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satisfactorily the annual and sub-annual principal compo-
nents of the precipitation time series over the Guinea Gulf, 
whereas the GCMs are in general not able to simulate the 
bimodal distribution due to the passage of the WAM and 
show a unimodal precipitation annual cycle. Furthermore, 
it is shown that CCLM is able to better reproduce the prob-
ability distribution function of precipitation and some 
impact-relevant indices such as the number of consecutive 
wet and dry days, and the frequency of heavy rain events.

Keywords COSMO-CLM regional climate model · 
CORDEX-Africa · CMIP5 GCMs · Added value

1 Introduction

Africa is one of the regions most vulnerable to weather 
and climate variability (IPCC 2007). Due to its low adap-
tive capacity, projected climate change may lead to severe 
impacts on many vital sectors such as agriculture, water 
management, and health. For these reasons, and the gen-
eral lack of climate projections based on Regional Climate 
Downscaling tools, Africa was selected as the first target 
region for the World Climate Research Programme COR-
DEX (Coordinated Regional climate Downscaling Experi-
ment) (Giorgi et al. 2009). CORDEX aims to foster inter-
national collaboration in order to generate an ensemble of 
high-resolution historical and future climate projections at 
regional scale, by downscaling different Global Climate 
Models (GCMs) participating in the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) (Taylor et al. 2012).

It is very challenging for climate models to replicate 
the multitude of physical processes and the complexity of 
their feedbacks, which span multiple temporal and spatial 
scales, over such a large and heterogeneous continent. In 
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fact, despite GCMs have demonstrated the ability to gener-
ally replicate the precipitation trend over the second half of 
the twentieth century, they may present significant deficien-
cies in simulating the African climate, especially complex 
systems like the West Africa Monsoon (WAM), which is 
driven by the interaction of atmosphere, ocean, and land-
surface, initiated by differential heating of the ocean and 
land surface (e.g. Steiner et al. 2009), and also strongly 
related to mid-tropospheric circulation such as the African 
Easterly Jet (AEJ) (Cook 1999).

By using the information provided by GCMs as lateral 
boundary condition, limited area, high resolution climate 
models (Regional Climate Models-RCMs) are used to pro-
vide climate information at spatial scales much finer than 
the GCMs’ grid (usually of the order of hundred of km). 
By better representing the topographical details, coastlines, 
and land-surface heterogeneities, RCMs allows the repro-
duction of small-scale processes and details that are most 
useful for instance for impact assessment and adaptation 
policies (e.g. Wang et al. 2004; Paeth and Mannig 2012; 
Lee and Hong 2013).

Many studies in the past have investigated the ability 
of RCMs to reproduce the general features of the African 
climate, especially over Southern and West-Africa (e.g. 
Jenkins et al. 2005; Afiesimama et al. 2006; Abiodun et al. 
2008), where they generally improved the climate simula-
tions by GCMs but also shared similar biases (IPCC 2007). 
A comprehensive effort has been subsequently undertaken 
in data collecting and modeling activities focused primar-
ily on the West Africa region, including the West African 
Monsoon Modelling and Evaluation (WAMME) initiative 
(Druyan et al. 2010; Xue et al. 2010), the African Multi-
disciplinary Monsoon Analysis (AMMA) (Redelsperger 
et al. 2006; Ruti et al. 2011), and the Ensembles-based pre-
diction of Climate Changes and Their Impacts (ENSEM-
BLES) (Paeth et al. 2011).

More recently, in the framework of the CORDEX initia-
tive, several RCMs driven by ’observed’ lateral boundary 
conditions (ERA-Interim), have been evaluated (Nikulin 
et al. 2012; Endris et al. 2013; Kalognomou et al. 2013; 
Kim et al. 2013; Gbobaniyi et al. 2013; Panitz et al. 2014) 
in order to asses the ’structural bias’ of the models (Laprise 
et al. 2013). It is shown that in general RCMs simulate the 
precipitation seasonal mean and annual cycle quite accu-
rately, although individual models can exhibit significant 
biases in some subregions and seasons.

When RCMs are driven by GCMs, however, the down-
scaled climate may present even larger biases, as the ones 
inherited through the lateral boundary conditions are added 
to those introduced by the RCM by means, for instance, of 
model errors and parameterizations (e.g. Dosio and Paruolo 
2011; Hong and Kanamitsu 2014). As downscaling is not 
able to improve the simulation skills of large-scale fields 

over those simulated by the GCMs (Castro et al. 2005; 
Rockel et al. 2008), it is essential to investigate whether 
RCMs are effectively able to add value, at regional scale, 
to the performances of GCMs over the present climate, 
before applying them for climate projections. An increasing 
number of works (e.g. Kim et al. 2002; Diallo et al. 2012; 
Paeth and Mannig 2012; Diaconescu and Laprise 2013; 
Crétat et al. 2013; Laprise et al. 2013; Lee et al. 2014) 
have recently investigated the added value of downscaling 
GCMs, which is expected to be found in the fine scales and 
in the ability of RCM to simulate extreme events (Diaco-
nescu and Laprise 2013).

Here we use the COSMO-CLM (CCLM) RCM over the 
CORDEX-Africa domain to downscale the simulations of 
four CMIP5 GCMs and we compare the results of CCLM 
to those of the driving GCMs over the present climate. It is 
important first to generally evaluate the ability of CCLM 
to reproduce the general characteristics of the African cli-
mate (e.g., seasonal distribution of temperature and precipi-
tation, and WAM climatology) and, second, to investigate 
whether the downscaled simulations add value to the ones 
by the driving GCMs. Therefore, we focus not only on the 
main climate statistics, but we investigate also the ability of 
CCLM to reproduce precipitation variability and probabil-
ity distribution functions (PDF), and, finally, indices such 
as the number of consecutive wet and dry days, and the fre-
quency of heavy rain events.

The analysis of the projections of future climate change 
will be presented in a forthcoming work.

The paper is structured as follows: Sect. 2 describes the 
model set-up and the data used in the evaluation. In Sect. 3 
results are shown and discussed. Concluding remarks are 
presented in Sect. 4.

2  Model description, setup and observational data

In this study the three-dimensional non-hydrostatic 
regional climate model COSMO-CLM (CCLM) is used, in 
the same configuration as the ’evaluation runs’ (i.e., forced 
by the ERA-Interim reanalysis) described in Panitz et al. 
(2014). Here, therefore, only the main characteristics are 
only briefly described.

