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ABSTRACT

In this paper, globular star clusters which contain a sub-system of stellar-mass
black holes (BH) are investigated. This is done by considering two-component models,
as these are the simplest approximation of more realistic multi-mass systems, where
one component represents the BH population and the other represents all the other
stars. These systems are found to undergo a long phase of evolution where the centre of
the system is dominated by a dense BH sub-system. After mass segregation has driven
most of the BH into a compact sub-system, the evolution of the BH sub-system is found
to be influenced by the cluster in which it is contained. The BH sub-system evolves in
such a way as to satisfy the energy demands of the whole cluster, just as the core of a
one component system must satisfy the energy demands of the whole cluster. The BH
sub-system is found to exist for a significant amount of time. It takes approximately
10trh,i, where trh,i is the initial half-mass relaxation time, from the formation of the
compact BH sub-system up until the time when 90% of the sub-system total mass
is lost (which is of order 103 times the half-mass relaxation time of the BH sub-
system at its time of formation). Based on theoretical arguments the rate of mass

loss from the BH sub-system (Ṁ2) is predicted to be −βζM/(αtrh), where M is the
total mass, trh is the half-mass relaxation time, and α, β, ζ are three dimensionless
parameters (see Section 2 for details). An interesting consequence of this is that the
rate of mass loss from the BH sub-system is approximately independent of the stellar
mass ratio (m2/m1) and the total mass ratio (M2/M1) (in the range m2/m1 & 10 and
M2/M1 ∼ 10−2, where m1, m2 are the masses of individual low-mass and high-mass
particles respectively, and M1, M2 are the corresponding total masses). The theory is
found to be in reasonable agreement with most of the results of a series of N-body
simulations, and with all of the models if the value of ζ is suitable adjusted. Predictions
based on theoretical arguments are also made about the structure of BH sub-systems.
Other aspects of the evolution are also considered such as the conditions for the onset
of gravothermal oscillation.

Key words: globular clusters: general; methods: numerical; methods: n-body simu-
lations.

1 INTRODUCTION

Hundreds of stellar mass black holes (BH) can form within
a massive globular cluster (see Kulkarni, Hut & McMillan
(1993), Sigurdsson & Hernquist (1993) and Portegies Zwart
& McMillan (2000)). Some of the BH might escape at the
time of their formation due to large natal kicks. However the
subject of natal kicks for BH is still under debate (Repetto
2012) and it is possible that the largest BH may form with-

⋆ E-mail: p.g.breen@sms.ed.ac.uk
† E-mail: d.c.heggie@ed.ac.uk

out any supernova explosion (Fryer 1999). Uncertainty in
the natal kicks leads to uncertainty in the initial size of the
BH population. As the BH are more massive than the other
stars in the system, any retained BH will undergo mass seg-
regation and almost all are likely to become concentrated
in the centre of the system, eventually forming a compact
sub-system.

The mass of the BH sub-system decreases over time
because BH binaries form in the dense core of the BH sub-
system, causing the ejection of single BH and ultimately the
binaries themselves through super-elastic encounters (see
Kulkarni, Hut & McMillan (1993), Sigurdsson & Hernquist
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(1993), Portegies Zwart & McMillan (2000), Banerjee et al
(2010), Downing et al (2010), Aarseth (2012)). Early work
by Kulkarni, Hut & McMillan (1993) and Sigurdsson &
Hernquist (1993) seemed to indicate that the BH popula-
tion will become depleted over a relatively short timescale.
This conclusion was reached in part by treating the BH sub-
system as if it were an independent system once most of the
BH had segregated to the centre of the cluster.

Merritt et al (2004) and Mackey et al (2008) found that
heating by a retained population of BH causes large-scale
core expansion in massive star clusters. They suggest this
may partly explain the core radius-age trend observed for
such objects in the Magellanic Clouds. The BH binaries that
are formed in the core of the BH sub-system are an inter-
esting class of objects in their own right, especially as the
merger of two BH may be detectable as a source of grav-
itational waves (Portegies Zwart & McMillan (2000) and
Banerjee et al (2010)). It has even been suggested that star
clusters consisting almost entirely of BH, known as dark star
clusters, could exist (Banerjee & Kroupa 2011). Dark star
clusters could be created if the stars in the outer parts of
a larger system were stripped away by a strong tidal field,
leaving behind the BH sub-system. If one were to observe
the few remaining stars in these systems they would appear
to be super virial, as the velocity dispersion of the remaining
stars would be enhanced by the unseen BH.

