Dynamical Degrees of Birational transformations of projective surfaces

Jérémy Blanc
University of Basel

17.04.15-Gargnano

Joint work with S. Cantat (Rennes)

In this talk，we work with projective algebraic varieties（mostly smooth surfaces），defined over an algebraically closed field \mathbf{k} ．$\lambda(f)=$

\qquad
\qquad

\qquad

Detinition

 9
Dynamical degree

In this talk, we work with projective algebraic varieties (mostly smooth surfaces), defined over an algebraically closed field \mathbf{k}.

Definition

Let X be a smooth projective surface, $f \in \operatorname{Bir}(X)$. The dynamical degree $\lambda(f) \in \mathbb{R}$ of f is given by

$$
\lambda(f)=\lim _{n \rightarrow \infty}\left\|\left(f^{n}\right)_{*}\right\|^{1 / n} ;
$$

where $\left(f^{n}\right)_{*} \in \operatorname{End}\left(\mathrm{NS}_{\mathbb{R}}(X)\right)$ is the action induced by $f^{n} \in \operatorname{Bir}(X)$.
Remark
For each ample divisor D, we have
In particular, if $X=\mathbb{P}^{2}$, then $\lambda(f)=\lim \operatorname{deg}\left(f^{n}\right)^{1 / n}$
-

Dynamical degree

In this talk，we work with projective algebraic varieties（mostly smooth surfaces），defined over an algebraically closed field \mathbf{k} ．

Definition

Let X be a smooth projective surface，$f \in \operatorname{Bir}(X)$ ．The dynamical degree $\lambda(f) \in \mathbb{R}$ of f is given by

$$
\lambda(f)=\lim _{n \rightarrow \infty}\left\|\left(f^{n}\right)_{*}\right\|^{1 / n} ;
$$

where $\left(f^{n}\right)_{*} \in \operatorname{End}\left(\mathrm{NS}_{\mathbb{R}}(X)\right)$ is the action induced by $f^{n} \in \operatorname{Bir}(X)$ ．

Remark

For each ample divisor D ，we have

$$
\lambda(f)=\lim _{n \rightarrow \infty}\left(D \cdot\left(f^{n}\right)_{*} D\right)^{1 / n},
$$

In particular，if $X=\mathbb{P}^{2}$ ，then $\lambda(f)=\lim \operatorname{deg}\left(f^{n}\right)^{1 / n}$ ．

- The dynamical degree is invariant under conjugation: if $f \in \operatorname{Bir}(X)$ and $g: X \rightarrow Y$ is birational, then $\lambda(f)=\lambda\left(g f g^{-1}\right)$.
- The dynamical degree is invariant under conjugation: if $f \in \operatorname{Bir}(X)$ and $g: X \rightarrow Y$ is birational, then $\lambda(f)=\lambda\left(g f g^{-1}\right)$.
- When $\mathbf{k}=\mathbb{C}, \log (\lambda(f))$ is an upper bound for the topological entropy of $f: X(\mathbb{C}) \rightarrow X(\mathbb{C})$ and is often equal to it.
- The dynamical degree is invariant under conjugation: if $f \in \operatorname{Bir}(X)$ and $g: X \rightarrow Y$ is birational, then $\lambda(f)=\lambda\left(g f g^{-1}\right)$.
- When $\mathbf{k}=\mathbb{C}, \log (\lambda(f))$ is an upper bound for the topological entropy of $f: X(\mathbb{C}) \rightarrow X(\mathbb{C})$ and is often equal to it.
- The dynamical degree measures in some sense the complexity of the dynamics of X.
- The dynamical degree is invariant under conjugation: if $f \in \operatorname{Bir}(X)$ and $g: X \rightarrow Y$ is birational, then $\lambda(f)=\lambda\left(g f g^{-1}\right)$.
- When $\mathbf{k}=\mathbb{C}, \log (\lambda(f))$ is an upper bound for the topological entropy of $f: X(\mathbb{C}) \rightarrow X(\mathbb{C})$ and is often equal to it.
- The dynamical degree measures in some sense the complexity of the dynamics of X.
■ A feature of our results may be summarized by the following slogan:
- The dynamical degree is invariant under conjugation: if $f \in \operatorname{Bir}(X)$ and $g: X \rightarrow Y$ is birational, then $\lambda(f)=\lambda\left(g f g^{-1}\right)$.
■ When $\mathbf{k}=\mathbb{C}, \log (\lambda(f))$ is an upper bound for the topological entropy of $f: X(\mathbb{C}) \rightarrow X(\mathbb{C})$ and is often equal to it.
- The dynamical degree measures in some sense the complexity of the dynamics of X.
- A feature of our results may be summarized by the following slogan: Precise knowledge on $\lambda(f)$ provides useful information on the conjugacy class of f.

Let $f \in \operatorname{Bir}(X)$ (X a smooth projective surface).

■ Diller-Favre: By blowing-ups $Y \rightarrow X$, one can conjugate f to $g \in \operatorname{Bir}(Y)$, such that $\left(g^{n}\right)_{*}=\left(g_{*}\right)^{n}$ for each $n \geq 0(g$ is called algebraically stable).

