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Dynamical energy transfer in ac-driven quantum systems
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We analyze the time-dependent energy and heat flows in a resonant level coupled to a fermionic continuum.
The level is periodically forced with an external power source that supplies energy into the system. Based on the
tunneling Hamiltonian approach and scattering theory, we discuss the different contributions to the total energy
flux. We then derive the appropriate expression for the dynamical dissipation, in accordance with the fundamental
principles of thermodynamics. Remarkably, we find that the dissipated heat can be expressed as a Joule law with
a universal resistance that is constant at all times.
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Quite generally, energy flows through a physical system
coupled to a power source. In the last decades, typical system
sizes have been reduced to the nanoscale and, as a conse-
quence, energy transfer is to be treated quantum mechanically
[1]. The fundamental aspects of light-powered biological
energy transport [2], thermoelectric waste heat recovery [3],
and ultimate refrigeration protocols [4] have been recently
uncovered using quantum mechanical principles. However,
most discussions are limited to stationary or time-averaged
properties [5–9].

Time-dependent quantum transport reveals the dynamical
scales that dominate charge transfer across phase-coherent
conductors [10,11]. A prominent example is the experi-
mentally realized quantum capacitor, which exhibits a pure
ac response [12,13]. Applied time-periodic potentials also
become a crucial tool to generate directed transport of charge
and spin in spatially asymmetric ratchetlike systems [14,15]
and to control matter tunneling in Bose-Einstein condensates
[16]. Furthermore, the study of ac-driven quantum systems
sheds light on the role of fluctuating forces in nanoelec-
tromechanical resonators [17,18]. Several aspects related to
time-dependent energy transport in electron systems have
been also investigated. Heat production in nanoscale engines
is discussed in Refs. [19,20] while molecular heat pumping
against thermal gradients is proposed in Ref. [21]. Further-
more, the concept of local temperature in ac pumps has been
generalized in Ref. [22] whereas universal thermal resistance
has been predicted for low-temperature dynamical transport in
Ref. [23].

Here, we aim at the time-resolved energy production and
redistribution in ac-driven quantum coherent electron systems.
We show that the coupling between the different parts of
the system not only provides a necessary mechanism for
particle exchange, as in the case of charge transport, but also
contributes to the energy transport. This contribution is of an
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ac nature. Though the time average of this energy vanishes, it
allows for a temporary energy storage. Therefore, the coupling
region can be referred to as an energy reactance, which only
affects peak power developed in the dynamics. Our goal is also
to discuss which portion of the time-resolved energy can be
identified as heat, in accordance with the fundamental laws of
the thermodynamics.

To be more precise, let us consider a simple but generic
model, the resonant level model sketched in Fig. 1. It describes
a localized fermion (the impurity) coupled to a fermionic band
of continuous density of states (the reservoir). This model
has been widely used across disciplines to study asymmetric
atomic spectra [24], dissipative quantum mechanics [25], and
resonant-tunneling semiconductor heterostructures [26], to
name a few. Transitions from the quantum level to the reservoir
yield a finite lifetime to the localized fermion which can be
represented with a Lorentzian density of states. We consider
the case in which the level is attached to a harmonically
driven power source as in Fig. 1. Then, the Hamiltonian
reads

H = HC + HT + HD(t), (1)

FIG. 1. (Color online) Energy diagram of the system under con-
sideration. A single electronic level (the impurity with charge e) is
coupled to a Fermi sea (the reservoir with chemical potential μ).
Energy is supplied into the system by a power source (amplitude Vac

and frequency �) attached to the quantum level. Thus, energy rates
are created not only at the impurity (WD) but also at the reservoir
(WC) and in the contact region (WT ).
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where HC = ∑
k εkc

†
kck is the continuum of electron states

with wave vector k and band energy εk , HT = ∑
k(wkd

†ck +
H.c.) describes the tunneling hybridization between prop-
agating electrons and the localized fermion with coupling
amplitude wk , and HD(t) = εd (t)d†d represents the impurity
Hamiltonian with a time-dependent energy level εd (t) = ε0 +
Vac cos(�t), with ε0 being the energy of the bare level. This
model can be implemented, e.g., using an electronic terminal
coupled to a quantum dot acting as an artificial impurity
[12,13] which, in turn, is interacting with a nearby capacitive
gate with harmonic driving potential Vac cos(�t), where Vac

and � are the ac amplitude and frequency, respectively. Our
model is also relevant for fermionic gases of cold atoms [27]
in periodically driven optical lattices [28]. For definiteness, we
take a single reservoir in the spinless case, but the model can
be straightforwardly generalized to account for multiple leads
and spinful electrons.

