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DYNAMICAL DIRECTIONS IN NUMERATION

by Guy BARAT, Valérie BERTHÉ,
Pierre LIARDET & Jörg THUSWALDNER (*)

Abstract. — This survey aims at giving a consistent presentation of numer-
ation from a dynamical viewpoint: we focus on numeration systems, their asso-
ciated compactification, and dynamical systems that can be naturally defined on
them. The exposition is unified by the fibred numeration system concept. Many
examples are discussed. Various numerations on rational integers, real or complex
numbers are presented with special attention paid to β-numeration and its gener-
alisations, abstract numeration systems and shift radix systems, as well as G-scales
and odometers. A section of applications ends the paper.

Résumé. — Le but de ce survol est d’aborder définitions et propriétés concer-
nant la numération d’un point de vue dynamique : nous nous concentrons sur les
systèmes de numération, leur compactification, et les systèmes dynamiques qui
peuvent être définis dessus. La notion de système de numération fibré unifie la pré-
sentation. De nombreux exemples sont étudiés. Plusieurs numérations sur les entiers
naturels, relatifs, les nombres réels ou les nombres complexes sont présentées. Nous
portons une attention spéciale à la β-numération ainsi qu’à ses généralisations, aux
systèmes de numération abstraits, aux systèmes dits “shift radix”, de même qu’aux
G-échelles et aux odomètres. Un paragraphe d’applications conclut ce survol.

Contents

1. Introduction 1988
1.1. Origins 1988
1.2. What this survey is (not) about 1991

Keywords: Numeration, fibred systems, symbolic dynamics, odometers, numeration
scales, subshifts, f -expansions, β-numeration, sum-of-digits function, abstract number
systems, canonical numeration systems, shift radix systems, additive functions, tilings,
Rauzy fractals, substitutive dynamical systems.
Math. classification: Primary 37B10; Secondary 11A63, 11J70, 11K55, 11R06, 37A45,
68Q45, 68R15.
(*) The first author was supported by the Austrian Science Foundation FWF, project
S9605, that is part of the Austrian National Research Network “Analytic Combinatorics
and Probabilistic Number Theory”. The first three authors were partially supported by
ACINIM “Numération” 2004-154. The fourth author was supported by the FWF grant
S9610-N13.



1988 G. BARAT, V. BERTHÉ, P. LIARDET & J. THUSWALDNER

2. Fibred numeration systems 1994
2.1. Numeration systems 1994
2.2. Fibred systems and fibred numeration systems 1996
2.3. N - compactification 1999
2.4. Examples 2000
2.5. Questions 2013
3. Canonical numeration systems, β-expansions and shift radix systems 2017
3.1. Canonical numeration systems in number fields 2017
3.2. Generalisations 2022
3.3. On the finiteness property of β-expansions 2024
3.4. Shift radix systems 2026
3.5. Numeration systems defined over finite fields 2032
3.6. Lattice tilings 2033
4. Some sofic fibred numeration systems 2038
4.1. Substitutions and Dumont-Thomas numeration 2039
4.2. Abstract numeration systems 2045
4.3. Rauzy fractals 2047
4.4. The Pisot conjecture 2051
5. G-scales and odometers 2053
5.1. G-scales. Building the odometer 2054
5.2. Carries tree 2057
5.3. Metric properties. Da capo al fine subshifts 2060
5.4. Markov compacta 2064
5.5. Spectral properties 2065
6. Applications 2067
6.1. Additive and multiplicative functions, sum-of-digits functions 2067
6.2. Diophantine approximation 2072
6.3. Computer arithmetics and cryptography 2073
6.4. Mathematical crystallography: Rauzy fractals and quasicrystals 2075
Acknowledgements 2077
Bibliography 2077

1. Introduction

1.1. Origins

Numeration is the art of representation of numbers; primarily natural

numbers, then extensions of them - fractions, negative, real, complex num-

bers, vectors, a.s.o. Numeration systems are algorithmic ways of coding

numbers, i.e., essentially a process permitting to code elements of an infi-

nite set with finitely many symbols.

For ancient civilisations, numeration was necessary for practical use, com-

merce, astronomy, etc. Hence numeration systems have been created not

only for writing down numbers, but also in order to perform arithmetical

operations.
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DYNAMICAL DIRECTIONS IN NUMERATION 1989

Numeration is inherently dynamical, since it is collated with infinity

as potentiality, as already asserted by Aristotle(1) : if I can represent some

natural number, how do I write the next one? On that score, it is significant

that motion (greek δύναµις) and infinity are treated together in Aristotle’s

work (Physics, third book). Furthermore, the will to deal with arbitrary

large numbers requires some kind of invariance of the representation and a

recursive algorithm which will be iterated, hence something of a dynamical

kind again.

In the sequel, we briefly mention the most important historical steps of

numeration. We refer to the book of Ifrah [179] for an amazing amount of

information on the subject and additional references.

Numeration systems are the ultimate elaboration concerning representa-

tion of numbers. Most early representations are only concerned with finitely

many numbers, indeed those which are of a practical use. Some primitive

civilisations ignored the numeration concept and only had names for car-

dinals that were immediately perceptible without performing any action

of counting, i.e., as anybody can experiment alone, from one to four. For

example, the Australian tribe Aranda say “ninta” for one, “tara” for two,

“tara-ma-ninta” for three, and “tara-ma-tara” for four. Larger numbers are

indeterminate (many, a lot).

Many people have developed a representation of natural numbers with

fingers, hands or other parts of the human body. Using phalanxes and

articulations, it is then possible to represent (or show) numbers up to ten

thousand or more. A way of showing numbers up to 1010 just with both

hands was implemented in the XVIth century in China (Sua fa tong zong,

1593). Clearly, the choice of base 10 was at the origin of these methods.

Other bases were attested as well, like five, twelve, twenty or sixty by

Babylonians. However, all representations of common use work with a base.

Bases have been developed in Egypt and Mesopotamia, about 5000 years

ago. The Egyptians had a special sign for any small power of ten: a vertical

stroke for 1, a kind of horseshoe for 10, a spiral for 100, a loto flower

for 1000, a finger for 10000, a tadpole for 105, and a praying man for a

(1) “The infinite exhibits itself in different ways - in time, in the generations of man,
and in the division of magnitudes. For generally the infinite has this mode of existence:
one thing is always being taken after another, and each thing that is taken is always
finite, but always different. Again, ‘being’ has more than one sense, so that we must not
regard the infinite as a ‘this’, such as a man or a horse, but must suppose it to exist
in the sense in which we speak of the day or the games as existing things whose being
has not come to them like that of a substance, but consists in a process of coming to be
or passing away; definite if you like at each stage, yet always different.” [28] trans-
lation from http://people.bu.edu/wwildman/WeirdWildWeb/courses/wphil/readings/
wphil_rdg07_physics_entire.htm
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million. For 45200, they drew four fingers, five loto flowers and two spirals

(hieroglyphic writing). A similar principle was used by Sumerians with

base 60. To avoid an over complicated representation, digits (from 1 to 59)

were written in base 10. This kind of representation follows an additional

logic. A more concise coding has been used by inventing a symbol for each

digit from 1 to 9 in base 10. In this modified system, 431 is understood as

4× 100+3× 10+1× 1 instead of 100+100+100+100+10+10+10+1.

Etruscans used such a system, as did Hieratic and Demotic handwritings

in Egypt.

The next crucial step was the invention of positional numeration. It has

been discovered independently four times, by Babylonians, in China, by the

pre-Columbian Mayas, and in India. However, only Indians had a distinct

sign for every digit. Babylonians only had two, for 1 and 10. Therefore,

since they used base 60, they represented 157, say, in three blocks: from

the left to the right, two times the unit symbol (representing 120), three

times the symbol for 10 (for 30), and seven times the unit symbol again

(for 7). To avoid any confusion between blocks (does eight times the unit

symbol represent 8 × 1 or 2 × 60 + 6, etc), they used specific arrange-

ments of the symbols - as one encounters nowadays on the six faces of a

dice(2) . Positional numeration enabled the representation of arbitrary large

numbers. Nevertheless, the system was uncomplete without the most in-

genuous invention, i.e., the zero. A sign for zero was necessary and it was

known to these four civilisations. To end the story, to be able to represent

huge numbers, but also to perform arithmetic operations with any of them,

one had to understand that this zero was a quantity, and not “nothing”,

i.e., an entity of the same type as the other numbers. Ifrah writes: [Notre]

“numération est née en Inde il y a plus de quinze siècles, de l’improbable

conjonction de trois grandes idées ; à savoir :

• l’idée de donner aux chiffres de base des signes graphiques détachés

de toute intuition sensible, n’évoquant donc pas visuellement le nom-

bre des unités représentées ;

• celle d’adopter le principe selon lequel les chiffres de base ont une

valeur qui varie suivant la place qu’ils occupent dans les repré-

sentations numériques ;

(2) For pictures and examples, see [179], vol. 1, page 315 et seq. or the internet page
http://history.missouristate.edu/jchuchiak/HST%20101-Lecture%202cuneiform_writing.htm
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DYNAMICAL DIRECTIONS IN NUMERATION 1991

• et enfin celle de se donner un zéro totalement ‘opératoire’, c’est-à-

dire permettant de remplacer le vide des unités manquantes et ayant

simultanément le sens du nombre ‘nul’.” [179].(3)

After this great achievement, it was possible to become aware of the

multiplicative dimension of the numeration system: 431 not only satis-

fies 431 = 4 × 100 + 3 × 10 + 1 (additive understanding) but also 431 =

1 + 10× (3 + 4× 10). Moreover, the representation could be obtained in a

purely dynamical way and had a meaning in terms of modular arithmetic.

Finally, the concept of number fits closely with its representation. A mathe-

matical maturation following an increasing abstraction process culminating

in the invention of the zero had been necessary to construct a satisfactory

numeration system. It turned out to be the key for many further mathe-

matical developments.

1.2. What this survey is (not) about

The subject of representing nonnegative integers, real numbers or any

suitable extension, generalisation or analogon of them (complex numbers,

integers of a number field, elements of a quotient ring, vectors of a finite-

dimensional vector space, points of a function field, and so on) is too vast

to be covered in a single paper. Hence we made choices among the most

notable ways to think about numbers and their representations. Our stand-

point is essentially dynamical: we are more interested in transformations

yielding representations than in the representations themselves. We also

focus on dynamical systems emerging from these representations as well,

since we think that they give some insight into their understanding: as we

explained through our historical considerations, numeration is itself a dy-

namical concept. Usually, papers on numeration deal with numeration on

some special set of numbers: N, Z, [0, 1], Z[i],... Our purpose is to introduce

a general setting in which these examples can take place. In fact, a suitable

concept already exists in the literature, since it turns out that the notion

(3) Our numeration was created in India more than fifteen centuries ago on the basis of
the improbable conjunction of three important ideas, namely:

– to give base digits graphic signs unlinked with any sensitive intuition; they thus
do not visually indicate the number of represented quantities;

– to adopt a principle whereby base digits have a value that depends on their position
in the numerical representation;

– and lastly, to give a totally “operatory” zero, i.e., so that the gap left by missing
units can be filled, while also representing a “zero number”.

TOME 56 (2006), FASCICULE 7
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of fibred system, according to Schweiger, is a powerful object to subsume

most of the different numerations under a unified concept. Therefore, the

concepts we define in Section 2 originate directly from his book [299](4) or

have been naturally built up from it. More precisely, the key concept will

be that of a fibred numeration system that we present in Section 2.2. A

second conceptual source of inspiration was the survey of Kátai [199].

These notions - essentially fibred systems and numeration systems - are

very general and helpful for determining what quite different types of nu-

merations may have in common. Simultaneously, they are flexible since they

can be enriched with different structures. According to our needs, that is,

describing the classical examples of numeration, we will equip them pro-

gressively with a topology, a sigma-algebra or an algebraic structure, giving

rise to new questions. In other words, our purpose is not to study properties

of fibred numeration systems, but rather to use them as a framework for

considering numeration.

This paper is organised as follows. The main definitions are introduced

in Sections 2.1, 2.2 and 2.3. Section 2.1 proposes a general definition of

a numeration system and introduces the difference between representation

and expansion. The key of Section 2 is Section 2.2, where fibred numeration

systems are introduced (Definition 2.4) and where their general properties

are discussed. A second important mathematical object of this paper is de-

fined in Section 2.3: the compactification associated with a fibred numera-

tion system. The main notions are illustrated by the most usual expansion,

i.e., the q-adic numeration. Section 2.4 presents in detail several well and

less known examples from the viewpoint given by the vocabulary we just

introduced. Section 2.5 deals with questions we will handle along the paper

and presents a series of significative examples.

Each of the next three sections is devoted to a specific direction of gen-

eralisation of standard numeration. Section 3 is devoted to canonical nu-

meration systems that originate in numeration in number fields, and to a

very recent and promising generalisation of them: shift radix systems. Sec-

tion 4 deals with sofic numeration systems, Dumont-Thomas numeration

and abstract numeration systems. In both sections, the exposition focuses

(4) “The notion of a fibred system arose from successive attempts to extend the so-called
metrical number theory of decimal expansions and continued fractions to more general
types of algorithms. [...]

Another source for this theory is ergodic theory, especially the interest in provid-
ing examples for one-sided subshifts, topological Markov chains, sofic systems and the
like.”[299], pages 1-2. For other applications of fibred systems and relevant references,
see the preface and Chapter 1 of [299], and the subsequent book of the same author [300].
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DYNAMICAL DIRECTIONS IN NUMERATION 1993

on geometrical aspects and on the connection with β-numeration. The pro-

gression towards a higher degree of generalisation is also emphasised. The

presentation through fibred numeration systems is new. Section 5 deals

with a large family of dynamical systems with zero entropy, called odome-

ters: roughly speaking, they correspond to the addition by 1. These systems

are natural generalisations of Hensel’s q-adic numbers. These three sections

begin with a detailed introduction to which the reader is referred for more

details.

Section 6 is concerned with a selection of applications. Section 6.1 gives

a partial and short survey on the vast question of the asymptotic distribu-

tion of additive functions with respect to numeration systems, especially the

sum-of-digits function. Section 6.2 explains how Rauzy fractals (that have

been developed in Section 4) can be used to construct bounded remainder

sets and to get discrepancy estimates of Kronecker sequences. Section 6.3

deals with computer arithmetics and cryptography, and Section 6.4 is con-

cerned with applications in physics, namely quasicrystals. Note that the

current resarch on quasicrystals is very active, as shown in this volume by

the contribution [153].

A survey on dynamical aspects of numeration assumes that the reader

is already familiar with the underlying basic concepts from dynamical sys-

tems, ergodic theory, symbolic dynamics, and formal languages. Only Sec-

tion 6 here and there requires more advanced notions. As general references

on dynamical systems and ergodic theory, see [71, 107, 205, 268, 270, 340].

For symbolic dynamics, see [58, 75, 209, 239]. For references on word com-

binatorics, automata and formal languages, see [27, 241, 242, 243, 267, 272,

286]. Up to our knowledge, we did not treat subjects that have been already

covered in previous surveys or books, even if some of them contain certain

dynamical aspects. Let us now briefly mention some of these surveys.

A pedagogical introductive exposition of numeration from a dynamical

point of view can be found in [108]. For a related dynamical approach of nu-

meration systems based on the compactification of the set of real numbers,

see [196, 197]. This latter approach includes in particular the β-numeration

and numerations inspired by weighted substitutions (substitution numera-

tion systems are discussed in Section 4).

Connections between β-expansions, Vershik’s adic transformation and

codings of hyperbolic automorphisms are extensively presented in Sidorov’s

survey [304], where the author already studies alternative β-expansions

from a probabilistic viewpoint. In the same vein, see also [137, 296]. Let

TOME 56 (2006), FASCICULE 7
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us note that tiling theory has also close connections with numeration (e.g.,

see [284, 318, 327]).

For the connections between arithmetic properties of numbers and syn-

taxic properties of their representations, see [282]. The question of renor-

malisation (or change of alphabet) is motivated by performing arithmetic

operations. In [148, 149], Frougny shows among other things that renormal-

isation is computable by a finite transducer in the case of a G-scale given by

a linear recurrence sequence (G-scales are introduced and discussed in Sec-

tion 5). These survey papers develop the theory of β-representation from

the point of view of automata theory.

Numeration systems are also closely related to computer arithmetics such

as illustrated in [45, 212, 259, 260]; indeed some numerations can be partic-

ularly efficient for algorithms that allow to perform the main mathematical

operations and to compute the main mathematical functions; see also Sec-

tion 6.3.

A wide literature has been devoted to Cobhams’s theorem [98] and its

connections with numeration systems, e.g., see [87, 130, 131, 133] and the

survey [132]. Let us recall that Cobhams’s theorem states that if the char-

acteristic sequence of a set of nonneegative integers is recognisable in two

multiplicatively independent bases, then it is ultimately periodic.

Let us also quote [6] for spectacular recent results concerning combina-

torial transcendence criteria that may be applied to the b-adic expansion

of a real number. For more details, see also the survey [5].

2. Fibred numeration systems

2.1. Numeration systems

Let q > 2 be an integer. Then every nonnegative integer n can be

uniquely written as

(2.1) n = εℓ(n)qℓ + εℓ−1(n)qℓ−1 + · · ·+ ε1(n)q + ε0(n),

with nonnegative digits 0 6 εk(n) 6 q − 1, and εℓ(n) 6= 0 for ℓ 6= 0. Other-

wise stated, the word ε0(n)ε1(n) . . . εℓ−1(n)εℓ(n) represents the number n.

Similarly, any real number x ∈ [0, 1) can be uniquely written as

(2.2) x =

∞∑

k=1

εk(x)q−k,

with 0 6 εk(n) 6 q−1 again and the further assumption that the sequence

(εk(x))k>1 does not eventually take only the value q − 1. The sequence

ANNALES DE L’INSTITUT FOURIER



DYNAMICAL DIRECTIONS IN NUMERATION 1995

(εk(x))k>1 represents the real number x. These sequences are called q-adic

representation of n and x, respectively.

If (Fn)n is the (shifted) Fibonacci sequence with convention F0 = 1,

F1 = 2, Fn+2 = Fn+1 + Fn, any nonnegative integer can be uniquely

written as

(2.3) n = εℓ(n)Fℓ + εℓ−1(n)Fℓ−1 + · · ·+ ε1(n)F1 + ε0(n),

with digits εk(n) ∈ {0, 1} satisfying the condition εk(n)εk+1(n) = 0 for all

k, and εℓ(n) 6= 0 for ℓ 6= 0. This is called the Zeckendorf expansion (see

Example 2.14).

Both ways of writing nonnegative integers characterise integers with a

finite sequence of digits satisfying some conditions. For real numbers, the

representation is done through an (infinite) sequence (and it has to be so,

since the interval [0, 1) is uncountable). A numeration system is a coding

of the elements of a set with a (finite or infinite) sequence of digits. The

result of the coding - the sequence - is a representation of the element.

Definition 2.1. — A numeration system (resp. a finite numeration sys-

tem) is a triple (X, I, ϕ), where X is a set, I a finite or countable set, and

ϕ an injective map ϕ : X →֒ IN∗

, x 7→ (εn(x))n>1 (resp. ϕ : X →֒ I(N),

where I(N) stands for the set of finite sequences over I). The map ϕ is the

representation map, and ϕ(x) is the representation of x ∈ X. Let (X, I, ϕ)

be a numeration system (resp. finite numeration system). The admissible

sequences (resp. admissible strings) are defined as the representations ϕ(x),

for x ∈ X.

Let us note that we have chosen the convention ϕ : X →֒ IN∗

for the

choice of the index set, i.e., we have chosen to start with index 1. Example

2.1 (resp. 2.2) shows that it can be more natural to begin with index 0

(resp. 1). Therefore, we shall allow us to switch from one convention to the

other one according to the context.

Equations (2.1) and (2.2) say actually more than expressing a represen-

tation. The equality takes into account the algebraic structure of the set of

represented numbers (existence of an addition on N and R, respectively),

and the topological structure as well for (2.2) by considering a convergent

series: these structures allow us to understand the representation as an ex-

pansion. These expansions use the sequence of nonnegative (resp. negative)

powers of q as a base. This can be formulated in an abstract way in the

following definition.

Definition 2.2. — Let (X, I, ϕ) be a numeration system. An expansion

is a map ψ : IN∗ → X (resp. ψ : I(N) → X) such that ψ ◦ ϕ(x) = x for all

TOME 56 (2006), FASCICULE 7
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x ∈ X. An expansion of an element x ∈ X is an equality x = ψ(y); it is a

proper expansion if y = ϕ(x), and an improper expansion otherwise.

If X is a subset of an A-module (in the case of a finite number system)

or of a topological A-module, an expansion is often of the type ψ(y) =∑∞
n=1 ν(yn)ξn, with ν : I → A and (ξn)n>1 ∈ XN∗

. In this case, the

sequence (ξn>1)n is called a base or scale.

For example, if one considers the q-adic expansion (2.1), then X = N is

a subset of the Z-module Z, and we have an expansion defined by a finite

sum ψ(y) =
∑

n>0 ynq
n, i.e., a base ξj = qj and ν(i) = i. For (2.2), the

expansion is given by the series ψ(y) =
∑

n>1 ynq
−n.

2.2. Fibred systems and fibred numeration systems

Section 2.1 introduced a useful vocabulary, but the notion of numeration

system remains poor. It becomes much more interesting when one asks how

the digits are produced, that is, how the representation map is constructed.

The dynamical dimension of numeration lies precisely there. Therefore, the

key concept of Section 2 originates in the observation that, in (2.1), (2.2),

(2.3), and many other examples of representations, the digits are (at least,

can be) obtained by iteration of a transformation, and that this transfor-

mation contains an amount of interesting information on the numeration.

This concept is that of fibred numeration system and we will use it along

the paper. It is itself constructed from the notion of fibred system, issued

from [299], that we recall now.

Definition 2.3. — A fibred system is a set X and a transformation

T : X → X for which there exist a finite or countable set I and a partition

X =
⊎

i∈I Xi of X such that the restriction Ti of T on Xi is injective, for

any i ∈ I. This yields a well defined map ε : X → I that associates the

index i with x ∈ X such that x ∈ Xi.

Suppose (X,T ) is a fibred system with the associated objects above. Let

ϕ : X → IN∗

be defined by ϕ(x) = (ε(Tnx))n>1. We will write εn = ε◦Tn−1

for short. Let S stand for the (right-sided) shift operator on IN∗

. These

definitions yield a commutative diagram

(2.4)

X
T−→ X

ϕ
y

yϕ
IN∗ −→

S
IN∗
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DYNAMICAL DIRECTIONS IN NUMERATION 1997

Definition 2.4. — Let (X,T ) be a fibred system and ϕ : X → IN∗

be defined by ϕ(x) = (ε(Tnx))n>1. If the function ϕ is injective (i.e., if

(X, I, ϕ) is a numeration system), we call the quadruple N = (X,T, I, ϕ)

a fibred numeration system (FNS for short). Then I is the set of digits of

the numeration system; the map ϕ is the representation map and ϕ(x) the

N -representation of x.

In general, the representation map is not surjective. The set of prefixes

of N -representations is called the language L = L(N ) of the fibred numer-

ation system, and its elements are said to be admissible. The admissible

sequences are defined as the elements y ∈ IN∗

for which y = ϕ(x) for some

x ∈ X.

Note that we could have taken the quadruple (X,T, I, ε) instead of the

quadruple (X,T, I, ϕ) in the definition. In almost all examples, the set of

digits is finite. It may happen that it is countable (e.g., see Example 2.10

and 2.14 below).

Let (X,T ) be a fibred system with a partition (Xi)i∈I and a map ϕ as

in the diagram (2.4). By definition of a partition, Xi 6= ∅ for each i ∈ I;

hence all digits are admissible. Moreover, set of prefixes and set of factors

are synonymous here:

L =
{
(ε1(x), ε2(x), . . . , εn(x)) ; n ∈ N, x ∈ X

}

=
{
(εm+1(x), εm+2(x), . . . , εm+n(x)) ; (m,n) ∈ N2, x ∈ X

}
.

(2.5)

However, ϕ(X) is not necessarily shift invariant and it may happen that

for some m,
{
(εm+1(x), εm+2(x), . . . , εm+n(x)) ; n ∈ N, x ∈ X

}
6= L.

This is due to the lack of surjectivity of the transformation T .

The representation map transports cylinders from the product space IN∗

to X, and for (i0, i1, . . . , in−1) ∈ In, one may define the cylinder

(2.6) X ⊃ C(i0, i1, . . . , in−1) =
⋂

06j<n

T−j(Xij
) = ϕ−1[i0, i1, . . . , in−1].

Moreover, the earlier assumption in Definition 2.3 that the restriction of

T to Xi is injective says that the application x 7→ (ε(x), T (x)) is itself

injective. It is a necessary condition for ϕ to be injective, and N is an FNS

if and only if

(2.7) ∀x ∈ X :
⋂

n>0

C(ε1(x), ε2(x), . . . , εn(x)) = {x}.

If X is a metric space, a sufficient condition for (2.7) to hold is that, for

any admissible sequence (i1, i2, . . . , in, . . .), the diameter of the cylinders
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C(i1, i2, . . . , in) tends to zero when n tends to infinity. In this case, if F is

a closed subset of X, then

F =

∞⋂

n=1

⋃

(i1,...,in)∈L
C(i1,...,in)∩F 6=∅

C(i1, . . . , in),

which proves that the σ-algebra B generated by the cylinders is the Borel

algebra. In general, T is B-measurable.

