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We propose a three-step periodic drive protocol to engineer two-dimensional (2D) Floquet
quadrupole superconductors and three-dimensional (3D) Floquet octupole superconductors hosting
zero-dimensional Majorana corner modes (MCMs), based on unconventional d-wave superconduc-
tivity. Remarkably, the driven system conceives four phases with only 0 MCMs, no MCMs, only
anomalous π MCMs, and both regular 0 and anomalous π MCMs. To circumvent the subtle issue of
characterizing 0 and π MCMs separately, we employ the periodized evolution operator to architect
the dynamical invariants, namely quadrupole and octupole motion in 2D and 3D, respectively, that
can distinguish different higher order topological phases unambiguously. Our study paves the way
for the realization of dynamical quadrupolar and octupolar topological superconductors.

I. INTRODUCTION

Topological superconductors (TSCs) hosting Majorana
zero modes (MZMs) have been the corner stone for the
last two decades due to their potential application in
topological quantum computations utilising non-Abelian
statistics [1–4]. The quest for TSC emerges following
the elegant proposal by Kitaev [1], and the idea by
Fu and Kane [5] that emphasized the realization of the
MZMs on the two-dimensional (2D) surface of a three-
dimensional (3D) topological insulator (TI), in proxim-
ity to an s-wave superconductor and magnetic insula-
tor. Very recently, the advent of generalized bulk bound-
ary correspondence (BBC) in the higher-order topologi-
cal (HOT) phase [6–19] accomplishes the field more ex-
citing. An nth order HOT insulator [superconductor
(HOTSC)] phase is characterized by the existence of
electronic [Majorana] boundary modes at their (d − n)-
dimensional boundaries (0 < n ≤ d) [20–46].

To this end, we focus on the periodically driven quan-
tum systems, exhibiting non-trivial properties compared
to their static counterparts such as dynamical local-
ization [47–49], many-body localization [50–52], Flo-
quet time crystals [53, 54], and higher harmonic gener-
ation [55, 56] etc. In particular, anomalous boundary
modes at finite quasienergy, namely π-modes, with con-
current regular 0-modes, can be engineered by Flqouet
driving [57]. Moreover, one can architect the Flo-
quet HOT insulators (FHOTIs) [58–76] and Floquet
HOT superconductors (FHOTSCs) [77–82] out of non-
topological or lower-order topological systems.

Till date, there exist a very few proposals, based on
step-like protocol, to realize the FHOTI phase hosting
both 0- and anomalous π-mode [64, 65, 72, 74]. The
dynamical FHOTI modes in 2D are characterized by re-
defining the polarization for driven systems, where the
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mirror symmetry plays the pivotal role [64]. Although,
the hunt for such FHOTSC phases is still in its in-
fancy [82], along with their dynamical topological charac-
terizations. Hence, we seek the answers for the following
intriguing questions that have not been addressed so far-
(a) is it possible to systematically generate the FHOTSC
hosting both 0- and the anomalous π-Majorana mode in
2D and 3D? and (b) how to characterize these 0- and
π-modes using a proper dynamical topological invariant?

In this manuscript, we employ a periodic step-drive
protocol to systematically formulate the 2D quadrupo-
lar Floquet second-order TSC (FSOTSC) and the 3D
octupolar Floquet third-order TSC (FTOTSC), based
on unconventional d-wave superconductor. This driving
protocol allows us to realize and characterize both the 0-
and π-Majorana corner modes (MCMs), and serves as the
primary motivation of the current work. We extensively
study the dynamical octupolar motion in 3D, which adds
significant merit to the problem we are dealing with.

The remainder of the article is organized as follows.
We discuss the generation of anomalous Majorana modes
in Sec. II. We topologically characterize the 2D FSOTSC
and 3D FTOTSC phase using dynamical quadrupole mo-
ment and dynamical octupole moment, respectively in
Sec. III. Finally, we summarize and conclude our paper
in Sec. IV.

II. GENERATION OF ANOMALOUS
MAJORANA MODES

Considering the d-wave superconductor, we prescribe
the following three-step drive protocol to foster the 2D
FSOTSC and 3D FTOTSC

HdD(k, t) = J ′1h1,dD(k) ; t ∈ [0, T/4] ,

= J ′2h2,dD(k) ; t ∈ (T/4, 3T/4] ,

= J ′1h3,dD(k) ; t ∈ (3T/4, T ]. (1)

Here, J ′ihi,dD(k) denotes the Hamiltonian of the system
at the ith step in d-dimension (dD); while J ′1 and J ′2 carry
the dimensions of energy. We define the dimensionless
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parameters (J1, J2) = (J ′1T, J
′
2T ) where, T (Ω = 2π/T )

represents the time-period (frequency) of the drive.
We set ~ = c = 1. In particular, to generate a 2D
FSOTSC, we choose h1,2D(k) = h3,2D(k) = τzσz and
h2,2D(k) = ε2D(k)τzσz + Λ2D(k) + ∆2D(k); whereas,
in 3D, we consider h1,3D(k) = h3,3D(k) = τzσz and
h2,3D(k) = ε3D(k)τzσz + Λ3D(k) + ∆3D(k); with
ε2D(k) = (cos kx + cos ky), Λ2D(k) = sin kxτzσxsz +
sin kyτzσy, ∆2D(k) = ∆ (cos kx − cos ky) τx,
ε3D(k) = (cos kx + cos ky + cos kz), Λ3D(k) =
sin kxτzσxsx+sin kyτzσxsy+sin kzτzσxsz, and ∆3D(k) =
∆1 (cos kx − cos ky) τx+∆2 (2 cos kz − cos kx − cos ky) τy.
Here, εdD(k) and ΛdD(k) encapsulate all the hoppings
and spin-orbit coupling terms in dD, respectively. In 2D,
we use the dx2−y2 -pairing, given by ∆2D(k) [23, 81] while,
in 3D we incorporate mixed pairing dx2−y2 + id3z2−r2 ,
represented by ∆3D(k) [46, 83]. In the first and last
step of the drive, the Hamiltonian contains only on-
site term [h1,dD(k)], providing us further analytical
sophistication and facilitating the topological charac-
terizations [57, 64]. Here, both h1,dD(k) and h2,dD(k)
respect the anti-unitary particle-hole, unitary chiral, and
mirror symmetry while the last one plays the decisive
role.

The Floquet operator U(k, T ), following the time-
ordered (TO) notation, is given as [84]

UdD(k, T ) = TO exp

[
−i
∫ T

0

dt HdD(k, t)

]
. (2)

Using the eigenvalue equation for UdD(k, T ):
UdD(k, T ) |Ψ〉 = exp [−iE(k)] |Ψ〉, we obtain

E(k) = ± arccos
[

cos (αdD(k)J1/2) cos (βdD(k)J2/2)

− sin (αdD(k)J1/2) sin (βdD(k)J2/2)χdD(k)
]
, (3)

where, αdD(k) = |h1,dD(k)| = |h3,dD(k)|, βdD(k) =

|h2,dD(k)| and χdD(k) = εdD(k)
αdD(k)βdD(k) . We invoke the

band-gap closing across E(k) = 0,±π at (kx, ky) =
(0, 0) or (π, π) for 2D and at (kx, ky, kz) = (0, 0, 0)
or (π, π, π) for 3D to acquire the generalized topologi-
cal phase boundary akin to our driving protocol in d-
dimension as [74]

d|J2|
2

=
|J1|
2

+ nπ , (4)

where, n ∈ Z. We show the topological phase diagram in
the J1−J2 plane for 2D (3D) in Fig. 1(a) (Fig. 2(a)). The
phase diagram can be divided into four segments- region-
1 (R1) with only 0-modes, region-2 (R2) without any
modes, region-3 supporting only π-modes, and region-
4 (R4) allowing both 0 and π-MCMs to coexist.