Numerical integration is performed on an Arakawa-C 
grid with a Runge-Kutta scheme, using the time splitting 
method by Wicker and Skamarock (2002), with a time 
step of 240 s. A vertical hybrid coordinate system with 35 
levels is used, with the upper most layer at 30 km above 
sea level. The main physical parameterizations include: 
the radiative transfer scheme by Ritter and Geleyn (1992); 
the Tiedtke parameterization of convection (Tiedtke 1989) 
being modified by D. Mironow (German Weather Service); 
a turbulence scheme (Raschendorfer 2001; Mironov and 
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Raschendorfer 2001) based on prognostic turbulent kinetic 
energy closure at level 2.5 according to Mellor and Yam-
ada (1982); a one-moment cloud microphysics scheme, 
a reduced version of the parameterization of Seifert and 
Beheng (2001); a multi layer soil model (Schrodin and 
Heise 2001, 2002; Heise et al. 2003); subgrid scale orog-
raphy processes (Schulz 2008; Lott and Miller 1997). After 
a series of sensitivity runs, the lower height of the damp-
ing layer was increased from its standard value, 11 km, to 
the approximate height of the tropical tropopause, 18 km, 
in order to avoid unphysical and unrealistic results. Also 
the soil albedo was replaced by a new dataset, derived from 
MODIS (Moderate Resolution Imaging Spectroradiom-
eter) (Lawrence and Chase 2007), which gives more real-
istic results over the deserts. A thorough description of the 
dynamics, numerics and physical parametrizations can be 
found in the model documentation (e.g., Doms 2011).

The numerical domain, common to all groups partici-
pating to the CORDEX-Africa initiative, covers the entire 

African continent at a spatial resolution of 0.44° (Fig. 1): 
thus, the model grid uses 214 points from West to East and 
221 points from South to North, including the sponge zone 
of 10 grid points at each side, where the Davies boundary 
relaxation scheme is used (Davies 1976, 1983).

An ensemble of climate change projections has been 
created by downscaling the simulations of four GCMs 
from the new CMIP5 global climate projections, namely: 
the Max Plank Institute MPI-ESM-LR, the Hadley Center 
HadGEM2-ES, the National Centre for Meteorological 
research CNRM-CM5, and EC-Earth. The historical con-
trol runs, forced by observed natural and anthropogenic 
atmospheric composition, cover the period from 1950 until 
2005, whereas the projections (2006–2100) are forced by 
two Representative Concentration Pathways (RCP) (Moss 
et al. 2010; Vuuren et al. 2011), namely, RCP4.5 and 
RCP8.5.

As mentioned, in this work we evaluate the performance 
of CCLM by comparing the results to those of the driving 

Fig. 1  Model domain and 
topography (m) of the COR-
DEX Africa simulations. The 
domain includes a sponge zone 
of 10 grid points in each direc-
tion. Squares indicate the loca-
tions of the evaluation regions 
as defined in http://www.smhi.s
e/forskning/forskningsomraden/
klimatforskning/1.11299)

http://www.smhi.se/forskning/forskningsomraden/klimatforskning/1.11299
http://www.smhi.se/forskning/forskningsomraden/klimatforskning/1.11299
http://www.smhi.se/forskning/forskningsomraden/klimatforskning/1.11299
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GCMs over the present climate (1989–2005). High-quality 
observational datasets for Africa are scarce, and signifi-
cant discrepancies exist amongst different datasets mainly 
due, for instance, to the limited number of gauge stations, 
retrieval, merging, and interpolation techniques (Huffman 
et al. 2009; Nikulin et al. 2012; Sylla et al. 2012). Here, 
a combination of available ground observations, satellite 
products, and reanalysis is used, as done in Panitz et al. 
(2014), where a critical review of the available observa-
tional dataset for Africa was presented. A list of the data-
sets used in this study is reported in Table 1.

Several evaluation sub-regions have been defined in the 
CORDEX protocol (see Fig. 1, and http://www.smhi.se/fors
kning/forskningsomraden/klimatforskning/1.11299), which 
have been used in previous single- and multi-model evalua-
tion studies over CORDEX-Africa (e.g Nikulin et al. 2012; 
Laprise et al. 2013). Similarly, seasonal statistics have been 
calculated for boreal winter (January-February-March—
JFM) and summer (July-August-September—JAS).

3  Results

In this section we critically analyze the ability of CCLM, 
forced by different GCMs, to reproduce the principal char-
acteristics of the African climatology. It is important to 
note that the skill of an RCM driven by a GGM must be 
viewed as the skill of the GCM-RCM combination, and 
as such, the difference between the forcing and the down-
scaled data can be used to identify added value. We first 
discuss the geographical and temporal distribution of mean 
sea level pressure (MSLP), temperature and precipitation. 
We also compare spatial and temporal statistics (Bias, 
RMSE, Pattern Correlation, and interannual variability) 
of seasonal temperature and precipitation. Subsequently, 
annual cycles of daily precipitation are investigated over 
selected regions, together with the WAM main characteris-
tics. In order to compare the ability of GCMs and RCM to 
simulate the dominant components (temporal scales) of the 
annual evolution of the WAM, a singular spectral analysis 
(SSA) is performed for the daily precipitation time series 
over region WA_S (see Fig. 1) along the Gulf of Guinea. 
Standard deviation and PDFs of daily precipitation have 

been also calculated. Finally, some precipitation indices are 
also evaluated, such as the number of consecutive wet and 
dry days, and the frequency of heavy rain events.

3.1  Seasonal climatology

Models’ bias of seasonally averaged MSLP are shown in 
Fig. 2. Compared to the reanalysis, GCMs tend to overes-
timate the meridional pressure gradient in JFM: in particu-
lar, HadGEM2-ES values are too high over north-equato-
rial Africa and too low over central and southern Africa, 
CNRM-CM5 generally underestimates MSLP over central 
and southern Africa (and the Atlantic Ocean), whereas 
MPI-ESM-LR overestimates MSLP over the Sahel and 
Sahara regions. Only EC-Earth performs satisfactorily over 
nearly all the land areas, although MSLP is underestimated 
over the Atlantic. As discussed by Panitz et al. (2014), 
CCLM performs rather satisfactorily when driven by the 
reanalysis, with generally small biases (<2 hPa); however, 
as for the GCMs, CCLM tends to overestimate MSLP over 
the Sahara and underestimate it over Central and South 
Africa. This behaviour, in addition to the bias inherited by 
the forcing GCMs, results in a deterioration of the bias over 
the Sahara for CNRM-CM5 and EC-Earth and over central 
and south Africa for EC-Earth, resulting in a exaggerated 
pressure gradient between northern and central Africa.

In JAS, both CNRM-CM5 and EC-Earth show too low 
values of MSLP over the majority of the land areas and 
oceans, whereas the Sahara Heat Low is too weak for 
HadGEM2-ES and MPI-ESM-LR, which may result in an 
underestimation of the land-sea pressure gradient and, in 
turn, the WAM (Brands et al. 2013). CCLM partly corrects 
some of the GCMs’ biases over land, especially over the 
Sahel and Central Africa, except for the EC-Earth down-
scaling, which does not show a significant improvement 
compared to the driving field.