Breen & Heggie (2012a) investigated the evolution of
two-component models and found that, within the parame-
ter space they considered, the stability of the two-component
system against gravothermal oscillations was dominated by
the heavy component. They only considered systems with a
total mass ratio of order M2/M1 & 10−1, where M2 (M1) is
the total mass of the heavy (light) component. However the
mass ratio of a system containing a BH sub-system would
only be expected to be M2/M1 ∼ 10−2 (Portegies Zwart
& McMillan 2000), where M2 is the total mass of the BH
sub-system, which is smaller by an order of magnitude than
any of the systems studied by Breen & Heggie (2012a). As
Hénon’s Principle (Hénon 1975) states that the energy gen-
erating rate of the core is regulated by the bulk of the sys-
tem, it seems unlikely that the approach of Breen & Heggie
(2012a) is appropriate in this case due to the small value of
M2/M1.

This paper is structured as follows. In Section 2, some
theoretical results are derived and discussed. This is followed
by Section 3, where the theoretical results regarding the size
of the BH sub-system are tested using both gas models and
direct N-body runs. Section 4 contains empirical results re-
garding the mass loss rates from BH sub-systems and a
comparison between the empirical results and the theory
of Section 2. The qualitative behaviour of these systems is
also discussed in this section. Section 5 is concerned with
gravothermal oscillations in systems containing a BH sub-
system. Finally Section 6 consists of the conclusions and a
discussion.

2 THEORETICAL UNDERSTANDING

2.1 BH sub-system: half-mass radius

Here we will consider aspects of the dynamics of a system
containing a BH sub-system. We will assume that the system

is Spitzer unstable (Spitzer 1987) and that the total mass of
the BH sub-system (M2) is very small compared to the total
mass of the system (M). (Since the Spitzer stability criterion

is (M2/M1)(m2/m1)
3

2 < 0.16, these assumptions are consis-
tent provided the stellar mass ratio m2/m1 is large enough).
We will also assume that the initial state of the system has
a constant mass density ratio between the two components
throughout and that the velocity dispersions of both com-
ponents are equal at all locations. If this is the case then the
system would first experience a mass segregation-dominated
phase of evolution which lasts of order (m1/m2)tcc (Fregeau
et al 2002, and references therein), wherem2 (m1) is the stel-
lar mass of the BH (other stars), and tcc is the core collapse
time in a single component system, although technically for
the outermost BH mass segregation can last much longer
than (m1/m2)tcc (see Appendix B for details).

If we consider the 50% Lagrangian shell of the heavy
component, initially it will be approximately the same size
as the 50% Lagrangian shell of the entire system. As the
BH lose energy to the other stars in the system the 50%
Lagrangian shell of the BH component contracts. The shell
will continue to contract until the energy loss to the light
component is balanced by the energy the shell receives from
the inner parts of the BH component. As we have assumed
that the system is Spitzer unstable, it follows that a temper-
ature difference must remain between the two components
and thus there is still a transfer of energy between the two
components. As the total mass of BH is small, the contrac-
tion of the 50% Lagrangian shell of the heavy component
continues until the system is concentrated in a small region
in the centre of the system. This is what we call the BH sub-
system. The BH sub-system is very compact and therefore
rapidly undergoes core collapse. The subsequent generation
of energy by the formation of BH binaries, and interactions
of BH binaries with single BH, support the 50% Lagrangian
shell of the heavy component.

In the present paper, we will assume that the main
pathway for the transport of thermal energy throughout the
system is as follows: energy is generated in the core of the
BH sub-system (we are assuming that the BH core radius
is much smaller than rh,2, the half mass radius of the BH
sub-system), then the energy is conducted throughout the
BH sub-system via two-body relaxation just as in the con-
ventional picture of post-collapse evolution; but in the stan-
dard one-component setting this flux causes expansion and,
ultimately, dispersal of the system. In a two-component sys-
tem, however, the coupling to the lighter component changes
the picture dramatically. We will assume that at a radius
comparable with rh,2 most of the energy flux is transferred
into the light component, where it then spreads throughout
the bulk of the light system. These assumptions will hold if
most of the heating, either direct (heating by reaction prod-
ucts which remain in the cluster) or indirect, initially occurs
within the BH sub-system rather than within the regions
dominated by the light component (see Appendix A for a
discussion on this issue). A similar assumption is made in
one-component gas models (Goodman 1987; Heggie & Ra-
mamani 1989) which have been shown to be in good agree-
ment with direct N-body models (Bettwieser & Sugimoto
1985).

