Dynamical Degrees of Birational transformations of projective surfaces

Jérémy Blanc University of Basel

17.04.15 - Gargnano

Joint work with S. Cantat (Rennes)

J.Blanc - Dynamical degrees - Gargnano 17.04.15

Dynamical degree

In this talk, we work with projective algebraic varieties (mostly smooth surfaces), defined over an algebraically closed field \mathbf{k} .

$$\lambda(f) = \lim_{n \to \infty} \parallel (f^n)_* \parallel^{1/n};$$

$$\lambda(f) = \lim_{n \to \infty} \left(D \cdot (f^n)_* D \right)^{1/n},$$

3 Sac

J.Blanc – Dynamical degrees – Gargnano 17.04.15 Dynamical degree

In this talk, we work with projective algebraic varieties (mostly smooth surfaces), defined over an algebraically closed field \mathbf{k} .

Definition

Let X be a smooth projective surface, $f \in Bir(X)$. The *dynamical degree* $\lambda(f) \in \mathbb{R}$ of f is given by

$$\lambda(f) = \lim_{n \to \infty} \parallel (f^n)_* \parallel^{1/n};$$

where $(f^n)_* \in \operatorname{End}(\operatorname{NS}_{\mathbb{R}}(X))$ is the action induced by $f^n \in \operatorname{Bir}(X)$.

Remark

For each ample divisor *D*, we have

$$\lambda(f) = \lim_{n \to \infty} \left(D \cdot (f^n)_* D \right)^{1/n},$$

In particular, if $X = \mathbb{P}^2$, then $\lambda(f) = \lim \deg(f^n)^{1/n}$.

J.Blanc – Dynamical degrees – Gargnano 17.04.15 Dynamical degree

In this talk, we work with projective algebraic varieties (mostly smooth surfaces), defined over an algebraically closed field \mathbf{k} .

Definition

Let X be a smooth projective surface, $f \in Bir(X)$. The *dynamical degree* $\lambda(f) \in \mathbb{R}$ of f is given by

$$\lambda(f) = \lim_{n \to \infty} \parallel (f^n)_* \parallel^{1/n};$$

where $(f^n)_* \in \operatorname{End}(\operatorname{NS}_{\mathbb{R}}(X))$ is the action induced by $f^n \in \operatorname{Bir}(X)$.

Remark

For each ample divisor D, we have

$$\lambda(f) = \lim_{n \to \infty} \left(D \cdot (f^n)_* D \right)^{1/n},$$

In particular, if $X = \mathbb{P}^2$, then $\lambda(f) = \lim \deg(f^n)^{1/n}$.

- The dynamical degree is invariant under conjugation: if $f \in Bir(X)$ and $g: X \dashrightarrow Y$ is birational, then $\lambda(f) = \lambda(gfg^{-1})$.
- When k = C, log(λ(f)) is an upper bound for the topological entropy of f : X(C) --→ X(C) and is often equal to it.
- The dynamical degree measures in some sense the complexity of the dynamics of *X*.
- A feature of our results may be summarized by the following slogan: Precise knowledge on λ(f) provides useful information on the conjugacy class of f.

- The dynamical degree is invariant under conjugation: if $f \in Bir(X)$ and $g: X \dashrightarrow Y$ is birational, then $\lambda(f) = \lambda(gfg^{-1})$.
- When $\mathbf{k} = \mathbb{C}$, $\log(\lambda(f))$ is an upper bound for the topological entropy of $f : X(\mathbb{C}) \dashrightarrow X(\mathbb{C})$ and is often equal to it.
- The dynamical degree measures in some sense the complexity of the dynamics of X.
- A feature of our results may be summarized by the following slogan: Precise knowledge on λ(f) provides useful information on the conjugacy class of f.

3 / 13

- The dynamical degree is invariant under conjugation: if $f \in Bir(X)$ and $g: X \dashrightarrow Y$ is birational, then $\lambda(f) = \lambda(gfg^{-1})$.
- When k = C, log(λ(f)) is an upper bound for the topological entropy of f: X(C) --→ X(C) and is often equal to it.
- The dynamical degree measures in some sense the complexity of the dynamics of *X*.
- A feature of our results may be summarized by the following slogan: Precise knowledge on $\lambda(f)$ provides useful information on the conjugacy class of f.

- The dynamical degree is invariant under conjugation: if $f \in Bir(X)$ and $g: X \dashrightarrow Y$ is birational, then $\lambda(f) = \lambda(gfg^{-1})$.
- When k = C, log(λ(f)) is an upper bound for the topological entropy of f: X(C) --→ X(C) and is often equal to it.
- The dynamical degree measures in some sense the complexity of the dynamics of *X*.
- A feature of our results may be summarized by the following slogan: Precise knowledge on λ(f) provides useful information on the conjugacy class of f.