Having perceived the problem analytically, we anchor
our findings with numerical results. The 2D FSOTSC
and 3D FTOTSC can be identified by the presence of
zero-dimensional (0D) MCMs [45]; these are computed
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FIG. 1. (Color online) (a) We depict the phase diagram of
2D FSOTSC in J1 − J2 plane (Eq. (4)). (b) The LDOS is
demonstrated for a 2D square lattice of dimension Lx × Ly
for Em = 0,±π. The quasi-energy spectra, Em, computed
from Eq. (2), are shown as a function of the state index
m in panels (c), (d), (e), and (f) for R1, R2, R3, and
R4, respectively. We use the parameters as: (J1, 2J2) =[(
π
4
, π
2

)
,
(
π
2
, π
4

)
,
(
3π
4
, π
2

)
,
(
π
2
, 3π

4

)]
for R1, R2, R3, and R4,

respectively. We choose ∆ = 1.0 throughout our numerical
analysis.

for both regular and anomalous modes while diagonal-
izing the Floquet operator (Eq. (2)) with open bound-
ary condition (OBC) in all directions. The correspond-
ing local density of states (LDOS) of MCMs is shown
in Fig. 1 (b) and Fig. 2 (b), respectively for 2D square
and 3D cubic lattice. We portray the quasienergy spec-
tra (Em) for R1 (eight 0-MCMs), R2 (no MCMs), R3
(four MCMs each at Em = ±π), and R4 (eight MCMs at
Em = 0 and four MCMs each at Em = ±π) in Fig. 1 (c),
(d), (e), and (f) [Fig. 2 (c), (d), (e), and (f)], respectively,
considering 2D [3D] system. Note that in 3D, both the
surface and the hinge mode become gapped. Generation
of these anomalous dynamical MCMs via our three-step
driving protocol is one of the main results of this article.

III. TOPOLOGICAL CHARACTERIZATION OF
FHOTSC PHASE

For the anomalous Floquet phase, the main challenge
is to topologically characterize both the 0- and π-MCMs
distinctively. We first pursue the appropriate Wannier
sector polarization for 2D FSOTSC and 3D FTOTSC,
employing nested Wilson loop techniques [7, 18, 84], from
the Floquet operator UdD(k, T ). For 2D FSOTSC [3D
FTOTSC], the average first-order [second-order] nested
Wannier polarization for µ′ [µ′′]-th sector 〈ν±νxy,Flq,µ′〉

[〈ν±ν
±νx
y

z,Flq,µ′′〉] [84] exhibits a quantized value of 0.5, when
the system is in the regime R1 and R3. However, the
same is unable to ascertain one whether the modes are
lying at 0 or π-gap. These nested polarizations reduce
to 0 for both the trivial phase in R2 and the anomalous
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FIG. 2. (Color online) We repeat the outcome of Fig. 1 con-
sidering a 3D cubic lattice of dimension Lx×Ly×Lz following
Eq. (2). We set ∆1 = ∆2 = 1.0 in the above calculation. The
value of the other parameters is chosen to be the same as
mentioned in Fig. 1.

phase hosting both 0 and π-mode in R4.
Inadequacy of the topological invariant, computed

from the quasi-static Floquet operator, motivates us to
hunt for a dynamical topological invariant (both in 2D
and 3D) that cannot only extricate R2 from R4 but also
unmistakably yields distinct signatures of 0 and π-modes.
We consider the full time evolution operator UdD(k, t),
embodying an anomalous periodized part UdD,ε(k, t) and

a normal quasi-static part [U(k, T )]
t/T
ε , such that [57, 64]

UdD(k, t) = UdD,ε(k, t) [UdD(k, T )]
t/T
ε , (5)

here, the subscript ε denotes the 0 and π-gap and en-
ables us to keep track of the origin of the MCMs in
these quasi-energies. We use the periodized evolution op-

erator (PEO) UdD,ε(k, t) = UdD(k, t) [UdD(k, T )]
−t/T
ε to

calculate the pertinent topological invariant. However,
unlike UdD(k, T ) the PEO does not possess any conven-
tional band physics and can be gapless at certain time-
instants [57, 64].

In order to capture the non-triviality of the anoma-
lous Floquet modes, we define the dynamical mean po-
larization as relative motion of a particle at two in-
stants [64, 84]

ˆ̄x(t) =
[x̂(t) + x̂(0)]

2
, (6)

here, x̂(0) = x̂ =
∑
im ĉ

†
im |0〉 e−i∆xxi 〈0| ĉim exem-

plify the static polarization [85] with ∆i = 2π/Li,

x̂(t) = U†dD,ε(k, t) x̂ UdD,ε(k, t) and ĉ’s being
the quasiparticle creation operators. The eigen-
value of ˆ̄x(t) is related to the dynamical Wil-
son loop operator Wx,ε,k(t) in the following way:(
ˆ̄x(t)

)Lx
=
∑

kmn ĉ
†
km |0〉 [Wx,ε,k(t)]mn 〈0| ĉkn. One can

find Wx,ε,k(t) = Qx,ε,k+(Lx−1)∆xex(t) · · ·Qx,ε,k+∆xex(t)

Qx,ε,k(t); with Qp,ε,k(t) =
I+U†dD,ε(k+∆pep,t)UdD,ε(k,t)

2 ,

and the unit vector along pth direction is represented
by ep. From the eigenvalue equation for Wx,ε,k(t) :

Wx,ε,k(t) |νx,ε,µ(k, t)〉 = e−2πiνx,ε,µ(kj 6=x,t) |νx,ε,µ(k, t)〉,
one obtains the dynamical first-order branches
νx,ε,µ(kj 6=x, t). Here, νx,ε,µ(kj 6=x, t) refers to a rela-
tive motion of a particle along x-direction with respect
to xi during t ∈ [0, t] [64]. This dynamical first-order
branches can characterize anomalous Floquet first-order
topological phase. In order to conceive the higher-order
moments, one needs to incorporate the nested structure
while constructing the Wilson loop, as executed for the
static systems with appropriate Qp,k [7].

To accommodate the FHOTSC phase, the eigen-
values νx,ε,µ(kj 6=x, t) remain gapped during the full
cycle t ∈ [0, T ] and can be grouped into two sep-
arable sets ±νx,ε. The dynamical second-order
polarization is computed by evaluating a relative
motion of particle along y-direction by projecting
onto the set ±νx,ε with projector P±νx,ε(t) [84]:
ˆ̄y±νx,ε(t) = P±νx,ε(t)ˆ̄y(t)P±νx,ε(t). Similar to the earlier
case, we can obtain dynamical first-order nested Wilson

loop operator W
±νx,ε
y,ε,k (t) from ˆ̄y±νx,ε(t):

(
ˆ̄y±νx,ε(t)

)Ly
=∑

k,µ1,µ2∈±νx,ε γ
†
kεµ1

(t) |0〉
[
W
±νx,ε
y,ε,k (t)

]
µ1µ2

〈0| γkεµ2(t)

where γ’s are constituted from |νx,ε,µ(k, t)〉 according

the projection rule [84]. This leads to W
±νx,ε
y,ε,k (t) =

Q
±νx,ε
y,ε,k+(Ly−1)∆yey

(t) · · ·Q±νx,εy,ε,k+∆yey
(t)Q

±νx,ε
y,ε,k (t) with[

Q
±νx,ε
y,ε,k (t)

]
µ1µ2

=
∑
mn [νx,ε,µ1

(k + ∆yey, t)]
∗
m

[Qy,ε,k(t)]mn [νx,ε,µ2(k, t)]n. The dynamical second-order

quadrupolar branches ν
±νx,ε
y,ε,µ′ (kj 6=y, t) can be obtained

from the eigenvalue equation : W
±νx,ε
y,ε,k (t) |ν±νx,εy,ε,µ′ (k, t)〉 =

e
−2πiν

±νx,ε
y,ε,µ′ (kj 6=y,t) |ν±νx,εy,ε,µ′ (k, t)〉. This quadrupolar

branches can topologically characterize the anomalous
2D FSOTSC, which we illustrate in Fig. 3.

