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Dynamical degree

In this talk, we work with projective algebraic varieties (mostly smooth
surfaces), defined over an algebraically closed field k.

Definition

Let X be a smooth projective surface, f ∈ Bir(X ). The dynamical degree
λ(f ) ∈ R of f is given by

λ(f ) = lim
n→∞

‖ (f n)∗ ‖1/n ;

where (f n)∗ ∈ End(NSR(X )) is the action induced by f n ∈ Bir(X ).

Remark

For each ample divisor D, we have

λ(f ) = lim
n→∞

(D · (f n)∗D)1/n ,

In particular, if X = P2, then λ(f ) = lim deg(f n)1/n.
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Properties of the dynamical degree

The dynamical degree is invariant under conjugation: if f ∈ Bir(X )
and g : X 99K Y is birational, then λ(f ) = λ(gfg−1).

When k = C, log(λ(f )) is an upper bound for the topological
entropy of f : X (C) 99K X (C) and is often equal to it.

The dynamical degree measures in some sense the complexity of the
dynamics of X .

A feature of our results may be summarized by the following slogan:
Precise knowledge on λ(f ) provides useful information on the
conjugacy class of f .
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Pisot and Salem numbers

Let f ∈ Bir(X ) (X a smooth projective surface).

Diller-Favre: By blowing-ups Y → X , one can conjugate f to
g ∈ Bir(Y ), such that (gn)∗ = (g∗)

n for each n ≥ 0 (g is called
algebraically stable).

Hence, λ(f ) = λ(g) is the eigenvalue of a matrix defined over Z.
More precisely, one gets:

Theorem (Diller-Favre 2001)

Le f be a birational transformation of a projective surface. If λ(f ) is
different from 1, then λ(f ) is a Salem or a Pisot number.

A Pisot number is an algebraic integer λ ∈ ]1,∞[ whose other
Galois conjugates lie in the open unit disk.

A Salem number is an algebraic integer λ ∈ ]1,∞[ whose other
Galois conjugates are in the closed unit disk, with at least one on
the boundary.
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Pisot numbers

A Pisot number is an algebraic integer λ ∈ ]1,∞[ whose other
Galois conjugates lie in the open unit disk.

Example

Integers d ≥ 2.
Reciprocal quadratic integers > 1 (solutions of x2 + 1 = tx , t ∈ Z).
The plastic number, or padovan number, λP ' 1.324717, root of
x3 = x + 1. This is the smallest Pisot number.

The set Pis ⊂ R of Pisot numbers is closed.
The smallest accumulation point is the golden mean λG = (1 +

√
5)/2.

All Pisot numbers between λP and λG have been listed.
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Salem numbers

A Salem number is an algebraic integer λ ∈ ]1,∞[ whose other
Galois conjugates are in the closed unit disk, with at least one on
the boundary.

Example

The Lehmer number, λL ' 1.176280, unique root > 1 of the irreducible
polynomial

x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1.

Our present knowledge of Salem numbers is weaker than for Pisot
numbers.
Conjecturally, the infimum of Sal ⊂ R is larger than 1, and should be
equal to λL.
Every Pisot number is the limit of a sequence of Salem numbers.
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Examples

Example

Let d ∈ N, and f ∈ Aut(A2) given by f : (x , y) 99K (y + xd , x). Then,
deg(f n) = dn for each n ≥ 1, so λ(f ) = d .

Example

Let f ∈ Bir(A2) be given by f : (x , y) 99K (xayb, xcyd), where

A =

(
a b
c d

)
∈ GL(2,Z). Then, λ(f ) is the highest modulus of the

eigenvalues of A in C. This yields all reciprocal quadratic integers.

Example (Bedford-Kim-McMullen)

There exists a projective surface X , obtained by blowing-up 10 points of
P2, such that Aut(X ) contains an element f with λ(f ) = λL (Lehmer
number).
The same holds on some K3 surfaces.
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Salem numbers and automorphisms

Theorem (Diller-Favre 2001)

If f is an automorphism of a projective surface, then λ(f ) is either 1,
reciprocical quadratic or a Salem number.

Theorem (McMullen 2007)

If f is an automorphism of a projective surface, λ(f ) = 1 or λ(f ) ≥ λL.

Theorem (B.-Cantat 2013)

If f is a birational transformation of a surface and λ(f ) is a Salem
number, then f is conjugate to an automorphism of a projective surface.

The result is false if λ(f ) = 1 or if λ(f ) is quadratic: there are examples
conjugate to automorphisms and examples which are not.

Corollary (Gap property)

If f is a birational transformation of a surface, λ(f ) = 1 or λ(f ) ≥ λL.
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Applications of the gap property

Corollary (Gap property)

If f is a birational transformation of a surface, λ(f ) = 1 or λ(f ) ≥ λL.

This has some applications.

Corollary

If f ∈ Bir(P2) is such that λ(f ) > 1, its centraliser C (f ) satisfies that

C (f )/〈f 〉

is a finite group.

Corollary

Two elements f , g ∈ Bir(P2) with λ(f ), λ(g) > 1 are conjugate iff they
are conjugate by an element of degree ≤ (2 max{degf , degg})57.
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Non-rational surfaces

If X is a surface, we write Λ(X ) = {λ(f ) | f ∈ Bir(X )}.

Theorem

Let X be a projective surface that is not rational. Then

1 Λ(X ) = {1} if X is not birationally equivalent to an abelian surface,
a K3 surface, or an Enriques surface;

2 Λ(X ) \ {1} is made of quadratic integers and of Salem numbers of
degree at most 6 (resp. 22, resp. 10) if X is an abelian surface
(resp. a K3 surface, resp. an Enriques surface).