- Hence, $\lambda(f)=\lambda(g)$ is the eigenvalue of a matrix defined over \mathbb{Z}. More precisely, one gets:
- A Pisot number is an algebraic integer $\lambda \in] 1, \infty[$ whose other Galois conjugates lie in the open unit disk.

Let $f \in \operatorname{Bir}(X)$ (X a smooth projective surface).

- Diller-Favre: By blowing-ups $Y \rightarrow X$, one can conjugate f to $g \in \operatorname{Bir}(Y)$, such that $\left(g^{n}\right)_{*}=\left(g_{*}\right)^{n}$ for each $n \geq 0$ (g is called algebraically stable).
- Hence, $\lambda(f)=\lambda(g)$ is the eigenvalue of a matrix defined over \mathbb{Z}. More precisely, one gets:
- A Pisot number is an algebraic integer $\lambda \in] 1, \infty[$ whose other Galois conjugates lie in the open unit disk.

Let $f \in \operatorname{Bir}(X)$ (X a smooth projective surface).
■ Diller-Favre: By blowing-ups $Y \rightarrow X$, one can conjugate f to $g \in \operatorname{Bir}(Y)$, such that $\left(g^{n}\right)_{*}=\left(g_{*}\right)^{n}$ for each $n \geq 0$ (g is called algebraically stable).
■ Hence, $\lambda(f)=\lambda(g)$ is the eigenvalue of a matrix defined over \mathbb{Z}. More precisely, one gets:

- A Pisot number is an algebraic integer $\lambda \in] 1, \infty[$ whose other Galois conjugates lie in the open unit disk.

Let $f \in \operatorname{Bir}(X)$ (X a smooth projective surface).
■ Diller-Favre: By blowing-ups $Y \rightarrow X$, one can conjugate f to $g \in \operatorname{Bir}(Y)$, such that $\left(g^{n}\right)_{*}=\left(g_{*}\right)^{n}$ for each $n \geq 0$ (g is called algebraically stable).
■ Hence, $\lambda(f)=\lambda(g)$ is the eigenvalue of a matrix defined over \mathbb{Z}. More precisely, one gets:

Theorem (Diller-Favre 2001)

Le f be a birational transformation of a projective surface. If $\lambda(f)$ is different from 1, then $\lambda(f)$ is a Salem or a Pisot number.

- A Pisot number is an algebraic integer $\lambda \in] 1, \infty[$ whose other Galois conjugates lie in the open unit disk.

Let $f \in \operatorname{Bir}(X)$ (X a smooth projective surface).
■ Diller-Favre: By blowing-ups $Y \rightarrow X$, one can conjugate f to $g \in \operatorname{Bir}(Y)$, such that $\left(g^{n}\right)_{*}=\left(g_{*}\right)^{n}$ for each $n \geq 0$ (g is called algebraically stable).

- Hence, $\lambda(f)=\lambda(g)$ is the eigenvalue of a matrix defined over \mathbb{Z}. More precisely, one gets:

Theorem (Diller-Favre 2001)

Le f be a birational transformation of a projective surface. If $\lambda(f)$ is different from 1, then $\lambda(f)$ is a Salem or a Pisot number.

- A Pisot number is an algebraic integer $\lambda \in] 1, \infty[$ whose other Galois conjugates lie in the open unit disk.
- A Salem number is an algebraic integer $\lambda \in] 1, \infty[$ whose other Galois conjugates are in the closed unit disk, with at least one on the boundary.

Let $f \in \operatorname{Bir}(X)$ (X a smooth projective surface).

- Diller-Favre: By blowing-ups $Y \rightarrow X$, one can conjugate f to $g \in \operatorname{Bir}(Y)$, such that $\left(g^{n}\right)_{*}=\left(g_{*}\right)^{n}$ for each $n \geq 0$ (g is called algebraically stable).
■ Hence, $\lambda(f)=\lambda(g)$ is the eigenvalue of a matrix defined over \mathbb{Z}. More precisely, one gets:

Theorem (Diller-Favre 2001)

Le f be a birational transformation of a projective surface. If $\lambda(f)$ is different from 1, then $\lambda(f)$ is a Salem or a Pisot number.

- A Pisot number is an algebraic integer $\lambda \in] 1, \infty[$ whose other Galois conjugates lie in the open unit disk.
- A Salem number is an algebraic integer $\lambda \in] 1, \infty[$ whose other Galois conjugates are in the closed unit disk, with at least one on the boundary.
- A Pisot number is an algebraic integer $\lambda \in] 1, \infty[$ whose other Galois conjugates lie in the open unit disk.

Example

Reciprocal quadratic integers >1 (solutions of $x^{2}+1=t x, t \in \mathbb{Z}$).
The plastic number, or padovan number, $\lambda_{P} \simeq 1.324717$, root of $x^{3}=x+1$. This is the smallest Pisot number.

- A Pisot number is an algebraic integer $\lambda \in] 1, \infty[$ whose other Galois conjugates lie in the open unit disk.

Example Integers $d \geq 2$.