From Hénon’s Principle (Hénon 1975) we argue that the
rate of energy generation is regulated by the energy demands
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BH sub-systems 3

of the bulk of the system. For the systems we are considering
here the bulk of the system is in the light component as
M1 ≈ 0.99M for M2/M1 = 10−2. The energy demands of a
system are normally thought of as the energy flux at the half-
mass radius, which is of order |E|/trh, where E is the total
energy of the system and trh is the half mass relaxation time.
Under our assumptions the energy flux must be supplied by
the BH sub-system, which ultimately must be generated by
binaries in the core of the BH sub-system. However, we can
ignore the details of how the energy is actually generated and
consider the BH sub-system itself as the energy source for
the cluster as a whole. In this picture, the energy exchange
(Ėex) between the BH sub-system and the light component
must balance the flux at the half mass radius of the light
component i.e.

|E|

trh
∼ |Ėex|.

The BH sub-system is concentrated in the centre of the
cluster, and therefore the half-mass relaxation time in the
BH sub-system (trh,2) is quite short. It follows that the flux
at the half-mass radius of the BH sub-system is quite high.
The flux at the half-mass radius of the BH sub-system (rh,2)
is of order |E2|/trh,2, where E2 is the energy of the BH sub-
system. Most of the energy that passes rh,2 must be trans-
ferred to the light component or else the BH sub-system
would rapidly expand until the flux around rh,2 is compa-
rable to the rate of energy exchange. Therefore the energy
exchange rate between the two components must be approx-
imately equal to the flux at the half mass radius of the heavy
sub-system i.e.

|E2|

trh,2
≈ |Ėex|.

All this leads to the conclusion that the flux at rh must
be balanced by the flux at rh,2 i.e.

|E|

trh
∼

|E2|

trh,2
,

which can be rearranged as

|E|

|E2|
∼

trh
trh,2

. (1)

Using the definition of trh as given in Spitzer (1987) (and an
equivalent definition for trh,2), the right hand side of equa-
tion 1 becomes

trh
trh,2

≈
N

1

2 r
3

2

h
m

1

2

2 ln Λ2

N
1

2

2 r
3

2

h,2m
1

2 ln Λ
=

M
1

2 r
3

2

h
m2 ln Λ2

M
1

2

2 r
3

2

h,2m ln Λ
, (2)

where m is the mean mass, and lnΛ, lnΛ2 are the coulomb
logarithms of the entirely system and the BH sub-system
respectively.

Using equation 1, the left hand side of equation 2 be-
comes

|E|

|E2|
≈

Mσ2

M2σ2
2

≈
M2rh,2
M2

2 rh
. (3)

where we have estimated the squared one dimensional ve-
locity dispersions, σ2

2 and σ2, by assuming that both the
system and the sub-system are in virial equilibrium, so that

σ2 ≃ 0.2GM/rh and σ2
2 ≃ 0.2GM2/rh,2. Putting the above

equations together we have

M2rh,2
M2

2 rh
∼

M
1

2m2r
3

2

h
ln Λ2

M
1

2

2 mr
3

2

h,2 ln Λ

and then by rearranging this we have

r
5

2

h,2

r
5

2

h

∼
M

3

2

2

M
3

2

m2

m

ln Λ2

ln Λ
. (4)

This result implies that for a fixed total mass ra-
tio M2/M1 (≈ M2/M) and ignoring the variation of the
coulomb logarithms, the ratio of rh,2/rh grows with increas-
ing stellar mass ratio m2/m.

2.2 BH sub-system: core radius

In Section 2.1 rh,2/rh was estimated by assuming that the
energy flow in the BH sub-system balances the energy flow
in the bulk of the system (i.e. the other stars). In order for
equation 4 to hold it is assumed that the BH core radius
rc,2 must be significantly smaller than rh,2 and that the BH
sub-system is actually capable of producing and supplying
the energy required by the system. Usually it is assumed
that the core (in this case the core of the BH sub-system)
adjusts to provide the energy required. In this section we
estimate the size of the core, and use the estimate to place
a condition on the validity of our assumptions.