- The dynamical degree is invariant under conjugation: if $f \in Bir(X)$ and $g: X \dashrightarrow Y$ is birational, then $\lambda(f) = \lambda(gfg^{-1})$.
- When k = C, log(λ(f)) is an upper bound for the topological entropy of f: X(C) --→ X(C) and is often equal to it.
- The dynamical degree measures in some sense the complexity of the dynamics of *X*.
- A feature of our results may be summarized by the following slogan: Precise knowledge on λ(f) provides useful information on the conjugacy class of f.

4 / 13

Let $f \in Bir(X)$ (X a smooth projective surface).

- Diller-Favre: By blowing-ups $Y \to X$, one can conjugate f to $g \in Bir(Y)$, such that $(g^n)_* = (g_*)^n$ for each $n \ge 0$ (g is called algebraically stable).
- Hence, \u03c0(f) = \u03c0(g) is the eigenvalue of a matrix defined over Z. More precisely, one gets:

Theorem (Diller-Favre 2001)

- A *Pisot number* is an algebraic integer $\lambda \in]1, \infty[$ whose other Galois conjugates lie in the open unit disk.
- A Salem number is an algebraic integer λ ∈]1,∞[whose other Galois conjugates are in the closed unit disk, with at least one on the boundary.

- Diller-Favre: By blowing-ups $Y \to X$, one can conjugate f to $g \in Bir(Y)$, such that $(g^n)_* = (g_*)^n$ for each $n \ge 0$ (g is called algebraically stable).
- Hence, \u03c0(f) = \u03c0(g) is the eigenvalue of a matrix defined over Z. More precisely, one gets:

Theorem (Diller-Favre 2001)

- A *Pisot number* is an algebraic integer $\lambda \in]1, \infty[$ whose other Galois conjugates lie in the open unit disk.
- A Salem number is an algebraic integer λ ∈]1,∞[whose other Galois conjugates are in the closed unit disk, with at least one on the boundary.

- Diller-Favre: By blowing-ups $Y \to X$, one can conjugate f to $g \in Bir(Y)$, such that $(g^n)_* = (g_*)^n$ for each $n \ge 0$ (g is called algebraically stable).
- Hence, \u03c0(f) = \u03c0(g) is the eigenvalue of a matrix defined over Z. More precisely, one gets:

Theorem (Diller-Favre 2001)

- A *Pisot number* is an algebraic integer $\lambda \in]1, \infty[$ whose other Galois conjugates lie in the open unit disk.
- A Salem number is an algebraic integer λ ∈]1,∞[whose other Galois conjugates are in the closed unit disk, with at least one on the boundary.

- Diller-Favre: By blowing-ups $Y \to X$, one can conjugate f to $g \in Bir(Y)$, such that $(g^n)_* = (g_*)^n$ for each $n \ge 0$ (g is called algebraically stable).
- Hence, \u03c0(f) = \u03c0(g) is the eigenvalue of a matrix defined over Z. More precisely, one gets:

Theorem (Diller-Favre 2001)

- A *Pisot number* is an algebraic integer $\lambda \in]1, \infty[$ whose other Galois conjugates lie in the open unit disk.
- A Salem number is an algebraic integer \u03c0 ∈]1,∞[whose other Galois conjugates are in the closed unit disk, with at least one on the boundary.

- Diller-Favre: By blowing-ups $Y \to X$, one can conjugate f to $g \in Bir(Y)$, such that $(g^n)_* = (g_*)^n$ for each $n \ge 0$ (g is called algebraically stable).
- Hence, \u03c0(f) = \u03c0(g) is the eigenvalue of a matrix defined over Z. More precisely, one gets:

Theorem (Diller-Favre 2001)

- A *Pisot number* is an algebraic integer \u03c0 ∈]1,∞[whose other Galois conjugates lie in the open unit disk.
- A Salem number is an algebraic integer $\lambda \in]1, \infty[$ whose other Galois conjugates are in the closed unit disk, with at least one on the boundary.

- Diller-Favre: By blowing-ups Y → X, one can conjugate f to g ∈ Bir(Y), such that (gⁿ)_{*} = (g_{*})ⁿ for each n ≥ 0 (g is called algebraically stable).
- Hence, \u03c0(f) = \u03c0(g) is the eigenvalue of a matrix defined over Z. More precisely, one gets:

Theorem (Diller-Favre 2001)

- A *Pisot number* is an algebraic integer \u03c0 ∈]1,∞[whose other Galois conjugates lie in the open unit disk.
- A Salem number is an algebraic integer \u03c0 ∈]1,∞[whose other Galois conjugates are in the closed unit disk, with at least one on the boundary.

■ A *Pisot number* is an algebraic integer \u03c0 ∈]1,∞[whose other Galois conjugates lie in the open unit disk.

Example

Reciprocal quadratic integers > 1 (solutions of $x^2 + 1 = tx$, $t \in \mathbb{Z}$). The plastic number, or padovan number, $\lambda_P \simeq 1.324717$, root of $x^3 = x + 1$. This is the smallest Pisot number.