Proceeding further, the octupolar phase guar-
antees gapped quadrupolar branches during time
t ∈ [0, T ] and thus, can be grouped into two dis-

sociable sets ±ν±νx,εy,ε . The dynamical third-order
polarization can be portrayed as the relative motion
of particle along the remaining z-direction using the

projector P±ν±νx,εy,ε
(t) onto ±ν±νx,εy,ε : ˆ̄z±ν

±νx,ε
y,ε (t) =

P±ν±νx,εy,ε
(t) ˆ̄z(t) P±ν±νx,εy,ε

(t) [84]. Following the similar

line of argument, the dynamical second-order nested

Wilson loop operator is found to be
(

ˆ̄z±ν
±νx,ε
y,ε (t)

)Lz
=∑

k,µ′1,µ
′
2∈±ν

±νx,ε
y,ε

η†kεµ′1
(t) |0〉

[
W
±ν±νx,εy,ε

z,ε,k (t)

]
µ′1µ

′
2

〈0| ηkεµ′2(t)

where η’s are comprised from |νx,ε,µ(k, t)〉 and

|ν±νx,εy,ε,µ′ (k, t)〉 [84]. We, therefore, obtain W
±ν±νx,εy,ε

z,ε,k (t) =

Q
±ν±νx,εy,ε

z,ε,k+(Lz−1)∆zez
(t) · · ·Q±ν

±νx,ε
y,ε

z,ε,k+∆zez
(t)Q

±ν±νx,εy,ε

z,ε,k (t), with[
Q
±ν±νx,εy,ε

z,ε,k (t)

]
µ′1µ

′
2

=
∑
mnµ1µ2

[
ν
±νx,ε
y,ε,µ′1

(k + ∆zez, t)
]∗
µ1
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FIG. 3. (Color online) The gapped dynamical polarization
branches νx,ε=0,µ and νx,ε=π,µ, arising from 0 and π-gap, are
respectively shown as a function of ky in (a) and (b), at time
t = T

2
, while the system is in R4. The average quadrupo-

lar motion 〈ν+νx,εy,ε,µ′ 〉(t) for R1, R2, R3, and R4 (see Fig. 1)

are depicted in panels (c), (d), (e), and (f), respectively, as a
function of time t, manifesting gapless crossing between oppo-

site branches. Here, blue and red dots represents 〈ν+νx,εy,ε,µ′ 〉(t)
arising from 0 and π-gap, respectively. See text for discussion.

[νx,ε,µ1(k + ∆zez, t)]
∗
m [Qz,ε,k(t)]mn [νx,ε,µ2(k, t)]n[

ν
±νx,ε
y,ε,µ′2

(k, t)
]
µ2

. From the eigenvalue of W
±ν±νx,εy,ε

z,ε,k (t),

we procure the dynamical third-order octupolar branch

as ν
±ν±νx,εy,ε

z,ε,µ′′ (kj 6=z, t) that is adopted to topologically
characterize the 3D FTOTSC as demonstrated in Fig. 4.

A. Dynamical quadrupole moment

Limited to 2D, the mirror symmetry Mx en-
forces νx,ε,µ(ky, t) to appear in pairs: νx,ε,µ1

(ky, t) =
−νx,ε,µ2

(ky, t), with µ1 ∈ +νx,ε,µ and µ2 ∈ −νx,ε,µ.
Moreover, My compels νx,ε,µ(ky, t) = νx,ε,µ(−ky, t)
within each branch µ [64]. We show these behavior
in Fig. 3 (a) and (b) for 0 and π-gap at t = T

2 , re-
spectively, when the system is in R4. Mx imposes the
quadrupolar branches, derived from opposite first-order

branches, to be the same i.e., ν
+νx,ε
y,ε,µ′ (kx, t) = ν

−νx,ε
y,ε,µ′ (kx, t)

and My causes the quadrupolar branches to appear in

pairs: ν
+νx,ε
y,ε,µ′1

(kx, t) = −ν+νx,ε
y,ε,µ′2

(kx, t) [64]. It is evident

from the above discussion that the mirror symmetries do
not impose any constraints on the quantization of the
quadrupolar branches at any time-instant t unlike the
static case where ν’s are allowed to take values either 0
or 1/2 (mod 1) [7].

The average quadrupolar motion 〈ν+νx,ε
y,ε,µ′ 〉(t) =

1
Lx

∑
kx
ν

+νx,ε
y,ε,µ′ (kx, t), however, plays a paramount role

in the understandings of the topological Floquet modes.
Now, U2D,ε(0) = U2D,ε(T ) = I, necessitates the parti-
cles to undergo a round trip during the time-interval

 0
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FIG. 4. (Color online) We repeat Figs. 3 (a), and (b) for the
3D cubic lattice as a function of kz, kx and depict in panels
(a) and (b), respectively. The gapped dynamical quadrupo-

lar branches ν
+νx,ε
y,ε=0,µ′ and ν

+νx,ε
y,ε=π,µ′ are shown in panels (c)

and (d), respectively, at t = T
2

in R4. The average octupolar

motion 〈ν+ν
+νx,ε
y,ε

z,ε,µ′′ 〉(t) for R1, R2, R3, and R4 are shown in

panels (c), (d), (e), and (f), respectively, indicating the gap-
less crossing between opposite branches. Here, blue and red

dots represent 〈ν+ν
+νx,ε
y,ε

z,ε,µ′′ 〉(t) arising from 0 and π-gap, respec-
tively and are discussed in the text.

t ∈ [0, T ] and enforces 〈ν+νx,ε
y,ε,µ′ 〉(t = 0) = 〈ν+νx,ε

y,ε,µ′ 〉(t =

T ) = 0 (mod 1) to be the fixed-points. For a topologi-

cally trivial phase, 〈ν+νx,ε
y,ε,µ′ 〉(0) and 〈ν+νx,ε

y,ε,µ′ 〉(T ) are adi-
abatically connected without any gap closing between
two branches ∀t ∈ [0, T ] (see Fig. 3 (c) π-gap, (d) both
gaps, and (e) 0-gap). The presence of MCMs (see Fig. 1)

in the gap ε, obstructs the motion of 〈ν+νx,ε
y,ε,µ′ 〉(t) in the

time-interval t ∈ [0, T ] and two branches cross each
other at 1

2 (mod 1) at t = T
2 (see Fig. 3 (c) 0-gap,

(e) π-gap, and (f) both 0 and π-gap). We thus obtain
the quantization of the dynamical quadrupole moment

Q
+νx,ε
ε =

∫ T
0
dt∂t〈ν

+νx,ε
y,ε,µ′ 〉(t) = [0] 1 (mod 1), for [trivial]

topological case, giving rise to a Z2 classification. Thus,
the generalization of dynamical quadrupole moment for
the 2D FSOTSC (with eight-band model) is another im-
portant result of this manuscript.