The Hamiltonian given by Eq. (1) conserves the number of
particles but not the total energy. We can write

d〈H〉
dt

= WC(t) + WT (t) + WD(t) + P (t), (2)

where the energy fluxes (energy per unit time) are
WC(t) = i〈[H,HC]〉/�, WT (t) = i〈[H,HT ]〉/�, and WD(t) =
i〈[H,HD]〉/�, and fulfill WC(t) + WT (t) + WD(t) = 0. The
term P (t) = 〈∂HD/∂t〉 is the power developed by the ac
forces. Importantly, energy transport contains an additional
term as compared to charge transport. In the latter case, the
current conservation condition reads IC(t) + ID(t) = 0, where
the electronic currents (charge per unit time) in the reservoir
and the quantum level are given, respectively, by IC(t) =
ie〈[H,

∑
k c

†
kck]〉/� and ID(t) = ie〈[H,d†d]〉/�. There is no

particle flux associated with the coupling Hamiltonian HT

(although the currents must, of course, be calculated in the
presence of HT ). In stark contrast, the energy flux in the reser-
voir, WC(t), cannot be solely inferred from that in the impurity,
WD(t), but necessitates knowledge on how energy is absorbed
or desorbed in the contact region, WT (t). This crucial fact
introduces some ambiguity in the definition of the concept of
heat current, as shown below.

The different energy fluxes entering Eq. (2) can be
computed in terms of the retarded Gr (t,t ′) = −iθ (t −
t ′)〈{d(t),d†(t ′)}〉 and lesser G<(t,t ′) = i〈d†(t ′)d(t)〉 Green’s
functions. We find that the energy flux entering the reservoir
at time t reads [29]

WC = −2 Re
∫

dε

h
�(ε)[iεGr (t,ε)f (ε) + G<(t,ε)�(ε)],

(3)

where G(t,t ′) = ∫
dε
2π

e−iε(t−t ′)G(t,ε) and �(ε) =∫
dε′
2π

ε′
ε−ε′−i0+ . In Eq. (3), f (ε) = 1/[1 + e(ε−μ)/kBT ] is

the Fermi-Dirac distribution with background temperature T

and chemical potential μ, and �(ε) = 2π
∑

k |wk|2δ(ε − εk)
is the resonance width due to coupling to the continuous
set of states. For definiteness, we consider a model for the
continuum with a flat density of states, corresponding to a
constant �. We emphasize that Eq. (3) is completely general
and valid to all orders in � and Vac. Moreover, it would be

valid even in the presence of Coulomb interactions acting on
the spatially localized region.

Following the same procedure, we find for the impurity
energy flux the expression

WD(t) = −εd (t)IC(t)/e, (4)

where IC(t) =−(2e/h) Re
∫

dε�(ε)[iGr (t,ε)f (ε) +G<(t,ε)]
is the charge current measured in the reservoir. Equation (4) has
a rather simple interpretation. Let nd (t) be the expected value
of the particle number at the localized site. Then, its total en-
ergy rate of change is d[εd (t)nd (t)]/dt , which consists of two
terms, namely, the ac source power P (t) = nd (t)dεd/dt and
the energy flux WD = εd (t)dnd/dt = −εd (t)IC(t)/e, since
ID(t) ≡ ednd/dt = −IC(t).

Finally, we determine the energy flux associated with the
region that mixes continuous and localized states, WT =
−WC − WD . It reads

WT (t) = 2 Re
∫

dε

h
∂tGr (t,ε)�f (ε), (5)

with Gr (t,ε) = ∑
n e−in�tG(n,ε). It is easy to verify that

Eq. (5) is a purely ac contribution and vanishes in the limit
� → 0. Thus, for applied static fields or for time-averaged ac
transport, this special contribution to the system’s energy flow
is zero, The quantity WT will be nonzero only for systems
exhibiting a dynamical response. In a quantum-dot setup,
the tunnel barrier coupling the dot and the reservoir would
periodically store and release energy in response to a nearby
ac field, thereby the term energy reactance.