■ A *Pisot number* is an algebraic integer \u03c0 ∈]1,∞[whose other Galois conjugates lie in the open unit disk.

Example

Integers $d \ge 2$. Reciprocal quadratic integers > 1 (solutions of $x^2 + 1 = tx$, $t \in \mathbb{Z}$). The *plastic number*, or *padovan number*, $\lambda_P \simeq 1.324717$, root of $x^3 = x + 1$. This is the smallest Pisot number.

■ A *Pisot number* is an algebraic integer \u03c0 ∈]1,∞[whose other Galois conjugates lie in the open unit disk.

Example

Integers $d \ge 2$. Reciprocal quadratic integers > 1 (solutions of $x^2 + 1 = tx$, $t \in \mathbb{Z}$). The plastic number, or padovan number, $\lambda_P \simeq 1.324717$, root of $x^3 = x + 1$. This is the smallest Pisot number.

■ A *Pisot number* is an algebraic integer \u03c0 ∈]1,∞[whose other Galois conjugates lie in the open unit disk.

Example

Integers $d \ge 2$. Reciprocal quadratic integers > 1 (solutions of $x^2 + 1 = tx$, $t \in \mathbb{Z}$). The *plastic number*, or *padovan number*, $\lambda_P \simeq 1.324717$, root of $x^3 = x + 1$. This is the smallest Pisot number.

■ A *Pisot number* is an algebraic integer \u03c0 ∈]1,∞[whose other Galois conjugates lie in the open unit disk.

Example

Integers $d \ge 2$. Reciprocal quadratic integers > 1 (solutions of $x^2 + 1 = tx$, $t \in \mathbb{Z}$). The *plastic number*, or *padovan number*, $\lambda_P \simeq 1.324717$, root of $x^3 = x + 1$. This is the smallest Pisot number.

The set $Pis \subset \mathbb{R}$ of Pisot numbers is closed.

The smallest accumulation point is the golden mean $\lambda_G = (1 + \sqrt{5})/2$. All Pisot numbers between λ_P and λ_G have been listed.

■ A *Pisot number* is an algebraic integer \u03c0 ∈]1,∞[whose other Galois conjugates lie in the open unit disk.

Example

Integers $d \ge 2$. Reciprocal quadratic integers > 1 (solutions of $x^2 + 1 = tx$, $t \in \mathbb{Z}$). The *plastic number*, or *padovan number*, $\lambda_P \simeq 1.324717$, root of $x^3 = x + 1$. This is the smallest Pisot number.

The set Pis $\subset \mathbb{R}$ of Pisot numbers is closed. The smallest accumulation point is the golden mean $\lambda_G = (1 + \sqrt{5})/2$. All Pisot numbers between λ_P and λ_G have been listed.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

■ A *Pisot number* is an algebraic integer \u03c0 ∈]1,∞[whose other Galois conjugates lie in the open unit disk.

Example

Integers $d \ge 2$. Reciprocal quadratic integers > 1 (solutions of $x^2 + 1 = tx$, $t \in \mathbb{Z}$). The *plastic number*, or *padovan number*, $\lambda_P \simeq 1.324717$, root of $x^3 = x + 1$. This is the smallest Pisot number.

Example

The *Lehmer number*, $\lambda_L\simeq 1.176280$, unique root >1 of the irreducible polynomial

$$x^{10} + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1.$$

Our present knowledge of Salem numbers is weaker than for Pisot numbers.

Conjecturally, the infimum of Sal $\subset \mathbb{R}$ is larger than 1, and should be equal to λ_L .

Every Pisot number is the limit of a sequence of Salem numbers.

・ロト 《師》 《田》 《田》 《日》

Example

The Lehmer number, $\lambda_L\simeq 1.176280,$ unique root >1 of the irreducible polynomial

$$x^{10} + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1.$$

Our present knowledge of Salem numbers is weaker than for Pisot numbers.

Conjecturally, the infimum of Sal $\subset \mathbb{R}$ is larger than 1, and should be equal to λ_L .

Every Pisot number is the limit of a sequence of Salem numbers.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example

The Lehmer number, $\lambda_L \simeq 1.176280$, unique root > 1 of the irreducible polynomial

$$x^{10} + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1.$$

Our present knowledge of Salem numbers is weaker than for Pisot numbers.

Conjecturally, the infimum of Sal $\subset \mathbb{R}$ is larger than 1, and should be equal to λ_L .

Every Pisot number is the limit of a sequence of Salem numbers.

Example

The Lehmer number, $\lambda_L \simeq 1.176280$, unique root > 1 of the irreducible polynomial

$$x^{10} + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1.$$

Our present knowledge of Salem numbers is weaker than for Pisot numbers.