The representations introduced in Definition 2.4 are by nature infinite.

It is suitable to have access to finite expansions, in order to have a notion

of finite fibred numeration system, as one had finite numeration systems

in Section 2.1. For that purpose, we need to look at fixed points of the

transformation T . Let (X,T, I, ϕ) be an FNS. If x ∈ X satisfies T (x) = x,

then its representation is constant, i.e., there exists i ∈ I such that ϕ(x) =

(i, i, i, . . .). By injectivity of ϕ, the converse is true too, and ϕ induces

a bĳection between the set of fixed points and the constant admissible

sequences.

Definition 2.5. — A fibred numeration system N = (X,T, I, ϕ) is

finite (FFNS) if there exists a fixed point x0 under the transformation

T with N -representation ϕ(x0) = (i0, i0, . . .) such that for every element

x ∈ X, there exists a nonnegative integer n0 satisfying εn(x) = i0 for all

n > n0.

A fibred numeration system N is quasi-finite if and only if it is not finite

and every N -representation is ultimately periodic.

The attractor of the system is defined as the set A = {x ∈ X ; ∃k > 1 :

T k(x) = x}.

In other words, an FNS is finite if there exists a unique fixed point and

if it belongs to every orbit. By injectivity of ϕ, the attractor is the set of

elements having a purely periodic representation. An FNS is finite or quasi-

finite if every orbit falls in the attractor: ∀x ∈ X, ∃k such that T kx ∈ A.

In an FFNS, the representation ϕ(x) = (ε1(x), ε2(x), . . . , εn0−1(x), i0,

i0,. . .) of an element can be identified with the finite representation (ε1(x),

ε2(x), . . . , εn0−1(x)). With this convention, an FFNS is an FNS where

every element has a finite representation. Then the representation map

can be considered as a map ϕ : X → I(N). This gives finite expansions

(according to Definition 2.2), by defining

ψ(y1, y2, . . . , yn) = ψ(y1, y2, . . . , yn, i0, i0, . . .).
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The interest of the notion of FFNS comes from the examples: a lot of

expansions are finite (e.g., see Example 2.7 below). Furthermore, deal-

ing with infinite representations whenever the set X is at most countable

is irrelevant. Lastly, coding an essentially finite information like ϕ(x) =

(ε1(x), ε2(x), . . . , εn0−1(x), i0, i0, . . .) by an infinite sequence is abusive.

This concept is thus a translation into the framework of (infinite) repre-

sentations of the natural notion of finite expansion.

The difficulty lies in the fact that we deal in full generality only with

representations and not with explicit expansions using a zero. Indeed, finite

expansions (in the sense above) are usually those whose infinite form ends

with zeros: if n ∈ N as in (2.1), we have

n = ε0(n) + ε1(n)q+ · · ·+ εℓ−1(n)qℓ−1 + εℓ(n)qℓ + 0 · qℓ+1 + 0 · qℓ+2 + · · · .
Embedding N in Zq, the latter is even the Hensel expansion of n.

We thus do not use a zero to define FFNS. Actually, a zero is needed if

one wants to characterise finite expansions in a non-finite FNS, since there

is no possibility to differentiate the different fixed points of T in general.

Consider for instance X = Z2 with the usual representation giving the

Hensel expansion. The transformation is T (x) = (x− x (mod 2))/2. It has

two fixed points, 0 and −1. The set of digits is {0, 1}. According to Defini-

tion 2.5, the FNS (Z2, T, {0, 1}, ϕ) is not finite, but it induces two FFNS, on

the nonnegative integers, and on the negative integers, respectively. From

the formal viewpoint of representations, there is no difference between both

subsystems. Nevertheless, as elements of Z2, only nonnegative integers have

finite expansions. This is done by privileging the fixed point 0. Note that

if there exist several fixed points and if the representation of every element

ends with the representation of some of them, all representations are finitely

codable. However, it would be confusing to speak of finite representation

in this latter case.

2.3. N - compactification

Endowing I with a suitable topology, one may see the closure of ϕ(X)

in the product space IN∗

as a topological space equipped with the product

topology. This yields the following definition.

Definition 2.6. — For a fibred numeration system N = (X,T, I, ϕ),

with a Hausdorff topological space I as digit set, the associated N -compac-

tification XN is defined as the closure of ϕ(X) in the product space IN∗

.
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By the diagram (2.4) and its consequence (2.5), XN is stable under the

shift action. We will therefore consider in the sequel the subshift (XN , S).

If I is a discrete set, then

XN = {(i0, i1, . . .) ; ∀n > 0 , C(i0, . . . , in−1) 6= ∅}.
Lastly note that if (X,T, I, ϕ) is a finite FNS, and if (xn)n ∈ XN , then

(x0, . . . , xm, i0, i0, . . .) ∈ XN .

2.4. Examples

The present section presents in a detailed way several numeration sys-

tems. It illustrates the definitions introduced above and fixes vocabulary

and notation used in the rest of the paper. In particular, Example 2.7

and 2.14 generalise systematically (2.1), (2.2), and (2.3). Example 2.8 is

central in Section 3 and Section 4.

Example 2.7. — q-adic representations
The q-adic numeration is the most usual numeration. There exist several

q-adic numeration systems, all fibred, depending on whether one deals with

nonnegative integers, integers, real numbers, Hensel’s q-adic numbers, or

whether one uses the classical set of digits, or else allows other representa-

tions.

(1) Let X = N, I = {0, 1, . . . , q − 1}, Xi = i + qN. According to

Definition 2.3, ε(n) ≡ n (mod q) and let T : X → X be defined by

T (n) = (n−ε(n))/q. Then 0 is the only fixed point of T . We have an

FFNS, with language, set of representations and compactification

Lq =
⋃

n>0

{0, 1, . . . , q − 1}n,

ϕ(X) = I(N) =
{
(i0, . . . , in−1, 0, 0, 0, . . .) ;n ∈ N, ij ∈ {0, 1, . . . , q − 1}

}
,

XN = {0, 1, . . . , q − 1}N.
The addition can be extended to XN , and gives the additive

(profinite) group Zq = lim←−Z/qnZ. The coordinates are independent

and identically uniformly distributed on I w.r.t. Haar measure µq,

which fulfills µq[i0, . . . , ik−1] = q−k. (See Paragraph 6 of the present

example below).

(2) Let X = Z, and everything else as in the first example. This is again

an FNS, and actually a quasi-FFNS, since

ϕ(X) = {(i0, . . . , in−1, a, a, a, . . .);n ∈ N, a = 0 or a = q − 1}.
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In other words, there are two T -invariant points, which are 0 and

−1. The other sets are as in the first case: L = Lq and XN = Zq.

(3) Take now X = Z and T (n) = (n − ε(n))/(−q). Curiously, this is

again an FFNS, with the same language, set of representatives and

compactification as in the first example (see Theorem 3.1).

(4) It is possible to generalise the second example by modifying the set

of digits and taking any complete set of representants modulo q,

with q ∈ Z, |q| > 2. Then one always gets an FFNS or a quasi-

FFNS. This is due to the observation that for

L = max{|i| ; i ∈ I}/(|q| − 1),

the interval [−L,L] is stable by T and |T (n)| < |n| whenever

|n| > L. The compactification is IN, the language and the set of

representations hardly depend on the set of digits (see [199] for a

detailed study with many examples, and in particular, Lemma 1

therein, for the fact that it is a quasi-FFNS or an FFNS).

(5) X = [0, 1), I = {0, 1, . . . , q − 1}, Xi = [i/q, (i + 1)/q), and T (x) =

qx−⌊qx⌋. This defines an FNS, which becomes a quasi-FFNS if the

space is restricted to [0, 1)∩Q. The Lebesgue measure is T -invariant.

The language is Lq and the compactification Zq in both cases.

The set of representations is the whole product space without the

sequences ultimately equal to q−1 in the first case (FNS), the subset

of ultimately periodic sequences in the second case (quasi-FFNS).

The attractor is the set A = {a/b ; a < b and gcd(b, q) = 1}.
If x = a/b, with a and b coprime integers, write b = b1b2, with b1
being the highest divisor of b whose prime factors divide q. Then

the length of the preperiod is min{m ; b1|qm} and the length of

the period is the order of q in (Z/b2Z)∗. The continuous extension

ψ of ϕ−1 is defined on Zq by ψ(y) =
∑

n>1 ynq
−n. Elements of X

having improper representations are the so-called “q-rationals”, i.e.,

the numbers of the form a/qm with a ∈ N, m > 0 and a/qm < 1. If

the proper expansion is (i1, i2, . . . , is, 0
ω), then the improper one is

(i1, i2, . . . , is−1, is − 1, (q − 1)ω).

(6) Let X = Zq, with Xi = i + qZq, I = {0, 1, . . . , q − 1}, and T (x) =

(x − ε(x))/q. It is an FNS equal to its own N -compactification.

There are q fixed points: F = {0,−1, 1/(1 − q), 2/(1 − q), . . . , (q −
2)/(1− q)}. The attractor is A = F + Z.

Example 2.8. — β-representations
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(1) It is possible in Example 2.7 to replace q by any real number β > 1.

Namely, X = [0, 1], I = {0, 1, . . . , ⌈β⌉ − 1}, and T (x) = Tβ(x) =

βx − ⌊βx⌋, ε(x) = ⌊βx⌋. This way of producing β-representations

(which are actually expansions
∑

n>1 εn(x)β−n according to Defi-

nition 2.2) is traditionally called “greedy”, since the digit chosen at

step n is always the greatest possible, that is,

max



ǫ ∈ I;

n−1∑

j=1

εj(x)β
−j + ǫβ−n < x



 .

This is according to Rényi [281]. See Example 2.11 for a discussion

on this seminal paper.

According to Parry [264], the set of admissible sequences ϕ(X)

is simply characterised in terms of one particular β-expansion. For

x ∈ [0, 1], set dβ(x) = ϕ(x).(5) In particular, let dβ(1) = (tn)n>1.

We then set d∗β(1) = dβ(1), if dβ(1) is infinite, and

d∗β(1) = (t1 . . . tm−1(tm − 1))ω,

if dβ(1) = t1 . . . tm−1tm0ω is finite (tm 6= 0). The set ϕ(X) of β-

representations of real numbers in [0, 1) is exactly the set of se-

quences (xn)n>1 with values in I, such that

(2.8) ∀k > 1, (xn)n>k <lex d
∗
β(1).

The set XN = ϕ([0, 1)) is called the (right) one-sided β-shift. It is

equal to the set of sequences (xn)n>1 which satisfy

(2.9) ∀k > 1, (xn)n>k 6lex d
∗
β(1),

where 6lex denotes the lexicographical order.

Definition 2.9. — Numbers β such that dβ(1) is ultimately

periodic are called Parry numbers and those such that dβ(1) is

finite are called simple Parry numbers.

Parry numbers and simple Parry numbers are clearly algebraic

integers: Parry showed that they are Perron numbers [264]. For

example, the golden mean ̺ = 1+
√

5
2 is a simple Parry number

with d̺(1) = 110ω. According to Definition 2.2, simple Parry num-

bers are those that produce improper expansions. With any se-

quence (xn)n>1 ∈ XN , we can associate the expansion ψ(x) =

(5) This notation is redundant with ϕ, but it is standard in β-numeration, thus we will
use it.
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∑
n>1 xnβ

−n. Then ψ(x) ∈ [0, 1] and numbers with two expansions

are exactly those with finite expansion:

ψ(x1 . . . xs−1xs0
ω) = ψ((x1 . . . xs−1(xs − 1)d∗β(1)).

If β is assumed to be a Pisot number, then every element of

Q(β)∩ [0, 1] admits a ultimately periodic expansion [295, 68], hence

β is either a Parry number or a simple Parry number [68]. One

deduces from the characterisation (2.9) that the shift XN is of finite

type if and only if β is a simple Parry number, and it is sofic if and

only if XN is a Parry number [192, 68].

Rényi [281] proved that ([0, 1), Tβ) has a unique absolutely con-

tinuous invariant probability measure hβ(x)dλ, and computed it ex-

plicitly when β was the golden mean. Parry [264] extended this com-

putation to the general case and proved that the Radon-Nikodym

derivative of the measure is a step function, with a finite number

of steps if and only if β is a Parry number.

(2) Note that
∑

n>1(⌈β⌉ − 1)β−n = (⌈β⌉ − 1)/(β − 1) > 1, if β is not

an integer. This leaves some freedom in the choice of the digit. The

“lazy” choice corresponds to the smallest possible digit, that is,

min


ǫ ∈ I;x−




n−1∑

j=0

εj(x)β
−j−1 + ǫβ−n−1


 < (⌈β⌉ − 1)/βn(β − 1)



 .

This corresponds to ε(x) =

⌈
βx− ⌈β⌉ − 1

β − 1

⌉
and T (x) = βx− ε(x).

These transformations are conjugated: write ϕg and ϕℓ for greedy

and lazy representations, respectively. Then

ϕℓ

(⌈β⌉ − 1

β − 1
− x
)

= (⌈β⌉ − 1, ⌈β⌉ − 1, . . .)− ϕg(x).

(3) It is also possible to make a choice at any step: lazy or greedy.

If this choice is made in alternance, we still have an FNS (with

transformation T 2 and pairs of digits). More complicated choices

(e.g., random) are also of interest (but are not FNS). See [109],

[304], and the references therein.

(4) For β, the dominating root of some polynomial of the type

Xd − a0X
d−1 − a1X

d−2 − · · · − ad−1

with integral coefficients a0 > a1 > · · · > ad−1 > 1, the restric-

tion of the first tranformation (T (x) = βx − ⌊βx⌋) on Z[β−1]+ =
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Z[β−1] ∩ R+ yields an FFNS. Such numbers β are said to satisfy

Property (F ) (introduced in [150]). They will take a substantial

room in this survey (see Section 3.3 and 4.4). An extensively stud-

ied question is to find the characterisation of these β (see Section 4).

More generally, for detailed surveys on the β-numeration, see for in-

stance [69, 74, 242, 148, 304].

Example 2.10. — Continued fractions
Continued fractions have been an important source of inspiration in

founding fibred systems [299]. Classical continued fractions, called regu-

lar, use X = [0, 1], the so-called Gauß transformation T (x) = 1/x− ⌊1/x⌋,
T (0) = 0, partition Xi = ( 1

i+1 ,
1
i ], and ε(x) = ⌊1/x⌋ (ε(0) =∞). The set of

digits is N∗∪{∞}. The representation map is one-to-one. In fact, the linear

maps ha : t 7→ 1
t+a (a ∈ N∗) defined on [0,∞] generate a free monoid to

which it is convenient to add the constant map h∞ : t 7→ 0. The iteration

(2.10) x = hε(x)(Tx) = hε(x) ◦ · · · ◦ hε(T nx)(T
n+1(x))

ends with h∞ for any rational number r ∈ [0, 1], so that r = hε(x) ◦ · · · ◦
hε(T nx) ◦ h∞(r) (with Tn+1(x) = 0). Irrational numbers x have an infinite

expansion (according to Definition 2.2) since Tn(x) is never equal to 0.

The restriction to rational numbers yields an FFNS and the restriction to

rational and quadratic numbers is a quasi-FFNS (by Lagrange’s theorem).

In the generic case, passing to the limit in (2.10), we get for any real number

in [0, 1] a unique expansion from the representation ϕ(x) (terminated by

(h∞ ◦ h∞ ◦ . . . if x is rational), namely

x = lim
n→∞

hε(x) ◦ · · · ◦ hε(T nx)(0)

and usually denoted by [0; ε1(x), ε2(x), . . . ]. Note that any rational number

r = hε(x) ◦ · · · ◦ hε(T nx)(0) with ε(Tnx) > 2 has also the expansion r =

hε(x) ◦ · · · ◦ hε(T nx)−1 ◦ h1(0) which does not come from a representation

(cf. Question 2.22 infra).

The expansion of special numbers (nothing is known about the continued

fraction expansion of 3
√

2), as well as the distribution properties of the

digits (partial quotients) have been extensively studied since Gauß and are

still the focus of many publications. For an example of a spectacular and

very recent result, see [4]. The regularity of T allows us to use Perron-

Frobenius operators, which yields interesting asymptotic results like the

Gauß-Kuzmin-Wirsing’s result, that we cite as an example [343]:

λ{x ; Tn(x) < t} =
log(1 + t)

log 2
+O(qn), with q = 0.303663...
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(here λ is the Lebesgue measure). The limit is due to Gauß, the first error

term and the first published proof are due to Kuzmin. The bottom line is

due to Wirsing [343], who gave the best possible value for q. There is a

huge number of variants (with even, odd, or negative digits for example).

See Kraaikamp’s thesis [224] for a unified approach by using the so-called

singularisation process based on matrix identities like
(

1 e

1 a

)(
0 f

1 1

)(
0 1

1 b

)
=

(
0 e

1 a+ f

)(
1 −f
1 b+ 1

)

with arbitrary a, b, e and f . For further references involving metrical theory,

see [181], and for generalisations to higher dimension we refer to [299]

and [300]. Due to the huge amount of literature, including books, it is

not worthwile to say much more about the theory of continued fractions.

Example 2.11. — f-expansions
It is often referred to the paper of Rényi [281] as the first occurrence

of β-expansions. It is rarely mentioned that β-expansions only occupy the

fourth section of this famous paper and are seen as an example of the today

less popular f -expansions.(6)

The idea is to represent the real numbers x ∈ [0, 1] as

x = f(a1 + f(a2 + f(a3 + · · ·+ f(an + · · · )) · · · ), with ai ∈ N(2.11)

= lim
n→∞

f(a1 + f(a2 + f(a3 + · · ·+ f(an) · · · ))).

It originates in the observation that both continued fractions and q-adic

expansions are special cases of the same type, namely an f -expansion,

with f(x) = 1/x for the continued fractions and f(x) = x/q for the q-

adic expansions. Furthermore, the coefficients are given in both cases by

a1 = ⌊f−1(x)⌋ and it is clear that existence of an algorithm and convergence

in (2.11) occur under suitable assumptions of general type on f (injectivity

and regularity).

(6) The term β-expansion does not even occur in the Thron’s AMS review of [281] who
just evokes “more general f -expansions” [than the q-adic one]. In Zentralblatt, the one
full page long review of Hartman shortly says (in the citation below, g is the upper
bound of the interval on which the function f is defined, see infra): “Der schwierige
Fall: g < ∞, g nicht ganz, wird nicht allgemein untersucht, jedoch kann Verf. für
den Sonderfall f(x) = x/β (bei 0 6 x 6 β) oder 1 (bei β < x), β nicht ganz, d.h.
für die systematischen Entwicklungen nach einer gebrochenen Basis, den Hauptsatz
noch beweisen.”(The difficult case: g < ∞, g not integral, is not investigated in general.
However, the author is able to prove the principal theorem for the special case f(x) = x/β
(for 0 6 x 6 β) or 1 (for β < x), β not an integer, that is, for systematic expansions
w.r.t. a fractional base.) [This “principal theorem” is concerned with the absolutely
continuous invariant measure (see Example 2.8) - the case of g finite and not an integer
is not treated in general.]
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More precisely, let f : J → [0, 1] be a homeomorphism, where J ⊂ R+.

Let ε(x) = ⌊f−1(x)⌋ for 0 6 x 6 1 and T : [0, 1] → [0, 1] be defined by

T (x) = f−1(x)− ε(x). For 1 6 k 6 n, let us introduce

uk,n(x) = f(εk(x) + f(εk+1(x) + · · ·+ f(εn(x) + Tn(x)) · · · )
vk,n(x) = f(εk(x) + f(εk+1(x) + · · ·+ f(εn(x)) · · · ).

Then, one has u1,n(x) = x, uk,n(x) = u1,n−k+1(T
k−1(x)), and similarly

vk,n(x) = v1,n−k+1(T
k−1(x)). We are interested in the convergence of

(v1,n(x))n to x. Indeed,

(2.12) x− v1,n(x) = Tn(x)

n∏

k=1

f(vk,n)− f(uk,n)

vk,n − uk,n
.

Provided that for all x, (v1,n(x))n tends to x, then one gets a fibred numer-

ation system and expansions according to Definition 2.2. They are called

f -expansions. This question seems to have been raised for the first time

by Kakeya [194] in 1924. Independently, Bissinger treated the case of a

decreasing function f [73] and Everett the case of an increasing function

f two years later [139] before the already cited synthesis of Rényi [281].

Since one needs the function f to be injective and continuous, there are

two cases, whenever f is increasing or decreasing.

The usual assumptions are either f : [1, g] → [0, 1], decreasing, with

2 < g 6 +∞, f(1) = 1 and f(g) = 0, or f : [0, g] → [0, 1], increas-

ing, with 1 < g 6 +∞, f(0) = 0, and f(g) = 1. In both cases, the

set of digits is I = {1, . . . , ⌈g⌉ − 1}. In case g = +∞, the set of digits

is infinite and there is a formal problem at the extremities of the inter-

val. Let us consider the decreasing case. Then T is not well defined at

0. It is possible to consider the transformation T on [0, 1] \ ∪j>0T
−j{0}.

It is also valid to set T (0) = 0 and ε(0) = ∞, say. Then, we say that

the f -representation of x is finite if the digit ∞ occurs. In terms of ex-

pansions, for (εn(x))n = (i1, . . . , in,∞,∞, . . .), we have a finite expansion

x = f(i1 + f(i2 + · · · + f(in)) · · · ). For the special case of continued frac-

tions, the first choice considers the Gauß transformation on [0, 1] \ Q and

the second one obtains the so-called regular continued fraction expansion

of rational numbers. The case f increasing is similar.

The convergence to 0 of the righthand side when n tends to infinity in

Equation (2.12) is clearly ensured under the hypothesis that f is contract-

ing (s-lipschitz with s < 1). There are several results in this direction,

which are variants of this hypothesis and depend on the different cases

(f decreasing or increasing, g finite or not). For instance, Kakeya proved
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the convergence under the hypothesis g integral or infinite and |f ′(x)| < 1

almost everywhere [194]. We refer to the references cited above and to the

paper of Parry [265] for more details.

The rest of Rényi’s paper is devoted to the ergodic study of the dynamical

system ([0, 1], T ). By considering the case of independent digits (g ∈ N or

g = ∞), and by assuming that there exists a constant C such that for all

x, one has supt |Hn(x, t)| 6 C inft |Hn(x, t)|, where

H(x, t) =
d

dt
f(ε1(x) + f(ε2 + · · ·+ f(εn(x) + t)) · · · ),

he proves that there exists a unique T -invariant absolutely continuous

measure µ = hdλ such that C−1 6 h(x) 6 C. Note that the termi-

nology “independent” is troublesome, since as random variables defined

on ([0, 1], µ), the digits εn are not necessarily independent. They are in

the q-adic case, but they are not in the continued fractions case, nor for

the β-expansions. Furthermore, there are sometimes infinite invariant mea-

sures. In [326], Thaler gives general conditions on f for that and some

examples, as f : [0,∞] → [0, 1], f(x) = x/(1 + x). See also [1] for more

detailed information on these measures, especially wandering rates. For

further developments on f -expansions, we refer to [299] and [108].

Example 2.12. — Rational bases
A surprising question is to ask for a q-adic representation of integers

with a rational number q = r/s > 1 (r and s being coprime positive

integers, s > 2). To do that, we can follow Kátai’s approach [199], looking

for a map T : Z → Z such that any integer n can be written in the form

n = r
sT (n)+R(n). A divisibility reasoning requestsR(n) = ε(n)

s , where ε(n)

may play the rôle of the least significant digit. This leads to simultaneous

definitions of the maps ε : Z→ {0, 1, . . . , r} and T from the relation

(2.13) sn = rT (n) + ε(n),

where T (n) and ε(n) stand respectively for the quotient and the remainder

in the Euclidean divsion of sn by r. The partial r
s -expansion of n is then

given by the formula

(2.14) n =
ε(n)

s
+

1

s

(r
s

)
ε(Tn) + · · ·+ 1

s

(r
s

)k−1

ε(T k−1n) +
(r
s

)k

T k(n).

It is easy to check from the definition that T (0) = 0, T (n) < n if n > 1,

and −n < T (−n) < 0, if n > r. Consequently, for any positive integer

n, there exists a unique integer ν = ν(n) > 1 such that T ν−1(n) 6= 0 and

T ν(n) = 0. Choosing I = {0, 1, . . . , r−1} and the map A : Z→ IN∗

defined

as A(n) = (εj(n))j>1, we get a numeration system (Z, T, A). The restriction
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of T to N (still denoted by T ), gives rise to a finite numeration system with

(r/s)-adic expansion
∑ν(n)

j=1 εj(n)s−1(r/s)j−1. Moreover (N , T, I, A) is also

a finite fibred system.

This representation has been recently studied in [15] where it is an-

nounced in particular that the language Lr/s of this representation is

neither regular, nor context-free. The authors also show that the (r/s)-

expansion is closely connected to Mahler’s problem on the distribution of

the sequences n 7→ t(r/s)n (t ∈ R).

(2)

2|1

KK

1|0
�� 0|2

((
(0)

x|x
��

Figure 2.1. The transducer for the addition by 1 for the 3
2 -expansion.

