉 = 〈(ui)2〉 and
ni =nA

i +nB
i and nA

i =nB
i , the relaxation time becomes

same between short- and long-range cases and

1
τ0

=
2π|ε|
h̄A

, (3.8)

where we have introduced a dimensionless parameter to
characterize the scattering strength given by

A =
4πγ2

niu2
. (3.9)

With the use of the Boltzmann transport equation,
the transport relaxation time is given by

1
τ

=
2π

h̄

∑
j′=K,K′

∑
s′k′

|〈jsk|U |j′s′k′〉|2(1−cos θ)δ(εsk−εs′k′),

(3.10)
where cos θ=k·k′/k2. We have

τ(ε) = τ0(ε)α−1, (3.11)

with α = 1 in the case of short-range scatterers and
α=1/2 in the case of long-range scatterers.

In order to include effects of level broadening due
to scatterers, we shall replace δ by h̄/τ , where τ is
a relaxation time. Because of the energy dependence
of the relaxation time, we shall assume τ = τ(ε) with
ε = εF in the first term in the right hand side of eq.
(3.4) and ε = h̄ω/2 in the second term, corresponding
to the energy of the states giving a major contribution
to the transition. Then, the dynamical conductivity is
calculated as

σ(ω) =
e2

8h̄

[ 4
π

iεF

h̄ω+i[h̄/τ(εF )]
+ 1

+
i
π

ln
h̄ω+i[h̄/τ(h̄ω/2)]−2εF

h̄ω+i[h̄/τ(h̄ω/2)]+2εF

]
.

(3.12)

Because h̄/τ(ε) ∝ |ε|, the frequency dependence of the
dynamical conductivity is scaled by h̄ω/εF . Figure 2
shows σ(ω) as a function of h̄ω/εF for several values of
A.

The scaling of the dynamical conductivity σ(h̄ω/εF )
shows that σ(ω) exhibits a singular behavior at the point
(ω, εF )=(0, 0). In fact, when we set ω=0 first, the static
conductivity is given by

σ(0) = σ0 ≡ e2

π2h̄

A

4α
, (3.13)

independent of the Fermi energy εF in agreement with
the Boltzmann result.3) When we set εF = 0 first with
nonzero ω, on the other hand, the static conductivity
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at ω → 0 becomes e2/8h̄ which is much smaller than
σ0 in the Boltzmann limit A À 1. The correct way is
to let ω → 0 at each εF , leading to a singular jump
of the static conductivity at εF = 0. The calculation
in a self-consistent Born approximation shows that this
anomaly manifests itself as a near singular dependence of
σ on εF even if level broadening effects are included and
that the conductivity at εF = 0 is given by a universal
conductivity quantum e2/π2h̄ as will be discussed in the
following.3)

§4. Self-Consistent Born Approximation

4.1 Green’s Function

In the following we shall use Green’s function tech-
nique to evaluate the dynamical conductivity.7,8) This
technique allows us to consider broadening effects self-
consistently and is widely used. The Green’s function
(resolvent) is defined by

G(ε) =
1

ε−H . (4.1)

The matrix elements of unperturbed Green’s function are
diagonal:

G
(0)

µµ′ (ε) =
(
µ
∣∣∣ 1
ε−H0

∣∣∣µ)
=

δµµ′

ε−εµ
≡ δµµ′G(0)

µ (ε), (4.2)

where µ = (j, s, k) with j = K or K’ and s = ±1.
For evaluating physical quantities, we need 〈Gµµ′ (ε)〉,
which is the average of the matrix element of G(ε)
over all possible configuration of random distributions of
impurities. The averaged Green’s function is connected
to the proper self-energy Σµµ′(ε) by Dyson’s equation:

〈Gµµ′ (ε)〉 = δµµ′G(0)
µ (ε)+G(0)

µ (ε)
∑
µ′′

Σµµ′′(ε)〈Gµ′′µ′(ε)〉.