In a recent work, Laprise et al. (2013) noted that MPI-
ESM-LR (and CanESM2, the other GCM used in their 
study) tend to overestimate the Sea Surface Temperature 
(SST) over the Guinea Gulf and the West coast of sub-
equatorial Africa. Brands et al. (2013) also noted the same 
overestimation of (2 m) sea temperature in all the ana-
lyzed GCMs (including MPI-ESM-LR, CNRM-CM5, and 

Table 1  Summary of available precipitation dataset used for the evaluation of the model’s results

Name Type Variable Time period Time res. (highest) Spatial res. (deg.) References

UDEL v2.01 Obs. T, Prec. 1901–2008 Monthly 0.5  Legates and Willmott (1990)

CRU v3.0 Obs. T, Prec. 1901–2006 Monthly 0.5  Mitchell and Jones (2005)

GPCC v5 Obs. Prec. 1951–2009 Monthly 0.5  Rudolf et al. (2010)

GPCP v1.1 Satellite/Obs. Prec. 1998–2010 Daily 1  Adler et al. (2003)

TRMM 3B42v6 Satellite Prec. 1998–2010 3-Hourly 0.25  Huffman et al. (2009)

http://www.smhi.se/forskning/forskningsomraden/klimatforskning/1.11299
http://www.smhi.se/forskning/forskningsomraden/klimatforskning/1.11299
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Fig. 2  Bias of mean sea level pressure (MSLP), compared to ERA-
interim (used as observation), for the GCMs and CCLM, for austral 
(JFM) and boreal (JAS) summer (top three and bottom three rows, 

respectively). ERA-interim data also shown for comparison. In addi-
tion, the bias of the evaluation run (CCLM forced by ERA-interim) is 
shown
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HadGEM2-ES). In addition, by analyzing the wind com-
ponents at both 500 and 800 hPa they found that GCMs 
usually underestimate the monsoonal winds over the Sahel 
during the core of the WAM, producing also too strong 
Subtropical Jet and a too weak African Easterly Jet. These 
misrepresentations of the circulation are introduced as 
boundary conditions to CCLM, with repercussion on, for 
instance, the precipitation and WAM climatology, as it will 
be discussed.

The JFM 2m temperature bias is shown in Fig. 3. Com-
pared to the UDEL observations, CCLM driven by ERA-
Interim performs, in general, satisfactorily, and similarly 
to other RCMs (Kim et al. 2013). However, CCLM shows 
a cold bias over the Sahara and North Africa region, and 
a weak warm bias over central and southern Africa. All 
GCMs tend to underestimate 2m temperature over land, 
with EC-Earth showing an extended cold bias over all the 
continent, while both CNRM-CM5 and HadGEM2-ES 
underestimate temperature over north-equatorial and South 
Africa, and slightly overestimate it over the Congo region. 
MPI-ESM-LR performs better than the other GCMs, 
although a general cold bias is evident, especially along 
the coast of the Guinea Gulf. CCLM is generally not able 
to correct the bias, which, in some cases, e.g., the band 
around 20°N, is even worsened as a result of the combina-
tion of both GCM’ and CCLM’ cold biases over the region.

In order to quantify the ability of CCLM to improve (or 
not) over the GCMs’ results, Added Value is defined, adapt-
ing from Di Luca et al. (2012)) as:

so that AV is positive where CCLM’s squared error is 
smaller than the GCM’s one. The normalization is intro-
duced so that −1 ≤ AV ≤ 1. Results depend strongly on the 
downscaled GCM (Fig. 3): for instance, CCLM improves 
the performances of HadGEM2-ES over north-equatorial 
Africa and those of EC-Earth over sub-equatorial Africa. 
However, CCLM’s square error is similar to the GCMs’ 
ones over central Africa (for HadGEM2-ES, CNRM-CM5 
and MPI-ESM-LR) but worse over north-equatorial Africa, 
especially for MPI-ESM-LR and EC-Earth.

Spatial statistics of JFM temperature are reported in 
Table 2, where bias, RMSE, and Pattern Correlation are 
shown for continental and, separately, north-and sub-
equatorial Africa. UDEL is used as reference dataset as its 
statistical values over the period considered (1989–2005) 
are very similar to e.g., CRU. We note that, except for 
HadGEM2-ES, CCLM generally deteriorates the bias and 
RMSE of the driving GCMs, although large geographi-
cal differences exist; for instance, for EC-Earth, CCLM 
enlarges the cold bias in North-Africa (from −2.2 to 
−3.5°C) but reduces the one over sub-equatorial Africa 

(1)AV =

(XGCM − XOBS)
2
− (XCCLM − XOBS)

2

Max((XGCM − XOBS)
2, (XCCLM − XOBS)

2)
,

(from −3.6 to −2.6°C). Pattern correlation is usually very 
high (above 0.9) for both GCMs and CCLM, although the 
RCM clearly improves the correlation over sub-equatorial 
Africa compared to all the driving GCMs.

Table 3 shows the temporal standard deviation (cal-
culated over the period 1989–2005) of JFM temperature, 
which is a measure of the interannual variability (Lee and 
Hong 2013; Kim et al. 2013). Both GCMs’ and RCM’s 
values are relatively close to the observed ones (UDEL), 
with CCLM slightly improving over HadGEM2-ES and 
MPI-ESM-LR.

In JAS (Fig. 4), CCLM driven by ERA-Interim shows 
a marked warm bias over the Sahara and Angola, and a 
cold bias over the Guinea region and southern Sahel. As 
discussed by Panitz et al. (2014) this can be related to an 
incorrect representation of the cloud diurnal cycle and 
overestimation of the convective activity. The GCMs per-
formances are heterogeneous, with EC-Earth showing a 
general marked cold bias, CNRM-CM5 and HadGEM2-
ES underestimating temperature over the Sahara and South 
Africa, and MPI-ESM-LR showing a warm bias over Mau-
ritania extending eastwards along 10°N. From the analysis 
of the squared error (Eq. 1) we note that CCLM reduces 
the cold bias over South Africa, for all GCMs, and over the 
Sahara region, especially for HadGEM2-ES and EC-Earth 
forcings. The temperature underestimation over the Guinea 
Gulf is, however, still present and, in some cases, increased, 
especially for HadGEM2-ES and CNRM-CM5. Spatial 
statistics (Table 2) confirm a marked reduction in the cold 
bias for HadGEM2-ES (from −0.9 to −0.3°C), especially 
for north-equatorial Africa (from −1.2 to −0.3°C). For 
CNRM-CM5 the bias is reduced from −1.9 to −1.2°C 
over sub-equatorial Africa, but increases from from −1.1 
to −1.6°C elsewhere, whereas for EC-Earth the opposite 
is true, with the bias passing from −2.6 to −2.2 C over 
north-equatorial Africa and from −1.2 to −1.6°C over sub-
equatorial Africa. Spatial correlation improves for CCLM 
compared to HadGEM2-ES, especially over north-equato-
rial Africa, whereas for the other GCMs values are similar 
or only slightly better. A slight reduction in the correlation 
is noted for CCLM driven by CNRM-CM5. CCLM’s inter-
annual variability (Table 3) is relatively similar to that of 
the driving GCMs over continental Africa, with a marked 
improvement (from 0.47 to 0.40, UDEL’s value being 
0.34) only for MPI-ESM-LR. Over north-equatorial Africa 
CCLM values are closer to the observed ones for all GCMs 
but EC-Earth.