Conjecturally, the infimum of Sal $\subset \mathbb{R}$ is larger than 1, and should be equal to $\lambda_L.$

Every Pisot number is the limit of a sequence of Salem numbers.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example

The Lehmer number, $\lambda_L \simeq 1.176280$, unique root > 1 of the irreducible polynomial

$$x^{10} + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1.$$

Our present knowledge of Salem numbers is weaker than for Pisot numbers.

Conjecturally, the infimum of Sal $\subset \mathbb{R}$ is larger than 1, and should be equal to $\lambda_L.$

Every Pisot number is the limit of a sequence of Salem numbers.

Examples

Example

Let $d \in \mathbb{N}$, and $f \in Aut(\mathbb{A}^2)$ given by $f: (x, y) \dashrightarrow (y + x^d, x)$. Then, $deg(f^n) = d^n$ for each $n \ge 1$, so $\lambda(f) = d$.

Example

Let $f \in Bir(\mathbb{A}^2)$ be given by $f: (x, y) \dashrightarrow (x^a y^b, x^c y^d)$, where $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, \mathbb{Z})$. Then, $\lambda(f)$ is the highest modulus of the eigenvalues of A in \mathbb{C} . This yields all reciprocal quadratic integers.

Example (Bedford-Kim-McMullen)

There exists a projective surface X, obtained by blowing-up 10 points of \mathbb{P}^2 , such that Aut(X) contains an element f with $\lambda(f) = \lambda_L$ (Lehmer number).

The same holds on some K3 surfaces.

Examples

Example

Let $d \in \mathbb{N}$, and $f \in Aut(\mathbb{A}^2)$ given by $f: (x, y) \dashrightarrow (y + x^d, x)$. Then, $deg(f^n) = d^n$ for each $n \ge 1$, so $\lambda(f) = d$.

Example

Let
$$f \in Bir(\mathbb{A}^2)$$
 be given by $f: (x, y) \dashrightarrow (x^a y^b, x^c y^d)$, where
 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, \mathbb{Z})$. Then, $\lambda(f)$ is the highest modulus of the eigenvalues of A in \mathbb{C} . This yields all reciprocal quadratic integers.

Example (Bedford-Kim-McMullen)

There exists a projective surface X, obtained by blowing-up 10 points of \mathbb{P}^2 , such that Aut(X) contains an element f with $\lambda(f) = \lambda_L$ (Lehmer number).

The same holds on some K3 surfaces.

Examples

Example

Let $d \in \mathbb{N}$, and $f \in Aut(\mathbb{A}^2)$ given by $f: (x, y) \dashrightarrow (y + x^d, x)$. Then, $deg(f^n) = d^n$ for each $n \ge 1$, so $\lambda(f) = d$.

Example

Let
$$f \in Bir(\mathbb{A}^2)$$
 be given by $f: (x, y) \dashrightarrow (x^a y^b, x^c y^d)$, where
 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, \mathbb{Z})$. Then, $\lambda(f)$ is the highest modulus of the eigenvalues of A in \mathbb{C} . This yields all reciprocal quadratic integers.

Example (Bedford-Kim-McMullen)

There exists a projective surface X, obtained by blowing-up 10 points of \mathbb{P}^2 , such that Aut(X) contains an element f with $\lambda(f) = \lambda_L$ (Lehmer number).

The same holds on some K3 surfaces.

J.Blanc – Dynamical degrees – Gargnano 17.04.15 Salem numbers and automorphisms

Theorem (Diller-Favre 2001)

If f is an automorphism of a projective surface, then $\lambda(f)$ is either 1, reciprocical quadratic or a Salem number.

Theorem (Diller-Favre 2001)

If f is an automorphism of a projective surface, then $\lambda(f)$ is either 1, reciprocical quadratic or a Salem number.

Theorem (McMullen 2007)

If f is an automorphism of a projective surface, $\lambda(f) = 1$ or $\lambda(f) \ge \lambda_L$.

Theorem (B.-Cantat 2013)

If f is a birational transformation of a surface and $\lambda(f)$ is a Salem number, then f is conjugate to an automorphism of a projective surface.

The result is false if $\lambda(f) = 1$ or if $\lambda(f)$ is quadratic: there are examples conjugate to automorphisms and examples which are not.

Corollary (Gap property)

If f is a birational transformation of a surface, $\lambda(f) = 1$ or $\lambda(f) \ge \lambda_L$.

Theorem (Diller-Favre 2001)

If f is an automorphism of a projective surface, then $\lambda(f)$ is either 1, reciprocical quadratic or a Salem number.

Theorem (McMullen 2007)

If f is an automorphism of a projective surface, $\lambda(f) = 1$ or $\lambda(f) \ge \lambda_L$.

Theorem (B.-Cantat 2013)

If f is a birational transformation of a surface and $\lambda(f)$ is a Salem number, then f is conjugate to an automorphism of a projective surface.

The result is false if $\lambda(f) = 1$ or if $\lambda(f)$ is quadratic: there are examples conjugate to automorphisms and examples which are not.