(4.3)
Figure 3 shows a diagramatic representation of the

self-consistent Born approximation. The self-energy is
given by

Σµµ′ (ε) =
∑
µ1µ′

1

〈Uµµ1Uµ′
1µ′〉〈Gµ1µ′

1
(ε)〉, (4.4)

where terms lowest-order in U are neglected because they
can be absorbed into a shift in the energy origin. For
the choice of the scattering parameters discussed in the
previous section, the self-energy and Green’s function
become independent of short- and long-range scatterers.
We have

Σµµ′(ε) = δµµ′Σ(ε),
〈Gµµ′ (ε)〉 = δµµ′Gµ(ε),

(4.5)

with

Σ(ε) =
niu

2

4L2

∑
µ

Gµ(ε), (4.6)

and

Gµ(ε) =
1

ε−εµ−Σ(ε)
. (4.7)

Explicitly, we have

Σ(ε) =
niu

2

2π
[ε−Σ(ε)]

∫ kc

0

kdk

[ε−Σ(ε)]2−γ2k2
, (4.8)

where kc is a cutoff wave number. Define

X(ε) = ε−Σ(ε). (4.9)

Then, the self-consistency equation is rewritten as

ε = X(ε) +
1
A

X(ε)
(
lnX(ε)2 − ln[X(ε)2−ε2

c]
)
, (4.10)

where

εc = γkc. (4.11)

The cutoff kc is given by kc∼2π/a where a is the lattice
constant and the corresponding εc is of the order of the
band width.9,10)

The Boltzmann result for scattering rate can be
obtained by taking the limit X(ε) = X ′

0(ε) ≡ ε+i0 in
the second term of the right hand side of eq. (4.10) as

X ′′(ε+i0) ≡ X ′′
0 (ε+i0) = i

π

A
|ε| = i

h̄

2τ0(ε)
, (4.12)

with X ′(ε+i0)=ReX(ε+i0) and X ′′(ε+i0)=ImX(ε+i0).
This lowest order result is valid in the case of weak
scattering AÀ1 and ε 6=0.

The density of states is given by

D(ε) = − 1
πL2

∑
µ

Im〈Gµµ(ε+i0)〉 =
4ImX(ε+i0)

πniu2
,

(4.13)
which gives that in the absence of impurities upon sub-
stitution of X0(ε+i0)=X ′

0(ε+i0)+iX ′′
0 (ε+i0),

D0(ε) =
|ε|
πγ2

. (4.14)

4.2 Dynamical Conductivity

The conductivity is written as

σxx(ω) = − 2h̄

4πL2

∫
dε

f(ε)−f(ε+h̄ω)
h̄ω

∑
±

(±)
∑
±

(±)
∑
ss′k

× (s′k|jx|sk)Gsk(ε+h̄ω±i0)Gs′k(ε±i0)

× Jss′k
x (ε+h̄ω±i0, ε±i0),

(4.15)
where Jss′k

x (ε+h̄ω±i0, ε±i0) is the current vertex part as
shown in Fig. 3 and the factor two is due to the presence
of the K and K’ points. In the case of short-range
scatterers, vertex corrections vanish identically and we
have

Jss′k
x (ε, ε′) = (sk|jx|s′k). (4.16)

In the case of long-range scatterers, we have

Jss′k
x (ε, ε′) = (sk|jx|s′k)

[
1−A−1φ(ε, ε′)

]−1
, (4.17)

with

φ(ε, ε′) =
πγ2

L2

∑
ss′k

Gsk(ε)Gs′k(ε′). (4.18)
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Explicitly, we have

φ(ε, ε′) =
X(ε)X(ε′)

X(ε′)2−X(ε)2
(
lnX(ε)2−lnX(ε′)2

−ln[X(ε)2−ε2
c ]+ln[X(ε′)2−ε2

c ]
)
.

(4.19)

When ε′=ε we have

φ(ε+i0, ε+i0) = −1,

φ(ε+i0, ε−i0) = S(ε),
(4.20)

with

S(ε) =
|X(ε+i0)|2

X ′(ε+i0)X ′′(ε+i0)
tan−1 X ′(ε+i0)

X ′′(ε+i0)
. (4.21)

Therefore, the dynamical conductivity is given by

σ(ω) = − e2

4π2h̄

∫
dε

f(ε)−f(ε+h̄ω)
h̄ω

∑
±

(±)
∑
±

(±)

× φ(ε+h̄ω±i0, ε±i0)Ξ(ε+h̄ω±i0, ε±i0),
(4.22)

with

Ξ(ε+h̄ω±i0, ε±i0) = 1, (4.23)

for short-range scatterers and

Ξ(ε+h̄ω±i0, ε±i0) =
[
1−A−1φ(ε+h̄ω±i0, ε±i0)