To gain further insight into the physical significance of
WT , we now resort to the scattering-matrix formalism ap-
plied to quantum transport. Equivalence between the Green’s
function and scattering-matrix approaches has been proven
in Ref. [30] for averaged time-dependent quantities. But
because WT precisely vanishes in the stationary limit, we now
analyze the full time-dependent energy flux by considering
the energy current density operator ρE = �∗H�, where H =
−�

2∇2/2m + U (t,	r) is the first-quantized version of Eq. (1)
and U is the full electronic potential which includes externally
applied time-dependent fields. Then, ρE satisfies the continuity
equation [31]

∂tρE + ∇ · WE = SE, (6)

where WE = (�/4mi)[�∗H∇� − ∇�∗H� + H.c.] is the
symmetrized energy flux and SE = �∗∂tU� is the source
term accounting for the explicit time dependence of U . As is
customary (see, e.g., Ref. [32]), we introduce the field operator
�̂ ∼ ∫

dε e−iεt/�[e+ikx â(ε) + e−ikx b̂(ε)] at the cross section x

position through which the flux is measured. Then, the energy
flux is expressed as

WE(t) =
∑
n,q

e−in�t

∫
dε

εq + εn+q

2h
SF∗(εq,ε)SF (εn+q,ε)

×[f (εq) − f (ε)], (7)

where the Floquet scattering matrix relates the lead out-
going flux operators b̂ to the incoming ones â via b̂(ε) =∑

n SF (ε,εn)â(εn) and εn = ε + n��.
If we now insert the generalized Fisher-Lee relation

[30,33] SF (εm,εn) = δm,n − i�G(m − n,εn) into Eq. (7) we
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find [29]

WE(t) = WC(t) + 1
2WT (t). (8)

Noticeably, this relation states that in the presence of time-
dependent fields the energy fluxes entering the reservoir
predicted by scattering theory and the Green’s function
tunneling Hamiltonian approach differ by a term 1

2WT . Note
that this departure occurs for dynamical energy transport
only. In the case of time-dependent particle currents or
time-averaged energy fluxes the correspondence between the
two theoretical frameworks is exact, i.e., WE = WC with the
notation (· · · ) = ∫ τ

0 (· · · )dt/τ , being τ = 2π/�. Our results
are consistent with discrete models also suggesting that the
1
2WT term should be included in the definition of an energy
current [34].

What is the origin for the apparent discrepancy in Eq. (8)?
Let us turn back to Fig. 1 and examine the role of the
contact region. The scattering approach is formulated as
a continuum model that considers electrons propagating in
a potential landscape U including the reservoirs and the
impurity. Alternatively, the resonant level model considers a
partition of the energy contributions as in Eq. (1), similarly
to Bardeen’s picture of tunneling [35]. In addition to both the
continuum of states that form the reservoir and the discretized
level that constitutes the impurity, this model includes a mixing
Hamiltonian HT which contains creation and annihilation
operators associated with electronic degrees of freedom not
only in the continuum but also in the localized state. We
here emphasize that this part of the system temporarily stores
energy which has to be taken into account in order to compare
the energy balance with that of a fully continuous model.
Equation (8) indicates that a meaningful comparison between
both models implies a symmetric splitting of HT , contributing
equally to the reservoir and the driven system. Below we
provide arguments showing that such splitting is not only
natural from the mathematical point of view but also leads to
a meaningful definition of heat in the time domain, consistent
with the basic laws of thermodynamics.