Corollary (Gap property)

If f is a birational transformation of a surface, $\lambda(f) = 1$ or $\lambda(f) \ge \lambda_L$.

= *)4(~

Theorem (Diller-Favre 2001)

If f is an automorphism of a projective surface, then $\lambda(f)$ is either 1, reciprocical quadratic or a Salem number.

Theorem (McMullen 2007)

If f is an automorphism of a projective surface, $\lambda(f) = 1$ or $\lambda(f) \ge \lambda_L$.

Theorem (B.-Cantat 2013)

If f is a birational transformation of a surface and $\lambda(f)$ is a Salem number, then f is conjugate to an automorphism of a projective surface.

The result is false if $\lambda(f) = 1$ or if $\lambda(f)$ is quadratic: there are examples conjugate to automorphisms and examples which are not.

Corollary (Gap property)

If f is a birational transformation of a surface, $\lambda(f) = 1$ or $\lambda(f) \ge \lambda_L$.

ション 人名 マント・ エー・シント・

Theorem (Diller-Favre 2001)

If f is an automorphism of a projective surface, then $\lambda(f)$ is either 1, reciprocical quadratic or a Salem number.

Theorem (McMullen 2007)

If f is an automorphism of a projective surface, $\lambda(f) = 1$ or $\lambda(f) \ge \lambda_L$.

Theorem (B.-Cantat 2013)

If f is a birational transformation of a surface and $\lambda(f)$ is a Salem number, then f is conjugate to an automorphism of a projective surface.

The result is false if $\lambda(f) = 1$ or if $\lambda(f)$ is quadratic: there are examples conjugate to automorphisms and examples which are not.

Corollary (Gap property)

If f is a birational transformation of a surface, $\lambda(f) = 1$ or $\lambda(f) \ge \lambda_L$.

シャント エー・トーリー トーロー

If f is a birational transformation of a surface, $\lambda(f) = 1$ or $\lambda(f) \ge \lambda_L$.

Corollary (Gap property)

If f is a birational transformation of a surface, $\lambda(f) = 1$ or $\lambda(f) \ge \lambda_L$.

This has some applications.

Corollary

If $f \in Bir(\mathbb{P}^2)$ is such that $\lambda(f) > 1$, its centraliser C(f) satisfies that

 $C(f)/\langle f \rangle$

is a finite group.

Corollary

Two elements $f, g \in Bir(\mathbb{P}^2)$ with $\lambda(f), \lambda(g) > 1$ are conjugate iff they are conjugate by an element of degree $\leq (2 \max\{\deg f, \deg g\})^{57}$.

Corollary (Gap property)

If f is a birational transformation of a surface, $\lambda(f) = 1$ or $\lambda(f) \ge \lambda_L$.

This has some applications.

Corollary

If $f \in Bir(\mathbb{P}^2)$ is such that $\lambda(f) > 1$, its centraliser C(f) satisfies that

 $C(f)/\langle f \rangle$

is a finite group.

Corollary

Two elements $f, g \in Bir(\mathbb{P}^2)$ with $\lambda(f), \lambda(g) > 1$ are conjugate iff they are conjugate by an element of degree $\leq (2 \max\{\deg f, \deg g\})^{57}$.

If f is a birational transformation of a surface, $\lambda(f) = 1$ or $\lambda(f) \ge \lambda_L$.

This has some applications.

Corollary

If $f \in Bir(\mathbb{P}^2)$ is such that $\lambda(f) > 1$, its centraliser C(f) satisfies that

 $C(f)/\langle f \rangle$

is a finite group.

Corollary

Two elements $f, g \in Bir(\mathbb{P}^2)$ with $\lambda(f), \lambda(g) > 1$ are conjugate iff they are conjugate by an element of degree $\leq (2 \max\{\deg f, \deg g\})^{57}$.

Theorem

Let X be a projective surface that is not rational. Then

- Λ(X) = {1} if X is not birationally equivalent to an abelian surface, a K3 surface, or an Enriques surface;
- Λ(X) \ {1} is made of quadratic integers and of Salem numbers of degree at most 6 (resp. 22, resp. 10) if X is an abelian surface (resp. a K3 surface, resp. an Enriques surface).
- The union of all dynamical spectra $\Lambda(X)$, for all surfaces which are not rational, is a closed discrete subset of the real line.

(When char(k) = 0, the bounds are 4, 20, 10 instead of 6, 22, 12.)

Theorem

Let X be a projective surface that is not rational. Then

- $\Lambda(X) = \{1\} \text{ if } X \text{ is not birationally equivalent to an abelian surface,} a K3 surface, or an Enriques surface;$
- 2 ∧(X) \ {1} is made of quadratic integers and of Salem numbers of degree at most 6 (resp. 22, resp. 10) if X is an abelian surface (resp. a K3 surface, resp. an Enriques surface).
- **I** The union of all dynamical spectra $\Lambda(X)$, for all surfaces which are not rational, is a closed discrete subset of the real line.