]−1
, (4.24)

for long-range scatterers.
The above results give the static conductivity calcu-

lated previously3) in the limit ω→0. In fact, in the case
of short-range scatterers, the static conductivity becomes

σ =
1
2

e2

π2h̄

[
S(εF ) + 1

]
, (4.25)

at zero temperature. In the Boltzmann limit AÀ 1, we
have |εF |/X ′′(εF +i0)À1 and therefore σ=σ0 given by
eq. (3.13) with α=1. In the particular case ε=0, the real
part of the self-energy vanishes at ε = 0 because of the
symmetry between ε > 0 and ε < 0 and eq. (4.10) gives
immediately X(+i0) = iεc exp(−A/2). The conductivity
at εF =0 is also calculated analytically and becomes

σ =
e2

π2h̄
. (4.26)

This conductivity is given only by natural constants and
independent of the scattering strength and the band pa-
rameter. Further, it is much smaller than the Boltzmann
conductivity σ0 in the case of weak scattering AÀ1.

In the case of long-range scatterers, on the other
hand, we have

σ =
e2

π2h̄

S(εF )+1
(1+A−1)[1−A−1S(εF )]

. (4.27)

In the Boltzmann limit, we have S(εF )=A/2 and σ=σ0

with α=1/2. Further, at εF =0, we have S(εF )=1 and
therefore

σ =
e2

π2h̄

1
1−A−2

≈ e2

π2h̄
. (4.28)

This value is slightly larger than e2/π2h̄ and dependent

on the scattering parameter. This dependence is ex-
tremely small in the case of weak scattering AÀ1.

§5. Numerical Results
The important energy scale in the present problem

is the cutoff energy εc which is of the order of the band
width. However, in this paper, following ref. 3, we shall
introduce an arbitrary energy scale ε0 which is assumed
to have the same order of magnitude as other relevant
energies such as ε and X(ε+i0) and choose the cutoff
energy as εc/ε0 =50.

Figure 4 shows some examples of calculated σ(ω) for
different values of εF and for A=50 and 20 in the case
of short-range scatterers. The frequency dependence is
scaled by h̄ω/εF as long as εF 6=0 for weaker scattering
A = 50. When εF is very close to 0, however, the
conductivity at ω = 0 becomes small and the discrete
jump present in the Boltzmann conductivity is removed
as is more clear in the case of stronger scattering A=20.
The energy scale causing this crossover behavior becomes
smaller with A leading to a singular behavior of the
dynamical conductivity in the weak scattering limit.

Figure 5 shows some examples in the case of long-
range scatterers. The behavior is essentially same as in
the case of short-range scatterers except that effects of
scattering are reduced. This reduction corresponds to
the increase of the transport relaxation time due to the
absence of backward scattering.3,6,11)

§6. Discussion
The anomalous behaviors of the static and dynamic

conductivities at εF = 0 are closely related to the zero-
mode anomaly due to a topological singularity at k =
0 present in Weyl’s equation describing the electronic
states near the K and K’ points. In fact, when k is
rotated once in the anticlockwise direction adiabatically
as a function of time t for a time interval 0 < t < T
with k(T )=k(0), the wavefunction Fsk is changed into
Fsk exp(−iϕ), where ϕ is Berry’s phase given by12,11)

ϕ = −i
∫ T

0

dt
〈
sk(t)

∣∣∣ d
dt

∣∣∣sk(t)
〉

= −π. (6.1)

It should be noted that ϕ = −π when the closed
contour encircles the origin k = 0 but ϕ = 0 when the
contour does not contain k = 0. Further, the wave
function at k = 0 depends on the direction of k even
if it is undefined at k=0. These facts show the presence
of a topological singularity at k=0.

This nontrivial Berry’s phase leads to the unique
property of a metallic carbon nanotube that there exists
no backward scattering and the tube is a perfect con-
ductor even in the presence of scatterers as long as their
potential range is larger than the lattice constant.6,11)

This Berry’s phase is closely related to the helicity
of a neutrino and the signature change of a wave function
under a spin rotation. In fact, the Schrödinger equation
near the K point is written as

γ(~σ · k̂)F K = εF K , (6.2)

using the spin matrix ~σ. This shows clearly that the spin
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is quantized into the direction of k and the wave function
is given by a spinor with its spin in the k direction.
The spin function changes its signature when the spin is
rotated by 2π. This well-known signature change under
the spin rotation corresponds to the above Berry’s phase.