B. Dynamical octupole moment

In 3D, Mx seeks νx,ε,µ1
(ky, kz, t) = −νx,ε,µ2

(ky, kz, t),
with µ1 ∈ +νx,ε,µ and µ2 ∈ −νx,ε,µ. While,My andMz

set the shape of the branch such that νx,ε,µ(ky, kz, t) =
νx,ε,µ(−ky, kz, t) and νx,ε,µ(ky, kz, t) = νx,ε,µ(ky,−kz, t)
within each branch µ. We demonstrate the dynamical
first-order branch in Figs. 4 (a) and (b) while the system
is in R4 at t = T

2 for 0 and π-gap, respectively. Here,Mx

invokes second-order branches calculated from opposite
first-order branches ±νx,ε,µ(ky, kz, t) to be identical,My

requires ν
+νx,ε
y,ε,µ′1

(kz, kx, t) = −ν+νx,ε
y,ε,µ′2

(kz, kx, t) andMz en-

forces ν
+νx,ε
y,ε,µ′ (kz, kx, t) = ν

+νx,ε
y,ε,µ′ (−kz, kx, t). We depict

the dynamical second-order branch in Figs. 4 (c) and (d)
for 0 and π-gap, respectively, at t = T

2 , while the system



5

is in R4. Akin to the first-order branches, the quadrupo-
lar branches also exhibit a finite gap and sets the stage
for the calculation of the third-order (octupolar) dynam-
ical branch. Here,Mx andMy ensure octupolar branch
calculated from different quadrupolar branches to remain
same and Mz compels the octupolar branch to appear

in pairs: ν
+ν

+νx,ε
y,ε

z,ε,µ′′1
(kx, ky, t) = −ν+ν

+νx,ε
y,ε

z,ε,µ′′2
(kx, ky, t).

Following the 2D case, we introduce the

average octupolar motion as 〈ν+ν
+νx,ε
y,ε

z,ε,µ′′ 〉(t) =

1
LxLy

∑
kxky

ν
+ν

+νx,ε
y,ε

z,ε,µ′′ (kx, ky, t). For the trivial case,

〈ν+ν
+νx,ε
y,ε

z,ε,µ′′ 〉(t : 0 → T ) winds back to the original value

(mod 1) without experiencing any gap closing among
the branches (see Fig. 4 (e) π-gap, (f) both 0 and
π-gap, and (g) 0-gap). The topologically non-trivial
situation refers to a gap closing of two different octupolar

branches at 1
2 (mod 1) when 〈ν+ν

+νx,ε
y,ε

z,ε,µ′′ 〉(t → 0) = 0 (1)

evolves to 〈ν+ν
+νx,ε
y,ε

z,ε,µ′′ 〉(t → T ) = 1 (0) as depicted in

Fig. 4 (e) 0-gap, (g) π-gap, (h) both 0 and π-gap.
Hence, the notion of Z2 invariant works for the 3D
octupole moment similar to the 2D quadrupolar mo-

ment: O
+ν

+νx,ε
y,ε

ε =
∫ T

0
dt∂t〈ν

+ν
+νx,ε
y,ε

z,ε,µ′′ 〉(t) = [0] 1 (mod 1),

for [trivial] topological case. We emphasize that the
topological characterization of anomalous MCMs (0−π)
via the dynamical octupole moment in the FTOTSC
phase is the prime result of this article.

IV. SUMMARY AND CONCLUSIONS

To summarize, in this article, we prescribe a step-drive
protocol to dynamically construct 2D FSOTSC and 3D

FTOTSC hosting 0D MCMs. Exploiting the phase dia-
grams, we illustrate the emergence of both regular 0 and
anomalous π-MCMs separately and simultaneously. We
circumvent the elusive affair of complete topological char-
acterization for available dynamical phases by analyzing
PEO in both 2D and 3D. This allows us to tie up the
dynamical quadrupole and octupole moments with Z2

classifications and enable us to topologically characterize
the FHOTSC phases. Along this direction, the stability
of these dynamic phases in presence of strong disorder
might also be an intriguing future direction.

Note that, the Majorana-based qubit architectures
have been studied for FSOTSC, hosting both 0 and
anomalous π-modes, in the context of fault-tolerant
quantum computing [78]. We believe that the spatially
separated MCMs in FTOTSC, observed for the present
case, can become potentially useful for futher extension
of the quantum gate operations in 3D. The three-step pe-
riodic driving protocol implemented here is found to be
very covenient for the model based studies [64]. Given
the experimental advancement in Floquet driving [86–88]
and HOT phases [89–91], our proposal carries possible
implication of practical relevance [92]. However, from the
experimental viewpoint, the engineering of HOT phases
employing laser drive/light fields can be more realistic
that we leave for future investigation and will be pre-
sented elsewhere. We believe that the present scheme of
topological characterization would work for the continu-
ous time driving.
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In this supplemental material, we provide the detailed construction of the Floquet operator in Sec. S1.
In Sec. S2, we present the periodized evolution operator. Sec. S3 is devoted to the elaborated formalism
for computing the dynamical multipole moments employed in the main text to characterize the two-
dimensional (2D) Floquet second-order topological superconductor (FSOTSC) and three-dimensional
(3D) Floquet third-order topological superconductor (FTOTSC). In Sec. S4, we provide the calculation
for quasi-static multipole moments. Finally, in Sec. S5, we discuss the appearance of FSOTSC in 3D
based on our driving protocol mentioned in the main text.

S1. CONSTRUCTION OF FLOQUET OPERATOR

Following the step-drive protocol introduced in the main text, the evolution operator in the time interval t ∈
[
0, T4

]
can be written as

UdD(k, t) = exp (−iJ ′1h1,dD(k)t)

= cos (J ′1αdD(k)t) I− i sin (J ′1αdD(k)t)
h1,dD(k)

αdD(k)
. (S1)

In the interval t ∈
(
T
4 ,

3T
4

]
, the evolution operator becomes

UdD(k, t) = exp

(
−iJ ′2h2,dD(k)

(
t− T

4

))
exp

(
−iJ ′1h1,dD(k)

T

4

)
=

[
cos

(
J ′2βdD(k)

(
t− T

4

))
I− i sin

(
J ′2βdD(k)

(
t− T

4

))
h2,dD(k)

βdD(k)

]
×[

cos

(
J ′1αdD(k)

T

4

)
I− i sin

(
J ′1αdD(k)

T

4

)
h1,dD(k)

αdD(k)

]
. (S2)

Whereas, in the final step i.e., t ∈
(

3T
4 , T

]
, the evolution operator reads

UdD(k, t) = exp

(
−iJ ′1h1,dD(k)

(
t− 3T

4

))
exp

(
−iJ ′2h2,dD(k)

T

2

)
exp

(
−iJ ′1h1,dD(k)

T

4

)
=

[
cos

(
J ′1αdD(k)

(
t− 3T

4

))
I− i sin

(
J ′1αdD(k)

(
t− 3T

4

))
h1,dD(k)

αdD(k)

]
×[

cos

(
J ′2βdD(k)

T

2

)
I− i sin

(
J ′2βdD(k)

T

2

)
h2,dD(k)

βdD(k)

] [
cos

(
J ′1αdD(k)

T

4

)
I− i sin

(
J ′1αdD(k)

T

4

)
h1,dD(k)

αdD(k)

]
.