The state (a) (for a = 0, 2) corresponds to the carry digit a. The label

x|y means that x is the current input digit and y the resulting output

digit.

The addition by 1 is computed by a transducer which is depicted in

Figure 2.1 for r = 3, s = 2. In this case, adding 1 to n means adding the

digit 2 to the string ε1(n)ε2(n) . . . which is read from left to right by the

transducer to produce the output ε1(n+ 1)ε2(n+ 1) . . . .

In fact, T is naturally extended to the group Zr of r-adic integers by

(2.13) where n, now, belongs to Zr, and ε(n) is the unique integer in I such

that the r-adic valuation of sn− ε(n) is at least 1. In symbolic notations,

Zr is identified to IN and T acts on IN as the one-sided shift. Note that the

map n 7→ sn is an automorphism of Zr. By taking the limit in (2.14), the

infinite string ε1(n)ε2(n) . . . (n ∈ Zr) corresponds to the Hensel expansion

of n, using the base s−1(r/s)j , j = 0, 1, 2, . . . . Hence, Zr turns out to be the

compactification of Lr/s. For the restriction to X = Z, we get a quasi-finite

fibred system where the representation of any negative integer is ultimately

periodic.

Example 2.13. — Signed numeration systems
Such representations have been introduced to facilitate arithmetical op-

erations. To our knowledge, the first appearance of negative digits is due

to Cauchy, whose title “Sur les moyens d’éviter les erreurs dans les calculs

numériques” is significant. Cauchy proposes explicit examples of additions

and multiplications of natural numbers using digits i with −5 6 i 6 5. He
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also verbally explains how one performs the conversion between both rep-

resentations, using what was not yet called a transducer at that time: “Les

nombres étant exprimés, comme on vient de le dire, par des chiffres dont

la valeur numérique ne surpasse pas 5, les additions, soustractions, mul-

tiplications, divisions, les conversions de fractions ordinaires en fractions

décimales et les autres opérations de l’arithmétique, se trouveront notable-

ment simplifiées. Ainsi, en particulier, la table de multiplication pourra être

réduite au quart de son étendue, et l’on n’aura plus à effectuer de multiplica-

tions partielles que par les seuls chiffres 2, 3, 4 = 2×2, et 5 = 10/2. Ainsi,

pour être en état de multiplier l’un par l’autre deux nombres quelconques, il

suffira de savoir doubler ou tripler un nombre, ou en prendre la moitié. [· · · ]
Observons en outre que, dans les additions, multiplications, élévations aux

puissances, etc, les reports faits d’une colonne à l’autre seront généralement

très faibles, et souvent nuls, attendu que les chiffres positifs et négatifs se

détruiront mutuellement en grande partie, dans une colonne verticale com-

posée de plusieurs chiffres.(7) ” There is a dual interest: considerably reduce

the size of the multiplication tables; dramatically decrease the carry prop-

agation.

Nowadays, signed representations have two advantages. The first one is

still algorithmic - as for Cauchy, the title of the book in which Knuth

mentions them is significant (see [212]). The second interest lies in the

associated dynamical systems.

The representation considered by Cauchy is redundant - e.g., 5 = 15̄,

where n̄ = −n. In the sequel, we restrict ourselves to base 2 with digits

{1̄, 0, 1}. Reitwiesner proved in [280] that any integer n ∈ Z can be uniquely

written as a finite sum
∑

06i6ℓ ai2
i with ai ∈ {−1, 0, 1} and ai · ai+1 = 0.

This yields the compactification

XN =
{
x0x1x2 . . . ∈ {−1, 0, 1} ; ∀i ∈ N : xixi+1 = 0

}
.

(7) As previously explained, additions, subtractions, multiplications, divisions, conver-
sions of ordinary fractions into decimal fractions, and other arithmetical operations, can
be significantly reduced by expressing numbers by digits whose numerical value does not
exceed 5. In particular, the multiplication table might be reduced by a quarter, and it
will only be necessary to perform partial multiplications using the digits 2, 3, 4 = 2× 2,
and 5 = 10/2. Hence, it is just essential to know how to double or triple one number, or
to divide it in half in order to be able to multiply any one number by another. Note also
that, in additions, multiplications, raisings of numbers to powers, etc., carryovers made
from one column to another are generally very weak, and often even equal to zero, since
positive and negative digits will gradually and mutually destroy each other in a vertical
column made of several digits.
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This signed-digit expansion is usually called the nonadjacent form (NAF)

or the canonical sparse form (see [166] for more details). Let us note that

one of the interests of this numeration is that its redundancy allows sparse

representations: this has applications particularly for the multiplication and

the exponentiation in cryptography, such as illustrated in Section 6.3.

This numeration system is an FFNS. The elements of this FFNS are

X = Z, with partition X0 = 2Z, X−1 = −1 + 4Z and X1 = 1 + 4Z, and

transformation T (n) = (n − ε(n))/2. Two natural transformations act on

XN , the shift S and the addition by 1, denoted as τ , imported from Z by

(2.15)

Z
+1−→ Z

ϕ
y

yϕ
XN −→

τ
XN .

Then (XN , S) is a topological mixing Markov chain whose Parry measure

is the Markov probability measure with transition matrix

P =




0 1 0

1/4 1/2 1/4

0 1 0




and initial distribution (1/6, 2/3, 1/6). Furthermore, (XN , S) is conjugated

to the dynamical system ([−2/3, 2/3], u) by

Ψ(x0x1x2 . . .) =

∞∑

k=0

xk2−k−1,

where u(x) = 2x − a(x)mod 1. A realisation of the natural extension is

given by (X,S) with

X =
(
[−2/3,−1/3)× [−1/3, 1/3]

)
∪

∪
(
[−1/3, 1/3)× [−2/3, 2/3]

)
∪
(
[1/3, 2/3)× [−1/3, 1/3]

)

and S(x, y) =
(
2x − a(x), (a(x) + y)/2

)
, where a(x) = −1 if −2/3 6 x <

−1/3, a(x) = 0 if −1/3 6 x < 1/3 and a(x) = 0 if 1/3 6 x 6 2/3.

The odometer (XN , τ) (see Section 5) is topologically conjugated to the

usual dyadic odometer (Z2, x 7→ x+ 1). This FNS and related arithmetical

functions are studied by Dajani, Kraaikamp and Liardet [110].

Example 2.14. — Zeckendorf and Ostrowski representation
Let (Fn)n be the (shifted) Fibonacci sequence F0 = 1, F1 = 2 and Fn+2 =

Fn+1 +Fn. Then any nonnegative integer can be represented as a sum n =∑
j εj(n)Fj . This representation is unique if one assumes that εj(n) ∈ {0, 1}

and εj(n)εj+1(n) = 0. It is called Zeckendorf expansion. If ̺ = (1 +
√

5)/2
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is the golden mean, the map f given by f(n) =
∑

j>0 εj(n)̺−j−1 embeds

N into [0, 1], the righthand side of the latter equation being the greedy

β-expansion of its sum (for β = ̺, see Example 2.8).

Let us note that the representation of the real number f(n) is given by an

FNS, but this does not yield an FNS producing the Zeckendorf expansion.

Indeed, the Zeckendorf representation of n is required to be able to compute

the real number f(n). One obtains it by the greedy algorithm.

The compactification XN is the set of (0, 1)-sequences without con-

secutive 1’s. The addition cannot be extended by continuity to XN as

x + y = lim(xn + yn) for integer sequences (xn)n and (yn)n tending to x

and y, respectively (this sequence does not converge in XN ), but the ad-

dition by 1 can: if (xn)n is a sequence of nonnegative integers converging

to x, then the sequence (xn+1)n converges too. See Example 5.5 for details.

The Ostrowski representation of the nonnegative integers is a generali-

sation of the Zeckendorf expansion (for more details, see the references in

[60]). Assume 0 < α < 1/2, α 6∈ Q. Let α = [0; a1, a2, . . . , an, . . .] be its

continued fraction expansion with convergents pn/qn = [0; a1, a2, . . . , an].

Then every nonnegative integer n has a representation n =
∑

j>0 εj(n)qn,

which becomes unique under the condition

(2.16)





0 6 ε0(m) 6 a1 − 1;

∀ j > 1, 0 6 εj(m) 6 aj+1;

∀ j > 1, (εj(m) = aj+1 ⇒ εj−1(m) = 0 ).

The set XN accurately describes the representations. Although this numer-

ation system is not fibred, Definition 2.6 gives here

XN = {(xn)n>0 ∈ NN ; ∀j > 0 : x0q0 + · · ·+ xjqj < qj+1}
= {(xn)n>0 ∈ NN; x0 6 a1 − 1 and

∀j > 1 : xj 6 aj+1 and [xj = aj+1 ⇒ xj−1 = 0]}.

On XN , the addition by 1 τ : x 7→ x+ 1 can be performed continuously by

extending the addition by 1 for the integers. The map

(2.17) f(n) =

∞∑

j=0

εj(n)(qjα− pj)

associates a real number f(n) ∈ [−α, 1− α[ with n.

In particular, if α = [0; 2, 1, 1, 1, . . .] = ̺−2 = (3 −
√

5)/2, then the se-

quence of denominators (qn)n of the convergents is exactly the Fibonacci
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sequence, and the map f coincides with the map given above in the dis-

cussion on the Zeckendorf expansion up to a multiplicative constant.

In general, the map f extends by continuity to XN and realises an almost

topological isomorphism in the sense of Denker and Keane [115] between

the odometer (XN , τ) and ([1− α, α], Rα), where Rα denotes the rotation

with angle α. Explicitly, we have a commutative diagram

(2.18)

XN
τ−→ XN

f
y

yf
[−α, 1− α] −→

Rα

[−α, 1− α],

where f induces an homeomorphism between XN \ OZ(0ω) and [−α, 1 −
α] \ αZ (mod 1), i.e., the spaces without the (countable) two-sided orbit

of 0 (OZ(0ω) denotes the bilateral orbit of 0ω). In particular, the odometer

(XN , τ) is strictly ergodic (uniquely ergodic and minimal).

This numeration system is not fibred. Nevertheless, the expansion given

by the map f arises from a fibred numeration system too. This latter FNS

thus produces Ostrowski expansions of real numbers, and it is defined by

introducing a skew product of the continued fraction transformation, ac-

cording to [183, 187, 321, 334].

Let X = [0, 1) × [0, 1), T (x, y) = ({1/x}, {y/x}), T (0, y) = (0, 0) (one

recognises on the first component the Gauß transformation), ε(x, y) =

(⌊1/x⌋, ⌊y/x⌋), and I = N∗ × N∗. By applying the fibred system (X,T )

to the pair (α, y), one recovers an expansion of the real number y in [0, 1)

as

y =

∞∑

j=0

εj(y)|qjα− pj |,

with digits satisfying
{
∀ j > 1, 0 6 εj(m) 6 aj+1;

∀ j > 1, (εj(m) = aj+1 ⇒ εj+1(m) = 0 ).

Note that this system of conditions is in some sense dual to the system

of equations (2.16). It is also possible (see [187]) to recover an expansion

of the form y =
∑∞

j=0 εj(y)(qjα − pj), with digits satisfying constraints

(2.16) as a fibred numeration system, but the expression of the map T is

more complicated. For their metrical study, see [183, 187]. For more on

the connections between Ostrowski’s numeration, word combinatorics, and

particularly Sturmian words, see the survey [60], the sixth chapter in [272],

and the very complete description of the scenery flow given in [31]. In the
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same vein, see also [193] for similar numeration systems associated with

episturmian words.

2.5. Questions

The list of examples above has proposed a medley of fibred numeration

systems, with some of their properties. We gather and discuss some recur-

rent questions brought to light on that occasion that one can ask whenever

a fibred system (X,T ) and a representation map ϕ are introduced.

Question 2.15. — First of all, is ϕ injective? In other words, do we have

an FNS? In some cases (nonnegative integers, real numbers or subsets of

them), X and I are totally ordered sets and the injectivity of the represen-

tation map is a consequence of its monotonicity with respect to the order

on X and to the lexicographical order on IN∗

.

If we have an FNS, do we have an FFNS, a quasi-FFNS? Are there in-

teresting characterisations of the attractor? The set of elements x ∈ X

whose N -representation is stationary equal to i0 is stable under the action

of T . This also applies to the set of elements with ultimately periodic N -

representation. In case we have an FNS, but not an FFNS, this observation

interprets the problem of finding elements that have finite or ultimately pe-

riodic representations as well as finding induced FFNS and induced quasi-

FFNS. This question is discussed, e.g., in Section 3 and particularly in

Section 3.3. Note that number theoretists also asked for characterisations

of purely periodic expansions (for q-adic expansions of real numbers, con-

tinued fractions...) We evoke it in Section 4.4, for instance.

Question 2.16. — The determination of the language is trivial when

the representation map is surjective (Examples 2.7 and 2.10). Otherwise,

the language can be described with some simple rules (Examples 2.8, 2.13,

2.14) or it cannot (Example 2.11). Hence the question: given an FNS, de-

scribe the underlying language. The structure of the language reflects that

of the numeration system, and it even often happens that the combina-

torics of the language has a translation in terms of arithmetic properties

of the numeration (e.g., see the survey [282]). Let us note that it is usual

and meaningful to distinguish between different levels of complexity of the

language (e.g., independence of the digits if L = IN∗

, Markovian structure,

finite type, or sofic type). We refer to Section 4 for relevant results and

examples. In the case of shift radix systems (See Section 3.4), the language
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of the underlying number system is described via Theorem 3.12 for pa-

rameters corresponding to canonical number systems (see Section 3.1) and

β-expansions. The stucture of this language for all the other parameters

remains to be investigated.

Question 2.17. — The list of properties of the language above corre-

sponds to properties of the subshift (XN , S). The dynamical structure of

this subshift is an interesting question as well. It is not independent of

the previous one: suppose XN is endowed with some S-invariant measure.

Then the digits can be seen as random variables En(ω) = ωn (the n-th pro-

jection). Their distribution can be investigated and reflects the properties

of the digits — e.g., a Markovian structure of digits versus the sequence of

coordinates as a Markov chain. Let us note that the natural extension of the

transformation T (in the fibred case) is a useful tool to find explicitly invari-

ant measures. It is standard for continued fractions; see for example [90] for

more special continued fractions, and [111] for the β-transformation (see

also Question 2.19 below). See also [78] (and the bibliography therein) for

recent results on the camparison between the distribution of the number

of digits determined when comparing two types of expansions in integer

bases produced by fibred systems (e.g., continued fractions and decimal

expansions).

Question 2.18. — Let us consider the transfer of some operations on

X. This question does not necessarily address numeration systems. More

precisely, if X is a group or a semi-group (X, ∗), is it possible to define

an inner law on XN by x∗̇y = lim(ϕ(xn ∗ yn)), where limϕ(xn) = x and

limϕ(yn) = y? Or if T ′ is a further transformation on X, does it yield a

transformation T on XN by

T (x) = lim
xn→x

ϕ(T ′(xn))?

According to these transformations on XN , some probability measures may

be defined on XN . Then coordinates might be seen as random variables

whose distribution also reflects the dependence questions asked in Question

2.17.

Question 2.19. — The dynamical system (X,T ) is itself of interest. The

precise study of the commutative diagram issued from (2.4) by replacing
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IN∗

by XN

(2.19)

X
T−→ X

ϕ
y

yϕ
XN −→

S
XN

can make (X,T ) a factor or even a conjugated dynamical system of (XN , S).

As mentioned above, other transformations (like the addition by 1) or al-

gebraic operations on X can also be considered and transferred to the

N -compactification, giving commutative diagrams similar to (2.19):

(2.20)

X
T ′

−→ X

ϕ
y

yϕ
XN −→

T
XN

Results on X can be sometimes proved in this way (cf. Section 6).

The shift acting on the symbolic dynamical system (XN , S) is usually

not a one-to-one map. It is natural to try to look for a two-sided subshift

that would project onto (XN , S) (a natural extension, see also Question

2.17). Classical applications are, for instance, the determination of the in-

variant measure [262], as well as the characterisation of the attractor, and

of elements of X having a purely periodic N -representation, e.g., in the

β-numeration case, see [191, 287, 189, 65] (the attactor is described in this

case in terms of central tile or Rauzy fractal discussed in Section 4.3, see

also Question 2.23). More generally, the compactification XN of X opens

a broad range of dynamical questions in connection with the numeration.

Question 2.20. — An important issue in numeration systems is to rec-

cognise rotations (discrete spectrum) among encountered dynamical sys-

tems. More precisely, let (X,T, µ,B) be a dynamical system. We first note

that if T has a discrete spectrum, then T has a rigid time, i.e., there

exists an increasing sequence (nk)k>0 of integers such that the sequence

k 7→ Tnk weakly converges to the identity. In other words, for any f and g

in L2(X,µ), one has

lim
k

(Tnkf |g) = (f |g).
Such a rigid time can be selected in order to characterise T up to an iso-

morphism. In fact, it is proved in [72] that for any countable subgroup G

of U, there exists a sequence (an)n of integers such that for any complex

number ξ, then the sequence n 7→ ξan converges to 1 if and only if ξ ∈ G.

Such a sequence, called characteristic for G, is a rigid time for any dynam-

ical system (X,T, µ,B) of discrete spectrum such that G is the group of
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eigenvalues. In case G is cyclically generated by ζ = e2iπα, a character-

istic sequence is built explicitly from the continued fraction expansion of

α (see [72], Theorem 1∗). Clearly if (an)n is a rigid time for T and if the

group of complex numbers z such that limn z
an = 1 is reduced to {1}, then

T is weakly mixing. The following proposition is extracted from [316]:

Proposition 2.21. — Let T = (X,T, µ,B) be a dynamical system.

Assume first that there exists an increasing sequence (an)n of integers such

that the group of complex numbers z verifying limn z
an = 1 is countable

and second, that there exists a dense subset D of L2(X,µ), such that for

all f ∈ D, the series
∑

n>0

||f ◦ T an − f || 22

converges, then T has a discrete spectrum.

Question 2.22. — An FNS produces the following situation:

X
∼−→
ϕ
ϕ(X)

i→֒ XN .

Assume furthermore that X is a Hausdorff topological space and that the

map ϕ−1 : ϕ(X)→ X admits a continuous extension ψ : XN → X. We note

ϕ = i ◦ϕ. We have ψ ◦ϕ = idX. Elements y of XN distinct from ϕ(x) such

that ψ(y) = x (if any) are called improper representations of x. Natural

questions are to characterise the x ∈ X having improperN -representations,

to count the number of improper representations, to find them, and so

on. In other words, study the equivalence relation R on XN defined by

uRv ⇔ ψ(u) = ψ(v). In many cases (essentially the various expansions of

real numbers), X is connected, XN is completely disconnected, ϕ is not

continuous, but ψ (by definition) is continuous and X is homeomorphic

to the quotient space XN /R. The improper representations are naturally

understood as expansions.

Question 2.23. — To many numeration systems (see for instance those

considered in Section 3 and Section 4) we can attach a set, the so-called

central tile (or Rauzy fractal), which is often a fractal set. The central tile

is usually defined by renormalizing the iterations of the inverse T−1 of the

underlying fibred system (see for instance Sections 3.6 and 4.3). We are

interested in properties of these sets. For instance, their boundaries usu-

ally have fractional dimension and their topological properties are difficult

do describe. In general, we are interested in knowing whether these sets

inherit a natural iterated function system structure from the associated
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number system. One motivation for the introduction of such sets is to ex-

hibit explicitly a rotation factor of the associated dynamical system (see

also Question 2.20 and Section 4.4).

There are further questions, which only make sense in determined types

of numeration systems and require further special and accurate definitions.

They will be stated in the corresponding sections.

3. Canonical numeration systems, β-expansions and shift
radix systems

The present section starts with a description of two well-known notions

of numeration systems: canonical number systems in residue class rings of

polynomial rings, and β-expansions of integers. At a first glance, these two

notions of numeration system are quite different. However — and for this

reason we treat them both in the same section — they can be regarded

as special cases of so-called shift radix systems. Shift radix systems (intro-

duced in Section 3.4) are families of quite simple dynamical systems.

All these notions of number systems admit the definition of fundamental

domains. These sets often have fractal structure and admit a tiling of the

space. Fundamental domains of canonical number systems are discussed

at the end of the present section (Section 3.6), whereas tiles associated

with β-expansions (so-called Rauzy fractals) are one of the main topics of

Section 4.

3.1. Canonical numeration systems in number fields

This subsection is mainly devoted to numeration systems located in a

residue class ring

X = A[x]/p(x)A[x]

where p(x) = xd + pd−1x
d−1 + · · · + p1x + p0 ∈ A[x] is a polynomial over

the commutative ring A. By reduction modulo p, we see that each element

q ∈ X has a representative of the shape

q(x) = q0 + q1x+ · · ·+ qd−1x
d−1 (qj ∈ A)

where d is the degree of the polynomial p(x). In order to define a fibred

numeration system on X, we consider the mapping

T : X → X,

q 7→ q−ε(q)
x
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where the digit ε(q) ∈ X is defined in a way that

(3.1) T (q) ∈ X.

Note that this requirement generally leaves some freedom for the defini-

tion of ε. In the cases considered in this subsection, the image I of ε will

always be finite. Moreover, the representation map ϕ = (ε(Tnx))n>0 de-

fined in Section 2.2 will be surjective, i.e., all elements of IN are admissible.

If we iterate T for ℓ times starting with an element q ∈ X, we obtain the

representative

(3.2) q(x) = ε(q) + ε(Tq)x+ · · ·+ ε(T ℓ−1q)xℓ−1 + T ℓ(q)xℓ.

According to Definition 2.4, the quadruple N = (X,T, I, ϕ) is an FNS.

Moreover, following Definition 2.5, we call N an FFNS if for each q ∈ X,

there exists an ℓ ∈ N such that T k(q) = 0 for each k > ℓ.

Once we have fixed the ring A, the definition of N only depends on p

and ε. Moreover, in what follows, the image I of ε will always be chosen

to be a complete set of coset representatives of A/p0A (recall that p0 is

the constant term of the polynomial p). With this choice, the requirement

(3.1) determines the value of ε(q) uniquely for each q ∈ X. In other words,

in this case N is determined by the pair (p, I). Motivated by the shape of

the representation (3.2) we will call p the base of the numeration system

(p, I), and I its set of digits.

The pair (p, I) defined in this way still provides a fairly general notion of

numeration system. By further specialization, we will obtain the notion of

canonical numeration systems from it, as well as a notion of digit systems

over finite fields that will be discussed in Section 3.5.

Historically, the term canonical numeration system is from the Hungar-

ian school (see [204], [202], [218]). They used it for numeration systems

defined in the ring of integers of an algebraic number field.(8) Meanwhile,

Pethő [269] generalized this notion to numeration systems in certain poly-

nomial rings, and this is this notion of numeration system to which we will

attach the name canonical numeration system in the present survey.

Before we precisely define Kovács’ as well as Pethő’s notion of numeration

system and link it to the general numeration systems in residue classes of

polynomial rings, we discuss some earlier papers on the subject.

(8) With the word “canonical” the authors wanted to emphasize the fact that the digits
he attached to these numeration systems were chosen in a very simple “canonical” way.
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In fact, instances of numeration systems in rings of integers were stud-

ied long before Kovács’ paper. The first paper on these objects seems to

be Grünwald’s treatise [162] dating back to 1885 which is devoted to nu-

meration systems with negative bases. In particular Grünwald showed the

following result.

Theorem 3.1. — Let q > Z. Each n ∈ Z admits a unique finite repre-

sentation w.r.t. the base number −q, i.e.,

n = c0 + c1(−q) + · · ·+ cℓ(−q)ℓ

where 0 6 ci < q for i ∈ {0, . . . , ℓ} and cℓ 6= 0 for ℓ 6= 0.

We can say that Theorem 3.1 describes the bases of number systems in

the ring of integers Z of the number field Q. It is natural to ask whether

this concept can be generalised to other number fields. Knuth [210] and

Penney [266] observed that b = −1 +
√
−1 serves as a base for a numera-

tion system with digits {0, 1} in the ring of integers Z[
√
−1] of the field of

Gaussian numbers Q(
√
−1), i.e., each z ∈ Z[

√
−1] admits a unique repre-

sentation of the shape

z = c0 + c1b+ · · ·+ cℓb
ℓ

with digits ci ∈ {0, 1} and cℓ 6= 0 for ℓ 6= 0. Knuth [212] also observed

that this numeration system is strongly related to the famous twin-dragon

fractal which will be discussed in Section 3.6. It is not hard to see that

Grünwald’s as well as Knuth’s examples are special cases of FFNS.

We consider the details of this correspondence for a more general def-

inition of numeration systems in the ring of integers ZK of a number

field K. In particular, we claim that the pair (b,D) with b ∈ ZK and

D = {0, 1, . . . , |N(b)| − 1} defines an FFNS in ZK if each z ∈ ZK admits a

unique representation of the shape

(3.3) z = c0 + c1b+ · · ·+ cℓb
ℓ (ci ∈ N)

if cℓ 6= 0 for ℓ 6= 0 (note that this requirement just ensures that there are no

leading zeros in the representations). To see this, set X = ZK and define

T : ZK → ZK by

T (z) =
z − ε(z)

b
where ε(z) is the unique element of D with T (z) ∈ ZK . Note that D is

uniquely determined by b. The first systematic study of FFNS in rings of

integers of number fields was done by Kátai and Szabó [204]. They proved

that the only canonical bases in Z[i] are the numbers b = −n+
√
−1 with
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n > 1. Later Kátai and Kóvacs [202, 203] (see also Gilbert [154]) charac-

terised all (bases of) canonical numeration systems in quadratic number

fields. A. Kovács, B. Kovács, Pethő and Scheicher [218, 219, 222, 288, 216]

studied numeration systems in rings of integers of algebraic number fields

of higher degree and proved some partial characterisation results (some fur-

ther generalised concepts of numeration systems can be found in [221, 220]).