From this analysis it is evident that it is very difficult 
to discern a systematic and homogeneous improvement 
of performances of the downscaled simulations over the 
GCMs’ ones. Mariotti et al. (2011) suggest that surface 
temperature (especially over such a large domain as Africa) 
is more influenced by the RCM’s internal processes rather 
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than the forcing through lateral boundary conditions. Our 
results are somehow in agreement with these findings, 
especially over areas, such as the Sahel, where CCLM’s 

bias seems to be independent of the driving GCM. Over 
other areas, CCLM’s own structural bias (i.e. the one of 
the evaluation run driven by ERA-Interim) is added to that 

Fig. 3  Bias of 2m temperature in JFM, compared to UDEL, for the GCMs and CCLM. In the first row, UDEL values and the bias of the evalua-
tion run (i.e CCLM forced by ERA-interim) are shown. The last row shows the added value adapted from Di Luca et al. (2012)) (Eq. 1)
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of the driving GCM: this can result in an improvement but 
also in a deterioration of the temperature bias.

The bias of seasonally averaged daily precipitation in 
JFM is shown in Fig. 5. GCMs reproduce precipitation in 
an heterogeneous way; in particular, precipitation is overes-
timated over South Africa for CNRM-CM5, MPI-ESM-LR, 
and EC-Earth, and over the western sub-equatorial coast for 
MPI-ESM-LR. On the other hand, a dry bias is shown over 
central Africa for HadGEM2-ES and CNRM-CM5, and 
over Madagascar and Mozambique for MPI-ESM-LR and 
EC-Earth. However, the most striking feature is the general 
misplacement of the monsoonal rainbelt, which is located 
too southwards for EC-Earth, MPI-ESM-LR and CNRM-
CM5, with the latter also overestimating the rainbelt width. 
Only HadGEM2-ES reproduces correctly the position of the 
monsoon band, although slightly underestimating its inten-
sity over the Gulf of Guinea. CCLM is clearly influenced 
by the boundary conditions as the position of the rainbelt 

resembles clearly that of the driving GCM. In addition, 
CCLM tends to overestimate precipitation over the ocean, 
as already noticed in the ERA-Interim driven simulation. 
CCLM results over land show an added value (according 
to Eq. 1) over southern Africa, especially when compared 
to CNRM-CM5, MPI-ESM-LR and EC-Earth; here the 
wet bias is removed or, at least, reduced. Over the Congo 
area, results are mixed, although a improvement is visible 
at least for the HadGEM2-ES downscaled simulation, as 
shown by the Added Value, which is positive. In the fascia 
between the equator and 10°N (including the Guinea coast) 
CCLM remains consistently too dry, as for the evaluation 
run (Nikulin et al. 2012; Kim et al. 2013; Panitz et al. 2014).

Spatial statistics of JFM daily precipitation are reported 
in Table 4 where GGMs’ and CCLM’s values are com-
pared to those of several observational datasets. Sylla 
et al. (2012) and Panitz et al. (2014) discussed the avail-
ability of precipitation data in Africa and analyzed different 

Table 2  Spatial statistics of seasonal temperature (°), averaged over continental Africa (land points only)

In brackets, values for north-equatorial and sub-equatorial Africa, respectively. UDEL has been used as refernce dataset. CCLM’s skill scores are 
highlited in bold if equal or better than the respective GCM

HadGEM2-ES CCLM CNRM-CM5 CCLM MPI-ESM-LR CCLM EC-EARTH CCLM

JFM

BIAS −2.0 −1.6 −2.1 −2.7 −0.7 −1.9 −2.6 −3.2

(−2.5, −0.6) (−2.0,−0.7) (−2.4, −1.5) (−3.1, −2.0) (−0.7, 0.8) (−2.1, −1.4) (−2.2, −3.6) (−3.5, −2.6)

RMSE 2.3 1.9 2.1 2.5 1.5 1.9 2.3 2.7

(3.1, 1.1) (2.6, 0.9) (2.7, 1.4) (3.2, 1.4) (1.8, 1.2) (2.5, 1.1) (2.5, 2.3) (3.5, 1.7)

CORR 0.902 0.931 0.934 0.928 0.926 0.932 0.931 0.934

(0.961, 0.699) (0.939, 0.945) (0.949, 0.661) (0.937, 0.761) (0.941, 0.642) (0.939, 0.796) (0.954, 0.679) (0.941, 0.800)

 JAS

BIAS −0.9 −0.3 −1.3 −1.5 0.3 −0.5 −2.2 −2.0

(−1.2, −0.1) (−0.3, −0.5) (−1.1, −1.9) (−1.6, −1.2) (0.7, −0.6) (−0.6, −0.4) (−2.6, −1.2) (−2.2, −1.6)

RMSE 1.9 1.6 1.7 1.9 1.6 1.5 2.2 2.1

(2.5, 1.1) (2.0, 1.1) (1.8, 1.6) (2.4, 1.2) (2.0, 1.2) (1.9, 1.0) (2.9, 1.2) (2.7, 1.3)

CORR 0.907 0.943 0.949 0.932 0.935 0.944 0.928 0.936

(0.792, 0.884) (0.902, 0.907) (0.906, 0.895) (0.877, 0.0.844) (0.868, 0.869) (0.909, 0.892) (0.869, 0.910) (0.888, 0.910)

Table 3  Interannual variability (standard deviation) of seasonal temperature (°), averaged over continental Africa (land points only) calculated 
over the period 1989–2005

In brackets, values for north-equatorial and sub-equatorial Africa, respectively. Values calculated for the UDEL dataset are also reported. 
CCLM’s skill scores are highlited in bold if equal or better than the respective GCM

HadGEM2-ES CCLM CNRM-CM5 CCLM MPI-ESM-LR CCLM EC-EARTH CCLM

UDEL JFM

0.47 0.53 0.47 0.48 0.39 0.50 0.45 0.42 0.36

(0.72, 0.23) (0.81, 0.23) (0.72, 0.23) (0.77, 0.20) (0.62, 0.17) (0.76, 0.25) (0.70, 020) (0.63, 0.21) (0.57, 0.15)

 UDEL JAS

0.34 0.41 0.39 0.34 0.34 0.47 0.40 0.43 0.44

(0.49, 0.19) (0.57, 0.24) (0.52, 0.26) (0.51, 0.17) (0.48, 0.19) (0.69, 0.26) (0.55, 0.25) (0.63, 0.23) (0.67, 0.21)
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precipitation datasets. They found that, although the geo-
graphical distribution is generally similar amongst different 
sets, large discrepancies exist locally. By using GPCC as 
a reference, the bias in JFM precipitation varies between 

−0.16 mm/day (TRMM) and 0.09 mm/day (GPCP) (Table 
4). CCLM’s bias varies between −0.06 and −0.5 mm/
day, with a deterioration compared to HadGEM2-ES (due 
to the large dry bias over Mozambique and Madagascar 

Fig. 4  As Fig. 3 but for boreal summer (JAS)
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for CCLM) and MPI-ESM-LR (although in this case the 
RMSE is improved). Compared to CNRM-CM5 and EC-
Earth, the absolute value of CCLM’s bias is very similar, 

but opposite in sign, with the downscaled runs being always 
too dry over land. Observed interannual variability over the 
period 1989–2005 varies between 0.27 mm/day (CRU) and 

Fig. 5  Bias of daily precipitation in JFM, compared to GPCP, for the GCMs and CCLM. In the first row, GPCP values and the bias of the evalu-
ation run (i.e CCLM forced by ERA-interim) are shown. The last row shows the added value adapted from Di Luca et al. (2012) (Eq. 1)
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0.31 mm/day (GPCC) (Table 5). Both GCMs and CCLM 
show values comparable with the observations, with 
CCLM’s values slightly smaller than the GCMs’ ones.