(S3)

After full time-period T , we obtain the Floquet operator as

UdD(k, T ) =

[
cos

(
J ′1αdD(k)

T

4

)
I− i sin

(
J ′1αdD(k)

T

4

)
h1,dD(k)

αdD(k)

] [
cos

(
J ′2βdD(k)

T

2

)
I− i sin

(
J ′2βdD(k)

T

2

)
h2,dD(k)

βdD(k)

]
×
[
cos

(
J ′1αdD(k)

T

4

)
I− i sin

(
J ′1αdD(k)

T

4

)
h1,dD(k)

αdD(k)

]
. (S4)
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We can recast UdD(k, T ) in a form such that UdD(k, T ) = fdD(k)I− igdD(k), where we have defined

fdD(k) = cos

(
αdD(k)J1

2

)
cos

(
βdD(k)J2

2

)
− sin

(
αdD(k)J1

2

)
sin

(
βdD(k)J2

2

)
εdD(k)

αdD(k)βdD(k)
, (S5)

gdD(k) = cos2

(
αdD(k)J1

2

)
sin

(
βdD(k)J2

2

)
h2,dD(k)

βdD(k)
+ sin

(
αdD(k)J1

2

)
cos

(
βdD(k)J2

2

)
h1,dD(k)

αdD(k)

+ sin2

(
αdD(k)J1

2

)
sin

(
βdD(k)J2

2

)
(2εdD(k)− h2,dD(k))

α2
dD(k)βdD(k)

. (S6)

The eigenvalue equation for UdD(k, T ) reads: UdD(k, T ) |Ψ〉 = exp[−iE(k)T ] |Ψ〉, which gives us

cosE(k) = fdD(k) , (S7)

with each band being N
2 -fold degenerate. In our model we have considered eight-band model both in 2D and 3D. Hence,

the bands are four-fold degenerate. We denote these bands as |Ψ±Ei(k)〉, with +(−)Ei(k) representing unfilled (filled)
bands.

S2. PERIODIZED EVOLUTION OPERATORS

The time evolution operator in a time periodic system can be decomposed into two parts UdD(k, t) =

UdD,ε(k, t) [UdD(k, T )]
t/T
ε . Here, UdD,ε(k, t) = UdD,ε(k, t + T ) represents the anomalous periodized evolution op-

erator encaptulating the dynamics of the system and [UdD(k, T )]
t/T
ε represents the normal static accumulative part.

We can construct [UdD(k, T )]
−t/T
ε as follows

[UdD(k, T )]
−t/T
ε=0 =

N/2∑
i=1

e−i(2π−Ei(k))t/T |Ψ−Ei(k)〉 〈Ψ−Ei(k)|+
N∑

i=N/2+1

e−iEi(k)t/T |Ψ+Ei(k)〉 〈Ψ+Ei(k)| , (S8)

[UdD(k, T )]
−t/T
ε=π =

N/2∑
i=1

eiEi(k)t/T |Ψ−Ei(k)〉 〈Ψ−Ei(k)|+
N∑

i=N/2+1

e−iEi(k)t/T |Ψ+Ei(k)〉 〈Ψ+Ei(k)| . (S9)

With the [UdD(k, T )]
−t/T
ε in hand, one can obatin the periodized evolution operator using Eqs. (S1), (S2), and (S3)

as

UdD,ε(k, t) = UdD(k, t) [UdD(k, T )]
−t/T
ε . (S10)

S3. DYNAMICAL MULTIPOLE MOMENTS

The absence of band physics for UdD,ε(k, t) enforces us to endeavour for a new quantity to encaptulate the evolution
of polarization and other higher moments viz quadrupole, octupole etc, in the interval t ∈ [0, t]. The dynamical
polarization, introduced in Ref. [64], accounts for a comparison of relative motion of a particle between two time
intervals and can be defined as

ˆ̄x(t) =
x̂(t) + x̂(0)

2
. (S11)

Following Resta’s definition [85] for position operator x̂(0) = x̂, along x-direction, for a system obeying periodic
boundary condition (PBC) can be written as

x̂ =
∑
im

ĉ†im |0〉 e
−i∆xxi 〈0| ĉim , (S12)

where, ĉim (ĉ†im) represent quasiparticle annihilation (creation) operator at site i for mth degrees of freedom. We can
use the Fourier transformed electronic operator as

ĉkm =
1√
N

∑
ri

eik·ri ĉim and ĉ†km =
1√
N

∑
ri

eik·ri ĉ†im , (S13)
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with N = LxLyLz · · · , ri = xiex + yiey + ziez + · · · , and ∆ = 2π
Lx

ex + 2π
Ly

ey + 2π
Lz

ez + · · · . We can write UdD,ε(k, t) as

UdD,ε(k, t) =
∑
kmn

ĉ†km |0〉 [UdD,ε(k, t)]mn 〈0| ĉkn . (S14)

Then one can write x̂(t) in the form

x̂(t) = U†dD,ε(k, t) x̂ UdD,ε(k, t)

=
∑
kmn

ĉ†k+∆xex,m
|0〉
[
U†dD,ε(k + ∆xex, t)UdD,ε(k, t)

]
mn
〈0| ĉkn . (S15)

Thus, we obtain average polarization ˆ̄x as

ˆ̄x =
∑
kmn

ĉ†k+∆xex,m
|0〉 [Qx,ε,k(t)]mn 〈0| ĉkn , (S16)

where, we have defined

Qx,ε,k(t) =
I + U†dD,ε(k + ∆xex, t)UdD,ε(k, t)

2
. (S17)

The eigen-problem for ˆ̄x can be solved by considering a Lth
x power of the same, such that 1

(
ˆ̄x(t)

)Lx
=
∑
kmn

ĉ†km |0〉 [Wx,ε,k(t)]mn 〈0| ĉkn , (S18)

where, we have defined the time-dependent Wilson loop operator as

Wx,ε,k(t) = Qx,ε,k+(Lx−1)∆xex(t) · · ·Qx,ε,k+∆xex(t)Qx,ε,k(t) . (S19)

We can write down the eigenvalue equation for Wx,ε,k(t) as

Wx,ε,k(t) |νx,ε,µ(k, t)〉 = e−2πiνx,ε,µ(kj 6=x,t) |νx,ε,µ(k, t)〉 , (S20)

here, µ denotes all the N pseudospin degrees of freedom of the Hamiltonian, constituting differnt branches and number
of first-order branch equals the number of pseudospin degrees of freedom. The eigenstates |νx,ε,µ(k, t)〉 follows the
relation 〈νx,ε,µ1(k, t)|νx,ε,µ2(k, t)〉 = δµ1µ2

2. For each branch µ, we can find the eigenvalues of ˆ̄x(t) by taking a Lth
x

root of e−2πiνx,ε,µ(kj 6=x,t) as 3

ˆ̄x(t) |ψx,ε,µ(xi, kj 6=x, t)〉 = e−i∆x(xi+νx,ε,µ(kj 6=x,t)) |ψx,ε,µ(xi, kj 6=x, t)〉 . (S21)

The significance of νx,ε,µ(kj 6=x, t) can be inferred in way that it bespeaks a relative motion of a particle by
2νx,ε,µ(kj 6=x, t) with respect to xi in the x-direction from time t = 0 to t. In contrast to the static counterpart,
ˆ̄x(t) portrays the interference of polarization at two different time-instant t = 0 and t [7, 64]. The following interfer-
ence pattern |ψx,ε,µ(xi, kj 6=x, t)〉 is given as

|ψx,ε,µ(xi, kj 6=x, t)〉 =
1√
Lx

∑
kxm

ĉ†km |0〉 e
ikxxi [νx,ε,µ(k, t)]m . (S22)

1 Here, Qx,ε,k(t)’s are not unitary for a finite Lx. To perform the
numerical calculations, one can do the singular-value decompo-
sition (SVD), such that Qx,ε,k(t) = UDV † and then redefine

Qx,ε,k(t) = UV † [7].
2 Although, the eigenvalues νx,ε,µ(kj 6=x, t) are independent irre-

spective of the choice of the base point kx, but the eigenstates
|νx,ε,µ(k, t)〉 do depend on the choice of the base point.