A singularity at ε = 0 manifests itself in magnetic
fields even in classical mechanics. The equation of
motion is given by

h̄
dk

dt
= −e

c
v × B. (6.3)

This gives the cyclotron frequency ωc = eBv2/cε, where
v is the electron velocity given by v = |v| = γ/h̄. The
cyclotron frequency ωc diverges and changes its signature
at ε=0.4)

In quantum mechanics k̂x and k̂y satisfy the commu-
tation relation [k̂x, k̂y] = −i/l2, where l is the magnetic
length given by l=

√
ch̄/eB. Semiclassically, the Landau

levels can be obtained by the condition∮
kxdky =

2π

l2
(n+δ), (6.4)

with integer n and an appropriate small correction δ.
This gives εn = ±√

n+δ (
√

2γ/l). Because of the un-
certainty relation ∆kx∆ky ∼ l−2, k2 = 0 is not allowed
and there is no Landau level at ε = 0. However, a full
quantum mechanical treatment of a magnetic field leads
immediately to the formation of Landau levels at εn =
sgn(n)(

√
2γ/l)

√|n| with n = 0,±1,±2, . . .. A peculiar
and intriguing feature is the presence of a Landau level
at ε=0. This is presumably related also to the anomaly
present at ε=0.

In the Boltzmann transport theory the conductivity
tensor σµν with µ=x, y and ν =x, y is given by

σxx = σyy =
σ0

1+(ωcτ)2
,

σxy = −σyx = − σ0ωcτ

1+(ωcτ)2
,

(6.5)

where σ0 is defined in eq. (3.13). Using the explicit
expressions for ωc and τ , we have

σxx = σ0
ξ4

1+ξ4
,

σxy = −σ0
ξ2

1+ξ4
,

(6.6)

with

ξ =

√
2πα

A

εF

εB
, (6.7)

where εB is the magnetic energy defined by εB =γ/l. Be-
cause the dependence on the Fermi energy is fully scaled
by εB, the conductivities exhibit a singular behavior at
εF =0 in the limit of the vanishing magnetic field εB →0.

This singularity at εF =0 disappears in the quantum
theory based on the self-consistent Born approximation.
Figure 6 compares classical and quantum σxx and σxy

as a function of ξ for A = 50 in the case of short-range
scatterers and Fig. 7 shows corresponding comparison

in the case of long-range scatterers. In contrast to
the Boltzmann result the quantum results depend on
εB/ε0 and σxx depends on the Fermi energy in the limit
εB/ε0→0, in consistent with previous results.3,4)

§7. Summary
In summary, we have discussed anomalies appearing

in the static and dynamic conductivity associated with
the topological singularity at k = 0. In the Boltzmann
transport theory, the frequency dependence of the dy-
namical conductivity is determined by h̄ω/εF leading to
a singular jump at ω = 0 and εF = 0. Therefore, the
static conductivity has a singularity at (ω, εF ) = (0, 0)
and depends critically on which of ω and εF is set equal
to zero first. In a self-consistent Born approximation
in which level broadening effects are properly taken into
account, this singular dependence is somewhat smoothed
out but the corresponding energy scale is determined by
the broadening at εF ≈ 0 and is extremely small in the
case of weak scattering.
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Figure Captions
Fig. 1 The structure of a honeycomb lattice and it-

s first Brillouin zone. A unit cell contains two
atoms denoted as A and B (small circles). The
corner points of the Brillouin zone are denoted as
K and K’. A honeycomb lattice can be realized at
a semiconductor heterostructure by fabrication of a
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short-period hexagonal antidot array (shadowed big
circles).

Fig. 2 The dynamical conductivity calculated using
the Boltzmann transport equation. The frequency is
scaled by the Fermi energy. α=1 and 1/2 in the case
of short- and long-range scatterers, respectively.

Fig. 3 Some diagrams in the self-consistent Born ap-
proximation. The top shows the diagram of the
self-energy for intravalley scattering processes and
for intervalley. The middle shows the diagram of the
conductivity with vertex corrections. The bottom
shows the equation for the current vertex part.