In [223] an estimate for the length ℓ of the CNS representation (3.3) of z

w.r.t. base b in terms of the modulus of the conjugates of z as well as b is

given.

Pethő [269] observed that the notion of numeration systems in number

fields can be easily extended using residue class rings of polynomials. In

particular, he gave the following definition.

Definition 3.2. — Let

p(x) = xd + pd−1x
d−1 + · · ·+ p1x+ p0 ∈ Z[x], D = {0, 1, . . . , |p0| − 1}

and X = Z[x]/p(x)Z[x] and denote the image of x under the canonical

epimorphism from Z[x] to X again by x. If every non-zero element q(x) ∈ X
can be written uniquely in the form

(3.4) q(x) = c0 + c1x+ · · ·+ cℓx
ℓ

with c0, . . . , cℓ ∈ D, and cℓ 6= 0, we call (p,D) a canonical number system

(CNS for short).

Let p be irreducible and assume that b is a root of p. Let K = Q(b) and

assume further that ZK = Z[b], i.e., ZK is monogenic. Then Z[x]/p(x)Z[x]

is isomorphic to ZK , and this definition is easily seen to agree with the

above definition of numeration systems in rings of integers of number fields.

On the other hand, canonical numeration systems turn out to be a special

case of the more general definition given at the beginning of this section.

To observe this, we choose the commutative ring A occurring there to be

Z. The value of ε(q) is defined to be the least nonnegative integer meeting

the requirement that

T (q) =
q − ε(q)

x
∈ X.

Note that this definition implies that ε(X) = D, as required. Indeed, if

q(x) = q0 + q1x+ · · ·+ qd−1x
d−1 (qj ∈ Z)
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is a representative of q, then T takes the form

(3.5) T (q) =

d−1∑

i=0

(qi+1 − cpi+1)x
i,

where qd = 0 and c = ⌊q0/p0⌋. Then

(3.6) q(x) = (q0 − cp0) + xT (q), where q0 − cp0 ∈ D.

Thus the iteration of T yields exactly the representation (3.4) given above.

The iteration process of T can become divergent (e.g., q(x) = −1 for p(x) =

x2 + 4x+ 2), ultimately periodic (e.g., q(x) = −1 for p(x) = x2 − 2x+ 2)

or can terminate at 0 (e.g., q(x) = −1 for p(x) = x2 + 2x + 2). For the

reader’s convenience, we will give the details for the last constellation.

Example 3.3. — Let p(x) = x2 + 2x + 2 be a polynomial. We want to
calculate the representation of q(x) = −1 ∈ Z[x]/p(x)Z(x). To this matter
we need to iterate the mapping T defined in (3.5). Setting dj = ε(T j(q))
this yields

q = −1, c = −1,

T (q) = (0 − (−1) · 2) + (0 − (−1) · 1)x = 2 + x, c = 1, d0 = 1,

T 2(q) = (1 − 1 · 2) + (0 − 1 · 1)x = −1 − x, c = −1, d1 = 0,

T 3(q) = (−1 − (−1) · 2) + (0 − (−1) · 1)x = 1 + x, c = 0, d2 = 1,

T 4(q) = (1 − 0 · 2) + (0 − 0 · 1)x = 1, c = 0, d3 = 1,

T 5(q) = 0, c = 0, d4 = 1,

T k(q) = 0 for k > 6.

Thus

−1 = d0 + d1x+ d2x
2 + d3x

3 + d4x
4 = 1 + x2 + x3 + x4

is the unique finite representation (3.4) of −1 with respect to the base p(x).

Note that (p,D) is a canonical numeration system if and only if the

attractor of T is A = {0}. Indeed, if the attractor of T is {0} then for each

q ∈ X there exists a k0 ∈ N with T k0(q) = 0. This implies that T k(q) = 0

for each k > k0. Iterating T we see in view of (3.6) that the k-th digit ck
of q is given by

T k(q) = ck + xT k+1(q).

If k > k0 this implies that ck = 0. Thus q has finite CNS expansion. Since

q ∈ X was arbitrary this is true for each q ∈ X. Thus (p,D) is a CNS. The

other direction is also easy to see.

The fundamental problem that we want to address concerns exhibiting

all polynomials p that give rise to a CNS. There are many partial results

on this problem. Generalizing the above-mentioned results for quadratic
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number fields, Brunotte [84] characterised all quadratic CNS polynomials.

In particular, he obtained the following result.

Theorem 3.4. — The pair (p(x),D) with p(x) = x2 + p1x+ p0 and set

of digits D = {0, 1, . . . , |p0| − 1} is a CNS if and only if

(3.7) p0 > 2 and − 1 6 p1 6 p0.

For CNS polynomials of general degree, Kovács [218] (see also the more

general treatment in [12]) proved the following theorem.

Theorem 3.5. — The polynomial

p(x) = xd + pd−1x
d−1 + · · ·+ p1x+ p0

gives rise to a CNS if its coefficients satisfy the “monotonicity condition”

(3.8) p0 > 2 and p0 > p1 > · · · > pd−1 > 0.

More recently, Akiyama and Pethő [18], Scheicher and Thuswaldner [293]

as well as Akiyama and Rao [19] showed characterisation results under the

condition

p0 > |p1|+ · · ·+ |pd−1|.
Moreover, Brunotte [84, 85] has results on trinomials that give rise to CNS.

It is natural to ask whether there exists a complete description of all CNS

polynomials. This characterisation problem has been studied extensively for

the case d = 3 of cubic polynomials. Some special results on cubic CNS

are presented in Körmendi [213]. Brunotte [86] characterised cubic CNS

polynomials with three real roots. Akiyama et al. [13] studied the problem

of describing all cubic CNS systematically. Their results indicate that the

structure of cubic CNS polynomials is very irregular.

Recently, Akiyama et al. [11] invented a new notion of numeration sys-

tem, namely, the so-called shift radix systems. All recent developments on

the characterisation problem of CNS have been done in this new framework.

Shift radix systems will be discussed in Section 3.4.

3.2. Generalisations

There are some quite immediate generalisations of canonical numeration

systems. First, we mention that there is no definitive reason for studying

only the set of digits D = {0, 1, . . . , |p0| − 1}. More generally, each set D

ANNALES DE L’INSTITUT FOURIER



DYNAMICAL DIRECTIONS IN NUMERATION 2023

containing one of each coset of Z/p0Z can serve as set of digits. Numera-

tion systems of this more general kind can be studied in rings of integers of

number fields as well as in residue class rings of polynomials. For quadratic

numeration systems, Farkas, Kátai and Steidl [142, 198, 319] showed that

for all but finitely many quadratic integers, there exists a set of digits such

that each element of the corresponding number field has a finite represen-

tation. In particular, Steidl [319] proves the following result for numeration

systems in Gaussian integers.

Theorem 3.6. — If K = Q(i) and b is an integer of ZK satisfying

|b| > 1 with b 6= 2, 1± i, then one can effectively construct a residue system

D (mod b) such that each z ∈ ZK admits a finite representation

z = c0 + c1b+ · · ·+ cℓb
ℓ

with c0, . . . , cℓ ∈ D.

Another way of generalising canonical numeration systems involves an

embedding into an integer lattice. Let (p(x),D) be a canonical numeration

system. As mentioned above, each q ∈ X = Z[x]/p(x)Z[x] admits a unique

representation of the shape

q0 + q1x+ · · ·+ qd−1x
d−1

with q0, . . . , qd−1 ∈ Z and d = deg(p). Thus the bĳective group homomor-

phism
Φ : X → Zd

q 7→ (q0, . . . , qd−1)

is well defined. Besides being a homomorphism of the additive group in X,

Φ satisfies

Φ(xq) = BΦ(q)

with

(3.9) B =




0 · · · · · · · · · 0 −p0

1
. . .

... −p1

0
. . .

. . .
... −p2

...
. . .

. . .
. . .

...
...

...
. . .

. . . 0
...

0 · · · · · · 0 1 −pd−1




.

Exploiting the properties of Φ we easily see the following equivalence. Each

q ∈ X admits a CNS representation of the shape

q = c0 + c1x+ c2x
2 + · · ·+ cℓx

ℓ (c0, . . . , cℓ ∈ D)
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if and only if each z ∈ Zd admits a representation of the form

z = d0 +Bd1 +B2d2 + · · ·+Bℓdℓ (d0, . . . , dℓ ∈ Φ(D)).

Thus (B,Φ(D)) is a special case of the following notion of numeration

system.

Definition 3.7. — Let B ∈ Zd×d be an expanding matrix (i.e., all

eigenvalues of B are greater than 1 in modulus). Let D ⊂ Zd be a complete

set of cosets in Zd/BZd such that 0 ∈ D. Then the pair (B,D) is called a

matrix numeration system if each z ∈ Zd admits a unique representation

of the shape

z = d0 +Bd1 + · · ·+Bℓdℓ

with d0, . . . , dℓ ∈ D and dℓ 6= 0 for ℓ 6= 0.

It is easy to see (along the lines of [222], Lemma 3) that each eigenvalue

of B has to be greater than or equal to one in modulus to obtain a number

system. We impose the slightly more restrictive expanding condition to

guarantee the existence of the attractor T in Definition 3.18.

Matrix numeration systems have been studied, for instance, by Kátai,

Kovács and Thuswaldner in [200, 215, 217, 328]. Apart from some special

classes it is quite hard to obtain characterisation results because the number

of parameters to be taken into account (namely the entries of B and the

elements of the set D) is very large. However, matrix number systems will

be our starting point for the definition of lattice tilings in Section 3.6.

3.3. On the finiteness property of β-expansions

At the beginning of the present section we mentioned that so-called shift

radix systems form a generalization of CNS as well as β-expansions. Thus,

before we introduce shift radix systems in full detail, we want to give a

short account on β-expansions in the present subsection.

The β-expansions have already been defined in Example 2.8. They rep-

resent the elements of [0,∞) with respect to a real base number β and with

a finite set of nonnegative integer digits. It is natural to ask when these

representations are finite. Let Fin(β) be the set of all x ∈ [0,∞) having a

finite β-expansion. Since finite sums of the shape

n∑

j=m

cjβ
−j (cj ∈ N)

ANNALES DE L’INSTITUT FOURIER



DYNAMICAL DIRECTIONS IN NUMERATION 2025

are always contained in Z[β−1] ∩ [0,∞), we always have

(3.10) Fin(β) ⊆ Z[β−1] ∩ [0,∞).

According to Frougny and Solomyak [150], we say that a number β satis-

fies property (F) if equality holds in (3.10). Using the terminology of the

introduction property (F) is equivalent to the fact that (X,T ) with

X = Z[β−1] ∩ [0,∞) and T (x) = βx− ⌊βx⌋

is an FFNS (see Definition 2.5).

In [150, Lemma 1] it was shown that (F) can hold only if β is a Pisot

number. However, there exist Pisot numbers that do not fulfill (F). This

raises the problem of exhibiting all Pisot numbers having this property. Up

to now, there has been no complete characterisation of all Pisot numbers

satisfying (F). In what follows, we would like to present some partial results

that have been achieved.

In [150, Proposition 1] it is proved that each quadratic Pisot number has

property (F). Akiyama [9] could characterise (F) for all cubic Pisot units.

In particular, he obtained the following result.

Theorem 3.8. — Let x3 − a1x
2 − a2x − 1 be the minimal polynomial

of a cubic Pisot unit β. Then β satisfies (F) if and only if

(3.11) a1 > 0 and − 1 6 a2 6 a1 + 1.

If β is an arbitrary Pisot number, the complete characterisation result is

still unknown. Recent results using the notion of shift radix system suggest

that even characterisation of the cubic case is very involved (cf. [11, 12]).

We refer to Section 3.4 for details on this approach. Here we just want to

give some partial characterisation results for Pisot numbers of arbitrary

degree. The following result is contained in [150, Theorem 2].

Theorem 3.9. — Let

(3.12) xd − a1x
d−1 − · · · − ad−1x− ad

be the minimal polynomial of a Pisot number β. If the coefficients of (3.12)

satisfy the “monotonicity condition”

(3.13) a1 > · · · > ad > 1

then β fulfills property (F).

Moreover, Hollander [169] proved the following result on property (F)

under a condition on the representation dβ(1) of 1.
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Theorem 3.10 ([169, Theorem 3.4.2]). — A Pisot number β has prop-

erty (F) if dβ(1) = d1 . . . dℓ with d1 > d2 + · · ·+ dℓ.

Let us also quote [20, 54] for results in the same vein.

In Section 3.4, the most important concepts introduced in this section,

namely CNS and β-expansions, will be unified.

3.4. Shift radix systems

At a first glance, canonical numeration systems and β-expansions are

quite different objects: canonical numeration systems are defined in poly-

nomial rings. Furthermore, the digits in CNS expansions are independent.

On the other hand, β-expansions are representations of real numbers whose

digits are dependent. However, the characterisation results of the finiteness

properties of CNS and β-expansions resemble each other. As an example,

we mention (3.7) and (3.8) on the one hand, and (3.11) and (3.13) on the

other.

The notion of shift radix system which is discussed in the present sub-

section will shed some light on this resemblance. Indeed, it turns out that

canonical numeration systems in polynomial rings over Z as well as β-

expansions are special instances of a class of very simple dynamical sys-

tems. The most recent studies of canonical numeration systems as well as

β-expansions make use of this more general concept which allows us to

obtain results on canonical numeration systems as well as β-expansions at

once. We start with a definition of shift radix systems (cf. Akiyama et al.

[11, 12]).

Definition 3.11. — Let d > 1 be an integer, r = (r1, . . . , rd) ∈ Rd and

define the mapping τr by

τr : Zd → Zd

a = (a1, . . . , ad) 7→ (a2, . . . , ad,−⌊ra⌋),
where ra = r1a1 + · · · + rdad, i.e., the inner product of the vectors r and

a. Let r be fixed. If

(3.14) for all a ∈ Zd, then there exists k > 0 with τk
r
(a) = 0

we will call τr a shift radix system (SRS for short). For simplicity, we write

0 = (0, . . . , 0).

Let

D0
d =

{
r ∈ Rd ; ∀a ∈ Zd ∃k > 0 : τk

r
(a) = 0

}
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be the set of all SRS parameters in dimension d and set

Dd =
{
r ∈ Rd ; ∀a ∈ Zd the sequence (τk

r
(a))k>0 is ultimately periodic

}
.

It is easy to see that D0
d ⊆ Dd.

In [11] (cf. also Hollander [169]), it was noted that SRS correspond to

CNS and β-expansions in the following way.

Theorem 3.12. — The following correspondences hold between CNS

as well as β-expansions and SRS.

• Let p(x) = xd + pd−1x
d−1 + · · ·+ p1x+ p0 ∈ Z[x]. Then p(x) gives

rise to a CNS if and only if

(3.15) r =

(
1

p0
,
pd−1

p0
, . . . ,

p1

p0

)
∈ D0

d.

• Let β > 1 be an algebraic integer with minimal polynomial Xd −
a1X

d−1 − · · · − ad−1X − ad. Define r1, . . . , rd−1 by

(3.16) rj = aj+1β
−1 + aj+2β

−2 + · · ·+ adβ
j−d (1 6 j 6 d− 1).

Then β has property (F) if and only if (rd−1, . . . , r1) ∈ D0
d−1.

In particular τr is conjugate to the mapping T defined in (3.5) if r is chosen

as in (3.15) and conjugate to the β-transformation Tβ(x) = βx− ⌊βx⌋ for

r as in (3.16).

Remark 3.13. — The conjugacies mentioned in the theorem are de-

scribed in [11, Section 2 and Section 3, respectively]. In both cases they are

achieved by certain embeddings of the according numeration system in the

real vector space, followed in a natural way by some base transformations.

This theorem highlights the problem of describing the set D0
d. Describing

this set would solve the problem of characterizing all bases of CNS as well

as the problem of describing all Pisot numbers β with property (F). We

start with some considerations on the set Dd. It is not hard to see (cf. [11,

Section 4]) that

(3.17) Ed ⊆ Dd ⊆ Ed
where

Ed =
{
(r1, . . . , rd) ∈ Rd ; xd + rdx

d−1 + · · ·+ r1

has only roots y ∈ C with |y| < 1
}

denotes the Schur-Cohn region (see Schur [298]). The only problem in de-

scribing Dd involves characterising its boundary. This problem turns out

to be very hard and contains, as a special case, the following conjecture of

Schmidt [295, p. 274].
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Conjecture 3.14. — Let β be a Salem number and x ∈ Q(β) ∩ [0, 1).

Then the orbit (T k
β (x))k>0 of x under the β-transformation Tβ is eventually

periodic.

This conjecture is supported by the fact that if each rational in [0, 1) has a

ultimately periodic β-expansion, then β is either a Pisot or a Salem number.

Up to now, Boyd [80, 81, 82] could only verify some special instances of

Conjecture 3.14 (see also [14] where the problem of characterising ∂Dd is

addressed).

As quoted in [74], note that there exist Parry numbers which are neither

Pisot nor even Salem; consider, e.g., β4 = 3β3+2β2+3 with dβ(1) = 3203;

a Salem number is a Perron number, all conjugates of which have absolute

value less than or equal to 1, and at least one has modulus 1. It is proved

in [80] that if β is a Salem number of degree 4, then β is a Parry number;

see [81] for the case of Salem numbers of degree 6. Note that the algebraic

conjugates of a Parry number β > 1 are smaller than 1+
√

5
2 in modulus,

with this upper bound being sharp [146, 317].

We would like to characteriseD0
d starting fromDd. This could be achieved

by removing all parameters r from Dd for which the mapping τr admits

nontrivial periods. We would like to do this “periodwise”. Let

(3.18) aj = (a1+j , . . . , ad+j) (0 6 j 6 L− 1)

with aL+1 = a1, . . . , aL+d = ad be L vectors of Zd. We want to describe the

set of all parameters r = (r1, . . . , rd) that admit the period π(a0, . . . ,aL−1),

i.e., the set of all r ∈ Dd with

τr(a0) = a1, τr(a1) = a2, . . . , τr(aL−2) = aL−1, τr(aL−1) = a0.

According to the definition of τr, this is the set given by

(3.19) 0 6 r1a1+j + · · ·+ rdad+j + ad+j+1 < 1 (0 6 j 6 L− 1).

To see this, let j ∈ {0, . . . , L− 1} be fixed. The equation τr(aj) = aj+1 can

be written as

τr(aj) = τr(a1+j , . . . , ad+j)

= (a2+j , . . . , ad+j ,−⌊r1a1+j + · · ·+ rdad+j⌋)
= (a2+j , . . . , ad+1+j),

i.e., ad+1+j = −⌊r1a1+j + · · ·+rdad+j⌋. Thus (3.19) holds and we are done.

We call the set defined by the inequalities in (3.19) P(π). Since P(π) is

a (possibly degenerate or even empty) convex polyhedron, we call it the

cutout polyhedron of π. Since 0 is the only permitted period for elements of
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D0
d, we obtain D0

d from Dd by cutting out all polyhedra P(π) corresponding

to non-zero periods, i.e.,

(3.20) D0
d = Dd \

⋃

π 6=0

P(π).

Describing D0
d is thus tantamount to describing the cutout polyhedra com-

ing from non-zero periods. It can be easily seen from the definition that

τr(x) = R(r)x + v.

Here R(r) is a d×d matrix whose characteristic polynomial is xd+rdx
d−1+

· · ·+r1. Vector v is an “error term” coming from the floor function occurring

in the definition of τr and always fulfills ||v||∞ < 1 (here || · ||∞ denotes the

maximum norm). The further away from the boundary of Dd the parameter

r is chosen, the smaller are the eigenvalues of R(r). Since for each r ∈
int(Dd) the mapping τr is contracting apart from the error term v, one can

easily prove that the norms of the elements a0, . . . ,aL−1 forming a period

π(a0, . . . ,aL−1) of τr can become large only if parameter r is chosen near

the boundary. Therefore the number of periods corresponding to a given τr
with r ∈ int(Dd) is bounded. The bound depends on the largest eigenvalue

of R(r).

This fact was used to derive the following algorithm, which allows us to

describe D0
d in whole regions provided that they are at some distance away

from ∂Dd. In particular, the following result was proved in [11].

Theorem 3.15. — Let r1, . . . , rk ∈ Dd and denote by H the convex

hull of r1, . . . , rk. We assume that H ⊂ int(Dd) and that H is sufficiently

small in diameter. For z ∈ Zd take M(z) = max16i6k{−⌊riz⌋}. Then there

exists an algorithm to create a finite directed graph (V,E) with vertices

V ⊂ Zd and edges E ∈ V × V which satisfy

(1) each d-dimensional standard unit vector (0, . . . , 0,±1, 0, . . . , 0) ∈ V ,

(2) for each z = (z1, . . . , zd) ∈ V and

j ∈ [−M(−z),M(z)] ∩ Z

we have (z2, . . . , zd, j) ∈ V and a directed edge (z1, . . . , zd) →
(z2, . . . , zd, j) in E.

(3) H ∩ D0
d = H \⋃π P (π), where the union is taken over all non-zero

primitive cycles of (V,E).

This result was substantially used in [12] to describe large parts of D0
2.

Since it is fairly easy to show that D0
2 ∩ ∂D2 = ∅, the difficulties related to

the boundary of D2 do not cause troubles. However, it turned out that D0
2
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Figure 3.1. An approximation of D0
2

has a very complicated structure near this boundary. We refer the reader

to Figure 3.1 to get an impression of this structure.

The big isoceles triangle is E2 and thus, by (3.17), apart from its bound-

ary, it is equal to D2. The grey figure is an approximation of D0
2 which was

constructed using (3.20) and Theorem 3.15. It is easy to see that the peri-

ods (1, 1) and (1, 0), (0, 1) correspond to cutout polygons cutting away from

D0
2 the area to the left and below the approximation. Since Theorem 3.15

can be used to treat regions far enough away from ∂D2, D0
2 just has to be

described near the upper and right boundary of ∂D2.

Large parts of the region near the upper boundary could be treated in

[12, Section 4] showing that this region indeed belongs to D0
2. Near the right

boundary of D2, however, the structure of D0
2 is much more complicated.

For instance, in [11] it has been proved that infinitely many different

cutouts are needed in order to describe D0
2. Moreover, the period lengths

of τr are not uniformly bounded. The shape of some infinite families of

cutouts as well as some new results on D0
2 can be found in Surer [324]. In

view of Theorem 3.12, this difficult structure of D0
2 implies that in cubic β-

expansions of elements of Z[β−1]∩ [0,∞) periods of arbitrarily large length

may occur.

SRS exist for parameters varying in a continuum. In [12, Section 4], this

fact was used to exploit a certain structural stability occurring in the orbits

of τr when varying r continuously near the point (1,−1). This leads to a

description of D0
2 in a big area.

Theorem 3.16. — We have

{(r1, r2) ; r1 > 0,−r1 6 r2 < 1− 2r1} ⊂ D0
2.

ANNALES DE L’INSTITUT FOURIER



DYNAMICAL DIRECTIONS IN NUMERATION 2031

In view of Theorem 3.12, this yields a large class of Pisot numbers β

satisfying property (F).

The description of D0
2 itself is not as interesting for the characterisa-

tion of CNS since quadratic CNS are already well understood (see The-

orem 3.4). The set D0
3 has not yet been well studied. However, Scheicher

and Thuswaldner [293] made some computer experiments to exhibit a coun-

terexample to the following conjecture which (in a slightly different form)

appears in [222]. It says that

p(x) CNS polynomial =⇒ p(x) + 1 CNS polynomial.

In particular, they found that this is not true for

p(x) = x3 + 173x2 + 257x+ 198.

This counterexample was found by studying D0
3 near a degenerate cutout

polyhedron that cuts out the parameter corresponding to p(x) + 1 in view

of Theorem 3.12, but not the parameter corresponding to p(x). Since The-

orem 3.15 can be used to prove that no other cutout polygon cuts out

regions near this parameter, the counterexample can be confirmed.

The characterisation of cubic CNS polynomials p(x) = x3+p2x
2+p1x+p0

with fixed large p0 is related to certain cuts of D0
3 which very closely re-

semble D0
2. In view of Theorem 3.12, this indicates that characterisation

of cubic CNS polynomials is also very difficult. In particular, according to

the Lifting theorem ([11, Theorem 6.2]), each of the periods occurring for

two-dimensional SRS also occurs for cubic CNS polynomials. Thus CNS

representations of elements of Z[x]/p(x)Z[x] with respect to a cubic poly-

nomial p(x) can have infinitely many periods. Moreover, there is no bound

for the period length (see [11, Section 7]). For the family of dynamical sys-

tems T in (3.5), this means that their attractors can be arbitrarily large if

p varies over the cubic polynomials.