In JAS (Fig. 6) the rainbelt has moved to its northern-
most position, located between the Equator and 15°N. Pre-
cipitation maxima are visible over the highlands of Guinea, 
Cameroon and Ethiopia. GCMs reproduce the rainbelt 
position rather satisfactorily, although they generally over-
estimate precipitation intensity over the Guinea Gulf and 
underestimate it over the Sahel, especially HadGEM2-
ES. CCLM has a general dry bias over the Guinea Gulf 

and central Africa, as shown by the ERA-interim run; this 
tendency is maintained in the downscaled simulations, 
which do not show a clear improvement over the driving 
ones. This is also confirmed by the spatial statistics for JAS 
(Table 4) with values of CCLM’s bias close to the GCMs’ 
ones (for EC-Earth and HadGEM2-ES) or slightly worse. 
CCLM interannual variability, however, is always closer to 
the observed one than the driving GCM (Table 5).

The inability of RCMs to systematically and homoge-
neously improve GCMs’ seasonal precipitation was also 
noted by Mariotti et al. (2011) and Laprise et al. (2013), 

Table 4  Spatial statistics of seasonal precipitation (mm/day), averaged over continental Africa (land points only), in JFM (upper rows) and JAS 
(bottom rows)

GPCC has been used as reference dataset. Values calculated for other observational datasets are also reported. CCLM’s skill scores are highlited 
in bold if equal or better than the respective GCM

JFM HadGEM2-ES CCLM CNRM-CM5 CCLM MPI-ESM-LR CCLM EC-EARTH CCLM

BIAS −0.19 −0.50 0.16 −0.13 −0.01 −0.20 0.05 −0.06

RMSE 0.69 0.91 0.93 0.98 0.91 0.82 0.76 0.76

CORR 0.926 0.913 0.935 0.980 0.919 0.815 0.765 0.766

 JFM GPCP TRMM UDEL CRU

BIAS 0.09 −0.16 −0.04 −0.03

RMSE 0.34 0.42 0.26 0.29

CORR 0.981 0.975 0.988 0.985

 JAS HadGEM2-ES CCLM CNRM-CM5 CCLM MPI-ESM-LR CCLM EC-EARTH CCLM

BIAS −0.19 −0.17 0.44 0.53 −0.03 0.12 0.37 0.37

RMSE 0.86 1.15 0.97 1.26 0.83 1.08 1.02 1.38

CORR 0.863 0.837 0.904 0.857 0.916 0.868 0.880 0.824

JAS GPCP TRMM UDEL CRU

BIAS 0.12 −0.11 0.06 0.01

RMSE 0.47 0.53 0.25 0.29

CORR 0.972 0.961 0.992 0.989

Table 5  Interannual variability (standard deviation) of seasonal precipitation (mm/day), averaged over continental Africa in JFM and JAS (land 
points only)

Values calculated for the observational datasets available for the entire period 1989–2005 are also reported. CCLM’s skill scores are highlited in 
bold if equal or better than the respective GCM

JFM HadGEM2-ES CCLM CNRM-CM5 CCLM MPI-ESM-LR CCLM EC-EARTH CCLM

SD 0.27 0.25 0.27 0.24 0.28 0.23 0.29 0.25

JFM GPCC UDEL CRU

SD 0.31 0.28 0.27

JAS HadGEM2-ES CCLM CNRM-CM5 CCLM MPI-ESM-LR CCLM EC-EARTH CCLM

SD 0.35 0.17 0.38 026 0.33 0.18 0.36 0.29

JAS GPCC UDEL CRU

SD 0.25 0.24 0.23
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confirming that RCM processes (soil parameterization, 
convection schemes, etc.) play a larger role than the lateral 
boundary conditions on the precipitation distribution.

In addition, it is essential to remember, when evaluat-
ing the performance of a model, that uncertainty in the 
observations can be very large, especially over Africa, 

Fig. 6  As Fig. 5 but for boreal summer (JAS)
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and the choice of the reference dataset may lead to very 
different results. For instance from Table 4 we note 
that in JFM, taking GPCP as a reference CCLM bias is 
always larger than that of the driving GCM; however, if 
TRMM is used as a reference, CCLM bias is closer to the 
observed one for 3 GCMs out of 4 (−0.13 mm/day for 
CCLM-CNRM-CM5, −0.20 mm/day for CCLM-MPI-
ESM-LR, −0.06 mm/day for CCLM-EC-Earth, compared 
to −0.16 mm/day for TRMM). Similarly, CCLM bias is 
more similar to the reference one for 2 out of 4 GCMs 
when compared to either UDEL of CRU. In JAS, CCLM 
performs similarly or better than 3 GCMs out of 4 using 
GPCP and UDEL, and 2 GCMs out of 4 using either 
TRMM or CRU. This reinforces the conclusion that when 
evaluating a model the use of a single observational data-
set may be inconclusive, or even misleading, especially in 
regions such as Africa where observations are very sparse 
(in space and time) and therefore, not always reliable. As 
climate change projections are increasingly relying on 
large ensembles of multi-model simulations, in order to 
spawn the entire inter-model variability, so it should be 
for the observational dataset when evaluating the models 
performances, in order to fully address the uncertainty of 
observations.

3.2  Annual cycles

Annual cycles of daily precipitation, area-averaged over 
the CORDEX analysis regions, are shown in Fig. 7. The 
range of all the observational datasets discussed in Panitz 
et al. (2014) is also shown. CCLM clearly outperforms 
all the GCMs but HadGEM2-ES over South Africa, espe-
cially in winter and spring, where the GCM wet bias is 
generally corrected. Over most of the remaining regions it 
is difficult to assess clearly whether CCLM improves the 
GCMs results; for instance, over CA_SH the downscaled 
runs are better than the driving ones in JFM and OND, 
whereas over EH, CCLM-CNRM-CM5 and CCLM-EC-
Earth show a bimodal distribution that is neither visible in 
the observations nor in the results from the driving GCMs. 
It is worth noting that whereas over CA_NH the GCMs 
(and the downscaled runs) reproduce satisfactorily the 
bimodal distribution, which is a consequence of the pas-
sage of the monsoon rainbelt, this is not true for the WA_S 
region, where all the GCMs show an unimodal distribution. 
CCLM, on the other hand, is able to reproduce the bimodal 
distribution, although the first peak is overestimated (espe-
cially for EC-Earth) and the second one appears one month 
too late.

This ability of CCLM of reproducing the bimodal dis-
tribution over the WA_S region is further investigated by 
performing a Singular Spectral Analysis for the precipita-
tion daily rate.