(When $char(\mathbf{k}) = 0$, the bounds are 4,20,10 instead of 6,22,12.)

Theorem

Let X be a projective surface that is not rational. Then

- **1** $\Lambda(X) = \{1\}$ if X is not birationally equivalent to an abelian surface, a K3 surface, or an Enriques surface;
- 2 ∧(X) \ {1} is made of quadratic integers and of Salem numbers of degree at most 6 (resp. 22, resp. 10) if X is an abelian surface (resp. a K3 surface, resp. an Enriques surface).
- **3** The union of all dynamical spectra $\Lambda(X)$, for all surfaces which are not rational, is a closed discrete subset of the real line.

(When $char(\mathbf{k}) = 0$, the bounds are 4,20,10 instead of 6,22,12.)

Theorem

Let X be a projective surface that is not rational. Then

- $\Lambda(X) = \{1\} if X is not birationally equivalent to an abelian surface, a K3 surface, or an Enriques surface;$
- A(X) \ {1} is made of quadratic integers and of Salem numbers of degree at most 6 (resp. 22, resp. 10) if X is an abelian surface (resp. a K3 surface, resp. an Enriques surface).

3 The union of all dynamical spectra $\Lambda(X)$, for all surfaces which are not rational, is a closed discrete subset of the real line.

(When $char(\mathbf{k}) = 0$, the bounds are 4,20,10 instead of 6,22,12.)

Theorem

Let X be a projective surface that is not rational. Then

- **1** $\Lambda(X) = \{1\}$ if X is not birationally equivalent to an abelian surface, a K3 surface, or an Enriques surface;
- A(X) \ {1} is made of quadratic integers and of Salem numbers of degree at most 6 (resp. 22, resp. 10) if X is an abelian surface (resp. a K3 surface, resp. an Enriques surface).
- **3** The union of all dynamical spectra $\Lambda(X)$, for all surfaces which are not rational, is a closed discrete subset of the real line.

(When $char(\mathbf{k}) = 0$, the bounds are 4, 20, 10 instead of 6, 22, 12.)

Theorem

Let X be a projective surface that is not rational. Then

- **1** $\Lambda(X) = \{1\}$ if X is not birationally equivalent to an abelian surface, a K3 surface, or an Enriques surface;
- A(X) \ {1} is made of quadratic integers and of Salem numbers of degree at most 6 (resp. 22, resp. 10) if X is an abelian surface (resp. a K3 surface, resp. an Enriques surface).
- **3** The union of all dynamical spectra $\Lambda(X)$, for all surfaces which are not rational, is a closed discrete subset of the real line.

(When $char(\mathbf{k}) = 0$, the bounds are 4,20,10 instead of 6,22,12.)

Theorem

Let X be a projective surface that is not rational. Then

- **1** $\Lambda(X) = \{1\}$ if X is not birationally equivalent to an abelian surface, a K3 surface, or an Enriques surface;
- A(X) \ {1} is made of quadratic integers and of Salem numbers of degree at most 6 (resp. 22, resp. 10) if X is an abelian surface (resp. a K3 surface, resp. an Enriques surface).
- **3** The union of all dynamical spectra $\Lambda(X)$, for all surfaces which are not rational, is a closed discrete subset of the real line.

(When $char(\mathbf{k}) = 0$, the bounds are 4, 20, 10 instead of 6, 22, 12.)

J.Blanc – Dynamical degrees – Gargnano 17.04.15 Lower semi-continuity

Fixing the degree d, the set $\operatorname{Bir}_d(\mathbb{P}^2)$ is an algebraic variety.

Lower semi-continuity

.0

Fixing the degree d, the set $Bir_d(\mathbb{P}^2)$ is an algebraic variety.

Theorem (J. Xie 2011)

The dynamical degree

 $\lambda\colon {\rm Bir}_d(\mathbb{P}^2)\to [1,+\infty[$

is lower semi-continous for the Zariski topology.

The above results says that the sets $\{f \in \text{Bir}_d(\mathbb{P}^2) \mid \lambda(f) \leq C\}$ are closed, for each $d \in \mathbb{N}$, $C \in \mathbb{R}$.

The topology of an algebraic variety being noetherian, we find that

 $\{\lambda(f) \mid f \in \operatorname{Bir}_d(\mathbb{P}^2)\}$

is a well-ordered subset of ${\mathbb R}$ (i.e. satisfying the DCC condition).

Question

Is this true for $\Lambda(\mathbb{P}^2)=\{\lambda(f)\mid f\in {
m Bir}(\mathbb{P}^2)\}$?

Lower semi-continuity

Fixing the degree d, the set $Bir_d(\mathbb{P}^2)$ is an algebraic variety.