Recently, Akiyama and Scheicher [22, 23, 177] studied a variant of τr. In

particular, they considered the family

τ̃r : Zd → Zd

(a1, . . . , ad) 7→ (a2, . . . , ad,−
⌊
ra + 1

2

⌋
).

In the same way as above they attach the sets D̃d and D̃0
d to it. However,

interestingly, it turns out that the set D̃0
2 can be described completely in

this modified setting. In particular, it can be shown that D̃0
2 is an open

triangle together with some parts of its boundary. In Huszti et al. ([177]),

the set D̃0
3 has been characterised completely. It turned out that D̃0

3 is the
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union of three convex polyhedra together with some parts of their bound-

ary. As in the case of ordinary SRS, this variant is related to numeration

systems. Namely, some modifications of CNS and β-expansions fit into this

framework (see [22]).

3.5. Numeration systems defined over finite fields

In this subsection we would like to present other numeration systems.

The first one is defined in residue classes of polynomial rings as follows.

Polynomial rings F[x] over finite fields share many properties with the ring

Z. Thus it is natural to ask for analogues of canonical numeration systems

in finite fields. Kovács and Pethő [222] studied special cases of the following

more general concept introduced by Scheicher and Thuswaldner [291].

Let F be a finite field and p(x, y) =
∑
bj(x)y

j ∈ F[x, y] be a polynomial

in two variables, and let D = {p ∈ F[x] ; deg p(x) < deg b0(x)}. We call

(p(x, y),D) a digit system with base p(x, y) if each element q of the quotient

ring X = F[x, y]/p(x, y)F[x, y] admits a representation of the shape

q = c0(x) + c1(x)y + · · ·+ cℓ(x)y
ℓ

with cj(x) ∈ D (0 6 j 6 ℓ).

Obviously these numeration systems fit into the framework defined at

the beginning of this section by setting A = F [y] and defining ε(q) as the

polynomial of least degree meeting the requirement that T (q) ∈ X.

It turns out that characterisation of the bases of these digit systems is

quite easy. Indeed, the following result is proved in [291].

Theorem 3.17. — The pair (p(x, y),D) is a digit system if and only if

one has maxn
i=1 deg bi < deg b0.

The β-expansions have also been extended to the case of finite fields

independently by Scheicher [289], as well as Hbaib and Mkaouar [163]. Let

F((x−1)) be the field of formal Laurent series over F and denote by | · | some

absolute value. Choose β ∈ F((x−1)) with |β| > 1. Let z ∈ F((x−1)) with

|z| < 1. A β-representation of z is an infinite sequence (di)i>1, di ∈ F[x]

with

z =
∑

i>1

di

βi
.

The most important β-representation (called β-expansion) is determined

by the “greedy algorithm”

• r0 ← z,
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• dj ← ⌊βrj−1⌋,
• rj = βrj−1 − dj .

Here ⌊·⌋ cuts off the negative powers of a formal Laurent series.

In [289] several problems related to β-expansions are studied. An ana-

logue of property (F) of Frougny and Solomyak [150] is defined. Contrary

to the classical case, all β satisfying this condition can be characterised.

In [289, Section 5], it is shown that (F) is true if and only if β is a Pisot

element of F((x−1)), i.e., if β is an algebraic integer over F[x] with |β| > 1

all whose Galois conjugates βj satisfy |βj | < 1 (see [66]).

Furthermore, the analogue of Conjecture 3.14 could be settled in the

finite field setting. In particular, Scheicher [289] proved that all bases β

that are Pisot or Salem elements of F((x−1)) admit eventually periodic

expansions.

In [163], the “representation of 1”, which is defined in terms of an ana-

logue of the β-transformation, is studied.

3.6. Lattice tilings

Consider Knuth’s numeration system (−1 +
√
−1, {0, 1}) discussed in

Section 3.1. We are interested in the set of all complex numbers admitting

a representation w.r.t. this numeration system having zero “integer parts”,

i.e., in all numbers

z =
∑

j>1

cj(−1 +
√
−1)−j (cj ∈ {0, 1}).

Define the set (cf. [212])

T =



z ∈ C ; z =

∑

j>1

cj(−1 +
√
−1)−j (cj ∈ {0, 1})



 .

From this definition, we easily see that T satisfies the functional equation

(b = −1 +
√
−1)

(3.21) T = b−1T ∪ b−1(T + 1).

Since f0(x) = b−1x and f1(x) = b−1(x+1) are contractive similarities in C

w.r.t. the Euclidean metric, (3.21) asserts that T is the union of contracted

copies of itself. Since the contractions are similarities in our case, T is a

self-similar set. From the general theory of self-similar sets (see for instance

Hutchinson [178]), we are able to draw several conclusions on T . Indeed,

according to a simple fixed point argument, T is uniquely defined by the
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Figure 3.2. Knuth’s twin dragon

set equation (3.21). Furthermore, T is a non-empty compact subset of C.

Set T is depicted in Figure 3.2. It is the well-known twin-dragon.

We now mention some interesting properties of T . It is the closure of its

interior ([24]) and its boundary is a fractal set whose Hausdorff dimension

is given by

dimH∂T = 1.5236 . . .

([155, 184]). Furthermore, it induces a tiling of C in the sense that

(3.22)
⋃

z∈Z[i]

(T + z) = C,

where (T +z1)∩(T +z2) has zero Lebesgue measure if z1 and z2 are distinct

elements of Z[i] ([201]). Note that this implies that the Lebesgue measure

of T is equal to 1. We also mention that T is homeomorphic to the closed

unit disk ([25]).

These properties make T a so-called self-similar lattice tile. Tiles can

be associated with numeration systems in a more general way. After Def-

inition 3.7, we already mentioned that matrix numeration systems admit

the definition of tiles. Let (A,D) be a matrix numeration system. Since all

eigenvalues of A are larger than one in modulus, each of the mappings

fd(x) = A−1(x+ d) (d ∈ D)

is a contraction w.r.t. a suitable norm. This justifies the following definition.
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Definition 3.18. — Let (A,D) be a matrix numeration system in Zd.

Then the non-empty compact set T which is uniquely defined by the set

equation

(3.23) AT =
⋃

d∈D
(T + d)

is called the self-affine tile associated with (A,D).

Since D ⊂ Zd is a complete set of cosets in Zd/AZd, these self-affine

tiles are often called self-affine tiles with standard set of digits (e.g., see

[226]). The literature on these objects is vast. It is not our intention here

to survey this literature. We just want to link numeration systems and self-

affine lattice tiles and give some of their key properties. (For surveys on

lattice tiles we refer the reader for instance to [339, 341].)

In [47], it is shown that each self-affine tile with standard set of digits

has a positive d-dimensional Lebesgue measure. Together with [227], this

implies the following result.

Theorem 3.19. — Let T be a self-affine tile associated with a matrix

numeration system (A,D) in Zd. Then T is the closure of its interior. Its

boundary ∂T has d-dimensional Lebesgue measure zero.

As mentioned above, the twin-dragon induces a tiling of C in the sense

mentioned in (3.22). It is natural to ask whether all self-affine tiles asso-

ciated with matrix numeration systems share this property. In particular,

let (A,D) be a matrix numeration system. We say that the self-affine tile

T associated with (A,D) tiles Rn with respect to the lattice Zd if

T + Zd = Rd

such that (T + z1) ∩ (T + z2) has zero Lebesgue measure if z1, z2 ∈ Zd are

distinct.

It turns out that it is difficult to describe all tiles having this property.

Lagarias and Wang [226] and independently Kátai [199] found the following

criterion.

Proposition 3.20. — Let (A,D) be a matrix numeration system in Zd

and set

∆(A,D) =
⋃

k>1





k∑

j=1

Aj(dj − d′j) ; dj , d
′
j ∈ D



 .

The self-affine tile T associated with (A,D) tiles Rd with respect to the

lattice Zd if and only if

∆(A,D) = Zd.

TOME 56 (2006), FASCICULE 7



2036 G. BARAT, V. BERTHÉ, P. LIARDET & J. THUSWALDNER

In [228], methods from Fourier analysis were used to derive the tiling

property for a very large class of tilings. We do not state the theorem in

full generality here (see [228, Theorem 6.1]). We just want to give a special

case. To state it we need some notation. Let A1 and A2 be two d×d integer

matrices. Here A1 ≡ A2 means A1 is integrally similar to A2, i.e., there

exists Q ∈ GL(d,Z) such that A2 = QA1Q
−1. We say that A is (integrally)

reducible if

A ≡
(
A1 0

C A2

)

holds with A1, and A2 is non-empty. We call A irreducible if it is not

reducible. Note that a sufficient condition for the irreducibility of an integer

matrix A is the irreducibility of its minimal polynomial over Q.

From [228, Corollary 6.2] the following result follows.

Theorem 3.21. — Let (A,D) be a matrix numeration system in Zd

with associated self-affine tile T . If A is irreducible, then T tiles Rd with

respect to the lattice Zd.

A special case of this result can also be found in [161]. Theorem 3.21 en-

sures, for instance, that each canonical numeration system with irreducible

base polynomial p(x) yields a tiling of Rd with Zd-translates. Indeed, just

observe that the matrix A in (3.9) has minimal polynomial p(x).

Many more properties of self-affine tiles associated with number systems

have been investigated so far. The boundary of these tiles can be repre-

sented as a graph-directed iterated function system (see [141, Chapter 3]

for a definition). Indeed, let (A,D) be a matrix numeration system and let

T be the associated self-affine tile. Suppose that T tiles Rd by Zd-translates.

The set of neighbours of the tile T is defined by

S = {s ∈ Zd ; T ∩ (T + s) 6= ∅}.
Since T and its translates form a tiling of Rd, we may infer that

∂T =
⋃

s∈S\{0}
T ∩ (T + s).

Thus in order to describe the boundary of T , the sets Bs = T ∩ (T + s) can

be described for s ∈ S \ {0}. Using the set equation (3.23) for T , we easily

derive that (cf. [292, Section 2])

Bs = A−1
⋃

d,d′∈D
BAs+d′−d + d.

Here BAs+d′−d is non-empty only if the index is an element of S. Now label

the elements of S as S = {s1, . . . , sJ} and define the graph G(S) = (V,E)
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with a set of states V = S in the following way. Let Ei,j be the set of edges

leading from si to sj . Then

Ei,j =

{
si

d|d′

−−→ sj ; Asi + d′ = sj + d for some d′ ∈ D
}
.

In an edge si
d|d′

−−→ sj , we call d the input digit and d′ the output digit. This

yields the following result.

Proposition 3.22. — The boundary ∂T is a graph-directed iterated

function system directed by the graph G(S). In particular,

∂T =
⋃

s∈S\{0}
Bs

where

Bs =
⋃

d∈D, s′∈S\{0}
s

d−→s′

A−1(Bs′ + d).

The union is extended over all d, s′ such that s
d−→ s′ is an edge in the graph

G(S \ {0}).

This description of ∂T is useful in several regards. In particular, graph

G(S) contains a lot of information on the underlying numeration system

and its associated tile. Before we give some of its applications, we should

mention that there exist simple algorithms for constructing G(S) (e.g., see

[323, 292]).

In [341, 323], the graph G(S) was used to derive a formula for the Haus-

dorff dimension of ∂T . The result reads as follows.

Theorem 3.23. — Let (A,N ) be a matrix numeration system in Zd

and T the associated self-affine tile. Let ρ be the spectral radius of the

accompanying matrix of G(S \ {0}). If A is a similarity, then

dimB(∂T ) = dimH(∂T ) =
d log ρ

log |detA| .

Similar results can be found in [135, 180, 339, 331, 290]. There they are

derived using a certain subgraph of G(S). In [331, 290], there are dimension

calculations for the case where A is not a similarity.

In [161], a subgraph of G(S) is used to set up an algorithmic tiling crite-

rion. In [228], this criterion was used as a basis for a proof of Theorem 3.21.

More recently, the importance of G(S) for the topological structure of tile

T was discovered. We mention a result of Bandt and Wang [48] that yields

a criterion for a tile to be homeomorphic to a disk. Roughly, it says that
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a self-affine tile is homeomorphic to a disk if it has 6 or 8 neighbours and

satisfies some additional easy-to-check conditions. Very recently, Luo and

Thuswaldner [244] established criteria for the triviality of the fundamental

group of a self-affine tile. Moreover graph G(S) plays an important rôle in

these criteria.

At the end, we would like to show the relation of G(S) to the matrix

numeration system (A,D) itself. If we change the direction of all edges in

G(S), we obtain the transposed graph GT (S). Suppose we have a repre-

sentation of an element z ∈ Zd of the shape

z = d0 +Ad1 + · · ·+Aℓdℓ (dj ∈ D).

To this representation, we associate the digit string (. . . 00dℓ . . . d0). Select

a state s of the graph GT (S). It can be shown that a walk in GT (S) is

uniquely defined by its starting state and a sequence of input digits. Now

we run through the graph GT (S) starting at s along a path of edges whose

input digits agree with the digit string (. . . 00dℓ . . . d0) starting with d0. This

yields an output string (. . . 00d′ℓ′ . . . d
′
0). From the definition of GT (S), it

is easily apparent that this output string is the A-ary representation of

z + s, i.e.,

z + s = d′0 +Ad′1 + · · ·+Aℓ′d′ℓ′ (d′j ∈ D).

Thus GT (S) is an adding automaton that allows us to perform additions

of A-ary representations (e.g., see [158, 290]). In [328], the graph GT (S)

was used to get a characterisation of all quadratic matrices that admit a

matrix numeration system with finite representations for all elements of Z2

with a certain natural set of digits.

4. Some sofic fibred numeration systems

This section is devoted to a particular class of FNS for which the subshift

XN is sofic. This class especially includes β-numeration for β assumed to

be a Parry number (see Example 2.8), the Dumont-Thomas numeration

associated with a primitive substitution (see Section 4.1), as well as some

abstract numeration systems (see Section 4.2). We focus on the construction

of central tiles and Rauzy fractals in Section 4.3. In the present section, we

highly use the algebraicity of the associated parameters of the FNS (e.g., β

for the β-numeration). We especially focus on the Pisot case and end this

section by discussing the Pisot conjecture in Section 4.4.
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4.1. Substitutions and Dumont-Thomas numeration

We now introduce a class of examples of sofic FNS — the Dumont-

Thomas numeration. For this purpose, we first recall some basic facts on

substitutions and substitutive dynamical systems.

If A is a finite set with cardinality n, a substitution σ is an endomor-

phism of the free monoid A∗. A substitution naturally extends to the set

of two-sided sequences AZ. A one-sided σ-periodic point of σ is a sequence

u = (ui)i∈N ∈ AN that satisfies σn(u) = u for some n > 0. A two-sided

σ-periodic point of σ is a two-sided sequence u = (ui)i∈Z ∈ AZ that sat-

isfies σn(u) = u for some n > 0, and u−1u0 belongs to the image of some

letter by some iterate σm of σ. This notion of σ-periodicity should not be

confused with the usual notion of periodicity of sequences.

A substitution over the finite set A is said to be of constant length if

the images of all letters of A have the same length. The incidence matrix

Mσ = (mi,j)16i,j6n of the substitution σ has entries mi,j = |σ(j)|i, where

the notation |w|i stands for the number of occurrences of the letter i in

the word w. A substitution σ is called primitive if there exists an integer

n such that σn(a) contains at least one occurrence of the letter b for every

pair (a, b) ∈ A2. This is equivalent to the fact that its incidence matrix

is primitive, i.e., there exists a nonnegative integer n such that M
n
σ has

only positive entries. If σ is primitive, then the Perron-Frobenius theorem

ensures that the incidence matrix Mσ has a simple real positive dominant

eigenvalue β. A substitution σ is called unimodular if det Mσ = ±1. A

substitution σ is said to be Pisot if its incidence matrix Mσ has a real

dominant eigenvalue β > 1 such that, for every other eigenvalue λ, one has

0 < |λ| < 1. The characteristic polynomial of the incidence matrix of such

a substitution is irreducible over Q, and the dominant eigenvalue β is a

Pisot number. Furthermore, it can be proved that Pisot substitutions are

primitive [272].

Every primitive substitution has at least one periodic point [274]. If u is

a periodic point of σ, then the closure in AZ of the shift orbit of u does not

depend on u. We thus denote it by Xσ. The symbolic dynamical system

generated by σ is defined as (Xσ, S). The system (Xσ, S) is minimal and

uniquely ergodic [274]; it is made of all the two-sided sequences whose set

of factors coincides with the set of factors u (which does not depend on the

choice of u by primitivity). For more results on substitutions, the reader is

referred to [27, 272, 274].

There are many natural connections between substitutions and numer-

ation systems (e.g., see [130, 131, 140]). We now describe a numeration
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system associated with a primitive substitution σ, known as the Dumont-

Thomas numeration [125, 126, 279]. This numeration allows to expand

prefixes of the fixed point of the substitution, as well as real numbers in

a noninteger base associated with the substitution. In this latter case, one

gets an FNS providing expansions of real numbers with digits in a finite

subset of the number field Q(β), with β being the Perron-Frobenius eigen-

value of the substitution σ.

Let σ be a primitive substitution. We denote by β its dominant eigen-

value. Let δσ : A∗ → Q(β) be the morphism defined by

∀w ∈ A∗, δσ(w) = lim
n→∞

|σn(w)|β−n.

Note that the convergence is ensured by the Perron-Frobenius theorem.

By definition, we have δσ(σ(a)) = βδσ(a) and δσ(ww′) = δσ(w) + δσ(w′)
for any (w,w′) ∈ (A∗)2. Furthermore, the row vector V (n) = (|σn(a)|)a∈A
satisfies the recurrence relation V (n+1) = V (n)Mσ. Hence the map δσ sends

the letter a to the corresponding coordinate of some left eigenvector vβ of

the incidence matrix Mσ.

Let a ∈ A and let x ∈ [0, δσ(a)). Then βx ∈ [0, δσ(σ(a))). There exist a

unique letter b in A, and a unique word p ∈ A∗ such that pb is a prefix of

σ(a) and δσ(p) 6 βx < δσ(pb). Clearly, βx− δσ(p) ∈ [0, δσ(b)).

We thus define the following map T :

T :
⋃

a∈A
([0, δσ(a))× {a})→

⋃

a∈A
([0, δσ(a))× {a})

(x, a) 7→ (βx− δσ(p), b) with

{
σ(a) = pbs

βx− δσ(p) ∈ [0, δσ(b)).

Furthermore, one checks that (X,T ) is a fibred system by setting

X =
⋃

a∈A
([0, δσ(a))× {a}) ,

I = {(p, b, s) ∈ A∗ ×A×A∗; ∃ a ∈ A, σ(a) = pbs},
ε(x, a) = (p, b, s),

where (p, b, s) is uniquely determined by σ(a) = pbs and βx − δσ(p) ∈
[0, δσ(b)).

According to [125], it turns out that ϕ = (ε(Tnx))n>0 is injective, hence

we get an FNS N . Note that, at first sight, a more natural choice in the

numeration framework could be to define ε as (x, b) 7→ δσ(p), but we would

lose injectivity for the map ϕ by using such a definition.
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In order to describe the subshift XN = ϕ(X), we need to introduce the

notion of prefix-suffix automaton. The prefix-suffix automaton Mσ of the

substitution σ is defined in [93, 94] as the oriented directed graph that

has the alphabet A as set of vertices and whose edges satisfy the following

condition: there exists an edge labeled by (p, c, s) ∈ I from b to c if σ(b) =

pcs. We then will describe XN = ϕ(X) in terms of labels of infinite paths

in the prefix-suffix automaton. Prefix automata have also been considered

in the literature by just labelling edges with the prefix p [125, 279], but

here we need all the information (p, c, s), especially for Theorem 4.4 below:

the main difference between the prefix automaton and the prefix-suffix

automaton is that the subshift generated by the first automaton (by reading

labels of infinite paths) is only sofic, while the one generated by the second

automaton is of finite type. For more details, see the discussion in chapter 7

of [272].

Theorem 4.1 ([125]). — Let σ be a primitive substitution on the alpha-

bet A. Let us fix a ∈ A. Every real number x ∈ [0, δσ(a)) can be uniquely

expanded as x =
∑

n>1 δσ(pn)β−n, where the sequence of digits (pn)n>1 is

the projection on the first component of an infinite path (pn, an, sn)n>1 in

the prefix-suffix automaton Mσ stemming from a (i.e., p1a1 is a prefix of

σ(a)), and with the extra condition that there exist infinitely many integers

n such that σ(an−1) = pnan, with sn not equal to the empty word, i.e.,

pnan is a proper suffix of σ(an−1).

Note that the existence of infinitely many integers n such that pnan is

a proper suffix of σ(an−1) is required for the unicity of such an expansion

(one thus gets proper expansions).

We deduce from Theorem 4.1 that ϕ(X) is equal to the set of labels

of infinite paths (pn, an, sn)n>1 in the prefix-suffix automaton, for which

there exist infinitely many integers n such that pnan is a proper prefix of

σ(an−1), whereas XN = ϕ(X) is equal to the set of labels of infinite paths

in the prefix-suffix automaton (without further condition).

Note that we can also define a Dumont-Thomas numeration on N. Let

v be a one-sided fixed point of σ; we denote its first letter by v0. We

assume, furthermore, that |σ(v0)| > 2, and that v0 is a prefix of σ(v0).

This numeration depends on this particular choice of a fixed point, and

more precisely on the letter v0. One checks ([125], Theorem 1.5) that every

finite prefix of v can be uniquely expanded as

σn(p0)σ
n−1(p−1) · · · p−n,
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where p0 6= ε, σ(v0) = p0a0s0, and (p0, a0, s0), . . . , (p−n, a−n, s−n) is the

sequence of labels of a path in the prefix-suffix automaton Mσ starting

from the state v0; for all i, one has σ(ai) = pi−1ai−1si−1. Conversely, any

path inMσ starting from v0 generates a finite prefix of v. This numeration

works a priori on finite words but we can expand the nonnegative integer

N as N = |σn(p0)|+ · · ·+ |p−n|, where N stands for the length of the prefix

σn(p0)σ
n−1(p−1) · · · p−n of v. One thus recovers a number system defined

on N.

Example 4.2. — We consider the so-called Tribonacci substitution σβ :

1 7→ 12, 2 7→ 13, 3 7→ 1. It is a unimodular Pisot substitution. Its dominant

eigenvalue β > 1, which is the positive root of X3 −X2 −X − 1, is called

Tribonacci number. Its prefix-suffix automaton Mσ is depicted in Figure

4.2.

1

(ε,1,2)

��
(1,2,ε)

((
2

(ε,1,3)

hh

(1,3,ε)

((
3

(ε,1,ε)

\\

Figure 4.1. The prefix-suffix automaton for the Tribonacci substitution

The set of prefixes that occur in the labels ofMσ is equal to {ε, 1}. One

checks that the (finite or infinite) paths with label (pn, an, sn)n in Mσ,

where σ(an) = pn+1an+1sn+1 for all n, are exactly the paths for which the

factor 111 does not occur in the sequence of prefixes (pn)n. The expansion

given in Theorem 4.1, with a = 1, coincides, up to a multiplication factor,

with the expansion provided by the β-numeration (see Example 2.8), with

β being equal to the Tribonacci number. Indeed one has d∗β(1) = (110)ω.

Hence XN is equal to the set of sequences (ui)i>1 ∈ {0, 1}N
∗

which do not

contain the factor 111, i.e., XN is the shift of finite type recognized by the

automaton of Figure 4.2 that is deduced fromMσ by replacing the labeled

edge (p, a, s) by the length |p| of the prefix p (as in Example 4.2).

The Tribonacci substitution has been introduced and studied in detail in

[276]. For more results and references on the Tribonacci substitution, see

[34, 35, 186, 243, 252, 253, 272, 285]. Let us also quote [29] and [253, 254]

for an extension of the Fibonacci multiplication introduced in [211] to the

the Tribonacci case.
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1

0

�� 1

((
2

0

hh

1

((
3

0

\\

Figure 4.2. The prefix-suffix automaton recognizing the β-shift for the

Tribonacci number

Example 4.3. — We continue Example 4.2 in a more general setting.

Let β > 1 be a Parry number as defined in Example 2.8. As introduced,

for instance, in [327] and in [140], one can naturally associate with (Xβ , S)

a substitution σβ called β-substitution defined as follows according to the

two cases, β simple and β non-simple:

• Assume that dβ(1) = t1 . . . tm−1tm is finite, with tm 6= 0. Thus

d∗β(1) = (t1 . . . tm−1(tm − 1))ω. One defines σβ over the alphabet

{1, 2, . . . ,m} as

σβ :





1 7→ 1t12

2 7→ 1t23
...

...

m− 1 7→ 1tm−1m

m 7→ 1tm .

• Assume that dβ(1) is infinite. Then it cannot be purely periodic (ac-

cording to Remark 7.2.5 in [242]). Hence one has dβ(1) = d∗β(1) =

t1 . . . tm(tm+1 . . . tm+p)
ω, with m > 1, tm 6= tm+p and tm+1 . . . tm+p

6= 0p. One defines σβ over the alphabet {1, 2, . . . ,m+ p} as

σβ :





1 7→ 1t12

2 7→ 1t23
...

...

m+ p− 1 7→ 1tm+p−1(m+ p)

m+ p 7→ 1tm+p(m+ 1).