3 For numerical stability, one might consider taking a logarithm
of the Wilson loop operator to obtain the Wilson Hamiltonian
as HW = i

2π
log

[
Wx,ε,k(t)

]
and then calculate the eigenvalues

and eigenvectors of HW , which coincides with that of the Wilson
loop.
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FIG. S1. We depict the dynamical first-order polarization branch for 2D FSOTSC while the system is in R1, R2, and R3 (see
maintext), in panels (a), (b), and (c) respectively for 0-gap and panels (d), (e), and (f), respectively for π-gap. We repeat the
same for 3D system and show the dynamical first-order polarization as a function of ky and kz, keeping the system in R1, R2,
and R3 in panels (g), (h), and (i), respectively for 0-gap and panels (j), (k), and (l), respectively for π-gap.

A. Dynamical quadrupolar motion

To proceed, out of N branches of νx,ε,µ(kj 6=x, t), we can group them into two separable sets ±νx,ε and the second-
order polarization corresponds to the motion of the particle perpendicular to x-direction within each branch set ±νx,ε.
We choose y-direction to be the perpendicular direction and write down the mean polarization along y-direction as

ˆ̄y =
x̂(t) + ŷ(0)

2

=
∑
kmn

ĉ†k+∆yey,m
|0〉 [Qy,ε,k(t)]mn 〈0| ĉkn (S23)

where, Qy,ε,k(t) is given as

Qy,ε,k(t) =
I + U†dD,ε(k + ∆yey, t)UdD,ε(k, t)

2
. (S24)
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We define the branch projector operator as

P±νx,ε(t) =
∑

xi,kj 6=x,µ∈±νx,ε

|ψx,ε,µ(xi, kj 6=x, t)〉 〈ψx,ε,µ(xi, kj 6=x, t)|

=
∑

kmn,µ∈±νx,ε

ĉ†km |0〉 [νx,ε,µ(k, t)]m [νx,ε,µ(k, t)]
∗
n 〈0| ĉkn . (S25)

We introduce the dynamical branch creation and annihilation operator as

γ̂kεµ(t) =
∑
m

ĉkm [νx,ε,µ(k, t)]
∗
m

γ̂†kεµ(t) =
∑
m

ĉ†km [νx,ε,µ(k, t)]m , (S26)

with
{
γ̂kεµ1

(t), γ̂†
k′εµ2

(t)
}

= δkk′δµ1µ2
. Thus we can rewrite the projector as

P±νx,ε(t) =
∑

k,µ∈±νx,ε

γ̂†kεµ(t) |0〉 〈0| γ̂kεµ(t) . (S27)

Afterwards, we project ˆ̄y to the branch set ±νx,ε to obtain the dynamical second-order polarization as

ˆ̄y±νx,ε(t) = P±νx,ε(t) ˆ̄y(t) P±νx,ε(t)

=
∑

k,µ1,µ2∈±νx,ε

γ̂†k+∆yey,εµ1
(t) |0〉

[
Q
±νx,ε
y,ε,k (t)

]
µ1µ2

〈0| γ̂kεµ2
(t) (S28)

where, we have defined Q
±νx,ε
y,ε,k (t) as[

Q
±νx,ε
y,ε,k (t)

]
µ1µ2

=
∑
mn

[νx,ε,µ1
(k + ∆yey, t)]

∗
m [Qy,ε,k(t)]mn [νx,ε,µ2

(k, t)]n . (S29)

The dynamical second-order polarization (dynamical quadrupole) problem can be solved by considering Lth
y power

of ˆ̄y±νx,ε(t), such that (
ˆ̄y±νx,ε(t)

)Ly
=

∑
k,µ1,µ2∈±νx,ε

γ†kεµ1
(t) |0〉

[
W
±νx,ε
y,ε,k (t)

]
µ1µ2

〈0| γkεµ2(t) , (S30)

where, the time dependent first-order nested Wilson loop W
±νx,ε
y,ε,k (t) is given as

W
±νx,ε
y,ε,k (t) = Q

±νx,ε
y,ε,k+(Ly−1)∆yey

(t) · · ·Q±νx,εy,ε,k+∆yey
(t)Q

±νx,ε
y,ε,k (t) . (S31)

One can procure differnt quadrupole branches µ′, by diagonalizing W
±νx,ε
y,ε,k (t) as

W
±νx,ε
y,ε,k (t) |ν±νx,εy,ε,µ′ (k, t)〉 = e

−2πiν
±νx,ε
y,ε,µ′ (kj 6=y,t) |ν±νx,εy,ε,µ′ (k, t)〉 . (S32)

The dynamical quadrupolar eigenproblem can be solved by procuring a Lth
y root of e

−2πiν
±νx,ε
y,ε,µ′ (kj 6=y,t) as

ˆ̄y±νx,ε(t) |χ±νx,εy,ε,µ′(yi, kj 6=y, t)〉 = e
−i∆y

(
yi+ν

±νx,ε
y,ε,µ′ (kj 6=y,t)

)
|χ±νx,εy,ε,µ′(yi, kj 6=y, t)〉 , (S33)

with the dynamical quadrupolar interference pattern is given by

|χ±νx,εy,ε,µ′(yi, kj 6=y, t)〉 =
1√
Ly

∑
ky,µ∈±νx,ε

γ̂†kµ |0〉 e
ikyyi

[
ν
±νx,ε
y,ε,µ′ (k, t)

]
µ
. (S34)

Limited to a 2D system, one can obtain the average quadrupolar motion as

〈ν±νx,εy,ε,µ′ 〉(t) =
1

Lx

∑
kx

ν
±νx,ε
y,ε,µ′ (kx, t) . (S35)



vi

FIG. S2. We demonstrate the dynamical second-order polarization branch for 3D FTOTSC while the system is in R1, R2, and
R3. Here, panels (a), (b), and (c), respectively correspond to 0-gap and (d), (e), and (f), respectively refer to the π-gap.