As most of the mass within rh,2 is BH, we may treat
the BH sub-system as a one-component system and we can
make use of the standard treatments of one-component sys-
tems. In balanced evolution (i.e. a situation in which en-
ergy is produced at the rate at which it flows over the
half-mass radius), the rate of energy production is given
by Ė = (|E2|/trh,2)ζ2, where ζ2 is a constant (for a one-
component model ζ2 ≈ 0.0926, see Hénon (1965)). We will
follow the derivation in Heggie & Hut (2003, page 265) of
the dependence of rc/rh on N for a one component model,
although here it will be necessary to keep track of the numer-
ical constants and account for the fact that the properties
correspond to those of the BH sub-system. In order to de-
rive a condition on rc,2/rh,2 it is necessary to express Ė, E2

and trh,2 in terms of the other properties of the BH sub-
system. Ė ≈ Mc,2ǫ where Mc,2 is the BH core mass and ǫ
is the energy generating rate per unit mass (Heggie & Hut
2003). Mc,2 and ǫ can be expressed in terms of ρc,2 (the
central mass density of BH), rc,2 and σc,2 (the central one-
dimensional velocity dispersion of the BH), which results in

Ė = 85
G5m3

2ρ
3
c,2r

3
c,2

σ7
c,2

.

As in the previous section we shall use

|E2| ≈ 0.2
GM2

2

rh,2
.

It will be convenient to use a different but equivalent defini-
tion of trh,2 (Spitzer 1987) rather than the one used in the
previous section, i.e.

trh,2 =
0.195σ3

2

Gm2ρh,2 ln Λ2

,

c© 2012 RAS, MNRAS 000, 1–20



4 P. G. Breen and D. C. Heggie

where σ2 is the one-dimensional velocity dispersion of the
BH inside rh,2 and ρh,2 is the mean mass density of the BH
inside rh,2.

Using Ė = (|E2|/trh,2)ζ2 all of the above equations can
be combined into

83G2m2
2ρ

3
c,2σ

3
2r

3
c,2rh,2 ≈ M2

2σ
7
c,2ρh,2ζ2 ln Λ2.

This can be simplified by using 4πGρc,2r
2
c,2 = 9σ2

c,2. Also the
BH sub-system is expected to be nearly isothermal inside
rh,2; therefore σ2 ≈ σc,2 and furthermore it follows that
ρ2 ∝ r−2 inside rh,2. Taking all of this into account and by
rearranging the above we have

rc,2
rh,2

≈ N
−

2

3

2

( 104

ζ2 ln Λ2

) 1

3

. (5)

2.3 Limitations of the theory

One of our assumptions was that rc,2 ≪ rh,2 and now we
can derive an approximate condition for the validity of the
theory. As N2 is small we shall take lnΛ2 ≈ 1. As the
entire system is in balanced evolution it is also true that
(|E2|/trh,2)ζ2 = (|E|/trh)ζ, where ζ is a dimensionless pa-
rameter defined implicitly by the equation Ė = (|E|/trh)ζ;
we expect |E2|/trh,2 ∼ |E|/trh (equation 1) and so for the
purposes of our estimate we can assume that ζ2 ≈ ζ. There-
fore rc,2 . rh,2 provided N2 & 40. This value is only a rough
guide, and what is important to take from this result is that
for sufficiently small N2 the theory in Section 2.1 breaks
down.

As M2 decreases the BH sub-system will ultimately
reach a point where it can no longer solely power the expan-
sion of the system by the mechanism we have considered (i.e.
formation, hardening and ejection of BH binaries by inter-
action amongst the BH sub-system). After this point it may
be possible for BH binaries to generate the required energy
through strong interaction with the light stars. However this
will probably require a much higher central mass density of
the light component than at the time of formation of the
BH sub-system, as at this central mass density interactions
between the light stars and the BH binaries are expected to
be much less efficient at generating energy than interactions
between single BH and BH binaries. This implies a poten-
tially significant adjustment phase towards the end of the
life of the BH sub-system, as is illustrated by an N-body
model in Section 4 (see Fig. 7).

In Section 2.1 we made the assumption that the BH
sub-system was Spitzer stable. However, as pointed out to
us by Sambaran Banerjee (private communication), it is
also possible that as M2 decreases a point may be reached
were the sub-system becomes Spitzer stable. If so, the two
components could reach equipartition at the centre, i.e.
m2σ

2
2 = m1σ

2
1 , and in that case our assumption that heat

flows from the heavy component to the light component is
false. The temperature ratio of the two component may be
estimated by

m2σ
2
2

m1σ2
1

∼
m2

m1

M2

M1

rh
rh,2

∼
(m2

m1

) 3

5

(M2

M1

) 2

5

( ln Λ2

ln Λ

)

−
2

5

,

were we have made use of equation 4 and the assump-
tions made in Section 2.1. Initially (m2σ

2
2)/(m1σ

2
1) > 1

but for fixed m2/m1 it decreases towards equipartition

((m2σ
2
2)/(m1σ

2
1) = 1) as BH escape and M2 decreases.