- A Pisot number is an algebraic integer $\lambda \in] 1, \infty[$ whose other Galois conjugates lie in the open unit disk.

```
Example
Integers \(d \geq 2\).
Reciprocal quadratic integers \(>1\) (solutions of \(x^{2}+1=t x, t \in \mathbb{Z}\) ).
```

- A Pisot number is an algebraic integer $\lambda \in] 1, \infty[$ whose other Galois conjugates lie in the open unit disk.
\qquad
Example
Integers $d \geq 2$.
Reciprocal quadratic integers >1 (solutions of $x^{2}+1=t x, t \in \mathbb{Z}$).
$x^{3}=x+1$. This is the smallest Pisot number.

```
```

Example

```
Example
Integers d\geq2.
Integers d\geq2.
Reciprocal quadratic integers > 1 (solutions of }\mp@subsup{x}{}{2}+1=tx,t\in\mathbb{Z}\mathrm{ ).
Reciprocal quadratic integers > 1 (solutions of }\mp@subsup{x}{}{2}+1=tx,t\in\mathbb{Z}\mathrm{ ).
The plastic number, or padovan number, }\mp@subsup{\lambda}{P}{}\simeq1.324717, root of
The plastic number, or padovan number, }\mp@subsup{\lambda}{P}{}\simeq1.324717, root of
x}=x+1.This is the smallest Pisot number.
```

x}=x+1.This is the smallest Pisot number.

```

\(\qquad\)

\section*{,}

- A Pisot number is an algebraic integer \(\lambda \in] 1, \infty[\) whose other Galois conjugates lie in the open unit disk.
```

Example
Integers $d \geq 2$.
Reciprocal quadratic integers >1 (solutions of $x^{2}+1=t x, t \in \mathbb{Z}$). The plastic number, or padovan number, $\lambda_{P} \simeq 1.324717$, root of $x^{3}=x+1$. This is the smallest Pisot number.

```

The set \(\mathrm{Pis} \subset \mathbb{R}\) of Pisot numbers is closed.
- A Pisot number is an algebraic integer \(\lambda \in] 1, \infty[\) whose other Galois conjugates lie in the open unit disk.
```

Example
Integers $d \geq 2$.
Reciprocal quadratic integers >1 (solutions of $x^{2}+1=t x, t \in \mathbb{Z}$). The plastic number, or padovan number, $\lambda_{P} \simeq 1.324717$, root of $x^{3}=x+1$. This is the smallest Pisot number.

```

The set Pis \(\subset \mathbb{R}\) of Pisot numbers is closed.
The smallest accumulation point is the golden mean \(\lambda_{G}=(1+\sqrt{5}) / 2\). All Pisot numbers between \(\lambda_{P}\) and \(\lambda_{G}\) have been listed.
- A Pisot number is an algebraic integer \(\lambda \in] 1, \infty[\) whose other Galois conjugates lie in the open unit disk.
```