It turns out that in both cases the substitutions σβ are primitive and

that the dominant eigenvalue of σβ is equal to β. When β is equal to the

Tribonacci number, then one recovers the Tribonacci substitution, since

dβ(1) = 111. The prefix-suffix automaton of the substitution σβ is strongly
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connected to the finite automaton Mβ recognizing the set of finite factors

of the β-shift XN . Indeed, we first note that the prefixes that occur as

labeled edges of Mσ contain only the letter 1; it is thus natural to code a

prefix by its length; one recovers the automaton Mβ by replacing in the

prefix-suffix automaton Mσ the labeled edges (p, a, s) by |p|.

If σ is a constant length substitution of length q, then one recovers the

q-adic numeration. If σ is a β-substitution such as defined in Example

4.3, for a Parry number β, then the expansion given in Theorem 4.1, with

a = 1, coincides with the expansion provided by the β-numeration, up to a

multiplication factor. More generally, even when σ is not a β-substitution,

then the Dumont-Thomas numeration shares many properties with the β-

numeration. In particular, when β is a Pisot number, then, for every a ∈ A,

every element of Q(β)∩ [0, δσ(a)) admits an eventually periodic expansion,

i.e., the restriction to Q(β) yields a quasi-finite FNS. The proof can be

conducted exactly in the same way as in [295].

Let X l
N be the set of labels of infinite left-sided paths (p−m, a−m, s−m)m>0

in the prefix-suffix automaton; they satisfy σ(a−m) = p−m+1a−m+1s−m+1

for all m > 0. The subshift X l
N is a subshift of finite type. The set X l

N
has an interesting dynamical interpretation with respect to the substitu-

tive dynamical system (Xσ, S). Here we follow the approach and notation

of [93, 94]. Let us recall that substitution σ is assumed to be primitive.

According to [258] and [55], every two-sided sequence w ∈ Xσ has a unique

decomposition w = Sν(σ(v)), with v ∈ Xσ and 0 6 ν < |σ(v0)|, where v0
is the 0-th coordinate of v, i.e.,

w = . . . | . . .︸︷︷︸
σ(v−1)

| w−ν . . . w−1.w0 . . . wν′︸ ︷︷ ︸
σ(v0)

| . . .︸︷︷︸
σ(v1)

| . . .︸︷︷︸
σ(v2)

| . . .

The two-sided sequence w is completely determined by the two-sided

sequence v ∈ Xσ and the value (p, w0, s) ∈ I. The desubstitution map

θ : Xσ → Xσ is thus defined as the map that sends w to v. We then define

γ : Xσ → I mapping w to (p, w0, s). It turns out that (θn(w) )n>0 ∈ X l
N .

The prefix-suffix expansion is then defined as the map EN : Xσ → X l
N

which maps a two-sided sequence w ∈ Xσ to the sequence (γ ( θnw) )n>0,

i.e., the orbits of w through the desubstitution map according to the par-

tition defined by γ.

Theorem 4.4 ([93, 94, 172]). — Let σ be a primitive substitution such

that none of its periodic points is shift-periodic. The map EN is continuous

onto the subshift of finite type X l
N ; it is one-to-one except on the orbits

under the shift S of the σ-periodic points of σ.
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In other words, the prefix-suffix expansion map EN provides a measure-

theoretic isomorphism between the shift map S on Xσ and an adic trans-

formation on X l
N , considered as a Markov compactum, as defined in Sec-

tion 5.4, by providing set I with a natural partial ordering coming from

the substitution.

4.2. Abstract numeration systems

We first recall that the genealogical order is defined as follows: if v and

w belong to L, then v � w if and only if |v| < |w| or |v| = |w|, and

v preceds w with respect to the lexicographical order deriving from <.

One essential feature in the construction of the previous section is that

the dynamical system XN is sofic, which means that the language LN is

regular. Let us now extend this approach by starting directly with a regular

language. According to [230], given an infinite regular language L over a

totally ordered alphabet (A,<), a so-called abstract numeration system

S = (L,A,�) is defined in the following way: enumerating the words of L

by increasing genealogical order gives a one-to-one correspondence between

N and L, the nonnegative integer n is then represented by the (n + 1)-th

word of the ordered language (L,�).

Such an abstract numeration system is in line with Definition 2.1, where

X = N, I = A, and ϕ is the (injective) map that sends the natural number

n to the (n + 1)-th word of the ordered language L. Abstract numeration

systems thus include classical numeration systems like q-adic numeration,

β-numeration when β is a Parry number, as well as the Dumont-Thomas

numeration associated with a substitution.

Moreover, these abstract numeration systems have been themselves ex-

tended to allow the representation of integers and of real numbers [232]: a

real number is represented by an infinite word which is the limit of a con-

verging sequence of words in L. Under some ancillary hypotheses, we can

describe such a representation thanks to a fibred number system defined

as follows, according to [62, 283].

Let L be an infinite regular language over the totally ordered alpha-

bet (Σ, <). The trimmed minimal automaton of L is denoted by ML =

(Q, q0,Σ, δ, F ) where Q is the set of states, q0 ∈ Q is the initial state,

δ : Q×Σ→ Q is the (partial) transition function, and F ⊆ Q is the set of

final states. We furthermore assume that ML is such that ML has a loop

of label s0 at the initial state q0. For any state q ∈ Q, we denote by Lq the
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regular language accepted by ML from state q, and by uq(n) the number

of words of length n in Lq.

The entry of index (p, q) ∈ Q2 of the adjacency matrix ML of the

automaton ML is given by the cardinality of the set of letters s ∈ Σ, such

that δ(p, s) = q. An abstract numeration system is said to be primitive

if the matrix ML is primitive. Let β > 1 be its dominant eigenvalue. We

assume moreover that L is a language for which there exist P ∈ R[Y ], and

some nonnegative real numbers aq, q ∈ Q, which are not simultaneously

equal to 0, such that for all states q ∈ Q,

(4.1) lim
n→∞

uq(n)

P (n)βn
= aq.

The coefficients aq are defined up to a scaling constant. In fact, vector

(aq)q∈Q is an eigenvector of ML [232]; by the Perron-Frobenius theorem,

all its entries aq have the same sign; we normalise it so that aq0 = 1− 1/β,

according to [283]. Then we have aq > 0 for all q ∈ Q.

For q ∈ Q and s ∈ Σ, set

αq(s) =
∑

q′∈Q

aq′ ·#{t < s ; δ(q, t) = q′} =
∑

t<s

aδ(q,t).

Since (aq)q∈Q is an eigenvector of ML of eigenvalue β, one has for all q ∈ Q:

(4.2) βaq =
∑

r∈Q

ar ·#{s ∈ Σ ; δ(q, s) = r} =
∑

t∈Σ

aδ(q,t).

By nonnegativity of the coefficients as, we have 0 6 αq(s) 6 βaq, for all

q ∈ Q. Note also that if s < t, s, t ∈ Σ, then αq(s) 6 αq(t). We set, for

x ∈ R+,

⌊x⌋q = max{αq(s) ; s ∈ Σ, αq(s) 6 x}.
Using (4.2) one checks that for x ∈ [0, aq), then βx− ⌊βx⌋q ∈ [0, aq′), with

⌊βx⌋q = αq(s) and δ(q, s) = q′. We can define

T :
⋃

q∈Q

([0, aq)× {q}) −→
⋃

q∈Q

([0, aq)× {q})

(x, q) 7−→ (βx− ⌊βx⌋q, q′),
where q′ is determined as follows: let s be the largest letter such that

αq(s) = ⌊βx⌋q; then q′ = δ(q, s). One checks that N = (X,T, I, ϕ) is a

fibred number system by setting

X = ∪q∈Q ([0, aq)× {q}) ,
I = {(s, q, q′) ∈ Σ×Q×Q ; q′ = δ(q, s)},

ε(x, q) = (s, q, q′),
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where s is the largest letter such that αq(s) = ⌊βx⌋q, and q′ = δ(q, s). One

checks furthermore that ϕ is injective.

We thus can expand any real number x ∈ [0, aq0) = [0, 1 − 1/β) as fol-

lows: let (xn, rn)n>1 = (Tn(x, q0))n>1 ∈ XN∗

, and let (w0, r0) = (s0, q0);

for every n > 1, let wn be the first component of εn = ε ◦ Tn−1 where

x0 = x; then one has x =
∑∞

n=1 αrn−1(wn)β−n, according to [231].

Abstract numeration systems lead to the generalisation of various con-

cepts related to the representation of integers like summatory functions of

additive functions [160], or like the notion of odometer [63].

4.3. Rauzy fractals

We have seen in Section 3.6 that it is possible to naturally associate

self-affine tiles and lattice tilings with matrix number systems (see also

Question 2.23). Such self-affine tiles are compact sets, they are the closure

of their interior, they have a non-zero measure and a fractal boundary that

is the attractor of some graph-directed iterated function system. The aim

of this section is to show how to associate in the present framework similar

tiles, called Rauzy fractals, with Pisot substitutions and β-shifts.

Rauzy fractals were first introduced in [276] in the case of the Tri-

bonacci substitution (see Example 4.2), and then in [327], in the case of

the β-numeration associated with the Tribonacci number. One motivation

for Rauzy’s construction was to exhibit explicit factors of the substitu-

tive dynamical system (Xσ, S), under the Pisot hypothesis, as rotations on

compact abelian groups.

Rauzy fractals can more generally be associated with Pisot substitutions

(see [55, 93, 94, 190, 253, 254, 306, 307] and the surveys [65, 272]), as well

as with Pisot β-shifts under the name of central tiles (see [7, 8, 9, 10]), but

they also can be associated with abstract numeration systems [62], as well

as with some automorphisms of the free group [30], namely the so-called

irreducible with irreducible powers automorphisms [70].

There are several definitions associated with several methods of construc-

tion for Rauzy fractals.

• We detail below a construction based on formal power series in the

substitutive case. This construction is inspired by the seminal paper

[276], by [252, 253], and by [93, 94].

• A different approach via graph-directed iterated function systems

(in the same vein as Proposition 3.22) and generalised substitutions
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has been developed on the basis of ideas from [186], and [32, 33].

Indeed, Rauzy fractals can be described as attractors of some graph-

directed iterated function system, as in [171], where one can find a

study of the Hausdorff dimension of various sets related to Rauzy

fractals, and as in [309, 310, 312] with a special focus on the self-

similar properties of Rauzy fractals.

• Lastly, they can be defined in case σ is a Pisot substitution as

the closure of the projection on the contracting plane of Mσ along

its expanding direction of the images by the abelianisation map of

prefixes of a σ-periodic point [55, 190, 272], where the abelianization

map, also called Parikh map, is defined as l : A∗ → Nn, l(W ) 7→
(|W |k)k=1,...,n ∈ Nn.

For more details on these approaches, see Chapters 7 and 8 of [272], and

[65].

Let us describe how to associate a Rauzy fractal with a Pisot substitution

that is not necessarily unimodular, as a compact subset of a finite product

of Euclidean and p-adic spaces following [306]. We thus consider a primitive

substitution σ that we assume furthermore to be Pisot. We then consider

the FNSN provided by the Dumont-Thomas numeration, such as described

in Section 4.1. We follow here [64, 65, 306]. Let us recall that the set X l
N

is the set of labels of infinite left-sided paths (p−n, a−n, s−n) ∈ IN in the

prefix-suffix automatonMσ, with the notation of Section 4.1. (By analogy

with Section 3.6, this amounts to work with representations having zero

“integer part” w.r.t. the FNS N .) Let β stand for the dominant eigenvalue

of the primitive substitution σ.

We first define the map Γ on X l
N as

Γ((p−n, a−n, s−n)n>0) =
∑

n>0

δσ(p−n)Y n;

hence Γ takes its values in a finite extension of the ring of formal power

series with coefficients in Q; we recall that the coefficients δσ(p−n) take

their values in a finite subset of Q(β).

Let us specialise these formal power series by giving the value β to

the indeterminate Y , and by considering all the Archimedean and non-

Archimedean metrizable topologies on Q(β) in which all the series
∑

n>0 δσ
(p−n)βn would converge for (p−n, a−n, s−n)n>0 ∈ X l

N .

We recall that β is a Pisot number of degree d, say. Let β2, . . . , βr be

the real conjugates of β, and let βr+1, βr+1, . . . , βr+s, βr+s be its complex
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conjugates. For 2 6 j 6 r, let Kβj
be equal to R, and for r+1 6 j 6 r+ s,

let Kβj
be equal to C, with R and C being endowed with the usual topology.

Let I1, . . . , Iν be the prime ideals in the integer ring OQ(β) of Q(β) that

contain β, i.e.,

βOQ(β) =

ν∏

i=1

Ii
ni .

Let I be a prime ideal in OQ(β). We denote by KI the completion of Q(β)

for the I-adic topology. The field KI is a finite extension of the pI-adic

field QpI
, where I ∩ Z = pIZ. The primes which appear as p-adic spaces

are the prime factors of the norm of β. One then defines the representation

space of X l
N as

Kβ = Kβ2 × . . .Kβr+s
×KI1 × . . .KIν

≃ Rr−1 × Cs ×KI1 × · · · ×KIν
.

Endowed with the product of the topologies of each of its elements, Kβ is a

metric abelian group. If σ is unimodular, then Kβ = Rr−1×Cs is identified

with Rd−1.

The canonical embedding of Q(β) into Kβ is defined by the following

morphism Φ: P (β) ∈ Q(β) 7→ (P (β2)︸ ︷︷ ︸
∈Kβ2

, . . . , P (βr+s)︸ ︷︷ ︸
∈Kβr+s

, P (β)︸ ︷︷ ︸
∈KI1

, . . . , P (β)︸ ︷︷ ︸
∈KIν

) ∈ Kβ .

The topology on Kβ was chosen so that the series

lim
n→+∞

Φ(

j∑

n=0

δσ(p−n)βn) =
∑

n>0

Φ(δσ(p−n)βn)

are convergent in Kβ for every (pn, an, sn)n>0 ∈ X l
N . One thus defines

Υ: X l
N → Kβ , (p−n, a−n, s−n)n>0 7→ Φ(

∑

n>0

δσ(p−n)βn).

Definition 4.5. — Let σ be a Pisot substitution and let N be the

FNS provided by the Dumont-Thomas numeration. The generalized Rauzy

fractal of X l
N is defined as TN = Υ(X l

N ), with the above notation.

If σ is unimodular, then it is a compact subset of Rd−1, where d is the

cardinality of the alphabet A of the substitution.

It can be divided into d subpieces as follows: for every letter a in A,

TN (a) = Υ({(p−n, a−n, s−n)n>0 ∈ X l
N ; (p−n, a−n, s−n)n>0 is the label

of an infinite left-sided path in Mσ arriving at state a0 = a}).

For every letter a the sets TN and TN (a) have non-empty interior [306],

hence they have non-zero measure. Moreover, they are the closure of their
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interior, according to [312]. For examples of Rauzy fractals, see Figure 4.3.

Figure 4.3. Rauzy fractal for the Tribonacci substitution, and Rauzy

lattice tiling

Topological properties of Rauzy fractals have aroused a large interest.

Their connectedness and homeomorphy to a closed disc are investigated,

e.g., in [17, 16, 92, 308]. Let us stress the fact that Rauzy fractals and

self-affine tiles associated with matrix numeration systems (such as dis-

cussed in Section 3.6) are distinct objects. Nevertheless ideas and methods

used for these latter tiles have often been inspirating for the study of the

tiling and topological properties of Rauzy fractals. Indeed, Rauzy fractals

are solutions of a graph-directed iterated function system directed by the

prefix-suffix automaton [313, 65].

Surprisingly enough, the sets TN (a) have disjoint interiors provided that

the substitution σ satisfies a combinatorial condition, the so-called strong

coincidence condition, according to [32] in the unimodular case, and [306],

in the general case. A substitution is said to satisfy the strong coincidence

condition if for any pair of letters (i, j), there exist two integers k, n such

that σn(i) and σn(j) have the same k-th letter, and the prefixes of length

k − 1 of σn(i) and σn(j) have the same image under the abelianisation

map l.

The strong coincidence condition has been introduced in [32]. This con-

dition is inspired by Dekking’s notion of coincidence [112] which yields a

characterisation of constant length substitutions having a discrete spec-

trum; see also [174]. This notion has lead to the following conjecture:

Conjecture 4.6. — Every Pisot substitution satisfies the strong coin-

cidence condition.

The conjecture has been proved for two-letter substitutions in [53]. For

more details on the strong coincidence condition, see [55, 190, 272].
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4.4. The Pisot conjecture

One of the main incentives behind the introduction of Rauzy fractals is

the following result:

Theorem 4.7 ([276]). — Let σ be the Tribonacci substitution σ : 1 7→
12, 2 7→ 13, 3 7→ 1. The Rauzy fractal TN (considered as a subset of R2) is

a fundamental domain of T2. Let Rβ : T2 → T2, x 7→ x+ (1/β, 1/β2). The

symbolic dynamical system (Xσ, S) is measure-theoretically isomorphic to

the toral translation (T2, Rβ).

This result can also be restated in more geometrical terms: the Rauzy

fractal generates a lattice tiling of the plane, as illustrated in Figure 4.3,

i.e., R2 = ∪γ∈Γ(RN + γ), the union being disjoint in measure, and Γ =

Z(δσ(1)− δσ(3)) + Z(δσ(2)− δσ(3)). More generally, one gets:

Theorem 4.8. — Let σ be a Pisot substitution that satisfies the strong

coincidence condition. The following conditions are equivalent:

(1) (Xσ, S) is measure-theoretically isomorphic to a translation on the

torus;

(2) (Xσ, S) has a pure discrete spectrum;

(3) the associated Rauzy fractal TN generates a lattice tiling, i.e.,

Kβ = ∪γ∈Γ(RN + γ),

the union being disjoint in measure, and Γ =
∑

b∈A,b 6=a Z(δσ(b) −
δσ(a)), for a ∈ A.

The equivalence between (1) and (2) is a classical result in spectral theory

(e.g., see [340]). The equivalence between (2) and (3) is due to Barge and

Kwapisz [55].

Conjecture 4.9. — The equivalent conditions of Theorem 4.8 are con-

jectured to hold if σ is a Pisot unimodular substitution.

Here again the conjecture holds true for two-letter alphabets [53, 170,

174]. Substantial literature is devoted to Conjecture 4.9 which is reviewed

in [272], Chap.7. See also [55, 54, 46, 65, 190] for recent results.

Let us stress the fact that we have assumed the irreducibility of the char-

acteristic polynomial of the incidence matrix of the substitution: indeed,

the incidence matrix of a Pisot substitution has an irreducible characteristic

polynomial, by definition. Nevertheless, it is possible to define a Rauzy frac-

tal even if the substitution is not assumed to be irreducible but primitive,

with its dominant eigenvalue being a Pisot number (e.g., see [46, 65, 136]).
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In this latter case, the substitutive dynamical system might not have a pure

discrete spectrum, as illustrated, e.g., by Example 5.3 in [46].

There exist several sufficient conditions that imply the equivalent asser-

tions of Theorem 4.8 inspired by Property (F), as defined in Example 2.8

and Section 3.4. Indeed, similar finiteness properties have been introduced

in [65] for substitutive dynamical systems, see also [62, 151] for abstract

numeration systems.

There exist also effective combinatorial characterisations for pure discrete

spectrum based either on graphs [307, 329], or on the so-called balanced

pair algorithm [246, 311], or else conditions inspired by the strong coinci-

dence condition [46, 55, 54, 190]. More generally, for more on the spectral

study of substitutive dynamical systems, see [173, 145].

Sofic covers. Analogously, a Rauzy fractal (usually called central tile)

can be associated with the left one-sided β-shift (e.g., see [7, 8, 9, 10, 21,

327]) for β a Pisot unit. From a dynamical point of view, the transforma-

tion corresponding to (Xσ, S) in Theorem 4.8 is an odometer (or an adic

transformation [315, 316]) acting on the left one-sided β-shift (for more

details, see Section 5). This zero entropy transformation is in some sense

not as natural as the shift S acting on Xσ. Nevertheless, if one considers

the natural extension of the β-transformation, then one gets an interest-

ing interpretation of Theorem 4.8 by performing a similar construction for

the whole set X̃N of two-sided N -representations; one thus gets geometric

realisation of the natural extension of the transformation T of the FNS N .

This construction is used, for instance, in [64] to characterise numbers

that have a purely periodic β-expansion, producing a kind of generalised

Galois’ theorem on classical continuous fractions, for β Pisot (see also the

references in Question 2.19). This construction also has consequences for

the effective construction of Markov partitions for toral automorphisms,

the main eigenvalue of which is a Pisot number. See, for instance, [67, 54,

188, 271]. Based on the approach of [207, 305, 336, 334], an algebraic con-

struction of Markov symbolic almost one-to-one covers of hyperbolic toral

automorphisms provided by the two-sided β-shift is similarly exhibited in

[240, 297] (see also [302, 303, 304, 54]):

Definition 4.10. — Let α be an automorphism of the torus. A point

x is said to be homoclinic if lim|n|→∞ αn(x) = 0. Homoclinic points form

a subgroup of the torus, that we denote by ∆α. A point x is said to be a
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fundamental homoclinic point if {αn(x) ; n ∈ Z} generates the additive

group ∆α.

Example 4.11. — The homoclinic group of the automorphism

[
0 1

1 1

]

of T2 is equal to 1√
5
(Z + ̺Z)

(
1/̺

1

)
(see [305], for example), where ̺ =

1+
√

5
2 .

Theorem 4.12 ([297]). — Let β > 1 be a Pisot number. Let α ∈
GL(n,Z) be an automorphism of the torus Tn that its conjugate within

GL(n,Z) to the companion matrix of the minimal polynomial of β. Then

α admits a fundamental homoclinic point x∆. Let X̃N be the two-sided

β-shift and let

ξ : X̃N → Tn, v 7→
∑

i∈Z

viα
ix∆.

Then ξ(X̃N ) = Tn and ξ is bounded-to-one.

Furthermore, if β satisfies property (F), then ξ is almost one-to-one.

The following question is addressed in [297]: assume that α is conjugate

(inGL(n,Z)) to the companion matrix of its characteristic polynomial, that

α has a single eigenvalue β > 1, and all other eigenvalues have absolute

value < 1; then, is the restriction of ξ to X̃N almost one-to-one? This

question is strongly related to Conjecture 4.9.

5. G-scales and odometers

The present section goes back to the representation of nonnegative inte-

gers. As always, our first model is the q-adic expansion. Within the context

of an FNS, the algorithm produces the less significant digit first, then the

second less significant one, a.s.o. The transformation is based on modular

arithmetic, and one has n = ε0(n)+· · ·+εk−1(n)qk−1+qkT k(n) (see Exam-

ple 2.7-1). A popular extension consists in changing q at any step: it is the

Cantor expansion that we present in Example 5.1. The q-adic expansion

can also be obtained in the other way round, i.e., beginning with the most

significant digit, using the greedy algorithm. One still has a numeration sys-

tem in sense of Definition 2.1 but it is not fibred anymore. Nevertheless, this

way of producing expansions of nonnegative integers yields a more general

concept than the Cantor expansion, the G-scale, which is the most gen-

eral possible way of representing nonnegative integers based on the greedy

algorithm (see Definition 5.2).
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According to Definition 2.6, the compactification corresponding to the

q-adic expansion (Example 2.7-1) is Zq, where the ring structure broads ad-

dition and multiplication on N, giving a rich answer to Question 2.18. For a

G-scale, a compactification can be also built, but it is not possible in general

to extend the addition from N to it in a reasonable way. Nevertheless, the

addition by 1 on N extends naturally and gives a dynamical system called

odometer, that is constructed in Section 5.1. This dynamical system espe-

cially reflects how carries are performed when adding 1. In that direction,

the carries tree introduced and discussed in Section 5.2 is a combinato-

rial object which describes the carry propagation. Section 5.3 constructs

a bridge between the odometer and some subshift. Its interest is double:

it allows to understand the odometer as an FNS (Corollary 5.12) despite

the greedy construction and it gives indirectly answers to Question 2.17

with results on invariant measures on the odometer (Theorem 5.15). Sec-

tion 5.4 briefly discusses the relation between odometers and adic trans-

formations on Markov compacta. Section 5.5 presents some cases where it

can be proved that the odometer is conjugate to a rotation on a compact

group. It partially answers Question 2.20.

5.1. G-scales. Building the odometer

Fibred numeration systems consist in consecutive iterations of a trans-

formation and give rise to infinite representations given by a sequence of

digits. A simple generalisation is obtained by changing the transformation

at any step. They are still numeration systems in the sense of Definition 2.1.

Cantor (also called mixed radix) expansions are the most popular examples

in that direction:

Example 5.1. — Let G = (Gn)n be an increasing sequence of positive in-

tegers such that G0 = 1 and Gn|Gn+1. Let qn = Gn/Gn−1, with T (n) being

the transformation of Example 2.7-1 for q = qn and ε(n) the corresponding

digit function. Take n ∈ Z. Then ϕ(n) = (ε(1)(n), ε(2)(T (1)(n)), ε(3)(T (2) ◦
T (1)(n)), . . .), which gives rise to an expansion n =

∑
j>0 ε

(j)(T (j−1) ◦ · · · ◦
T (1)(n))Gj . In other words, the sequence of digits (εk(n))k>1 is charac-

terised by the two conditions

(5.1)∑

16j6k−1

εj(n)Gj ≡ n (mod Gk) and 0 6
∑

16j<k

εj(n)Gj < n.
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This expansion makes sense in the compatification ZG = lim←−Z/GmZ for

general n, and in N for nonnegative n, since the corresponding representa-

tion is finite (the digits are ultimately 0). Everything is similar to Exam-

ple 2.7, including the variants discussed in that example. The compactifi-

cation is known as the set of q-adic integers (see [168], chapter 2).