A concomitant question is which portion of the energy flux
can be identified as heat. In stationary systems, where the heat
transport is accompanied by the particle transport, the heat flux
between the localized system and the reservoir is defined from
the change in the energy stored in the reservoir subtracting
the convective term originated by the particle flow [36]. Such
a definition was also adopted for the dc component of the
heat flux in time-dependent driven systems [19], obtaining
the same description within the frameworks of the Green’s
function and scattering-matrix formalisms. However, there
is an ambiguity in defining heat in the time domain.
This is originated from the fact that WT (t) in the discrete model
is nonvanishing in general, although WT = 0. In the scattering
approach, such ambiguity is not present because there exists no
term as HT . Specifically, Eq. (7) suggests that the appropriate
definition is

Q̇(t) = WE(t) − μIC(t)/e = WC(t) + 1
2WT (t) − μIC(t)/e,

(9)

while Eq. (2) implies the heat flow definition ˙̃Q = WC(t) −
μIC(t)/e.

We resort to the basic principles of thermodynamics in
order to argue that Eq. (9) is the most meaningful definition
of heat flux in the time domain. Since the reservoir is a
macroscopic system, a suitable interpretation of the different
portions of its internal energy under slow variations of the
driven localized part would lead to the definition of heat. We
proceed as in Ref. [37], identifying as the reservoir the terms
of the Hamiltonian H containing operators c

†
k,ck and as the

driven system those depending on d†,d. The tunneling partHT

contains both, hence, it is natural to consider the symmetric
splitting HE = HC + 1

2HT describing the the reservoir and
HS(t) = HD(t) + 1

2HT defining the driven system. We then
evaluate the rate of change of the internal energy ˙〈HE〉 =

˙〈HC〉 − 1
2

∑
k[εk − εd (t)]ṅk , with nk = 〈c†kck〉, which leads

us to interpret the quantity δ〈HT 〉 = −∑
k[εk − εd (t)]δnk as

the chemical work due to particle flow through the contact.
Hence, in accordance to the first principle of thermodynam-
ics, an appropriate definition for the heat exchange in the
reservoir induced by slow variations of the driven system
is δQ = δ〈HC〉 + δ〈HT 〉/2 − μδNC , with NC = ∑

k nk , as
suggested by Eq. (9). In what follows we also show that
this expression is also in agreement with the second law of
thermodynamics, while this is not the case of the alternative
definition ˙̃Q.

We focus on the slow-driving regime and consider, for
simplicity, zero temperature (T = 0). Then, an exact analysis
can be performed by means of an expansion in powers of � for
the Green’s functions (or equivalently of the scattering matrix)
[38]:

Gr (t,ε) = Gr
0(t,ε) + i�

2
∂t∂εGr

0(t,ε) + · · · . (10)

Gr
0(t,ε) = [ε − εd (t) + i�/2]−1 is the frozen Green’s function

describing the regime in which the electron instantaneously
adjusts its potential to the ac field. Considering the expansion
of G up to O(�) yield exact heat fluxes for noninteract-
ing electrons up to O(�2) [29]. We find Q̇(t) = Q̇(1)(t) +
Q̇(2)(t), where the first- and second-order terms in � are,
respectively,

Q̇(1)(t) =
∫

dε

h
(μ − ε)

∂f

∂ε
ρ0(t,ε)

dεd

dt
, (11)

Q̇(2)(t) = −1

2

∫
dε

h

∂f

∂ε

{
(μ − ε)

d

dt

[
[ρ0(t,ε)]2 dεd

dt

]

+
[
ρ0(t,ε)

dεd

dt

]2}
. (12)

Here ρ0(t,ε) = −2 Im[Gr
0(t,ε)] = |Gr

0(t,ε)|2� = −i∂εS0S
∗
0 is

the local density of states and S0(t,ε) the frozen scattering ma-
trix, i.e., the stationary scattering matrix with time-dependent
parameters.

Both the first-order term Q̇(1)(t) and the first term of
Q̇(2)(t) vanish at T = 0 since −∂εf = δ(ε − μ). The com-
ponent Q̇(2)(t), which is second order in �, represents
the leading order to the dissipated power in the reservoir.
At T = 0, Eq. (12) reduces to Q̇(2)(t) = [ρ0(t,μ) dεd

dt
]2/2.