Example
Integers $d \geq 2$.
Reciprocal quadratic integers >1 (solutions of $x^{2}+1=t x, t \in \mathbb{Z}$). The plastic number, or padovan number, $\lambda_{P} \simeq 1.324717$, root of $x^{3}=x+1$. This is the smallest Pisot number.

```

The set Pis \(\subset \mathbb{R}\) of Pisot numbers is closed.
The smallest accumulation point is the golden mean \(\lambda_{G}=(1+\sqrt{5}) / 2\). All Pisot numbers between \(\lambda_{P}\) and \(\lambda_{G}\) have been listed.
－A Salem number is an algebraic integer \(\lambda \in] 1, \infty[\) whose other Galois conjugates are in the closed unit disk，with at least one on the boundary．

Example
The Lehmer number，\(\lambda_{L} \simeq 1.176280\) ，unique root \(>1\) of the irreducible
polynomial

Our present knowledge of Salem numbers is weaker than for Pisot numhers
- A Salem number is an algebraic integer \(\lambda \in] 1, \infty[\) whose other Galois conjugates are in the closed unit disk, with at least one on the boundary.

\section*{Example}

The Lehmer number, \(\lambda_{L} \simeq 1.176280\), unique root \(>1\) of the irreducible polynomial
\[
x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1
\]

Our present knowledge of Salem numbers is weaker than for Pisot numbers.
- A Salem number is an algebraic integer \(\lambda \in] 1, \infty[\) whose other Galois conjugates are in the closed unit disk, with at least one on the boundary.

\section*{Example}

The Lehmer number, \(\lambda_{L} \simeq 1.176280\), unique root \(>1\) of the irreducible polynomial
\[
x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1
\]

Our present knowledge of Salem numbers is weaker than for Pisot numbers.
Conjecturally, the infimum of \(S a l \subset \mathbb{R}\) is larger than 1 , and should be equal to \(\lambda_{L}\)
Every Pisot number is the limit of a sequence of Salem numbers.
- A Salem number is an algebraic integer \(\lambda \in] 1, \infty[\) whose other Galois conjugates are in the closed unit disk, with at least one on the boundary.

\section*{Example}

The Lehmer number, \(\lambda_{L} \simeq 1.176280\), unique root \(>1\) of the irreducible polynomial
\[
x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1
\]

Our present knowledge of Salem numbers is weaker than for Pisot numbers.
Conjecturally, the infimum of \(\mathrm{Sal} \subset \mathbb{R}\) is larger than 1 , and should be equal to \(\lambda_{L}\).
Every Pisot number is the limit of a sequence of Salem numbers.
- A Salem number is an algebraic integer \(\lambda \in] 1, \infty[\) whose other Galois conjugates are in the closed unit disk, with at least one on the boundary.

\section*{Example}

The Lehmer number, \(\lambda_{L} \simeq 1.176280\), unique root \(>1\) of the irreducible polynomial
\[
x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1
\]

Our present knowledge of Salem numbers is weaker than for Pisot numbers.
Conjecturally, the infimum of \(\mathrm{Sal} \subset \mathbb{R}\) is larger than 1 , and should be equal to \(\lambda_{L}\).
Every Pisot number is the limit of a sequence of Salem numbers.

\section*{Example}

Let \(d \in \mathbb{N}\), and \(f \in \operatorname{Aut}\left(\mathbb{A}^{2}\right)\) given by \(f:(x, y) \rightarrow\left(y+x^{d}, x\right)\). Then, \(\operatorname{deg}\left(f^{n}\right)=d^{n}\) for each \(n \geq 1\), so \(\lambda(f)=d\).

\section*{Example}


\section*{Example}

Let \(d \in \mathbb{N}\), and \(f \in \operatorname{Aut}\left(\mathbb{A}^{2}\right)\) given by \(f:(x, y) \rightarrow\left(y+x^{d}, x\right)\). Then, \(\operatorname{deg}\left(f^{n}\right)=d^{n}\) for each \(n \geq 1\), so \(\lambda(f)=d\).

\section*{Example}

Let \(f \in \operatorname{Bir}\left(\mathbb{A}^{2}\right)\) be given by \(f:(x, y) \rightarrow\left(x^{a} y^{b}, x^{c} y^{d}\right)\), where \(A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}(2, \mathbb{Z})\). Then, \(\lambda(f)\) is the highest modulus of the eigenvalues of \(A\) in \(\mathbb{C}\). This yields all reciprocal quadratic integers.

Example (Bedford-Kim-McMullen)
There exists a projective surface \(X\), obtained by blowing-up 10 points of \(\mathbb{P}^{2}\), such that Aut \((X)\) contains an element \(f\) with \(\lambda(f)=\lambda_{L}\) ( L ehmer number).
The same holds on some K3 surfaces.

\section*{Example}

Let \(d \in \mathbb{N}\), and \(f \in \operatorname{Aut}\left(\mathbb{A}^{2}\right)\) given by \(f:(x, y) \rightarrow\left(y+x^{d}, x\right)\). Then, \(\operatorname{deg}\left(f^{n}\right)=d^{n}\) for each \(n \geq 1\), so \(\lambda(f)=d\).

\section*{Example}

Let \(f \in \operatorname{Bir}\left(\mathbb{A}^{2}\right)\) be given by \(f:(x, y) \rightarrow\left(x^{a} y^{b}, x^{c} y^{d}\right)\), where
\(A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}(2, \mathbb{Z})\). Then, \(\lambda(f)\) is the highest modulus of the eigenvalues of \(A\) in \(\mathbb{C}\). This yields all reciprocal quadratic integers.

\section*{Example (Bedford-Kim-McMullen)}

There exists a projective surface \(X\), obtained by blowing-up 10 points of \(\mathbb{P}^{2}\), such that \(\operatorname{Aut}(X)\) contains an element \(f\) with \(\lambda(f)=\lambda_{L}\) (Lehmer number).
The same holds on some K3 surfaces.
```

Theorem (Diller-Favre 2001)
If f is an automorphism of a projective surface, then $\lambda(f)$ is either 1 , reciprocical quadratic or a Salem number.

```

\section*{Theorem (Diller-Favre 2001)}

If \(f\) is an automorphism of a projective surface, then \(\lambda(f)\) is either 1 , reciprocical quadratic or a Salem number.
```