As (5.1) shows, this kind of expansion is based on the divisibility order

relation. A different approach is given by expansions of natural numbers

which are essentially based on the usual total ordering. It is called greedy,

since it first looks for the most significant digit.(9)

Definition 5.2. — A G-scale is an increasing sequence of positive in-

tegers (Gn)n with G0 = 1.

Note that in the literature following [159], G-scales are called “systems

of numeration”. We modified the terminology to avoid any confusion with

numeration systems and FNS. Given a G-scale, any nonnegative integer n

can be written in the form

(5.2) n =
∑

k>0

εk(n)Gk

with εk(n) ∈ N. This representation is unique, provided that the following

so-called Yaglom condition

(5.3)

m∑

k=0

εk(n)Gk < Gm+1 (∀m ∈ N)

is satisfied, which is always assumed in the sequel. The digits are obtained

by the so-called greedy algorithm: let N ∈ N

• find the unique n such that Gn 6 N < Gn+1,

• εn(N)← ⌊N/Gn⌋,
• N ← N − εn(N)Gn, go to the first step.

Formally, we get the expansion (5.2) by writing εn(N) = 0 for all values

of n that have not been assigned during the performance of the greedy

algorithm. In particular, this expansion is finite in the sense that εn(N) = 0

for all but finitely many n.

(9) The word greedy stresses that, at any step, the representation algorithm chooses
in an appropriate sense the digit that gives the greatest possible contribution. In the
present situation, it is not fibred. Conversely, what is called “greedy β-representation”
is fibred, since the greedyness is thought to be inside an imposed fibred framework: a
fibred system is given (β-transformation on the unit interval). The digit is then chosen
in this greedy way.
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The infinite word JG(n) = ε0(n)ε1(n)ε2(n) · · · is by definition the G-

representation of n. In particular, JG(0) = 0ω. Some examples and general

properties can be found in [147]. The first study from a dynamical point

of view is due to Grabner et al. ([159]). It is a numeration system accord-

ing to Definition 2.1. Although it is not fibred, one may consider, as in

Definition 2.6, its compactification, i.e., the closure of the language in the

product space Π(G) below. By property (5.3), KG is the set of sequences

e = e0e1e2 · · · belonging to the infinite product

Π(G) =

∞∏

m=0

{0, 1, . . . , ⌈Gm+1/Gm⌉ − 1},

satisfying (5.3). The usual notation in the literature is KG and we will use

it in the sequel. The set of nonnegative integers N is embedded in KG by

the canonical injection n 7→ JG(n), with n and JG(n) being freely identified

(except if they could be source of confusion). Their image forms a dense

subset of KG. The natural ordering on the nonnegative integers yields a

partial order on KG by x 4 y if xn = yn for n > n0 and xn0 < yn0 or

x = y. This order is called antipodal. In particular, the map n 7→ JG(n)

is increasing with respect to the usual order on N and the antipodal order

on KG.

From a topological standpoint, the compact space KG is almost always

a Cantor set:

Proposition 5.3 ([49], Theorem 2). — If the sequence (Gn+1−Gn)n is

not bounded, then KG is homeomorphic to the triadic Cantor space. Oth-

erwise, it is homeomorphic to a countable initial segment of the ordinals.

The addition by 1 naturally extends to KG (see Question 2.18):

(5.4) ∀x = x0x1 · · · ∈ KG : τ(x) = lim
n→∞

J(x0 + x1G1 + · · ·+ xnGn + 1).

According to (5.3), this limit exists. It is 0ω if and only if there are infinitely

many integers n such that

(5.5) x0 + x1G1 + · · ·+ xnGn = Gn+1 − 1.

Definition 5.4. — The dynamical system (KG, τ) is called an odome-

ter.

There is no universal terminology concerning the meaning of odometer.

By common sense, the word “odometer” is concerned with counting from a

dynamical viewpoint, especially how one goes from n to n+ 1. Most of the

authors restrict this term to the Cantor case (for instance [120] or [2], or

even to the dyadic case [261]). One usually encounters “adding machine”
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for the q-adic case. It seems that the term “odometer” regularly occurred

from the late 1970’s on, as a source of constructions in ergodic theory.

Osikawa [263] built flows over an odometer to produce singular flows with

given spectrum. Ito [182] built in the same spirit flows preserving the mea-

sure of maximal entropy. Constructions over odometers have proved to be

generic: Katznelson [206] proved that if f is a C2-orientation-preserving

diffeomorphism of the circle whose rotation number has unbounded con-

tinued fraction coefficients, then the system (f, µ), where µ is the Lebesgue

measure, is orbit equivalent to an odometer of product type (i.e., a Can-

tor odometer endowed with a product probability measure). Host et al.

showed in [175] that every rank one system may be written as a Rokhlin-

Kakutani tower over an odometer. See also [144] for such constructions and

an overview of rank one systems.

Example 5.5. — Example 2.14, continued. For the Zeckendorf repre-

sentation, we have G2n − 1 = (01)n and G2n+1 − 1 = (10)n1 (immediate

verification by induction). Therefore, 0ω possesses two preimages by τ ,

namely (01)ω and (10)ω. This shows that there is no chance to extend the

addition on N to a group on the compactification (as it is the case for

the q-adic or even for the Cantor representation). Indeed, even the monoid

law cannot be naturally extended: take x = (01)ω and y = (10)ω. Then

(01)n + (10)n = (G2n − 1) + (G2n−1 − 1) = G2n+1 − 2 = 0(01)n but

(01)n0 + (10)n1 = (G2n − 1) + (G2n+1 − 1) = G2n+2 − 2 = 10(01)n. We

have two cluster points, which are the two elements of τ−2{0ω}. The same

phenomenon occurs for the general Ostrowski representation.

5.2. Carries tree

As outlined in the above paragraph, the structure of the words Gn − 1

contains important information concerning the odometer. A tree of carries

was introduced in [49], which gives some visibility to this information. The

nodes of the tree are N ∪ {−1}, and −1 is the root of the tree. There is an

edge joining −1 and n if Gk+1 − 1 is a prefix of Gn+1 − 1 for no k < n.

For 0 6 m < n, there is an edge joining k and n if k is the greatest integer

such that Gk+1 − 1 is a prefix of Gn+1 − 1 (for simplicity, the integers are

here identified with their representation).

To give the tree is equivalent with giving a descent function D : N →
N ∪ {−1} verifying D(n) < n for all n and: ∀n ∈ N, ∃k ∈ N : Dk(n) = −1.

We have D(n) = m if and only if m and n are joined by an edge. Given
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a tree of this type, there exist infinitely many G-scales having this tree as

a carries tree. The smallest one with respect to the lexicographical order

is unique and called a low scale. It is given by Gm+1 = Gm + Gn+1 for

D(m) = n. Therefore, one may imagine any type of tree one wishes.

Example 5.6. — cf. [49]

(1) Linear tree. If (Gn)n is a Cantor scale, then the edges join n and

n+ 1 for all n.

(2) Fibonacci tree. For the Zeckendorf expansion, we have edges be-

tween 1 and 0 and between n and n+ 2 for all n.

(3) Hedgehog tree. Let q > 2 and Gn+1 = qGn+1. Then the language

is the set of words with letters in {0, 1, . . . , q} such that xn = q

implies xj = 0 for j < n. We have an edge joining −1 and n for all

nodes n 6= −1.

(4) Comb tree. It is given by D(0) = −1, and D(2n+2) = D(2n+1) =

2n for any n > 0. The corresponding low scale is G2n+j = 2j3n for

n > 0 and j = 1, 2.

The image below shows respectively the linear tree, the Fibonacci tree and

the comb tree.

−1 // 0 // 1 // 2 // 3 // ...

Figure 5.1. The linear tree

2 // 4 // 6 // ...

−1

>>}}}}}}}}

  A
AA

AA
AA

A

1 // 3 // 5 // ...

Figure 5.2. The Fibonacci tree

The preimages of 0ω correspond to the infinite branches of the carries

tree: to an infinite branch (n0, n1, n2, . . .), where n0 = −1 and D(nk+1) =

nk corresponds x = lim(Gnk+1 − 1). In particular, for the scale with a

hedgehog tree, the preimage of 0ω is empty. The following proposition in-

dicates a further property of the odometer which can be read on the carries

tree.
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Figure 5.3. The hedgehog tree

−1 // 0 //

��

2 //

��

4 //

��

...

1 3 5

Figure 5.4. The comb tree

Definition 5.7. — A tree is of finite type if all nodes have finitely many

neighbours.

Proposition 5.8. — A carries tree is of finite type if and only if

∀n ∈ N ∪ {−1}, {m > n ; n and m are joined by an edge} is finite.

Then the set of discontinuity points of τ is ω(G)\ τ1(0ω), where the omega

limit set ω(G) is the set of limit points in KG of the sequence (Gn − 1)n.

Furthermore, the carries tree is of finite type if and only if τ is continuous.

Proof. — By construction, ω(G) is not empty and compact. For x ∈ KG,

let m(x) = max{k ; Gk+1 − 1 is a prefix of x} ∈ {−1, 0, . . . ,+∞}. Clearly,

τ is continuous at any point x ∈ τ−1{0ω}. If x 6∈ ω(G), then there is a

cylinder C containing x and not intersecting ω(G), hence m(x) is bounded

on C. Therefore, τ is continous at x. If x ∈ ω(G), then x = lim(Gnk
− 1).

If τ(x) 6= 0ω, then τ is not continous at x, since τ(Gnk
− 1) = Gnk

, which

tends to zero in KG.

Let x = lim(Gnk+1
− 1). Then the characterisation follows from the

equivalence of the following statements:

• Gm(x)+1−1 is a prefix of Gnk+1
−1 for k large enough and limD(nk) =∞;

• m(x) is finite;

• x is a discontinuity point of τ . �

For a low scale, the discontinuity points are exactly the Gn+1 − 1 such

that the node n is not of finite type.

TOME 56 (2006), FASCICULE 7



2060 G. BARAT, V. BERTHÉ, P. LIARDET & J. THUSWALDNER

Example 5.9. — G-scales arising from β-numeration. Let β > 1 and

d∗β(1) = (an)n>0 (see Example 2.8). Then define G0 = 1 and Gn+1 =

a0Gn + a1Gn−1 + · · · + anG0 + 1. Sequence (Gn)n is a scale of numera-

tion whose compactification coincides (up to a mirror symmetry) with the

compactification Xβ (cf. [69]): the lexicographical condition defining the

language is

(εn, εn−1, . . . , ε0) <lex (a0, a1, . . .) (∀n ∈ N).

Furthermore, set

Z+
β = {wmβ

m + · · ·+ w0 ; m ∈ N, wm · · ·w0 ∈ Lβ}.
If S is the successor function S : Z+

β → Z+
β given by S(x) = min{y; y > x},

and if ϕ(
∑
εnGn) =

∑
εnβ

n, then the diagram

N
τ−→ N

ϕ
y

yϕ
Z+

β −→
S

Z+
β

is commutative and ϕ is bĳective. It has been proved in [159] that the

odometer is continuous if and only if the sequence (an)n is purely periodic,

that is, if β is a simple Parry number. If the sequence is ultimately periodic

with period b1 · · · bs (β is a Parry number), then

ω(G) = {(bkbk+1 · · · bk+s−1)
ω; 1 6 k 6 s− 1}.

The preimage of 0ω is either empty if β is not a simple Parry number, or

equal to ω(G) otherwise. If we have a0 = 2 and if a1a2 · · · is the Champer-

nowne number in base two [95], then τ−1(0ω) = ∅ and ω(G) = {0, 1}N.

5.3. Metric properties. Da capo al fine subshifts

If (Gn)n is a Cantor scale, the odometer is a translation on a compact

group for which all orbits are dense. In particular, (KG, τ) is uniquely er-

godic and minimal. In general, a natural question is whether there exists

at least one τ -invariant measure on KG and whether it is unique. Since KG

is compact, the Krylov-Bogoliubov Theorem (see for instance [340]) asserts

that there exists an invariant measure, provided that τ is continuous. But

the question remains open without this assumption.

Results on invariant measures concerning special families can be found

in [334] for Ostrowski expansions (as in Example 2.14) and in [159] for

linear recurrent numeration systems arising from a simple β-number (as in
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Example 5.9). For Ostrowski scales (Gn)n, it is proved that the odometer

is metrically isomorphic to a rotation, hence in particular uniquely ergodic

(see for instance [128], [334] or [52]). Furthermore, Vershik and Sidorov

give in [334] the distribution of the coordinates and show that they form a

non-homogenous Markov chain with explicit transitions.

For linear recurrent numeration systems, Grabner et al. [159] use the

following characterisation of unique ergodicity: the means

N 7→ N−1
∑

m6n<m+N

f ◦ τn

converge uniformly w.r.t. m when N tends to infinity for any continuous

function f : KG → C. A standard application of the Stone-Weierstraß the-

orem allows us to consider only G-multiplicative functions f depending on

finitely many coordinates (see Section 6.1 for the definition). A technical

lemma reduces the problem again to the study of convergence of the se-

quence n 7→ G−1
n

∑
k<Gn

f(k). However, the sequence n 7→ ∑
k<Gn

f(k)

ultimately satisfies the same recurrence relation as (Gn)n, from which the

desired convergence is derived. The unique invariant probability measure

is explicitly given.

Example 5.10. — We consider the Zeckendorf expansion again (contin-

uation of Example 5.5). The golden ratio is denoted by ̺ = (1+
√

5)/2, the

unique τ invariant measure on KG is P. By unique ergodicity of the odome-

ter, if Xn is the n-th projection on the compactification, i.e., Xn : KG →
{0, 1}, Xn(x0, x1, . . .) = xn, then

P(Xn = 0) = lim
s→∞

1

Fn+s
#{k < Fn+s ; εn(k) = 0}

= lim
s→∞

FnFs−1

Fn+s
=

Fn

̺n+1
.

Similarily (or by computing 1 − P(Xn = 0)), one finds P(Xn = 0) =

Fn−1̺
−n−2 and the transition matrix is

(
1/̺ 1

1/̺2 0

)
. In particular, the se-

quence (Xn)n is a homogenous Markov chain. For the most general case

of scales arising from a simple Parry β-number of degree d, one gets a

homogenous Markov chain of order d − 1. We refer to [123] and [320] for

more information, especially applications to asymptotic studies of related

arithmetical functions.

The arguments of [159] can be extended, but with some technical dif-

ficulties, to more general odometers. However, a quite different approach

turns out to be more powerful. We expose it below.
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From now on, (Gn)n is a G-scale and (KG, τ) the associated odometer.

For x ∈ KG, we define a “valuation” ν(x) = νG(x) = min{k;xk 6= 0},
if x 6= 0ω, and ν(0ω) = ω. Note that ω stands here for the first infinite

ordinal and not for the ω-limit set. Denote by Λ = N ∪ {ω} the one-point

compactification of N. The valuation yields a mapAG : KG → ΛN defined by

AG(x) = (ν(τnx))n>0 (e.g., ν(Gm) = m). Let Am = ν(1)ν(2) · · · ν(Gm−1)

and A be the infinite word defined by the concatenation of the sequence

AG(1). Then, for n =
∑

k6ℓ εk(n)Gn, the prefix of length n of A is

(5.6) (Aℓℓ)
εℓ(n)(Aℓ−1(ℓ− 1))εℓ−1(n) · · · (A00)ε0(n).

Let (XG, S) be the subshift associated with A and X
(0)
G = XG ∩ NN.

Proposition 5.11 ([50], Proposition 2). — We have a commutative

diagram

(5.7)

KG
τ−→ KG

AG

y
yAG

XG −→
S

XG

The map AG is Borelian. It is continuous if and only if τ is continuous. It

induces a bĳection between K∞
G = KG \ OZ(0ω) and X

(0)
G , whose inverse

map is continuous. If τ is continous, this bĳection is a homeomorphism

(OZ(0ω) is the two-sided orbit of 0ω).

The precise study ofAG is not simple. Some elements can be found in [50].

For example, the equality AG(KG) = XG holds if and only if N∩ω(G) = ∅.
Proposition 5.11 has important consequences.

Corollary 5.12. — The quadruples

(N \ {0}, τ,N, AG) and (K∞
G , τ,N, AG)

are fibred numeration systems. In the sense of Definition 2.6, they have the

same compactification XG on which the shift operator acts. The dynami-

cal systems (KG, τ) and (XG, S) are metrically conjugated. In particular,

AG transports shift-invariant measures supported by X
(0)
G to τ -invariant

measures on KG.

The subshift (XG, S) is called the valumeter. It is conjugated to the

odometer. As noted before, G-scales cannot be immediatly associated with

a fibred numeration system. But the odometer is conjugated to such a

numeration system. Therefore, Proposition 5.11 is a way to understand

G-scales and the corresponding numeration as fibred. Moreover, the dy-

namical study of the odometer reduces to that of the valumeter, which is a
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more pleasing object. For instance, the shift operator is always continuous,

even if the addition is not.

Proposition 5.13. — The following statements are equivalent:

1. the word A is recurrent (each factor occurs infinitely often);

2. the word A has a preimage in XG by the shift;

3. the set X
(0)
G is not countable;

4. the set KG is a Cantor space.

Furthermore, the valumeter is minimal if and only if the letter ω never

appears infinitely many times with bounded gaps in elements of XG.

Example 5.14. — If G is the scale of Example 5.6-(3) (see also Exam-

ple 5.20, infra), XG contains the element (ω, ω, . . .). Then the valumeter is

not minimal.

The main difficulty in proving theorems on invariant measures on (XG, S)

comes from the fact that the alphabet Λ = N ∪ {ω} is not discrete, but it

has one non-isolated point - ω. The usual techniques lie on the ∗-weak com-

pactness of the set of probability measures. Indeed, ∗-weak convergence of a

sequence (µn)n of probability measures defined on XG expresses the conver-

gence of the sequence (µn(U))n, for cylinders of the type U = [a1, . . . , an],

with an ∈ N or an = {m ∈ Λ ; m > n0}. But the relevant notion of con-

vergence in this context takes cylinders U = [a1, . . . , an] into account, with

an ∈ Λ. Hence one has to introduce a so-called soft topology, which is finer

as the usual ∗-weak topology. However, the following results can be proved.

Theorem 5.15 ([50], Theorems 7 and 8). — 1. If the series
∑
G−1

n

converges, then there exists a shift-invariant probability measure on XG

supported by X
(0)
G .

2. If the sequence (Gn+1−Gn)n tends to infinity and if the sequence m 7→
Gm

∑
k>mG−1

k is bounded, then (X
(0)
G , S) is uniquely ergodic, and (KG, τ)

as well.

3. The odometer (KG, τ) has zero measure-theoretic entropy with respect

to any invariant measure. If τ is continous, it has zero topological entropy.

For instance, G-scales satisfying 1 < a < Gn+1/Gn < b < ∞ for all n

satisfy the second condition of Theorem 5.15. Example 9 of [50] shows that a

continous odometer can have several invariant measures. The construction

below is not continuous, but more simple.

Example 5.16. — Suppose that I, J and K realise a partition of N, and

assume that I and K have an upper-density of one, that is, lim supN−1#

([0, N) ∩ I) = lim supN−1#([0, N) ∩ K) = 1. Define Gn+1 = Gn + 1 if
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n ∈ I, Gn+1 = Gn +2 if n ∈ K, and Gn+1 = anGn +1 for n ∈ J , where the

an are chosen to make the series
∑
G−1

n convergent. Then ω(G) = {0, 1},
and τ is discontinous at these two points. Furthermore, the sequence N 7→
N−1

∑
n<N δ0 ◦τn has at least two accumulation points. Hence, there exist

at least two τ -invariant measures.

Remark 5.17. — Downarowicz calls (XG, S) da capo al fine subshift.(10)

Consider a triangular array of nonnegative integers (ε
(m)
j )06j6m such that

ε
(j)
j > 1 for all j and

ε
(m)
j ε

(m)
j−1 · · · ε

(m)
0 6lex ε

(j)
j ε

(j)
j−1 · · · ε

(j)
0

for all j 6 m. Define recursively A0 to be the empty word and

Am+1 = (Amm)ε(m)
m · · · (A00)ε

(m)
0 .

The sequence of words (Am)m converges to an infinite word A. This se-

quence is associated with the G-scale (Gn)n constructed recursively by

G0 = 1 and Gm+1 − 1 =
∑

j6m ε
(m)
j Gj (i.e., ε

(m)
j = εj(Gm+1 − 1) for

short). The last two equations express (5.3) and (5.6), respectively. At

each step, the song is played da capo, where the mark fine is set at posi-

tion Gm+1 −Gm − 1. If this number is larger than Gm, the above formula

instructs us to periodically repeat the entire song until position Gm+1 − 1

is reached (usually the last repetition is incomplete). In all cases, the note

m+ 1 is added at the end.

5.4. Markov compacta

Let (rn)n be a sequence of nonnegative integers, rn > 2 for all n, and

a sequence of 0 − 1 matrices (M (n))n, where M (n) is a rn × rn+1 matrix.

Build the Markov compactum

(5.8) K(M) =
{

(x0, x1, . . .) ∈ Π(G) ; ∀n ∈ N : M (n)
xn,xn+1

= 1
}
.

K(M) is an analog of a non-stationary topological Markov chain. Accord-

ing to Vershik, the adic transformation S associates with x ∈ K(M) its

successor with respect to the antipodal order (the definition is recalled in

Section 5.1). Then Vershik has proved in [335] the following theorem (see

also [134] for related results).

(10) “The expression da capo al fine is taken from musical terminology. Having played
the entire song the musicians must play it again from the start (da capo) to a certain
spot marked in the score as fine. [...] Following musical convention, the elements of Λ
will be called notes”. [119]
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Theorem 5.18. — Any ergodic automorphism of a Lebesgue space is

metrically isomorphic to some adic transformation.

Usually, the isomorphism is not explicit. If (Gn)n is a Cantor scale (with

the notation of Example 5.1), then the odometer (KG, τ) is an adic trans-

formation, where M (n) is the qn×qn+1 matrix containing only 1’s (lines and

columns being indexed from 0 included). Odometers that are adic transfor-

mations are not difficult to characterise, they correspond to scales (Gn)n

where expansions of Gn − 1 satisfy

Gn+2 − 1 =





εn+1(Gn+2 − 1)Gn+1 + εn(Gn+2 − 1)Gn + (Gn − 1)

if εn(Gn+2 − 1) < εn(Gn+1 − 1);

εn+1(Gn+2 − 1)Gn+1 + (Gn+1 − 1)

if εn(Gn+2 − 1) = εn(Gn+1 − 1),

with the initial condition G1 = ε0(G1 − 1) + 1. The transition matrices

M (n) have εn(Gn+1 − 1) + 1 rows, εn+1(Gn+2 − 1) + 1 columns, and have

zero coefficients mi,j if and only if j = εn+1(Gn+2−1) and i > εn(Gn+2−1).

Assume now that the odometer does not coincide with an adic transfor-

mation. In some simple cases, there is a simple isomorphism with such a

dynamical system. It is in particular the case for the so-called Multinacci

scale, which generalises the Fibonacci one: Gk = k + 1 for k 6 m and

Gn+m = Gn+m−1 + Gn+m−2 + · · · + Gn+1 + Gn for all n (compare with

Example 4.2).

Example 5.19. — Consider the scale of Example 5.6-(3). The Markov

compactum K(M) built from the square (q+1)-dimensional matrices with

mi,j = 0 if j = q and i 6= q is formed by sequences qkεkεk+1 · · · with

0 6 εj < q. The map ψ : K(M)→ KG defined by

ψ(0ω) = 0ω and ψ(qkεkεk+1 · · · ) = 0k−1qεkεk+1 · · ·
realises an isomorphism between the odometer and the adic system.

It should be noticed that Markov compacta are often described in terms

of paths in an infinite graph under the name of Bratelli diagrams. We refer

to [164], [134] and [117].

5.5. Spectral properties

In general, the spectral structure of an odometer associated with a given

scale G = (Gn)n>0, is far from being elucidated. We present in this section
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both old and recent results. As above, let (KG, τ) be the G-odometer. We

assume that the sequence n 7→ Gn+1 −Gn is unbounded, so KG is a Can-

tor set according to Proposition 5.3. The first step consists in identifying

odometers that admit an invariant measure µ. This is done in Theorem 5.15.

The next question is to characterise G-odometers which have a non-

trivial eigenvalue. We keep in mind a result due to Halmos which asserts

that the family of ergodic dynamical systems with discrete spectrum co-

incides with the family of dynamical systems which are, up to an isomor-

phism, translations on compact abelian groups with a dense orbit (and

hence are ergodic) [340]. We only look at examples.

In base q (Example 2.7), the odometer corresponds to the scale Gn = qn

and is nothing but the translation x 7→ x + 1 on the compact group of

q-adic integers. The situation is analogous for Cantor scales (Example 5.1)

for which q-adic integers are replaced by very similar groups exposed supra.