Evaluating the charge current up to the first order in
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FIG. 2. (Color online) Heat fluxes Q̇(t) (stars and triangles) and
˙̃Q(t) (solid and open circles) as a function of the charge current

IC(t)2 within the slow-driving regime for two different amplitudes
Vac = 10,12, respectively. Clearly, only the heat Q̇(t) satisfies
Q̇(t)/IC(t)2 = R, with R a constant independent of time. Parameters:
μ = 0, ε0 = −1.2, T = 0, and �� = 10−3. Energies are expressed in
units of �. Inset: Q̇(t) (dashed lines with a vertical offset) and ˙̃Q(t)
(solid lines) as a function of time.

�, we find I
(1)
C (t) = −(e/h)ρ0(t,μ) dεd

dt
, which implies

Q̇(2)(t) = Rq

[
I

(1)
C (t)

]2
, (13)

with Rq = h/2e2 the relaxation resistance quantum [10,11].
Since Rq is a manifestly positive quantity at all times, the
heat flux given by Eq. (9) represents the heat dissipated
into the cold reservoir when the system is coupled to the ac
driving force. Therefore, Eq. (9) agrees with the second law of
thermodynamics.

We reinforce our conclusion by comparing with the heat
rate of change given by ˙̃Q. Thus, we evaluate WT up to second
order in �:

W
(1)
T (t) = 2

∫
dε

h

∂f

∂ε

[
ρ0(t,ε)[ε − εd (t)]

dεd

dt

]
,

W
(2)
T (t) = −

∫
dε

h

∂f

∂ε

d

dt

[
[ρ0(t,ε)]2[ε − εd (t)]

dεd

dt

]
.

(14)

Within the weak driving regime, ˙̃Q(t) = Q̇(t) − [W (1)
T (t) +

W
(2)
T (t)]/2, which at T = 0 contains contributions ∝�

and ∝�2. Defining the resistance R̃(t) from the relation
˙̃Q(t) = [I (1)

C (t)]2R̃(t), we find that R̃(t) is nonuniversal and
depends on time. In fact, it is not even positive definite and then
˙̃Q(t) cannot be interpreted as a dissipated heat. We illustrate in

Fig. 2 the behavior of the two expressions of the heat flux for
different amplitudes of the driving potential Vac for a reservoir
at T = 0 and small driving frequencies. The inset shows that,
as a function of time, Q̇(t) is always positive whereas ˙̃Q(t)
may attain negative values. The main panel shows Q̇(t) and
˙̃Q(t) as a function of IC(t)2 within the slow-driving regime. In

the first case, we observe a linear function with the universal
slope Rq . In contrast, in the second case we observe a
nonuniversal behavior, including negative values of R̃(t). The
two definitions of heat, however, lead to the same result when

averaged in time, Q̇ = ˙̃Q = P , and, therefore, only a pure
dynamical measurement would be able to distinguish both.

In conclusion, we have discussed the dynamical heat
generation in a resonant level system due to coupling to an
external time-dependent potential and highlighted the impor-
tant role played by the energy associated with the coupling
region. The latter is unique to dynamical energy transport. By
recourse to an adiabatic expansion valid for the slow-driving
regime, we have found that an appropriate expression of the
dynamical heat flux consistent with the fundamental principles
of thermodynamics requires to take into account the work
associated with particles flowing through the tunneling region.
Importantly, we have shown that properly taking into account
this contribution to the total energy leads to a complete
agreement between the scattering-matrix and Green’s function
approaches for continuum and tunneling models, respectively.
A naive extension of the dc heat flux expression for the tunnel-
ing model would lead to incorrect results in the time domain.
Furthermore, we have found that the time-dependent heat
current is instantaneously given by a Joule law with a universal
resistance. This is an experimentally testable prediction which
is relevant in view of recent developments that emphasize the
energetics of atomic systems and nanostructures.
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[11] M. Büttiker, A. Prêtre, and H. Thomas, Phys. Rev. Lett. 70, 4114
(1993).
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[17] G. A. Steele, A. K. Hüttel, B. Witkamp, M. Poot, H. B.

Meerwaldt, L. P. Kouwenhoven, and H. S. J. van der Zant,
Science 325, 1103 (2009).

[18] B. Lassagne, Y. Tarakanov, J. Kinaret, D. Garcia-Sanchez, and
A. Bachtold, Science 325, 1107 (2009).

[19] L. Arrachea, M. Moskalets, and L. Martin-Moreno, Phys. Rev.
B 75, 245420 (2007).
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