Theorem (McMullen 2007)
If f}\mathrm{ is an automorphism of a projective surface, }\lambda(f)=1\mathrm{ or }\lambda(f)\geq\mp@subsup{\lambda}{L}{}\mathrm{ .

```


The result is false if \(\lambda(f)=1\) or if \(\lambda(f)\) is quadratic: there are examples conjugate to automorphisms and examples which are not.

\section*{Theorem (Diller-Favre 2001)}

If \(f\) is an automorphism of a projective surface, then \(\lambda(f)\) is either 1 , reciprocical quadratic or a Salem number.

\section*{Theorem (McMullen 2007)}

If \(f\) is an automorphism of a projective surface, \(\lambda(f)=1\) or \(\lambda(f) \geq \lambda_{L}\).

\section*{Theorem (B.-Cantat 2013)}

If \(f\) is a birational transformation of a surface and \(\lambda(f)\) is a Salem number, then \(f\) is conjugate to an automorphism of a projective surface.

\section*{The result is false if \(\lambda(f)=1\) or if \(\lambda(f)\) is quadratic: there are examples} conjugate to automorphisms and examples which are not.

\section*{Theorem (Diller-Favre 2001)}

If \(f\) is an automorphism of a projective surface, then \(\lambda(f)\) is either 1 , reciprocical quadratic or a Salem number.

\section*{Theorem (McMullen 2007)}

If \(f\) is an automorphism of a projective surface, \(\lambda(f)=1\) or \(\lambda(f) \geq \lambda_{L}\).

\section*{Theorem (B.-Cantat 2013)}

If \(f\) is a birational transformation of a surface and \(\lambda(f)\) is a Salem number, then \(f\) is conjugate to an automorphism of a projective surface.

The result is false if \(\lambda(f)=1\) or if \(\lambda(f)\) is quadratic: there are examples conjugate to automorphisms and examples which are not.

If \(f\) is a birational transformation of a surface,

\section*{Theorem (Diller-Favre 2001)}

If \(f\) is an automorphism of a projective surface, then \(\lambda(f)\) is either 1 , reciprocical quadratic or a Salem number.

\section*{Theorem (McMullen 2007)}

If \(f\) is an automorphism of a projective surface, \(\lambda(f)=1\) or \(\lambda(f) \geq \lambda_{L}\).

\section*{Theorem (B.-Cantat 2013)}

If \(f\) is a birational transformation of a surface and \(\lambda(f)\) is a Salem number, then \(f\) is conjugate to an automorphism of a projective surface.

The result is false if \(\lambda(f)=1\) or if \(\lambda(f)\) is quadratic: there are examples conjugate to automorphisms and examples which are not.

\section*{Corollary (Gap property)}

If \(f\) is a birational transformation of a surface, \(\lambda(f)=1\) or \(\lambda(f) \geq \lambda_{L}\).

\title{
Corollary (Gap property) \\ If \(f\) is a birational transformation of a surface, \(\lambda(f)=1\) or \(\lambda(f) \geq \lambda_{L}\).
}

\section*{This has some applications.}

\title{
Corollary (Gap property) \\ If \(f\) is a birational transformation of a surface, \(\lambda(f)=1\) or \(\lambda(f) \geq \lambda_{L}\).
}

This has some applications.
is a finite group.


\section*{Corollary (Gap property)}

If \(f\) is a birational transformation of a surface, \(\lambda(f)=1\) or \(\lambda(f) \geq \lambda_{L}\).
This has some applications.
Corollary
If \(f \in \operatorname{Bir}\left(\mathbb{P}^{2}\right)\) is such that \(\lambda(f)>1\), its centraliser \(C(f)\) satisfies that
is a finite group.
\[
C(f) /\langle f\rangle
\]


\section*{Corollary (Gap property)}

If \(f\) is a birational transformation of a surface, \(\lambda(f)=1\) or \(\lambda(f) \geq \lambda_{L}\).
This has some applications.

\section*{Corollary}

If \(f \in \operatorname{Bir}\left(\mathbb{P}^{2}\right)\) is such that \(\lambda(f)>1\), its centraliser \(C(f)\) satisfies that
\[
C(f) /\langle f\rangle
\]
is a finite group.

\section*{Corollary}

Two elements \(f, g \in \operatorname{Bir}\left(\mathbb{P}^{2}\right)\) with \(\lambda(f), \lambda(g)>1\) are conjugate iff they are conjugate by an element of degree \(\leq(2 \max \{\operatorname{deg} f, \operatorname{deg}\}\})^{57}\).

If \(X\) is a surface, we write \(\Lambda(X)=\{\lambda(f) \mid f \in \operatorname{Bir}(X)\}\).
Theorem
Let \(X\) be a projective surface that is not rational. Then
II \(\Lambda(X)=\{1\}\) if \(X\) is not birationally equivalent to an abelian surface, a K3 surface, or an Enriques surface;
\(\wedge(X) \backslash\{1\}\) is made of quadratic integers and of Salem numbers of degree at most 6 (resp. 22, resp. 10) if \(X\) is an abelian surface (resp. a K3 surface, resp. an Enriques surface).