By setting (m2σ
2
2)/(m1σ

2
1) = 1, ignoring the variation of

coulomb logarithms and taking each side to the power 2/5
we arrive at

M2

M1

∼ C
(m2

m1

)

−
3

2

where C is a constant. This is exactly the same form as the
Spitzer stability criterion (Spitzer 1987), the only difference
being that we have not specified the constant C. Again it
follows that the theory of Sections 2.1 and 2.2 will fail when
M2 becomes too small, and that the limiting value of M2 is
smaller for larger m2/m1.

We will now briefly consider the case of a Spitzer stable
BH sub-system. As the BH move more slowly than the other
stars they still concentrate in the centre of the system. If the
heavy component still dominates within rh,2 then the BH
sub-system is self-gravitating and

σ2
2 ∼

GM2

rh,2

still holds. From equipartition of kinetic energy we have

m1

m2

σ2
1 ∼

m1

m2

GM

rh
∼

GM2

rh,2
.

This result can be rearranged as

rh,2
rh

∼
m2

m1

M2

M
. (6)

In equation 6 there is a different dependence of rh,2/rh on
m2/m1 and M2/M than in equation 5.

2.4 Evaporation rate

We will now consider the evaporation rate as a result of
two-body encounters for the BH sub-system. It is important
to note that evaporation is only one of the mechanisms by
which BH are removed from the system. Another important
mechanism as already discussed is ejection via encounters
involving BH binaries and single BH. In this section we will
ignore this effect although it will be considered in detail in
the next section.

The one dimensional velocity dispersion of the BH sub-
system has the following dependence on M2 and rh,2 (as-
suming it is nearly self gravitating):

σ2
2 ∼

GM2

rh,2
.

From the previous section we know that
(rh,2

rh

) 5

2

∼
M

3

2

2

M
3

2

m2

m

ln Λ2

ln Λ
. Therefore, if we consider the post

collapse evolution of a series of models with different values
of m2/m, at the same values of rh, M2 and M , as m2/m
increases so does rh,2 and therefore σ2

2 decreases. Here we
have ignored the variation of the coulomb logarithms; for a
system with N = 106 and M2/M1 = 10−2, the variation of
lnΛ2/ ln Λ is a factor of 2.2 between m2/m1 = 10 and 50 if
Λ2 = 0.02N2 and Λ = 0.02N . The source of the value 0.02
is Giersz & Heggie (1996).

The mean-square escape velocity is related to the mean-
square velocity of the system (see Spitzer (1987) and Binney
& Tremaine (2008)) by v2e = 4v2. The mean-square velocity
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of the system is dominated by the light component and re-
mains approximately fixed with varying m2/m. Therefore,
as m2/m increases the mean-square velocity of the BH sub-
system decreases relative to the mean-square escape veloc-
ity. This implies that systems with higher m2/m lose a lower
fraction of their stars by evaporation per trh,2; in fact we will
show in the next paragraph that escape via evaporation is
negligible.

A rough estimate of the fraction of stars lost by evapora-
tion each trh can be calculated from the Maxwellian velocity
distribution (Spitzer 1987; Binney & Tremaine 2008). This
is done by assuming that the fraction of stars with v greater
than ve in a Maxwellian velocity distribution is removed each
trh, i.e.

dN

dt
= −

N

trh
γ,

where γ denotes the fraction of stars removed. Its value for
a one component model is γ = 7.38 × 10−3. In order to es-
timate the value of γ for a two component model we need
to know the relationship between v22 and v21 , where v22 (v21)
is the mean-square velocity of the heavy (light) component.
If the system was Spitzer stable then m2v

2
2 = m1v

2
1 ; how-

ever the systems we are considering are not Spitzer stable
because of the large stellar mass ratios, and therefore it is
expected that m2v

2
2 > m1v

2
1 . Over a period of time where

M2 and rh remain roughly constant then v22 and v21 will be
approximately constant. Therefore over the same time pe-
riod we have m2v

2
2 ≈ km1v

2
1 , where k is a constant. Using

a two-component gas model (see Heggie & Aarseth (1992)
and Breen & Heggie (2012a)), for the range of parameters
in Section 3, k was found to be 6 2. Assuming a stellar mass
ratio of 10 and letting k = 2 to insure the highest possible
value of γ leads to γ = 5.87× 10−13. This exceedingly small
value of γ is a result of the fact that the Maxwellian velocity
distribution drops exponentially with increasing velocity, so
that even a slight increase in escape velocity leads to a much
smaller value of γ.