3.3  Singular spectral analysis

Singular Spectral Analysis (SSA) is a nonparametric spec-
tral estimation method in which the original time series 
is decomposed into the sum of a small number of inde-
pendent and interpretable components, such as slowly 
varying trends, oscillatory components and structure-
less noise (Hassani 2007). Briefly, the original time series 
{x(t): t = 1,..., N} is first embedded in a vector space of 
dimension M by constructing M-lagged vectors {x(t − j): 
j = 1,..., M} thereof. The M×M lag-covariance matrix is 
then diagonalized: the resulting M eigenvectors Ek are 
called empirical orthogonal functions (EOFs), and the cor-
responding eigenvalues �k account for the partial variance 
in the direction Ek. The square root of the eigenvalues are 
called Singular Values and can be arranged in monotoni-
cally decreasing order: the noise level then appears in the 
Singular Spectrum as a flat floor at its tail (Rangarajan 
1994). Projecting the time series onto each EOF yields the 
corresponding principal components (PCs):

which, however, have length N
′
= N − M + 1 and do not 

contain phase information.
The Partial Reconstruction of the original time series 

can be obtained by using linear combinations of the PCs 
and EOFs:

These series of length N are called reconstructed com-
ponents (RCs), and the original time series can be finally 
obtained as:

Results of SSA applied to daily precipitation time series 
for the WA_S region are shown in Fig. 8. In the figure, each 
column corresponds to a different GCM, together with the 
relative downscaled CCLM simulation, and the reference 
observational dataset. The first row shows the precipita-
tion annual signal reconstructed by using the first six prin-
cipal components only (Eq. 4, with k = 1,..., 6). Second 
row shows the eigenvalue spectra, i.e. the percentage of 
variance explained as a function of M. Note that only odd 
values are shown, as the singular values for sinusoidal sig-
nals appear as pairs of nearly the same value (Rangarajan 
1994). Finally, the last three rows show the RCs related to 
the first three (odd) eigenvalues (Eq. 3, with k = 1, 3, 5) for 

(2)Ak(t) =

M∑

j=1

x(t + j)Ek(j), t = 0, . . . , N − M,

(3)xk(t) =

1

M

M∑

j=1

Ak(t − j)Ek(j)

(4)x(t) =

M∑

k=1

xk(t)
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Fig. 7  Annual cycles of mean daily precipitation (mm/day) for the 
GCMs (first and third column) and CCLM (second and fourth col-

umn) over the 10 different sub-regions indicated in Fig. 1. The driv-
ing GCM and the corresponding downscaled run with CCLM are 

indicated by the same coloured line. For the CCLM runs, the evalu-
ation run is also shown for comparison (dashed line). The light-green 

band indicates the range of available observations, listed in Panitz 
et al. (2014)
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the reference dataset (black), the GCM (red) and CCLM 
(blue), respectively.

For the GPCP dataset, used here as reference (results 
with TRMM are similar and therefore not shown), the sin-
gular spectrum becomes flat for M > 6 (black crosses in the 
second row); as a consequence, the precipitation time series 
can be significantly reconstructed by using only the first six 
EOFs. The result, shown in the first row of Fig. 8, is indeed 
very close to the original time series (Fig. 7). The three sig-
nificant components (k = 1, 3, 5), (third row) correspond to 
a 12, 6 and 4-month oscillation, respectively.

For the GCMs (red lines and crosses), the singular spec-
trum becomes flat for M > 4 (M > 2 for CNRM-CM5) and 
the first eigenvalue is predominant. The intensity of the first 
(annual) RC is therefore generally overestimated, whereas 
both the semiannual and 4-month oscillations are much 
weaker than for GPCP (compare, for each column, the 
fourth and third row): as a consequence, the reconstructed 

signal shows only a unimodal structure, with no sign of the 
peaks in June and October.

The annual RC of CCLM is generally close to that of the 
driving GCM (compare the last with the fourth row); this 
is expected as large-scale features are directly related to 
the driving boundary conditions. However, the higher fre-
quency components are closer to the observed ones, espe-
cially the 4-month one. As a result, the reconstructed signal 
(first row) is closer to GPCP than the GCM ones, especially 
for CCLM-HadGEM2-ES where both the intensity and the 
phase are reproduced satisfactorily. In cases of CCLM-EC-
Earth and CCLM-MPI-ESM-LR the strong overestima-
tion of the precipitation intensity seems to be related to the 
overestimation of the annual component, similar to that of 
the driving GCM, as shown by the corresponding values of 
the first components of the singular spectrum.

Summarizing, SSA shows that the precipitation time 
series simulated by CCLM in WA_S can be separated in 

Fig. 8  Singular spectral analysis of the annual cycle of daily pre-
cipitation for West-Africa South region, for GPCP (black), the forc-
ing GCM (red) and the corresponding downscaled run with CCLM 
(blue). First row shows the signal reconstructed by using the first six 
principal components only (Eq. 4 with M = 6). Second row shows 
the eigenvalue spectra, i.e. the percentage of variance explained as a 

function of M. Here, only odd values are shown, as the singular val-
ues for sinusoidal signals appear as pairs of nearly the same value 
(Rangarajan 1994). The last three rows show the reconstructed com-
ponents relative to the first three odd eigenvalues (Eq. 3 with k = 1, 
continuous line; k = 3, dashed line; k = 5, dashed-dotted line) for 
GPCP (black), GCM (red) and CCLM (blue), respectively
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three main components; the first one, the annual oscilla-
tion, is directly inherited from the driving GCM and affects 
the intensity of the resulting signal; the second compo-
nent (semiannual) is somehow reproduced by the GCMs 
but generally underestimated, whereas CCLM results are 
closer to GPCP; the third component (4-month) is not pre-
sent in any of the GCMs results and only CCLM is able to 
realistically reproduce this high frequency oscillation, and, 
as a consequence, the bimodal distribution of the observed 
precipitation.

3.4  WAM climatology

Figure 9 shows Hovmöller diagrams of mean annual cycle 
of precipitation over West Africa (averaged over the region 
10°W–10°E). As discussed by e.g., Nikulin et al. (2012) it 
is challenging for both GCMs and RCMs to simulate the 
complexity of processes responsible for the WAM. When 
driven by ERA-interim most RCMs are able to capture the 
two main precipitation peaks, but their position and inten-
sity differ greatly across the models (Nikulin et al. 2012; 
Gbobaniyi et al. 2013). CCLM is somehow able to repro-
duce the peaks over the Guinea Gulf (5°N–7°N) in May 
and the Sahel (10°N–12°N) in September, respectively, 
although the first one is overestimated and the second one 

underestimated (Panitz et al. 2014). On the contrary, none 
of the GCMs is able to reproduce correctly the WAM sea-
sonal characteristics, with HadGEM-2-ES, EC-Earth, and 
MPI-ESM-LR underestimating the first peak and CNRM-
CM5 largely overestimating it. As discussed by Laprise 
et al. (2013) this may be due to the low spatial resolution of 
the GCMs’ grid, so that the peak is probably an extension 
of the ocean precipitation, in addition to the misrepresenta-
tion of the seasonal cycle of the SST in the Atlantic Ocean. 
The second peak is reproduced satisfactorily only by EC-
Earth, but all GMCs misrepresent the Monsoon jump, i.e., 
the abrupt latitudinal shift of precipitation around June.