Example 5.20. — The scale given by Gn+1 = qGn + 1 (for a positive

integer q, q > 2) is the first example of a weak mixing odometer family.

Furthermore, these odometers are measure-theoretically isomorphic to a

rank one transformation of the unit interval, with the transformation being

constructed by a cutting-stacking method [118].

In case (Gn)n is given by a finite homogeneous linear recurrence coming

from a simple Parry number, as in Example 5.9, the odometer is continuous,

uniquely ergodic, but little is known about its spectral properties. The

following sufficient condition is given in [159]. Let us say that the odometer

satisfies hypothesis (B) if there exists an integer b > 0 such that for all k

and integer N with G-expansion

ε0(N) · · · εk(N)0b+1εk+b+2(N) · · · ,
where the addition by Gm to N (with m > k + b + 2) does not change

the digits ε0(N), . . . , εk(N). Then the odometer is measure-theoretically

isomorphic to a group rotation whose pure discrete spectrum is the group

{z ∈ C ; lim
n
zGn = 1}.

This result applies especially to the Multinacci scale. For the Fibonacci

numeration system, the measure theoretic conjugation map between the

odometer and the translation on the one-dimensional torus T with angle

the golden number ̺ is exhibited in [334, 52]; see also Example 2.14.

Example 5.21. — The study of wild attractors involves some nice odo-

meters. In particular, the following scales Gn+1 = Gn + Gn−d are inves-

tigated in [83], where it is proved that for d > 4, the odometer is weakly
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mixing, but not mixing (Theorem 3). Using the results of Host [173] and

Mauduit [248], the authors prove that the non-trivial eigenvalues e2πiρ (if

there were any) are such that ρ is irrational or would belong to Q(λ), for

any root λ of the characteristic polynomial P of the recurrence with a

modulus of at least 1. They first treat the case d ≡ 4 (mod 6), for which

(x2 − x + 1) | P , hence a contradiction. Case d 6≡ 4 (mod 6) is more

complicated, since P is then irreducible. But the Galois group of P is the

whole symmetric group Sd+1 in this case, and they can conclude with an

argument of [315].

6. Applications

6.1. Additive and multiplicative functions, sum-of-digits
functions

By analogy with the classical additive and multiplicative functions stud-

ied in number theory, whose structure is based on the prime number de-

composition, one defines arithmetical functions constructed from their ex-

pansion with respect to a numeration system. We only deal in the sequel

with functions defined on N.

Definition 6.1. — For a G-scale G = (Gn)n and the corresponding

digit maps εn, a function f : N→ C is called G-additive if f(0) = 0, and if

(6.1) f

( ∞∑

k=0

εk(n)Gk

)
=

∞∑

k=0

f (εk(n)Gk) .

G-multiplicative functions g are defined in a similar way; they satisfy

g(0) = 1 and

(6.2) f

( ∞∑

k=0

εk(n)Gk

)
=

∞∏

k=0

f (εk(n)Gk) .

The most popular G-additive function is the sum-of-digits function de-

fined by sG(n) =
∑

k εk(n). Of course, if f is a G-additive function then,

for any real number α, the function g = exp(iαf(·)) is G-multiplicative.

For the scale Gn = qn, we speak about q-additive and q-multiplicative

functions. A less immediate example of a q-multiplicative function is given
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by the Walsh functions: for x ∈ Zq, wx(n) =
∏

k e(q
−1xkεk(n)), where

e(x) = exp(2πix). In fact, these functions wx are characters of the additive

group Nq where the addition is done in base q while ignoring carries. Mul-

tiplicative functions have a great interest in harmonic analysis and ergodic

theory. First, multiplicative functions of modulus 1 belong to the Wiener

vector space [342] of bounded sequences g : N → C having a correlation

function γg : Z→ C. Recall that,

γg(m) := lim
N

1

N

N−1∑

n=0

g(m+ n)g(n)

for m > 0 and γg(m) = γg(−m) if m < 0. The correlation γg is positive

definite so that, by the classical Bochner-Herglotz Theorem, there exists a

Borel measure σg on the torus T, called spectral measure of g, such that

γg(m) is the Fourier transform σg(m) =
∫

T
e(mt)σg(dt) of σg. One of the

interests of this definition comes from Bertrandias’ inequality

lim sup
N

|N−1
∑

06n<N

g(n)e(−na)| 6
√
σg({a})

and from the formula limN N−1
∑

06n<N |γg(n)|2 = σg ⊗ σg(∆), where ∆

is the diagonal of T2 (see [274] for a general reference on the subject). Sec-

ondly, many interesting multiplicative functions are pseudo-random (i.e.,

the spectral measure is continuous). To illustrate this notion, we quote the

seminal paper of Mendès France [250] where the following result is proved:

Proposition 6.2. — If x ∈ Zq \ N, the Walsh character wx is pseudo-

random, but it is not pseudo-random in the sense of Bass [56] (that is, its

correlation function does not converge to 0 at infinity).

The spectral properties of q-multiplicative functions were extensively

studied during the 70’s, mainly in connection with the study of uniform

distribution modulo 1 (see [251, 100, 101, 104, 105, 102], [273] in the more

general setting of Cantor scales, and [106] for Ostrowski numeration). The

dynamical approach involving skew products is first developed in [238],

where additional references can be found; it is exploited in [237] for the

study of regularity of distributions.

The summation of the sum-of-digits function has been extensively stud-

ied. It is not our purpose to draw up an exhaustive list of known results on

it. We just mention a few results, and then give some examples where the

dynamics plays a rôle.
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In 1940, Bush [91] proved the asymptotics

∑

n<N

sq(n) ∼ q − 1

2
N logq N,

see also Bellman and Shapiro [59]. Trollope gave in [330] an explicit ex-

pression of the error term for the binary expansion. Later on, Delange [114]

expressed the error term for arbitrary q as NF (logq N), where F is a 1-

periodic function, continuous and nowhere differentiable, and described its

Fourier coefficients in terms of the Riemann zeta function. The power sum

τd(N) =
∑

06n<N (s2(n))d is studied by Stolarsky [322]. He proved that

τd(N) ∼ q−1
N 2−d(logq N)d. Coquet [103] obtained more details on the error

term in the vein of Delange.

Many results have been proved about the normal distribution of additive

functions along subsequences. We only quote a few papers, proposing dif-

ferent directions [57, 121, 122, 320]. Very recently, Mauduit and Rivat [249]

solved a long standing conjecture of Gelfond by proving that the sum-of-

digits function sq is uniformly distributed along the primes in the residue

classes mod m, with (m, q) = 1.

In [113], Delange proved that a real-valued q-additive function f ad-

mits an asymptotic distribution function: the sequence of measures N 7→
N−1

∑
n<N δf(n) converges weakly to a probability measure if and only if

both series

(6.3)

∞∑

j=0

(
q−1∑

ε=0

f(εqj)

)
and

∞∑

j=0

q−1∑

ε=0

f(εqj)2

converge. Delange used the characterisation of weak convergence due to

Lévy: the sequence of characteristic functions converges pointwise to a func-

tion, which has to be continuous at 0. Therefore, the most important part

of the proof deals with estimates of means of q-multiplicative functions g.

Let MN (g) = N−1
∑

n<N g(n). Then

Mqℓ(g) =
∏

j<ℓ

∑

ε<q

f(εqk).

A typical result proved by Delange in this context is MN (g) −Mqn(g) =

o(1) for qn 6 N < qn+1. This has been generalised to further numeration

systems by Coquet and others. For Cantor numeration systems, this result

is generally not true. For example, if Gn = n2Gn−1 and g(εGn) = −1

whenever ε = 1 and 1 otherwise, one checks that (MGn
)n converges to
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some positive constant, although (M2Gn
)n tends to zero. Using a martingale

argument, Mauclaire proved the following:

Theorem 6.3 ([247]). — Assume (Gn)n is a Cantor numeration system

with compactification KG. For x =
∑∞

k=0 xkGk ∈ ZG, let xn =
∑n

k=0 xkGk.

Then

1

xn

xn−1∑

k=0

g(k)− 1

Gn

Gn−1∑

k=0

g(k) = o(1)

holds for almost all x ∈ ZG with respect to Haar measure, when n tends

to infinity.

Barat and Grabner [51] observed that if f is a real-valued q-additive

function and fn : Zq → R defined by fn(
∑
xkq

k) = f(xnq
n), then the con-

ditions (6.3) can be rewritten as the convergence of
∑

E(fn) and
∑

E(f2
n),

which is indeed equivalent to the convergence of
∑

E(fn) and
∑
σ2(f2

n),

by fn(0) = 0 and Cauchy-Schwartz inequality. Since the random variables

fn are independent and bounded, further conditions equivalent to (6.3)

are almost sure convergence of the series
∑
fn (Kolmogorov’s three series

theorem) and convergence in distribution of the same series. Finally, con-

vergence in the distribution of
∑
fn is by definition the weak convergence

of the sequence N 7→ q−N
∑

n<qN δf(n) to a probability measure, where δa
denotes the Dirac measure at point a.

After this analysis of the problem, one of the implications in Delange’s

theorem is trivial. The converse assumes the almost sure convergence of

f =
∑
fn, and is based on the pointwise ergodic theorem. The whole

procedure applies to more general numeration systems, even though the

lack of independence for the functions fn makes the work more involved.

In the same direction, Manstavičius developed in [245] a Kubilius model

for G-additive functions w.r.t. Cantor numeration systems.

Given a numeration scale (Gn)n and a unimodular G-multiplicative func-

tion g, several authors have investigated the subshift associated with the

sequence (g(n))n, that we denote by F(g). Interesting results concerned

with q-adic numeration systems and functions of the type g(n) = e(αsq(n))

from a spectral viewpoint are due to Kamae [195], see also Queffélec [273].

Barat and Liardet consider in [52] the case of Ostrowski numeration

(with any Ostrowski scale G) and arbitrary G-multiplicative functions g

with values in the unit circle U ⊂ C. The odometer plays a key rôle in

the whole study. It is first proved that if ∆g(n) = g(n + 1)g(n)−1 is the

first backward difference sequence, then the subshift F(∆g) is constant or

almost topological isomorphic to the odometer (Kα, τ). A useful property
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of the sequence ∆g is that it continuously extends (up to a countable set)

to the whole compact space Kα. Furthermore, the subset G1(g) of U of

topological essential values is defined as the decreasing intersection of the

sets g([0n]). It turns out that G1(g) is a group that contains the group of

essential values E(∆g) of K. Schmidt [294], and that E(∆g) = G1(g) if

and only if F(g) is uniquely ergodic. The topological essential values are

also characterised in terms of compactification: for a character χ ∈ Û, the

restriction of χ to G1(g) is trivial if and only if χ ◦ g extends continu-

ously to Kα. In general, F(g) is topologically isomorphic to a skew product

F(∆g)�G1(ζ). In case of unique ergodicity, a consequence is the well uni-

form distribution of the sequence (g(n))n in U. More precise results were

obtained by Lesigne and Mauduit in the case of q-adic numeration systems

(see [236]): let g be q-multiplicative and g(kqn) = exp(2iπθk
n) (k 6 q − 1).

Denote by ‖ ·‖ the distance to the nearest integer. It is proved in [236] that

the three following statements are equivalent:

• For all q-adic rational number α and all rational integer d, the sequence

N 7→ N−1
∑N−1

n=0 (g(n+m))d exp(2iπ(n+m)α)) converges uniformly w.r.t.

m.

• For all integer d, if ‖θk
n‖ tends to 0 when n tends to infinity, for all k

between 1 and q − 1, then either the series of general term
∑

k6q−1 ‖dθk
n‖

converges or the series of general term
∑

k6q−1 ‖dθk
n‖2 diverges.

• F(g) is strictly ergodic.

Let us end this section by going back to substitutions and automata.

The Dumont-Thomas numeration has been introduced in [125, 126] in or-

der to get asymptotical estimations of summatory functions of the form∑
16n6N f(un), where (un)n is a one-sided fixed point of a substitution

over the finite alphabet A, and f is a map defined on A with values in R.

These estimates are deduced from the self-similarity properties of the sub-

stitution via the Dumont-Thomas numeration, and are shown to behave

like sum-of-digits functions with weights provided by the derivative of f .

The sequences (f(un))n are currently called substitutional sequences (see

also Section 6.4 below).

For some particular substitution cases, such as constant length substi-

tutions, one recovers classical summatory functions associated, e.g., to the

number of 1’s in the binary expansion of n (consider the Thue-Morse substi-

tution), or the number of 11’s (consider the Rudin-Shapiro substitution).

A natural generalisation of these sequences has the form εn = (−1)un ,

where un counts the number of occurrences of a given digital pattern
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in the q-ary expansion of n. Such sequences are studied in [26] where

particular attention is paid to sums of the form SN =
∑

06n<N g(n)εn,

with q-multiplicative functions g. It is also proved that |SN | ∈ O(Nα)

with α ∈ [1/2, 1] depending only on (εn)n. In particular, for the Rudin-

Shapiro sequence, one has α = 1/2. Note that the spectral measure of the

Rudin-shaprio sequence and its generalisations is Lebesgue ([275],[26]). For

more details related to uniform distribution, see [127] and the references in

[125, 27].

In the same vein, Rauzy studies in [279] the asymptotic behaviour of

sums
∑

16n6N 1[0,1/2]({nα}), where 1[0,1/2] is the indicator function of the

interval [0, 1/2], for algebraic/quadratic values of α. His strategy involves

introducing a fixed point of a substitution and considering orbits in some

dynamical systems.

6.2. Diophantine approximation

We review some applications of Rauzy fractals (see Section 4.3) associ-

ated with Pisot β-numeration and Pisot substitutions. Rauzy fractals have,

indeed, many applications in arithmetics; this was one of the incentives for

their introduction by Rauzy [276, 278, 279].

A subset A of the d-dimensional torus Td with (Lebesgue) measure µ(A)

is said to be a bounded remainder set for the minimal translation Rα : x 7→
x+ α, defined on Td, if there exists C > 0, such that

∀N ∈ N, |#{0 6 n < N ; nα ∈ A} −Nµ(A)| 6 C.

When d = 1, an interval of R/Z is a bounded remainder set if and only

if its length belongs to αZ + Z [208]. In the higher-dimensional case, it is

proved in [237] that there are no nontrivial rectangles which are bounded

remainder sets for ergodic translations on the torus. According to [143, 277],

Rauzy fractals associated either with a Pisot unimodular substitution or

with a Pisot unit β-numeration provide efficient ways to construct bounded

remainder sets for toral translations, provided discrete spectrum holds.

A second application in Diophantine approximation consists in exhibiting

sequences of best approximations. Let β denote the Tribonacci number, i.e.,

the real root of X3−X2−X−1. The Tribonacci sequence (Tn)n∈N is defined

as: T0 = 1, T1 = 2, T2 = 4 and for all n ∈ N, Tn+3 = Tn+2 + Tn+1 + Tn.

It is proved in [96] (though this was probably already known to Rauzy)

that the rational numbers (Tn/Tn+1, Tn−1/Tn+1) provide the best possible

simultaneous approximation of (1/β, 1/β2) if we use the distance to the
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nearest integer defined by a particular norm, i.e., the so-called Rauzy norm;

recall that if Rd is endowed with the norm ||·||, and if θ ∈ Td, then an integer

q > 1 is a best approximation of θ if |||qθ||| < |||kθ||| for all 1 6 k 6 q − 1,

where ||| · ||| stands for the distance to the nearest integer associated with

the norm || · ||. Furthermore, the best possible constant

inf{c ; q1/2|||q
(
1/β, 1/β2

)
||| < c for infinitely many q}

is proved in [96] to be equal to (β2+2β+3)−1/2. This approach is generalised

in [176] to cubic Pisot numbers with complex conjugates satisfying the

finiteness property (F) (see Section 3.3). See also [185] for closely related

results on a class of cubic parameters.

Let α be an irrational real number. The local star discrepancy for the

Kronecker sequence (nα)n∈N is defined as

∆∗
N (α, β) = |

N−1∑

n=0

χ[0,β[({nα})−Nβ|,

whereas the star discrepancy is defined as D∗
N (α) = sup0<β<1 ∆∗

N (α, β).

Most of the discrepancy results concerning Kronecker sequences were ob-

tained by using the Ostrowski numeration system (see Example 2.14); for

more details and references, we refer to [225] and [124]. A similar approach

was developed in [3], where an algorithm is proposed, based on Dumont-

Thomas numeration, which computes lim sup
∆∗

n(α,β)
log n , when α is a qua-

dratic number and β ∈ Q(α).

6.3. Computer arithmetics and cryptography

The aim of this section is to briefly survey some applications of numera-

tion systems to computer arithmetics and cryptography. We have no claim

to exhaustivity, we thus restrict ourselves to cryptographical techniques

based on numeration systems already considered above.

We have focused so far on the unicity of representations for positional nu-

meration systems. Redundancy can proved to be very useful in computer

arithmetics for the parallelism of some basic operations. Indeed, signed-

digit representations in the continuation of Cauchy’s numeration (see Ex-

ample 2.13) are of a high interest in computer arithmetics, mostly because

of the fact that the redundancy that they induce allows the limitation of

the propagation of the carry when performing additions and subtractions.

For more details, see [36], where properties of signed-digit representations
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are discussed with respect to the operations of addition, subtraction, mul-

tiplication, division and roundoff. More precisely, let B > 2 be the base,

and take as digit set D = {−a, . . . , a}, with 1 6 a 6 B − 1. If 2a+ 1 > B,

then any integer in Z can be represented as a finite sum
∑

i>0 aiB
i, with

ai ∈ D. If, furthermore 2a− 1 > B, then it is possible to perform additions

without carry propagation. The binary signed-digit representation studied

in Example 2.13 is a particular case with B = 2, D = {−1, 0, 1} (but in

this latter case the condition 2a− 1 > B does not hold).

The non-adjacent signed binary expansion (see Example 2.13) was used

by Booth [76] for facilitating multiplication in base 2. It is known to have,

on average, only one third of the digits that are different from zero. As a

consequence, it is used in public-key protocols on elliptic curves over finite

fields for the scalar mutiplication, i.e., for the evaluation of kP , where P

is a point of an elliptic curve (see [77]). Indeed, if k is written in base 2

and if the the curve is defined over F2, then the cost of the evaluation of

kP directly depends on the number of “doublings” and “addings” when

performing the classical double-and-add algorithm. It is thus particularly

interesting to work with binary representations with digits in a finite set

with a minimal Hamming weight, i.e., with a minimal number of non-

zero digits. For additional details, see, e.g., [157, 156, 165, 166, 167, 314],

and the references therein. Note that the redundancy of the signed binary

expansion is used for the protection from power analysis attacks against

the computational part of cyphering elliptic curves based algorithms, by

infering with power consumption during the calculation.

Redundant systems can also be used for the computation of elementary

functions such as the complex logarithm and the exponential [44]. Inspired

by the signed-digit numeration, a redundant representation for complex

numbers that permits fast carry-free addition is introduced in [129].

Another type of numeration system can have interesting applications,

namely the so-called residue number systems; these systems are modular

systems [212] based on the Chinese remainder lemma. This representation

system is particularly efficient for the computation of operations on large

integers, by allowing the parallel distribution of integer computations on op-

erators defined on smaller integer values, namely the moduli. Indeed, clas-

sical public-key protocols in cryptography (such as RSA, Diffie-Hellman,

Fiat-Shamir) use modular multiplication with large integers. Residue num-

ber systems can proved to be very efficient in this framework (e.g., see

[39]). For applications of residue number systems in signal processing and
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cryptography, see the survey [45] and [40, 41, 42, 43, 40]. For a general and

recent reference on elliptic cryptography, see [99].

The double base number system consists in representing positive inte-

gers as
∑

i>0 2si3bi , where ai, bi > 0. This numeration system is here again

highly redundant, and has many applications in signal processing and cryp-

tography; see for instance [97, 116] for multiplication algorithms for elliptic

curves based on this double-base numeration, and the references therein.

Let us note that Ostrowki’s numeration system (see Example 2.14) is used

in [61] to produce a greedy expansion for the double base number system.

Similarly, a fast algorithm for computing a lower bound on the distance

between a straight line and the points of a regular grid is given in [234], see

also [235]. This algorithm is used to find worst cases when trying to round

correctly the elementary functions in floating-point arithmetic; this is the

so-called Table Maker’s Dilemma [235].

6.4. Mathematical crystallography: Rauzy fractals and
quasicrystals

A set X ⊂ Rn is said to be uniformly discrete if there exists a positive

real number r such that for any x ∈ X, the open ball located at x of radius

r contains at most one point of X; a set X ⊂ Rn is said to be relatively

dense if there exists a positive real number R such that, for any x in Rn,

the open ball located at x of radius R contains at least one point of X.

A subset of Rn is a Delaunay set if it is uniformly discrete and relatively

dense. A Delaunay set is a Meyer set if X−X is a Delaunay set, and if there

exists a finite set F such that X −X ⊂ X + F [255, 256]. This endows a

Meyer set with a “quasi-lattice” structure. Meyer sets play indeed the rôle

of lattices in the crystalline structure theory. A Meyer set [255, 256] is in

fact a mathematical model for quasicrystals [257, 38].

An important issue in β-numeration deals with topological properties of

the set Zβ = {±wMβM + · · ·+ w0; M ∈ N, (wM · · ·w0) ∈ L}, where L is

the β-numeration language. If β is a Parry number, then Zβ is a Delaunay

set [327]. More can be said when β is a Pisot number. Indeed, it is proved,

in [88] that if β is a Pisot number, then Zβ is a Meyer set. For some families

of numbers β (mainly Pisot quadratic units), an internal law can even be

produced by formalising the quasi-stability of Zβ under subtraction and

multiplication [88]. The β-numeration turns out to be a very efficient and

promising tool for the modeling of families of quasicrystals thanks to β-

grids [88, 89, 138, 152].
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The characterisation of the numbers β for which Zβ is uniformly discrete

or even a Meyer set has aroused a large interest. Observe that Zβ is always

a discrete set at least. It can easily be seen that Zβ is uniformly discrete if

and only if the β-shift Xβ is specified, i.e., if the strings of zeros in dβ(1)

have bounded lengths; note that the set of specified real numbers β > 1

with a noneventually periodic dβ(1) has Hausdorff dimension 1 according

to [288]; for more details, see for instance [74, 332] and the discussion in

[152]. If Zβ is a Meyer set, then β is a Pisot or a Salem number [256].

If β is a Pisot number, then Zβ is a Meyer set. A proof of this implication

is given in [152] by exhibiting a cut and project scheme. A cut and project

scheme consists of a direct product Rk × H, k > 1, where H is a locally

compact abelian group, and a lattice D in Rk ×H, such that with respect

to the natural projections p0 : Rk ×H → H and p1 : Rk ×H → Rk:

(1) p0(D) is dense in H;

(2) p1 restricted to D is one-to-one on its image p1(D).

This cut and project scheme is denoted by (Rk × H,D). A subset Γ of

Rk is a model set if there exists a cut and project scheme (Rk × H,D)

and a relatively compact set Ω of H with a non-empty interior, such that

Γ = {p1(P ); P ∈ D, p0(P ) ∈ Ω}. Set Γ is called the acceptance window of

the cut and project scheme. Meyer sets are proved to be subsets of model

set of Rk, for some k > 1, that are relatively dense [255, 256, 257]. For

more details, see for instance [38, 138, 153, 233, 229, 301, 332, 333]. Note

that there are close connections between such a generation process for qua-

sicrystals and lattice tilings for Pisot unimodular substitutions (e.g., see

[65, 337, 338]).

Substitutional sequences (defined in Section 6.1) arising from numeration

systems play an interesting rôle in quasicrystal theory, and more precisely,

in the study of Schrödinger’s difference equation

ψn−1 + ψn+1 + vnψn = eψn,

where v = (vn)n∈Z is a real sequence called potential, and e ∈ R is the en-

ergy corresponding to the solution ψ = (ψn)n, if any one exists. A detailed

account of classical results on this subject is given in [325]. Connected inter-

esting topics are exposed in [37]. Note that for a periodic potential, then the

Schrödinger operator Hv(ψ) := ψn−1 +ψn+1 + vnψn on ℓ2(Z) has a purely

absolutely continuous spectrum, which is in contrast with Kotani’s Theo-

rem [214]: if v is of finite range, not periodic but ergodic with associated

invariant measure ρ on the orbit closure F(v), then Hw has purely singular
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spectrum for ρ-almost all w ∈ F(v). This leads to consider the particular

case of v itself. Sturmian sequences like vn = ⌊nα+ b⌋−⌊(n−1)α+ b⌋ (the

Fibonacci potential corresponds to α = (
√

5−1)/2) and doubling potential

(issued from the substitution a 7→ ab, b 7→ aa) are examples of poten-

tials for which the spectrum of the Schrödinger operator is a Cantor set

with zero Lebesgue measure and the operator is purely singular continuous.

The Thue-Morse sequence and the Rudin-Shapiro sequence, for examples,

are not completely elucidated with respect to the general condition on the

underlying substitution exhibited by Bovier and Ghez [79]: this latter con-

dition ensures the spectrum to have zero Lebesgue measure. Combinatorial

properties of subtitutional sequences v seem to play a fundamental rôle in

the spectral nature of Hv.
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