Theorem (J. Xie 2011)

The dynamical degree

$$\lambda \colon \operatorname{Bir}_d(\mathbb{P}^2) \to [1, +\infty[$$

is lower semi-continous for the Zariski topology.

The above results says that the sets $\{f \in \text{Bir}_d(\mathbb{P}^2) \mid \lambda(f) \leq C\}$ are closed, for each $d \in \mathbb{N}$, $C \in \mathbb{R}$.

The topology of an algebraic variety being noetherian, we find that

 $\{\lambda(f) \mid f \in \operatorname{Bir}_d(\mathbb{P}^2)\}$

is a well-ordered subset of $\mathbb R$ (i.e. satisfying the DCC condition).

Question

Is this true for $\Lambda(\mathbb{P}^2)=\{\lambda(f)\mid f\in {\sf Bir}(\mathbb{P}^2)\}$?

Lower semi-continuity

Fixing the degree d, the set $Bir_d(\mathbb{P}^2)$ is an algebraic variety.

Theorem (J. Xie 2011)

The dynamical degree

 $\lambda \colon \operatorname{Bir}_d(\mathbb{P}^2) \to [1, +\infty[$

is lower semi-continous for the Zariski topology.

The above results says that the sets $\{f \in \text{Bir}_d(\mathbb{P}^2) \mid \lambda(f) \leq C\}$ are closed, for each $d \in \mathbb{N}$, $C \in \mathbb{R}$.

The topology of an algebraic variety being noetherian, we find that

 $\{\lambda(f) \mid f \in \operatorname{Bir}_d(\mathbb{P}^2)\}$

is a well-ordered subset of ${\mathbb R}$ (i.e. satisfying the DCC condition).

Question

Is this true for $\Lambda(\mathbb{P}^2)=\{\lambda(f)\mid f\in {\sf Bir}(\mathbb{P}^2)\}$?

Lower semi-continuity

Fixing the degree d, the set $Bir_d(\mathbb{P}^2)$ is an algebraic variety.

Theorem (J. Xie 2011)

The dynamical degree

$$\lambda \colon \operatorname{Bir}_d(\mathbb{P}^2) \to [1, +\infty[$$

is lower semi-continous for the Zariski topology.

The above results says that the sets $\{f \in \text{Bir}_d(\mathbb{P}^2) \mid \lambda(f) \leq C\}$ are closed, for each $d \in \mathbb{N}$, $C \in \mathbb{R}$.

The topology of an algebraic variety being noetherian, we find that

$$\{\lambda(f) \mid f \in \mathsf{Bir}_d(\mathbb{P}^2)\}$$

is a well-ordered subset of ${\mathbb R}$ (i.e. satisfying the DCC condition).

Question

Is this true for $\Lambda(\mathbb{P}^2) = \{\lambda(f) \mid f \in \mathsf{Bir}(\mathbb{P}^2)\}$?

Definition

Let $f \in Bir(\mathbb{P}^2)$. We define

$$mcdeg(f) = \min_{g \in Bir(\mathbb{P}^2)} deg(g \circ f \circ g^{-1})$$

Remark $1 \leq \lambda(f) \leq mcdeg(f) \leq deg(f).$

Theorem

Let $f \in \mathsf{Bir}(\mathbb{P}^2)$.

- $\ \ \, \textbf{I} \ \ If \ \lambda(f) \geq 10^6 \ then \ \mathsf{mcdeg}(f) \leq 4700 \ \lambda(f)^5.$
- If $\lambda(f) > 1$, then $mcdeg(f) \le e^{18}\lambda(f)^{345}$.

On the other hand, there are sequences of elements $f_n \in Bir(\mathbb{P}^2)$ such that $mcdeg(f_n)$ goes to $+\infty$ with n while $\lambda_1(f_n) = 1$ for all n.

・ロト ・ 戸 ・ ・ 三 ・ ・ 三 ・ うへつ

Definition

Let $f \in Bir(\mathbb{P}^2)$. We define

$$mcdeg(f) = \min_{g \in Bir(\mathbb{P}^2)} deg(g \circ f \circ g^{-1})$$

Remark

$$1 \leq \lambda(f) \leq \mathsf{mcdeg}(f) \leq \mathsf{deg}(f).$$

Theorem

Let $f \in Bir(\mathbb{P}^2)$. 1 If $\lambda(f) \ge 10^6$ then $mcdeg(f) \le 4700 \lambda(f)^5$. 2 If $\lambda(f) > 1$, then $mcdeg(f) \le e^{18}\lambda(f)^{345}$.