CCLM results are heterogeneous, as the influence of 
the driving GCM is added to the RCM’s own deficiencies. 
For instance, the first peak is usually largely overestimated, 
as a result of CCLM overestimating precipitation over the 
sea in the Guinea region (compare Fig. 6). However, some 
improvement compared to the GCMs is visible, such as the 
latitudinal extension of the monsoon rainbelt for CCLM-
HadGEM2-ES, and the intensity and position of the sum-
mer peak over the Sahel for CCLM-CNRM-CM5. For the 
other GCMs, it is hard to discern a significant improvement 
of the WAM climatology. As stated by Laprise et al. (2013), 
if driven by incorrect boundary conditions, there is a limit 
to what RCMs are able to correct.

Fig. 9  Hovmöller diagram of mean annual cycle of precipitation (mm/day) over West Africa (averaged over the region 10°W–10°E). A 20-day 
moving average has been used to remove high-frequency variability
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3.5  Variability and probability distribution function 
of daily precipitation

From the analysis so far we found that CCLM is able to 
reproduce the general African climatology (with results 
comparable to GCMs and other RCMs) but determining 

whether the downscaled simulations are consistently 
improving over the large-scale driving ones is not straight-
forward. As stated by e.g., Rockel et al. (2008) downscaling 
is not able to improve the simulation skills of large-scale 
fields over those simulated by the GCMss, and, according 
to Di Luca et al. (2012)), in order to add value, regional 

Fig. 10  Standard deviation of daily precipitation (mm/day) for the GCMs and CCLM, for austral and boreal summer (top three and bottom 

three rows, respectively). GPCP and TRMM values are shown for comparison



2654 A. Dosio et al.

1 3

climate statistics have to contain fine scale variability that 
is absent on a coarser grid.

Following Lee and Hong (2013) we therefore compute 
the Standard Deviation (SD) of daily precipitation for 
each individual year, and subsequently time averaged it 
over the entire period (1989–2005). Results are shown in 
Fig. 10. CCLM exhibits larger daily variation of precipita-
tion compared to the GCMs, both in JFM and JAS. In par-
ticular, in JFM, CCLM’s results are similar to the TRMM 
ones, with values of SD larger than 7 mm/day over large 
part of central Africa, and with SD larger than 10 mm/day 
over Madagascar, Mozambique and, partially, the coasts of 
Angola and Gabon. GCMs’ values are smaller and gener-
ally more homogeneous, somehow closer to the low reso-
lution (1°) GPCP dataset, although a general underestima-
tion over South-East Africa is evident. Compared to both 
TRMM and GPCP, GCMs clearly underestimate the SD in 
JAS over all the area affected by the WAM, from the Gulf 
of Guinea to Ethiopia, whereas CCLM’s values are closer 
to the observed ones, although partially overestimated over 
the Sahel. According to Feser et al. (2011) the added vari-
ability occurs mainly on spatial scales that are best resolved 
by the regional model. Our results are also in agreement 
with those of Lee and Hong (2013), who compared GCM’s 
results to those of an RCM at two different resolution, 
showing that the precipitation variance increase with the 
model resolution.

Figure 11 shows the PDF of daily precipitation for 
the CORDEX evaluation regions, for the GCMs and the 
downscaled CCLM runs. It is evident that the CCLM’s 
results outperform those of the driving GCMs over all 
areas for small to moderate (up to 20 mm/day) precipita-
tion amounts. A slight overestimation persists up to 5 mm/
day over WA_S and CA_SH, similar to the driving GCMs, 
but in general the shape of the distribution is closer to the 
observed one than the GCMs’ ones. For larger precipita-
tion amounts, the uncertainty in the observations becomes 
relevant. Generally CCLM’s results are closer to the high 
resolution TRMM, whereas the GCMs are more similar to 
GPCP. Our results are in line to those of Crétat et al. (2013) 
who, by comparing two RCM simulations at different spa-
tial resolutions over Africa, found that the higher resolution 
simulation generally shows a greater number of the highest 
intensity events, toward the right tail of the distribution.

3.6  Impact-relevant precipitation indices

Impact models, such as hydrological and crop models, are 
affected not only by the mean spatial and temporal precipi-
tation characteristics, but also by extreme events and higher 
order statistics. Therefore, here we evaluate the ability of 
CCLM to reproduce three impact-relevant indices, namely 
the number of consecutive wet (i.e., daily precipitation 

>1 mm) and dry days, and the number of intense precipita-
tion events (i.e., number of rainy days when precipitation 
exceeds the 95th percentile). As extreme events are charac-
terized by high spatial and temporal variability, especially 
at small/local scales, it is very challenging for climate mod-
els to correctly reproduce them (Crétat et al. 2013; Lee and 
Hong 2013).

Figure 12 shows the observed and modelled seasonal 
maximum number of consecutive wet days (CWD). Gener-
ally, all GCMs tend to overestimate CWD, especially over 
central Africa in JFM and the Guinea Gulf in JAS, with val-
ues as high as four times the observed ones. CCLM results 
are much closer to the observations, especially to GPCP, 
although in summer CWD is still slightly overestimated 
over the area between 0°N and 15°N. It is interesting to 
note that the downscaled CCLM simulations are similar to 
the ERA-Interim driven run, especially over land, and seem 
to be somehow independent of the influence of the driv-
ing GCM (i.e., lateral boundary conditions) compared to, 
for instance, the precipitation mean intensity. This suggests 
that, although lateral boundary condition greatly affect 
the RCMs’ skills in simulating the general features of the 
African climate, RCMs are clearly more able to reproduce 
small scale, high variable processes and, in turn, higher 
order precipitation statistics.

Maximum number of consecutive dry days (CDD) is 
shown in Fig. 13. GCMs’ results are quantitatively simi-
lar to observed values, especially over land, although in 
JFM CNRM-CM5 and EC-Earth underestimate CDD 
over South Africa, whereas in JAS over North-East Africa 
CDD is overestimated by HadGEM2-ES and MPI-ESM-
LR and underestimated by CNRM-CM5 and EC-Earth. 
Over these areas and seasons, CCLM results are generally 
closer to the observations, but some discrepancies remain 
especially over north-equatorial Africa in JFM, where 
the length of the dry spells is generally overestimated. 
In JAS, the effect of lateral boundary conditions is evi-
dent by analyzing the geographical extension of the areas 
of very short dry spells (CDD <10, white band centered 
along 10°N in the figure), which, in each downscaled run, 
is very similar to that of the corresponding GCM, and in 
general, larger than the ERA-Interim driven run. In partic-
ular, CDD is too low along the Guinea coast, and too high 
over the eastern coast and the Horn of Africa, although 
large discrepancies exist in that region amongst the obser-
vational datasets.