B. Dynamical octupolar motion

We have obtained N
2 numbers of ν

±νx,ε
y,ε,µ′ (kj 6=y, t) branches denoted by µ′ within each branch ±νx,ε, out of which, we

construct two groups by identifying them as ±ν±νx,εy,ε . We define the quadrupolar branch projector as

P±ν±νx,εy,ε
(t) =

∑
yi,kj 6=y,

µ′∈±ν±νx,εy,ε

|χ±νx,εy,ε,µ′(yi, kj 6=y, t)〉 〈χ
±νx,ε
y,ε,µ′(yi, kj 6=y, t)|

=
∑

kmnµ1µ2,

µ′∈±ν±νx,εy,ε

ĉ†km |0〉 [νx,ε,µ1
(k, t)]m

[
ν
±νx,ε
y,ε,µ′ (k, t)

]
µ1

[νx,ε,µ2
(k, t)]

∗
n

[
ν
±νx,ε
y,ε,µ′ (k, t)

]∗
µ2

〈0| ĉkn . (S36)

We introduce the second-order dynamical branch creation and annihilation operator as

η̂kεµ′ =
∑
mµ

ĉkm [νx,ε,µ(k, t)]
∗
m

[
ν
±νx,ε
y,ε,µ′ (k, t)

]∗
µ
,

η̂†kεµ′ =
∑
mµ

ĉ†km [νx,ε,µ(k, t)]m

[
ν
±νx,ε
y,ε,µ′ (k, t)

]
µ
, (S37)

with
{
η̂kεµ′1(t), η̂†

k′εµ′2
(t)
}

= δkk′δµ′1µ′2 . We can rewrite the projector as

P±ν±νx,εy,ε
(t) =

∑
k,µ′∈±ν±νx,εy,ε

η̂†kεµ′(t) |0〉 〈0| η̂kεµ′(t) . (S38)

The dynamical third-order polarization can be extracted by considering the motion of the particle perpendicular

to both x and y-directions (i.e., along z-direction), projected to the branch set ±ν±νx,εy,ε . The mean polarization along
z-direction is given as

ˆ̄z =
ẑ(t) + ẑ(0)

2

=
∑
kmn

ĉ†k+∆zez,m
|0〉 [Qz,ε,k(t)]mn 〈0| ĉkn , (S39)
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where, Qz,ε,k(t) is given as

Qz,ε,k(t) =
I + U†ε (k + ∆zez, t)Uε(k, t)

2
. (S40)

Subsequently, we project ˆ̄z to the branch set ±ν±νx,εy,ε to obtain the dynamical third-order polarization as

ˆ̄z±ν
±νx,ε
y,ε (t) = P±ν±νx,εy,ε

(t) ˆ̄z(t) P±ν±νx,εy,ε
(t)

=
∑

k,µ′1,µ
′
2∈±ν

±νx,ε
y,ε

η̂†k+∆zez,εµ′1
(t) |0〉

[
Q
±ν±νx,εy,ε

z,ε,k (t)

]
µ′1µ

′
2

〈0| η̂kεµ′2(t) , (S41)

where, we have defined Q
±ν±νx,εy,ε

z,ε,k (t) as[
Q
±ν±νx,εy,ε

z,ε,k (t)

]
µ′1µ

′
2

=
∑

mnµ1µ2

[
ν
±νx,ε
y,ε,µ′1

(k + ∆zez, t)
]∗
µ1

[νx,ε,µ1
(k + ∆zez, t)]

∗
m [Qz,ε,k(t)]mn [νx,ε,µ2

(k, t)]n

[
ν
±νx,ε
y,ε,µ′2

(k, t)
]
µ2

.

(S42)
Afterwards, this dynamical third-order polarization (dynamical octupolar) problem can be solved by considering

Lth
z power of ˆ̄z±ν

±νx,ε
y,ε (t), such that(

ˆ̄z±ν
±νx,ε
y,ε (t)

)Lz
=

∑
k,µ′1,µ

′
2∈±ν

±νx,ε
y,ε

η†kεµ′1
(t) |0〉

[
W
±ν±νx,εy,ε

z,ε,k (t)

]
µ′1µ

′
2

〈0| ηkεµ′2(t) , (S43)

where, the time dependent second-order nested Wilson loop W
±ν±νx,εy,ε

z,ε,k (t) is given as

W
±ν±νx,εy,ε

z,ε,k (t) = Q
±ν±νx,εy,ε

z,ε,k+(Lz−1)∆zez
(t) · · ·Q±ν

±νx,ε
y,ε

z,ε,k+∆zez
(t)Q

±ν±νx,εy,ε

z,ε,k (t) . (S44)

Thus, one can extract different octupolar branches µ′′, by diagonalizing W
±ν±νx,εy,ε

z,ε,k (t) as

W
±ν±νx,εy,ε

z,ε,k (t) |ν±ν
±νx,ε
y,ε

z,ε,µ′′ (k, t)〉 = e
−2πiν

±ν
±νx,ε
y,ε

z,ε,µ′′ (kj 6=z,t) |ν±ν
±νx,ε
y,ε

z,ε,µ′′ (k, t)〉 . (S45)

Therefore, the dynamical quadrupolar eigenproblem can be solved by taking a Lth
z root of e

−2πiν
±ν
±νx,ε
y,ε

z,ε,µ′′ (kj 6=z,t), such
that

ˆ̄z±ν
±νx,ε
y,ε (t) |ζ±ν

±νx,ε
y,ε

z,ε,µ′′ (zi, kj 6=z, t)〉 = e
−2πiν

±ν
±νx,ε
y,ε

z,ε,µ′′ (kj 6=z,t) |ζ±ν
±νx,ε
y,ε

z,ε,µ′′ (zi, kj 6=z, t)〉 . (S46)

with the dynamical octupolar interference pattern is given as

|ζ±ν
±νx,ε
y,ε

z,ε,µ′′ (zi, kj 6=z, t)〉 =
1√
Lz

∑
kz,µ′∈±ν

±νx,ε
y,ε

η̂†kµ′ |0〉 e
ikzzi

[
ν
±ν±νx,εy,ε

z,ε,µ′′ (k, t)

]
µ′

. (S47)

Finally, for a 3D system, one can obtain the average octupolar motion as

〈ν±ν
±νx,ε
y,ε

z,ε,µ′′ 〉(t) =
1

LxLy

∑
kxky

ν
±ν±νx,εy,ε

z,ε,µ′′ (kx, ky, t) . (S48)

S4. QUASI-STATIC MULTIPOLE MOMENTS FROM THE FLOQUET OPERATOR

Here, we briefly discuss the outlines to obtain the quasi-static multipole moments from Floquet operator UdD(k, T )
employing the nested Wilson loop technique [7, 18]. We construct the Wilson loop operator as

Wx,Flq,k = Fx,k+(Lx−1)∆xex(t) · · ·Fx,k+∆xexFx,k , (S49)
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where, we have defined [Fx,k]mn = 〈Ψm(k + ∆xex)|Ψn(k)〉 with |Ψ(k)〉’s being the occupied quasi-energy states of
the Floquet operator UdD(k, T ). The eigenvalue equation for Wx,Flq,k is given as

Wx,Flq,k |νx,Flq,µ(k)〉 = e−2πiνx,Flq,µ(kj 6=x) |νx,Flq,µ(k)〉 , (S50)

where, νx,Flq,µ(kj 6=x) represents the first-order Wannier sector polarization. The number of branches for νx,Flq,µ(kj 6=x)

is N
2 unlike the dynamical first-order polarization whose number is equal to the total number of degrees (i.e., N)

present in the Hamiltonian. We can divide the first-order polarization in two sectors as ±νx. Within each branch
±νx, one can construct the first-order nested Wilson loop as [7, 18]

W±νxy,Flq,k = F±νxy,k+(Ly−1)∆yey
· · ·F±νxy,k+∆yey

F±νxy,k , (S51)

where, F±νxy,k is defined as

[
F±νxy,k

]
µ1µ2

=
∑
mn

[νx,Flq,µ1
(k + ∆yey)]