Based on this approximate theory we can conclude that
mass loss from evaporation due to two body encounters is
not significant for the case of BH sub-systems. It is worth
noting (based on the arguments in this section) that con-
straints based on evaporation timescales (for example see
Maoz 1998) which only take into consideration the poten-
tial of the BH sub-system are not generally valid if the sub-
system is embedded in a much more massive system. BH
which escape the sub-system in two-body encounters gener-
ally cannot escape from the deep potential well of the sur-
rounding system. Instead, they return to the sub-system on
the mass segregation/dynamical friction timescale.

2.5 Ejection rate

Dynamical evolution of BH binaries and ejection of BH is
an energy source which is assumed in the present paper to
comply with Hénon’s Principle. As has been stated in Sec-
tion 2.1, Hénon’s Principle states that Ė is regulated by the
energy demands of the bulk of the system, i.e.

Ė ≃
|E|

trh
ζ, (7)

where ζ is a constant. For systems with M2 ≪ M , (|E|/trh)ζ
is determined mainly by the properties of the light com-
ponent and is approximately independent of M2 and m2.
Therefore the energy generation rate is also approximately
independent of M2 and m2.

The encounters which generate energy (either by forma-
tion of binaries or their subsequent harding) happen where
the density is highest, in the core of the BH sub-system.
As the BH are concentrated in the centre of the system,
through mass segregation, we may assume that encounters
which generate energy predominantly occur between BH bi-
naries and single BH. The BH sub-systems considered in
this paper consist of BH with identical stellar mass, there-
fore the mechanism by which energy is generated in the BH
sub-systems is similar to that for a one-component system.
The two key differences for the BH sub-system are that the
escape potential is elevated and the size of the system is reg-
ulated by the much more massive system of light stars (see
equation 4).

In a one-component system each hard binary formed
in the core on average contributes a fixed amount of en-
ergy ∝ mφc (where φc is the central potential) before be-
ing ejected from the system (see for example Heggie & Hut
2003). Typical estimates of the average energy each hard bi-
nary contributes in a one component system are ≈ 7.5mφc

(Goodman 1984) and ≈ 8.27mφc (Heggie & Hut 2003)1.
Also on average each hard binary causes the ejection of a
fixed number of stars. Goodman (1984) estimated this to be
approximately 6 stars (including the binary itself) and Heg-
gie & Hut (2003) estimated this to be approximately 3 stars
(excluding the binary itself). The situation is similar for a
BH sub-system and we can assume that the mass ejected and
the average contribution per hard BH binary is the same as
for the one-component case. Furthermore as mass loss due
to evaporation is negligible for a BH sub-system (see Section
2.4), the loss of mass from the sub-system is always associ-
ated with energy generation. Therefore we can express the
rate of energy generation in the core in terms of mass loss,

Ė ≈ βṀ2φc, (8)

where β is a constant; β ≈ 2.2 in the one component case,
where we have used the values of energy generated and mass
lost given in Heggie & Hut (2003), adjusted to account for
the energy generated and mass lost in the escape of the bi-
nary itself, ≈ 10.6m2φc and ≈ 4.7m2 receptively. Since Ė is
regulated by the light component (equation 7), we can use
equation 8 to estimate the rate of mass loss. Note that the
estimates in this paragraph are entirely theoretical, with-
out detailed numerical support especially for the value of β.
Note also that the estimate ignores the heating effect of en-
counters which do not lead to ejection once the binary has
reached a sufficient binding energy for ejection to be likely.

We will now show that φc is approximately indepen-
dent of the properties of the BH sub-system. This will be
done by showing that the main contribution to the central
potential is from the light component. We can estimate the
contribution of the lights to φc to be φ1 ≈ −GM/rh and

1 Note there is an error in Heggie & Hut (2003) p. 225: the con-
stant is stated incorrectly but the correct value can be obtained
by evaluating the formula given on the same page.
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6 P. G. Breen and D. C. Heggie

the contribution of the BH to be φ2 ≈ −GM2/rh,2. In the
regime of interest M2/M = 10−2 and rh,2/rh = 10−1 (for
typical values of rh,2/rh: see Table 1). Therefore,

φ2

φ1

≈
M2

M

rh
rh,2

≈ 10−1,

and we can approximate φc by φ1 (see also Section 3.3).
We can now use Ė ≈ βṀ2φc to make an estimate of

the mass loss rate: from equations 7 and 8 we have

βṀ2φc ≃
|E|

trh
ζ,

and so

Ṁ2 ≃ M
|E|

Mφc

1

trh

ζ

β
.