Fig. 4 Some examples of calculated dynamical con-
ductivity in the case of short-range scatterers. (a)

A=50. (b) A=20.

Fig. 5 Some examples of calculated dynamical conduc-
tivity in the case of long-range scatterers. (a) A=50.
(b) A=20.

Fig. 6 The diagonal σxx and Hall σxy conductivity as a
function of the normalized Fermi energy in the case
of short-range scatterers. The thick lines represent
Boltzmann results and the thin lines those obtained
in the self-consistent Born approximation.

Fig. 7 The diagonal σxx and Hall σxy conductivity as a
function of the normalized Fermi energy in the case
of long-range scatterers. The thick lines represent
Boltzmann results and the thin lines those obtained
in the self-consistent Born approximation.



Dynamical Conductivity and Zero-Mode Anomaly in Honeycomb Lattices Page 7

ab

A

B

t
1

t
2

t
3

A

B

A
B

-3

-2

-1

0

1

2

3

4

Wave Vector

E
ne

rg
y 

(u
ni

ts
 o

f γ
0)

EF

K Γ M K

K’

K
M

Γ

Fig. 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

5

10

15

Frequency (units of εF/h)

D
yn

am
ic

al
 C

on
du

ct
iv

ity
 (

un
its

 o
f e

2 /
π2

h)

Boltzmann Conductivity
                    A  oo

 A/α
100
 50
 20
 10

K

vx -evx

e

e'

niu
2

S

sxx(w) =

=

Jx(e,e') = = +

K K K K' K

niu
2

Jx(e,e')

-evx -evx -evx

(a) (b)

e

e'

niu
2

Fig. 2 Fig. 3



Page 8 T. Ando, Y. Zheng, and H. Suzuura

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

12

Frequency (units of ε0/h)

D
yn

am
ic

al
 C

on
du

ct
iv

ity
 (

un
its

 o
f e

2 /
π2

h)

Short-Range Scatterers
                           A = 50
                      εc/ε0 = 50

εF/ε0
0.010
0.050
0.100
0.200
0.500
1.000

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

Frequency (units of ε0/h)

D
yn

am
ic

al
 C

on
du

ct
iv

ity
 (

un
its

 o
f e

2 /
π2

h)

Short-Range Scatterers
                           A = 20
                      εc/ε0 = 50

εF/ε0
0.010
0.050
0.100
0.200
0.500
1.000

(b)

Fig. 4(a) Fig. 4(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

5

10

15

20

Frequency (units of ε0/h)

D
yn

am
ic

al
 C

on
du

ct
iv

ity
 (

un
its

 o
f e

2 /
π2

h)

Long-Range Scatterers
                           A = 50
                      εc/ε0 = 50

εF/ε0
0.010
0.050
0.100
0.200
0.500
1.000

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

6

Frequency (units of ε0/h)

D
yn

am
ic

al
 C

on
du

ct
iv

ity
 (

un
its

 o
f e

2 /
π2

h)

Long-Range Scatterers
                           A = 20
                      εc/ε0 = 50

εF/ε0
0.010
0.050
0.100
0.200
0.500
1.000

(b)

Fig. 5(a) Fig. 5(b)



Dynamical Conductivity and Zero-Mode Anomaly in Honeycomb Lattices Page 9

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Fermi Energy [units of (A/2πα)1/2γ/l]

 C
on

du
ct

iv
ity

 [u
ni

ts
 o

f (
e2

/π
2 h

)(
A

/4
α)

]

Short-Range Scatterers
   σxx

  -σxy

 A=50
 εc/ε0=50

Boltzmann

Self-Consistent Born

  γ/lε0=1

  γ/lε0=0.1

  γ/lε0=0.02

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Fermi Energy [units of (A/2πα)1/2γ/l]

 C
on

du
ct

iv
ity

 [u
ni

ts
 o

f (
e2

/π
2 h

)(
A

/4
α)

]

Long-Range Scatterers
   σxx

  -σxy

 A=50
 εc/ε0=50

Boltzmann

Self-Consistent Born

  γ/lε0=1

  γ/lε0=0.1

  γ/lε0=0.02

Fig. 6 Fig. 7