On the other hand, there are sequences of elements $f_n \in Bir(\mathbb{P}^2)$ such that $mcdeg(f_n)$ goes to $+\infty$ with n while $\lambda_1(f_n) = 1$ for all n.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition

Let $f \in Bir(\mathbb{P}^2)$. We define

$$mcdeg(f) = \min_{g \in Bir(\mathbb{P}^2)} deg(g \circ f \circ g^{-1})$$

Remark

$$1 \leq \lambda(f) \leq \mathsf{mcdeg}(f) \leq \mathsf{deg}(f).$$

Theorem

Let $f \in Bir(\mathbb{P}^2)$. 1 If $\lambda(f) \ge 10^6$ then $mcdeg(f) \le 4700 \lambda(f)^5$. 2 If $\lambda(f) > 1$, then $mcdeg(f) \le e^{18}\lambda(f)^{345}$.

On the other hand, there are sequences of elements $f_n \in Bir(\mathbb{P}^2)$ such that $mcdeg(f_n)$ goes to $+\infty$ with n while $\lambda_1(f_n) = 1$ for all n.

Definition

Let $f \in Bir(\mathbb{P}^2)$. We define

$$mcdeg(f) = \min_{g \in Bir(\mathbb{P}^2)} deg(g \circ f \circ g^{-1})$$

Remark

$$1 \leq \lambda(f) \leq \mathsf{mcdeg}(f) \leq \mathsf{deg}(f).$$

Theorem

Let $f \in Bir(\mathbb{P}^2)$. **1** If $\lambda(f) \ge 10^6$ then $mcdeg(f) \le 4700 \lambda(f)^5$. **2** If $\lambda(f) > 1$, then $mcdeg(f) \le e^{18}\lambda(f)^{345}$.

On the other hand, there are sequences of elements $f_n \in Bir(\mathbb{P}^2)$ such that $mcdeg(f_n)$ goes to $+\infty$ with n while $\lambda_1(f_n) = 1$ for all n.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition

Let $f \in Bir(\mathbb{P}^2)$. We define

$$mcdeg(f) = \min_{g \in Bir(\mathbb{P}^2)} deg(g \circ f \circ g^{-1})$$

Remark

$$1 \leq \lambda(f) \leq \mathsf{mcdeg}(f) \leq \mathsf{deg}(f).$$

Theorem

Let $f \in Bir(\mathbb{P}^2)$. **1** If $\lambda(f) \ge 10^6$ then $mcdeg(f) \le 4700 \lambda(f)^5$. **2** If $\lambda(f) > 1$, then $mcdeg(f) \le e^{18}\lambda(f)^{345}$.

On the other hand, there are sequences of elements $f_n \in Bir(\mathbb{P}^2)$ such that $mcdeg(f_n)$ goes to $+\infty$ with *n* while $\lambda_1(f_n) = 1$ for all *n*.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem

The dynamical spectrum $\Lambda(\mathbb{P}^2) \subset \mathbb{R}$ is well ordered, and it is closed if the ground field **k** is uncountable.

Corollary

Let Λ be the set of all dynamical degrees of birational transformations of projective surfaces, defined over any field. Then,

- (1) Λ is a well ordered subset of $\mathbb{R}_{\geq 1}$;
- (2) if λ is an element of Λ, there is a real number ε > 0 such that [λ, λ + ε] does not intersect Λ;
- (3) there is a non-empty interval]λ_G, λ_G + ε], on the right of the golden mean, that contains infinitely many Pisot and Salem numbers but does not contain any dynamical degree.

Theorem

The dynamical spectrum $\Lambda(\mathbb{P}^2) \subset \mathbb{R}$ is well ordered, and it is closed if the ground field k is uncountable.

Corollary

Let Λ be the set of all dynamical degrees of birational transformations of projective surfaces, defined over any field. Then,

- (1) Λ is a well ordered subset of $\mathbb{R}_{>1}$;

The descending chain condition

Theorem

The dynamical spectrum $\Lambda(\mathbb{P}^2) \subset \mathbb{R}$ is well ordered, and it is closed if the ground field **k** is uncountable.

Corollary

Let Λ be the set of all dynamical degrees of birational transformations of projective surfaces, defined over any field. Then,

- (1) Λ is a well ordered subset of $\mathbb{R}_{\geq 1}$;
- (2) if λ is an element of Λ, there is a real number ε > 0 such that]λ, λ + ε] does not intersect Λ;

(3) there is a non-empty interval]λ_G, λ_G + ε], on the right of the golden mean, that contains infinitely many Pisot and Salem numbers but does not contain any dynamical degree.

Theorem

The dynamical spectrum $\Lambda(\mathbb{P}^2) \subset \mathbb{R}$ is well ordered, and it is closed if the ground field **k** is uncountable.

Corollary

Let Λ be the set of all dynamical degrees of birational transformations of projective surfaces, defined over any field. Then,

- (1) Λ is a well ordered subset of $\mathbb{R}_{\geq 1}$;
- (2) if λ is an element of Λ, there is a real number ε > 0 such that]λ, λ + ε] does not intersect Λ;
- (3) there is a non-empty interval $]\lambda_G, \lambda_G + \epsilon]$, on the right of the golden mean, that contains infinitely many Pisot and Salem numbers but does not contain any dynamical degree.