Finally, the mean number of intense precipitation events 
i.e., number of rainy days (i.e., with precipitation >1 mm) 
when precipitation exceeds the 95th percentile, is shown in 
Fig. 14. In a recent work, Crétat et al. (2013) assess, for 
the first time, the ability of climate models to capture the 
mean spatial and temporal characteristics of daily intense 
rainfall events over (continental) Africa. They compare 
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Fig. 11  Probability distribution functions of seasonal daily precipi-
tation (mm/day) for the GCMs (first and third column) and CCLM 
(second and fourth column) over the 10 different sub-regions. Note 
that the selected season is dependent on the region. The driving GCM 

and the corresponding downscaled run with CCLM are indicated 
by the same coloured line. Two observational datasets (TRMM and 
GPCP) are also reported for comparison
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GCM results to ERA-Interim driven RCM runs, claiming 
that GCMs and, to a lesser extent, RCMs, tend to overesti-
mate the frequency of intense events and to underestimate 
their intensity. Our results show that indeed GCMs tend to 

largely overestimate the frequency of intense rain events, 
both in JFM, over central Africa, and in JAS, over the 
entire monsoon belt. CCLM results are closer to the obser-
vations (especially to GPCP) both in boreal and austral 

Fig. 12  Maximum number of consecutive wet days (i.e., precipita-
tion >1 mm/day) (CWD) for the GCMs and CCLM, for austral and 
boreal summer (top three and bottom three rows, respectively). GPCP 

and TRMM observations are shown for comparison. In addition, the 
evaluation run (i.e CCLM forced by ERA-Interim) is shown
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summer, although the frequency of intense events is still 
overestimated over the Congo basin in JFM and the areas 
around Central African Republic and South Sudan in JAS. 
Crétat et al. (2013) claim that this behaviour may be due 

to erroneous, or at least oversimplified assumptions in the 
convection schemes. Although this may be true and despite 
climate models still cannot realistically simulate daily 
intense rainfall events with high accuracy, it is nevertheless 

Fig. 13  Maximum number of consecutive dry days (i.e., precipita-
tion <1 mm/day) (CDD) for the GCMs and CCLM, for austral and 
boreal summer (top three and bottom three rows, respectively). GPCP 

and TRMM observations are shown for comparison. In addition, the 
evaluation run (i.e CCLM forced by ERA-Interim) is shown
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encouraging that RCM downscaled simulations greatly 
improve GCM results especially for those characteris-
tics that may be more relevant to impact and adaptation 
communities.

4  Summary and concluding remarks

We presented the results of the application of the COSMO-
CLM regional climate model over the CORDEX-Africa 

Fig. 14  Mean number of intense precipitation events (i.e., the num-
ber of rainy days with precipitation ≥95th percentile) for the GCMs 
and CCLM, for austral and boreal summer (top three and bottom 

three rows, respectively). GPCP and TRMM observations are shown 
for comparison. In addition, the evaluation run (i.e CCLM forced by 
ERA-Interim) is shown
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domain. This study builds on the previous work by Pan-
itz et al. (2014) where the CCLM model driven by ERA-
Interim was thoroughly evaluated, and it lays the basis for 
an upcoming study where the climate change simulations 
will be analyzed.

Here it was important first to generally evaluate the abil-
ity of CCLM to reproduce the general characteristics of the 
African climate (e.g., seasonal distribution of temperature 
and precipitation, and WAM climatology) and, second, to 
investigate whether the downscaled simulations add value 
to those of the driving GCMs. In addition, whereas previ-
ous works usually showed RCM results either forced by 
only one GCM or evaluated against only one observational 
dataset, our study involving 4 driving GCMs and several 
observational datasets clearly represents a step forward in a 
comprehensive and thorough analysis of the performances 
of the RCM.

It is found that, in general, the geographical distribu-
tion of mean sea level pressure, surface temperature and 
seasonal precipitation is strongly affected by the boundary 
conditions (i.e. driving GCM): for instance, GCMs show a 
marked cold bias, especially in JFM, which CCLM is only 
partially able to correct, especially in areas such as Cen-
tral and South Africa where the evaluation runs showed 
a slight warm bias. In the region along the Guinea Gulf 
and over the Sahel, regions where the temperature in the 
ERA-interim driven simulation was already colder than the 
observed one, the cold bias inherited by the GCMs in JAS 
is generally worsened.

Concerning precipitation, the influence of the lateral 
boundary condition is evident especially in JFM as most of 
the GCMs misplace the position of the monsoonal rain belt. 
As expected, the geographical distribution of seasonal pre-
cipitation as simulated by CCLM follows closely the one 
inherited by the GCMs. Precipitation intensity over land is 
therefore not always better reproduced by the RCM, which 
shows a general dry bias, consistent to the ’structural’ bias of 
the evaluation run driven by ERA-Interim. However, some 
improvement is evident, e.g. over South Africa in JFM, where 
the GCMs’ wet bias is corrected. In the WAM area it is dif-
ficult to discern a homogeneous and consistent improvement 
of the RCM simulations over the driving GCMs. However, by 
performing a SSA over the regions along the Gulf of Guinea 
it was shown that CCLM is able to better represent the sub-
annual principal components of the precipitation time series, 
in turn reproducing satisfactorily the bimodal distribution of 
the annual cycle, whereas GCMs are not able to simulate this 
feature and they show a unimodal distribution.

The inability of RCMs to significantly improve (sea-
sonal) mean climatology is somehow expected, as, in order 
to add value, regional climate statistics have to contain 
fine scale variability that would be absent on a coarser grid 
(Feser et al. 2011).

This may lead to the question of how much a RCM can 
be trusted in the representation of the extreme climate if 
the mean feature of the climate are not better (and in some 
case even worse) than a GCM? We believe that the fact 
that CCLM may not add significant value to the repre-
sentation of the general climatology over Africa depends 
on several factors, including the biases inherited by the 
driving GCM (e.g., the misrepresentation of the monsoon 
rainbelt in JFM), structural biases of the RCM (e.g., the 
dry bias over land, which may be related to soil parame-
terization), and, last but not least, the choice of the obser-
vational dataset (e.g. CCLM scores better when compared 
to TRMM rather than GPCP). However, by analyzing the 
Standard Deviation and probability distribution function 
of daily precipitation, we have shown that CCLM’s results 
are clearly closer to observations (especially high-resolu-
tion ones, such as TRMM) than the GCMs’ ones, and both 
tails of the PDF are better reproduced by CCLM over 
all the evaluation areas. Furthermore, it was shown that 
CCLM is able to better simulate some precipitation indi-
ces such as the number of consecutive wet and dry days, 
and the frequency of heavy rain event: these are indeed 
the areas where added value is expected to be found, and, 
therefore, supposedly most reliable when looking at cli-
mate change projections. Although some issue remain 
open to further research such as, for instance, the param-
eterization of convective precipitation, which may play 
a relevant role especially in tropical regions, we demon-
strated that RCMs are useful tools for the generation of 
climate change projections, especially for those character-
istics that may be more relevant to impact and adaptation 
communities.
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