The term E/(Mφc) is dimensionless and approximately in-
dependent of the properties of the BH sub-system; we will
use α to represent its value. For a Plummer model α ≈ 0.15,
however during core collapse |φc| increases while E and M
remain approximately constant, resulting in smaller values
of α. The two-component gas models used in Section 3 in-
dicate a value of α ≈ 0.13. We now have

Ṁ2 ≃ −
M

trh

αζ

β
(9)

Scaling to the values of α, ζ and β, we have

Ṁ2 ≃ −0.0061
M

trh

α

0.15

ζ

0.09

2.2

β
. (10)

By this estimate the sub-system should last ∼ 1.6trh to
3.3trh, for M2/M1 = 0.01 to 0.02 and canonical values of α,
β and ζ. The important point to take from this result is that
the rate of mass loss from the BH sub-system depends on
the half-mass relaxation time of the whole system and not
on any property of the BH sub-system.

While a system is in balanced evolution, the only pa-
rameter that varies significantly (over a timescale where Ṁ
is negligible) in the right hand side of the above equation
is trh, due to the increase in rh (Here we assume that the
system is isolated; the case of a tidally limited system is
considered in the following section.). Therefore, for a par-
ticular system equation 10 can be expressed in the form

Ṁ2 ≃ −Cr
−

3

2

h
, where C is a constant (C =

αζ

β

Mr
3

2

h,i

trh,i
where

αζ/β ≈ 6.1 × 10−3 for canonical values of α, β, and ζ and
i denotes values at the start of the balanced evolution). rh
itself is a function of time which can be derived from the
relation ṙh/rh = ζ/trh, which follows in turn from equa-
tion 7 if we assume E ∝ GM2/rh and we assume mass

loss from the entire system is negligible. Since trh ∝ r
3

2

h
it

follows that rh ≃ rh,i
(

1 +
3ζ

2trh,i
(t− tcc)

) 3

2

, where powered

expansion starts at time tcc (the reason for this notation will
become clear in Section 4). Therefore Ṁ2 can be expressed
as

Ṁ2 ≃ −
Cr

−
3

2

h,i

1 +
3ζ

2trh,i
(t− tcc)

(11)

and if we integrate the above equation we get

M2 ≃ M2,i −
2

3

α

β
M ln

(

1 +
3ζ

2trh,i
(t− tcc)

)

. (12)

Throughout this section it has been assumed that ζ is
a constant. However, as discussed in Section 4, ζ has been
found to vary with time in situations where the BH sub-
system cannot provide enough energy for balanced evolu-
tion. Even if ζ is time-dependent equation 9 and the equa-
tion

1

rh
ṙh =

1

trh
ζ,

are still expected to hold (under the other assumptions made
in this section). These two equations can be combined into a
single equation which relates Ṁ2 to ṙh and has no explicit ζ

dependence (i.e. Ṁ2 = −M
α

β

1

rh
ṙh). The resulting equation

can be easily solved (assuming that the variation of M and
α/β are neglected) and its solution is

M2 = M2,i −M
α

β
ln

rh
rh,i

. (13)

This result implies that, regardless of ζ, systems with the
same M2,i and rh,i should evolves along the same curve in
M2, rh space.

2.6 Tidally limited systems

In this section we will briefly consider the theory of tidally
limited systems containing BH sub-systems. In Hénon’s
tidally limited model (Hénon 1961), the rate of mass loss
is

Ṁ = −
M

trh
ξ (14)

where ξ is a constant (ξ = 0.045). In Section 2.5 an equation
of the same form was found for Ṁ2, i.e.

Ṁ2 = −
M

trh

αζ

β
.

The relation between Ṁ and Ṁ2 can be found by simply
dividing these two equations, which results in

Ṁ2

Ṁ
=

αζ

βξ
= 0.11

α

0.15

ζ

0.0725

2.2

β

0.045

ξ
.