The union of all dynamical spectra \(\Lambda(X)\), for all surfaces which are not rational, is a closed discrete subset of the real line.

Non-rational surfaces

If \(X\) is a surface, we write \(\Lambda(X)=\{\lambda(f) \mid f \in \operatorname{Bir}(X)\}\).

\section*{Theorem}

Let \(X\) be a projective surface that is not rational. Then

If \(X\) is a surface, we write \(\Lambda(X)=\{\lambda(f) \mid f \in \operatorname{Bir}(X)\}\).

\section*{Theorem}

Let \(X\) be a projective surface that is not rational. Then
\(1 \Lambda(X)=\{1\}\) if \(X\) is not birationally equivalent to an abelian surface, a K3 surface, or an Enriques surface;


If \(X\) is a surface, we write \(\Lambda(X)=\{\lambda(f) \mid f \in \operatorname{Bir}(X)\}\).

\section*{Theorem}

Let \(X\) be a projective surface that is not rational. Then
\(1 \Lambda(X)=\{1\}\) if \(X\) is not birationally equivalent to an abelian surface, a K3 surface, or an Enriques surface;
\(2 \wedge(X) \backslash\{1\}\) is made of quadratic integers and of Salem numbers of degree at most 6 (resp. 22, resp. 10) if \(X\) is an abelian surface (resp. a K3 surface, resp. an Enriques surface).
(When char \((\mathbf{k})=0\), the bounds are \(4,20,10\) instead of \(6,22,12\).)

If \(X\) is a surface, we write \(\Lambda(X)=\{\lambda(f) \mid f \in \operatorname{Bir}(X)\}\).

\section*{Theorem}

Let \(X\) be a projective surface that is not rational. Then
\(1 \wedge(X)=\{1\}\) if \(X\) is not birationally equivalent to an abelian surface, a K3 surface, or an Enriques surface;
\(2 \wedge(X) \backslash\{1\}\) is made of quadratic integers and of Salem numbers of degree at most 6 (resp. 22, resp. 10) if \(X\) is an abelian surface (resp. a K3 surface, resp. an Enriques surface).
3 The union of all dynamical spectra \(\Lambda(X)\), for all surfaces which are not rational, is a closed discrete subset of the real line.
(When char \((\mathbf{k})=0\), the bounds are 4, 20, 10 instead of \(6,22,12\).)
The interesting case is then to study \(\Lambda\left(\mathbb{P}^{2}\right)\), which is not discrete (every Pisot number in \(\Lambda\left(\mathbb{P}^{2}\right)\) is in fact an accumulation point)
\(10 / 13\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)

If \(X\) is a surface, we write \(\Lambda(X)=\{\lambda(f) \mid f \in \operatorname{Bir}(X)\}\).

\section*{Theorem}

Let \(X\) be a projective surface that is not rational. Then
\(1 \Lambda(X)=\{1\}\) if \(X\) is not birationally equivalent to an abelian surface, a K3 surface, or an Enriques surface;
\(2 \Lambda(X) \backslash\{1\}\) is made of quadratic integers and of Salem numbers of degree at most 6 (resp. 22, resp. 10) if \(X\) is an abelian surface (resp. a K3 surface, resp. an Enriques surface).
3 The union of all dynamical spectra \(\Lambda(X)\), for all surfaces which are not rational, is a closed discrete subset of the real line.
(When \(\operatorname{char}(\mathbf{k})=0\), the bounds are \(4,20,10\) instead of \(6,22,12\).)
The interesting case is then to study \(\Lambda\left(\mathbb{P}^{2}\right)\), which is not discrete (every Pisot number in \(\Lambda\left(\mathbb{P}^{2}\right)\) is in fact an accumulation point).

\section*{Non-rational surfaces}

If \(X\) is a surface, we write \(\Lambda(X)=\{\lambda(f) \mid f \in \operatorname{Bir}(X)\}\).

\section*{Theorem}

Let \(X\) be a projective surface that is not rational. Then
\(1 \Lambda(X)=\{1\}\) if \(X\) is not birationally equivalent to an abelian surface, a K3 surface, or an Enriques surface;
\(2 \wedge(X) \backslash\{1\}\) is made of quadratic integers and of Salem numbers of degree at most 6 (resp. 22, resp. 10) if \(X\) is an abelian surface (resp. a K3 surface, resp. an Enriques surface).
3 The union of all dynamical spectra \(\Lambda(X)\), for all surfaces which are not rational, is a closed discrete subset of the real line.
(When \(\operatorname{char}(\mathbf{k})=0\), the bounds are \(4,20,10\) instead of \(6,22,12\).)
The interesting case is then to study \(\Lambda\left(\mathbb{P}^{2}\right)\), which is not discrete (every Pisot number in \(\Lambda\left(\mathbb{P}^{2}\right)\) is in fact an accumulation point).

Fixing the degree \(d\), the set \(\operatorname{Bir}_{d}\left(\mathbb{P}^{2}\right)\) is an algebraic variety.

Lower semi-continuity
Fixing the degree \(d\), the set \(\operatorname{Bir}_{d}\left(\mathbb{P}^{2}\right)\) is an algebraic variety.
Theorem (J. Xie 2011)
The dynamical degree
\[
\lambda: \operatorname{Bir}_{d}\left(\mathbb{P}^{2}\right) \rightarrow[1,+\infty[