3 The union of all dynamical spectra Λ(X ), for all surfaces which are
not rational, is a closed discrete subset of the real line.

(When char(k) = 0, the bounds are 4, 20, 10 instead of 6, 22, 12.)

The interesting case is then to study Λ(P2), which is not discrete (every
Pisot number in Λ(P2) is in fact an accumulation point).
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Lower semi-continuity

Fixing the degree d , the set Bird(P2) is an algebraic variety.

Theorem (J. Xie 2011)

The dynamical degree

λ : Bird(P2)→ [1,+∞[

is lower semi-continous for the Zariski topology.

The above results says that the sets {f ∈ Bird(P2) | λ(f ) ≤ C} are
closed, for each d ∈ N, C ∈ R.
The topology of an algebraic variety being noetherian, we find that

{λ(f ) | f ∈ Bird(P2)}

is a well-ordered subset of R (i.e. satisfying the DCC condition).

Question

Is this true for Λ(P2) = {λ(f ) | f ∈ Bir(P2)} ?



J.Blanc – Dynamical degrees – Gargnano 17.04.15 11 / 13

Lower semi-continuity

Fixing the degree d , the set Bird(P2) is an algebraic variety.

Theorem (J. Xie 2011)

The dynamical degree

λ : Bird(P2)→ [1,+∞[

is lower semi-continous for the Zariski topology.

The above results says that the sets {f ∈ Bird(P2) | λ(f ) ≤ C} are
closed, for each d ∈ N, C ∈ R.
The topology of an algebraic variety being noetherian, we find that

{λ(f ) | f ∈ Bird(P2)}

is a well-ordered subset of R (i.e. satisfying the DCC condition).

Question

Is this true for Λ(P2) = {λ(f ) | f ∈ Bir(P2)} ?



J.Blanc – Dynamical degrees – Gargnano 17.04.15 11 / 13

Lower semi-continuity

Fixing the degree d , the set Bird(P2) is an algebraic variety.

Theorem (J. Xie 2011)

The dynamical degree

λ : Bird(P2)→ [1,+∞[

is lower semi-continous for the Zariski topology.

The above results says that the sets {f ∈ Bird(P2) | λ(f ) ≤ C} are
closed, for each d ∈ N, C ∈ R.
The topology of an algebraic variety being noetherian, we find that

{λ(f ) | f ∈ Bird(P2)}

is a well-ordered subset of R (i.e. satisfying the DCC condition).

Question

Is this true for Λ(P2) = {λ(f ) | f ∈ Bir(P2)} ?



J.Blanc – Dynamical degrees – Gargnano 17.04.15 11 / 13

Lower semi-continuity

Fixing the degree d , the set Bird(P2) is an algebraic variety.

Theorem (J. Xie 2011)

The dynamical degree

λ : Bird(P2)→ [1,+∞[

is lower semi-continous for the Zariski topology.

The above results says that the sets {f ∈ Bird(P2) | λ(f ) ≤ C} are
closed, for each d ∈ N, C ∈ R.
The topology of an algebraic variety being noetherian, we find that

{λ(f ) | f ∈ Bird(P2)}

is a well-ordered subset of R (i.e. satisfying the DCC condition).

Question

Is this true for Λ(P2) = {λ(f ) | f ∈ Bir(P2)} ?



J.Blanc – Dynamical degrees – Gargnano 17.04.15 11 / 13

Lower semi-continuity

Fixing the degree d , the set Bird(P2) is an algebraic variety.

Theorem (J. Xie 2011)

The dynamical degree

λ : Bird(P2)→ [1,+∞[

is lower semi-continous for the Zariski topology.

The above results says that the sets {f ∈ Bird(P2) | λ(f ) ≤ C} are
closed, for each d ∈ N, C ∈ R.
The topology of an algebraic variety being noetherian, we find that

{λ(f ) | f ∈ Bird(P2)}

is a well-ordered subset of R (i.e. satisfying the DCC condition).

Question

Is this true for Λ(P2) = {λ(f ) | f ∈ Bir(P2)} ?



J.Blanc – Dynamical degrees – Gargnano 17.04.15 12 / 13

Minimal degree in a conjugacy class

Definition

Let f ∈ Bir(P2). We define

mcdeg(f ) = min
g∈Bir(P2)

deg(g ◦ f ◦ g−1)

Remark

1 ≤ λ(f ) ≤ mcdeg(f ) ≤ deg(f ).

Theorem

Let f ∈ Bir(P2).

1 If λ(f ) ≥ 106 then mcdeg(f ) ≤ 4700λ(f )5.

2 If λ(f ) > 1, then mcdeg(f ) ≤ e18λ(f )345.

On the other hand, there are sequences of elements fn ∈ Bir(P2) such
that mcdeg(fn) goes to +∞ with n while λ1(fn) = 1 for all n.
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The descending chain condition

Theorem

The dynamical spectrum Λ(P2) ⊂ R is well ordered, and it is closed if the
ground field k is uncountable.

Corollary

Let Λ be the set of all dynamical degrees of birational transformations of
projective surfaces, defined over any field. Then,

(1) Λ is a well ordered subset of R≥1;

(2) if λ is an element of Λ, there is a real number ε > 0 such that
]λ, λ+ ε] does not intersect Λ;

(3) there is a non-empty interval ]λG , λG + ε], on the right of the golden
mean, that contains infinitely many Pisot and Salem numbers but
does not contain any dynamical degree.
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