∗
m [Fy,k]mn [νx,Flq,µ2

(k)]n , (S52)

where, we have defined [Fy,k]mn = 〈Ψm(k + ∆yey)|Ψn(k)〉. The eigenvalue equation for W±νxy,Flq,k is given as

W±νxy,Flq,k |ν
±νx
y,Flq,µ′(k)〉 = e

−2πiν±νx
y,Flq,µ′ (kj 6=y) |ν±νxy,Flq,µ′(k)〉 . (S53)

The number of branch ν±νxy,Flq,µ′(kj 6=y) for the quasi-static second-order polarization is half of that of the dynamical

second-order polarization. Limited to 2D, the average second-order polarization (first-order nested polarization) for
the µ′th branch is given as

〈ν±νxy,Flq,µ′〉 =
1

Lx

∑
kx

ν±νxy,Flq,µ′(kx) . (S54)

We proceed further and construct the second-order nested Wilson loop in the sector ±ν±νxy,Flq,µ′(kj 6=y) as [18]

W
±ν±νxy

z,Flq,k = F
±ν±νxy

z,k+(Lz−1)∆zez
· · ·F±ν

±νx
y

z,k+∆zez
F
±ν±νxy

z,k , (S55)

where, we have introduced F
±ν±νxy

z,k as

[
F
±ν±νxy

z,k

]
µ′1µ

′
2

=
∑

mnµ1µ2

[
ν±νxy,Flq,µ′1

(k + ∆zez)
]∗
µ1

[νx,Flq,µ1
(k + ∆zez)]

∗
m [Fz,k]mn [νx,Flq,µ2

(k)]n

[
ν±νxy,Flq,µ′2

(k)
]
µ2

,

(S56)

here, we define [Fz,k]mn = 〈Ψm(k + ∆zez)|Ψn(k)〉. The eigenvalue equation for W
±ν±νxy

z,Flq,k is given as

W
±ν±νxy

z,Flq,k |ν
±ν±νxy

z,Flq,µ′′(k)〉 = e
−2πiν

±ν±νxy

z,Flq,µ′′ (kj 6=z) |ν±ν
±νx
y

z,Flq,µ′′(k)〉 . (S57)

Therefore, the third-order polarization is characterized by ν
±ν±νxy

z,Flq,µ′′(kj 6=z). For a 3D system, we obtain the average

third-order polarization for µ
′′th branch as

〈ν±ν
±νx
y

z,Flq,µ′′〉 =
1

LxLy

∑
kx,ky

ν
±ν±νxy

z,Flq,µ′′(kx, ky) . (S58)

Note that, this quasi-static multipole moment can only capture the topological character of 0-quasi-energy modes.
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S5. REALIZATION OF FLOQUET SECOND-ORDER TOPOLOGICAL SUPERCONDUCTORS IN 3D
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FIG. S3. (a) The phase diagram is depicted in the parameter space J1 and J2 for 3D FSOTSC. (b) The LDOS is demonstrated
as a function of the system dimension (Lx × Ly) for quasienergy Em = 0,±π while the system is in R4. The quasienergy
spectra, considering a finite (rod) geometry, are shown for R1, R2, R3, and R4 in panels (c), (d), (e), and (f) ((g), (h), (i), and
(j)), respectively. See text for discussion. We choose the same parameter set for (J1, J2) as used in Fig. 2 of the main text. We
set ∆1 = 1.0.

The model introduced in the main text to realize the 3D FTOTSC can also attain the 3D FSOTSC phase. To
accomplish the same, we set the amplitude of the d3z2−r2 pairing to zero (i.e., ∆2 = 0.0) and retain only the dx2−y2
pairing. However, the phase diagram remains the same due to the absence of the pairing term in the phase boundary
equation (see Eq. (4) of the main text). We show the phase diagram in the J1 − J2 plane in Fig. S3 (a). The
phase diagram is divided into four parts - region-1 (R1), region-2 (R2), region-3 (R3), and region-4 (R4). The
trademark of 3D FTOTSC is the presence of Majorana hinge modes (MHMs) along the hinges of the system. We
depict the footprints of the MHMs in the local density of states (LDOS) (see Fig. S3 (b)) for Em = 0,±π, while the
system is in R4. The quasienergy spectra Em, considering open boundary condition (OBC) along all three directions,
are shown in Figs. S3 (c), (d), (e), and (f) while the system is in R1, R2, R3, and R4, respectively. To obtain the
information regarding the dispersive nature of the MHMs, we resort to rod geometry i.e., OBC along two directions (x
and y-direction) and periodic boundary condition (PBC) along the remaining direction (z-direction) and show the
corresponding quasienergy spectra as a function of kz in Figs. S3 (g), (h), (i), and (j) when the system is in R1, R2,
R3, and R4, respectively.

Similar to the 2D FSOTSC, the 3D FSOTSC can be topologically characterized by the average quadrupolar motion
except that we need to investigate the said quantity at a particular kz. From Fig. S3 (g)-(j), it is evident that
the 0-MHMs (crosses through Em = 0) and the π-MHMs (crosses through Em = π) cross the corresponding quasi-
energy at kz = π and kz = 0, respectively. Hence, 0-MHMs (π-MHMs) can be topologically characterized by

〈ν+νx,ε
y,ε,µ′ (kz = π)〉(t) (〈ν+νx,ε

y,ε,µ′ (kz = 0)〉(t)). We depict 〈ν+νx,ε
y,ε,µ′ (kz = 0)〉(t) (〈ν+νx,ε

y,ε,µ′ (kz = π)〉(t)) in Figs. S4 (a), (b),

(c), and (d) ((e), (f), (g), and (h)) while the system is in R1, R2, R3, and R4, respectively. We obtain 0-MHMs in

R1 and R4 (see Figs. S3 (g) and (j)). Therefore, in these region 〈ν+νx,ε
y,ε,µ′ (kz = π)〉(t) crosses 0.5 (mod 1) as shown

in Figs. S4 (e) and (h)). Similarly, the π-MHMs appear in R3 and R4 (see Figs. S3 (i) and (j)) and in these region

〈ν+νx,ε
y,ε,µ′ (kz = 0)〉(t) crosses 0.5 (mod 1) (see Figs. S4 (c) and (d)).
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FIG. S4. We demonstrate the average quadrupolar motion 〈ν+νx,εy,ε,µ′ (kz)〉(t) for 3D SOTSC at kz = 0 in panels (a), (b), (c), and

(d), while the system is in R1, R2, and R4, respectively. We repeat the same in panels (e)-(h) but considering kz = π. Here,

blue and red dots represent 〈ν+νx,εy,ε,µ′ (kz)〉(t) arising from 0 and π-gap, respectively as discussed in the text.


	Dynamical construction of quadrupolar and octupolar topological superconductors
	Abstract
	I Introduction
	II Generation of anomalous Majorana modes
	III Topological characterization of FHOTSC phase
	A  Dynamical quadrupole moment
	B Dynamical octupole moment

	IV Summary and conclusions
	 Acknowledgments

	 References
	S1 Construction of Floquet operator
	S2 Periodized evolution operators
	S3 Dynamical multipole moments
	A Dynamical quadrupolar motion
	B Dynamical octupolar motion

	S4 Quasi-static multipole moments from the Floquet operator
	S5 Realization of Floquet second-order topological superconductors in 3D