\]
is lower semi-continous for the Zariski topology.
The above results says that the sets \(\left\{f \in \operatorname{Bir}_{d}\left(\mathbb{P}^{2}\right) \mid \lambda(f) \leq C\right\}\) are closed, for each \(d \in \mathbb{N}, C \in \mathbb{R}\). The topology of an algebraic variety being noetherian, we find that
\[
\left\{\lambda(f) \mid f \in \operatorname{Bir}_{d}\left(\mathbb{P}^{2}\right)\right\}
\]
is a well-ordered subset of \(\mathbb{R}\) (i.e. satisfying the DCC condition)

Lower semi-continuity
Fixing the degree \(d\), the set \(\operatorname{Bir}_{d}\left(\mathbb{P}^{2}\right)\) is an algebraic variety.
Theorem (J. Xie 2011)
The dynamical degree
\[
\lambda: \operatorname{Bir}_{d}\left(\mathbb{P}^{2}\right) \rightarrow[1,+\infty[
\]
is lower semi-continous for the Zariski topology.
The above results says that the sets \(\left\{f \in \operatorname{Bir}_{d}\left(\mathbb{P}^{2}\right) \mid \lambda(f) \leq C\right\}\) are closed, for each \(d \in \mathbb{N}, C \in \mathbb{R}\).
The topology of an algebraic variety being noetherian, we find that

is a well-ordered subset of \(\mathbb{R}\) (i.e. satisfying the DCC condition).

\section*{Lower semi-continuity}

Fixing the degree \(d\), the set \(\operatorname{Bir}_{d}\left(\mathbb{P}^{2}\right)\) is an algebraic variety.

\section*{Theorem (J. Xie 2011)}

The dynamical degree
\[
\lambda: \operatorname{Bir}_{d}\left(\mathbb{P}^{2}\right) \rightarrow[1,+\infty[
\]
is lower semi-continous for the Zariski topology.
The above results says that the sets \(\left\{f \in \operatorname{Bir}_{d}\left(\mathbb{P}^{2}\right) \mid \lambda(f) \leq C\right\}\) are closed, for each \(d \in \mathbb{N}, C \in \mathbb{R}\).
The topology of an algebraic variety being noetherian, we find that
\[
\left\{\lambda(f) \mid f \in \operatorname{Bir}_{d}\left(\mathbb{P}^{2}\right)\right\}
\]
is a well-ordered subset of \(\mathbb{R}\) (i.e. satisfying the DCC condition).

\section*{Lower semi-continuity}

Fixing the degree \(d\), the set \(\operatorname{Bir}_{d}\left(\mathbb{P}^{2}\right)\) is an algebraic variety.

\section*{Theorem (J. Xie 2011)}

The dynamical degree
\[
\lambda: \operatorname{Bir}_{d}\left(\mathbb{P}^{2}\right) \rightarrow[1,+\infty[
\]
is lower semi-continous for the Zariski topology.
The above results says that the sets \(\left\{f \in \operatorname{Bir}_{d}\left(\mathbb{P}^{2}\right) \mid \lambda(f) \leq C\right\}\) are closed, for each \(d \in \mathbb{N}, C \in \mathbb{R}\).
The topology of an algebraic variety being noetherian, we find that
\[
\left\{\lambda(f) \mid f \in \operatorname{Bir}_{d}\left(\mathbb{P}^{2}\right)\right\}
\]
is a well-ordered subset of \(\mathbb{R}\) (i.e. satisfying the DCC condition).

\section*{Question}

Is this true for \(\Lambda\left(\mathbb{P}^{2}\right)=\left\{\lambda(f) \mid f \in \operatorname{Bir}\left(\mathbb{P}^{2}\right)\right\}\) ?

\section*{Definition}

Let \(f \in \operatorname{Bir}\left(\mathbb{P}^{2}\right)\). We define
\[
\operatorname{mcdeg}(f)=\min _{g \in \operatorname{Bir}\left(\mathbb{P}^{2}\right)} \operatorname{deg}\left(g \circ f \circ g^{-1}\right)
\]

\section*{Remark}


I If \(\lambda(f)>1\), then \(\operatorname{mcdeg}(f) \leq e^{18} \lambda(f)^{345}\).

\section*{Definition}

Let \(f \in \operatorname{Bir}\left(\mathbb{P}^{2}\right)\). We define
\[
\operatorname{mcdeg}(f)=\min _{g \in \operatorname{Bir}\left(\mathbb{P}^{2}\right)} \operatorname{deg}\left(g \circ f \circ g^{-1}\right)
\]

\section*{Remark}
\(1 \leq \lambda(f) \leq \operatorname{mcdeg}(f) \leq \operatorname{deg}(f)\).
1. If \(\lambda(f) \geq 10^{6}\) then \(\operatorname{mcdeg}(f) \leq 4700 \lambda(f)^{5}\)

2 If \(\lambda(f)>1\), then \(\operatorname{mcdeg}(f) \leq e^{18} \lambda(f)^{345}\)

\section*{Definition}

Let \(f \in \operatorname{Bir}\left(\mathbb{P}^{2}\right)\). We define
\[
\operatorname{mcdeg}(f)=\min _{g \in \operatorname{Bir}\left(\mathbb{P}^{2}\right)} \operatorname{deg}\left(g \circ f \circ g^{-1}\right)
\]

\section*{Remark}
\(1 \leq \lambda(f) \leq \operatorname{mcdeg}(f) \leq \operatorname{deg}(f)\).

\section*{Theorem}

Let \(f \in \operatorname{Bir}\left(\mathbb{P}^{2}\right)\).
1 If \(\lambda(f) \geq 10^{6}\) then \(\operatorname{mcdeg}(f) \leq 4700 \lambda(f)^{5}\).

On the other hand, there are sequences of elements \(f_{n} \in \operatorname{Bir}\left(\mathbb{P}^{2}\right)\) such
that \(\operatorname{mcdeg}\left(f_{n}\right)\) goes to

\section*{Definition}

Let \(f \in \operatorname{Bir}\left(\mathbb{P}^{2}\right)\). We define
\[
\operatorname{mcdeg}(f)=\min _{g \in \operatorname{Bir}\left(\mathbb{P}^{2}\right)} \operatorname{deg}\left(g \circ f \circ g^{-1}\right)
\]

\section*{Remark}

\section*{Theorem}

Let \(f \in \operatorname{Bir}\left(\mathbb{P}^{2}\right)\).
1 If \(\lambda(f) \geq 10^{6}\) then \(\operatorname{modeg}(f) \leq 4700 \lambda(f)^{5}\).
2 If \(\lambda(f)>1\), then \(\operatorname{mcdeg}(f) \leq e^{18} \lambda(f)^{345}\).
On the other hand, there are sequences of elements \(f_{n} \in \operatorname{Bir}\left(\mathbb{P}^{2}\right)\) such that \(\operatorname{modeg}\left(f_{n}\right)\) goes to \(+\infty\) with \(n\) while \(\lambda_{1}\left(f_{n}\right)=1\) for all \(n\).
\[
1 \leq \lambda(f) \leq \operatorname{mcdeg}(f) \leq \operatorname{deg}(f)
\]

\section*{Definition}

Let \(f \in \operatorname{Bir}\left(\mathbb{P}^{2}\right)\). We define
\[
\operatorname{mcdeg}(f)=\min _{g \in \operatorname{Bir}\left(\mathbb{P}^{2}\right)} \operatorname{deg}\left(g \circ f \circ g^{-1}\right)
\]

\section*{Remark}
\(1 \leq \lambda(f) \leq \operatorname{mcdeg}(f) \leq \operatorname{deg}(f)\).

\section*{Theorem}

Let \(f \in \operatorname{Bir}\left(\mathbb{P}^{2}\right)\).
1 If \(\lambda(f) \geq 10^{6}\) then \(\operatorname{modeg}(f) \leq 4700 \lambda(f)^{5}\).
2 If \(\lambda(f)>1\), then \(\operatorname{mcdeg}(f) \leq e^{18} \lambda(f)^{345}\).
On the other hand, there are sequences of elements \(f_{n} \in \operatorname{Bir}\left(\mathbb{P}^{2}\right)\) such that \(\operatorname{mcdeg}\left(f_{n}\right)\) goes to \(+\infty\) with \(n\) while \(\lambda_{1}\left(f_{n}\right)=1\) for all \(n\).

\section*{Theorem}

The dynamical spectrum \(\Lambda\left(\mathbb{P}^{2}\right) \subset \mathbb{R}\) is well ordered, and it is closed if the ground field \(\mathbf{k}\) is uncountable.

Let \(\wedge\) be the set of all dynamical degrees of birational transformations of projective surfaces, defined over any field. Then,
(1) \(\wedge\) is a well ordered subset of \(\mathbb{R}_{\geq 1}\)
(2) if \(\lambda\) is an element of \(\Lambda\), there is a real number \(\epsilon>0\) such that \(] \lambda, \lambda+\epsilon]\) does not intersect \(\Lambda\);
(3) there is a non-empty interval \(\left.] \lambda_{G}, \lambda_{G}+\epsilon\right]\), on the right of the golden mean, that contains infinitely many Pisot and Salem numbers but does not contain any dynamical degree.

\section*{Theorem}

The dynamical spectrum \(\Lambda\left(\mathbb{P}^{2}\right) \subset \mathbb{R}\) is well ordered, and it is closed if the ground field \(\mathbf{k}\) is uncountable.

\section*{Corollary}

Let \(\Lambda\) be the set of all dynamical degrees of birational transformations of projective surfaces, defined over any field. Then,
(1) \(\Lambda\) is a well ordered subset of \(\mathbb{R}_{\geq 1}\);
(2) if \(\lambda\) is an element of \(\Lambda\), there is a real number \(\epsilon>0\) such that \(] \lambda, \lambda+\epsilon]\) does not intersect \(\Lambda\);

\section*{Theorem}

The dynamical spectrum \(\Lambda\left(\mathbb{P}^{2}\right) \subset \mathbb{R}\) is well ordered, and it is closed if the ground field \(\mathbf{k}\) is uncountable.

\section*{Corollary}

Let \(\Lambda\) be the set of all dynamical degrees of birational transformations of projective surfaces, defined over any field. Then,
(1) \(\Lambda\) is a well ordered subset of \(\mathbb{R}_{\geq 1}\);
(2) if \(\lambda\) is an element of \(\Lambda\), there is a real number \(\epsilon>0\) such that \(] \lambda, \lambda+\epsilon]\) does not intersect \(\Lambda\);


\section*{Theorem}

The dynamical spectrum \(\Lambda\left(\mathbb{P}^{2}\right) \subset \mathbb{R}\) is well ordered, and it is closed if the ground field \(\mathbf{k}\) is uncountable.

\section*{Corollary}

Let \(\wedge\) be the set of all dynamical degrees of birational transformations of projective surfaces, defined over any field. Then,
(1) \(\Lambda\) is a well ordered subset of \(\mathbb{R}_{\geq 1}\);
(2) if \(\lambda\) is an element of \(\Lambda\), there is a real number \(\epsilon>0\) such that ] \(\lambda, \lambda+\epsilon]\) does not intersect \(\Lambda\);
(3) there is a non-empty interval \(] \lambda_{G}, \lambda_{G}+\epsilon\) ], on the right of the golden mean, that contains infinitely many Pisot and Salem numbers but does not contain any dynamical degree.```