Therefore Ṁ2/Ṁ is a constant. For canonical values of
the constants in the above equation Ṁ2/Ṁ ≈ 0.11. Note
that the tidally limited model has a different value of ζ
(ζ = 0.0725, see Hénon 1961) than for an isolated model
(ζ = 0.0926, see Hénon 1965). The constant value of Ṁ2/Ṁ
implies that for two-component systems there is a threshold
value of M2/M1 at ∼ 10−1 above which M2/M (and hence
M2/M1) is expected to grow with time and below which
M2/M decreases with time. In other words ifM2/M1 & 10−1

then the system is expected to become more BH dominated,
ultimately becoming a so-called dark star cluster (Baner-
jee & Kroupa 2011). Alternatively if M2/M1 . 10−1 then
the BH sub-system is expected to dissolve. In Section 6.3,
where two-component parameter space is classified into dif-
ferent regions (see Fig. 16), there is already a distinction at
roughly M2/M1 ∼ 10−1 (between region II & III systems),
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Table 1. Values of rh,2/rh in post collapse evolution (N = 32k).
These values where measured over 1trh,i after a time of at least
2tcc, where tcc is the time of core collapse. For low M2/M1 (< 0.1)

there is a clear trend of increasing rh,2/rh with increasingm2/m1.
The total mass ratios of 0.5 and 0.1 have also been included to

demonstrate that there is an inverse dependence of rh,2/rh on
m2/m1 for the largest value of M2/M1 considered. See text for
more details.

m2

m1
\M2

M1
0.5 0.1 0.05 0.02 0.01

100 0.37 0.34 0.29 0.24 0.21
50 0.38 0.27 0.24 0.19 0.18
20 0.40 0.21 0.18 0.15 0.13
10 0.42 0.18 0.14 0.11 0.09
5 0.44 0.18 0.11 0.07 0.04
2 0.50 0.20 0.10 0.03 0.02

based on other reasons discussed in that section. The the-
ory in this section can be viewed as another reason for the
distinction.

It is important to note that this result has yet to be rig-
orously tested because tidally limited systems are not con-
sidered further in this paper and the exact threshold value
is likely to depend on a number of astrophysical issues (e.g.
initial mass function, tidal shocks etc). Indeed while equa-
tion 14 is a reasonable approximation, Baumgardt (2001)
showed that the time scale of escape depends on both trh
and the crossing time. Nevertheless it seem likely that a
threshold value of M2/M1 exists even for more realistic sys-
tems, although it may have some dependence on the other
properties of the system (e.g. m2/m1).

3 DEPENDENCE OF rh,2/rh ON CLUSTER

PARAMETERS

3.1 Gas models

The aims of Sections 3.1 and 3.2 are to test the dependence
of rh,2/rh on the cluster parameters and compare the results
with the theory presented in Section 2.1. The simulations in
this section (3.1) were run using a two-component gas code
(see Heggie & Aarseth (1992) and Breen & Heggie (2012a)).
In all cases, the initial conditions used were realisations of
the Plummer model (Plummer 1911; Heggie & Hut 2003).
The initial velocity dispersion of both components and the
initial ratio of density of both components were equal at all
locations. The choices for the ratio of stellar masses (m2/m1)
are 2, 5, 10, 20, 50 and 100. The values of the total mass ratio
(M2/M1) used in this section are 0.5, 0.1, 0.05, 0.02 and 0.01,
though the first two values are outside the parameter space
of interest in most of the present paper. The value of r2/rh,
which was found to be approximately constant during the
post collapse phase of evolution (see Fig. 1), was measured
for the series of models and is given in Table 1.

The results in Table 1 are plotted in Fig. 2. As can be
seen in Fig. 2 (and Table 1) the results are in qualitative
agreement with the theory in Section 2.1, in the sense that
for M2/M1 < 0.1 there is an increase in the values of rh,2/rh
with increasing m2/m1. For M2/M1 = 0.5 the trend is quali-
tatively different than for M2/M1 < 0.1; there is an increase
in the values of rh,2/rh with decreasing m2/m1. The theory
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Figure 1. Top: rh (top line) and rh,2 (bottom line) vs time

(units trh,i) of gas models with N = 32k, m2/m1 = 10 and
M2/M1 = 0.02. rh and rh,2 are given in N-body units. Initially

rh and rh,2 have the same value, but mass segregation quickly
decreases rh,2, after which it reaches an approximately steady
value. Bottom: rh,2/rh vs time (units trh,i). Core collapse (see
Section 2.1) occurs at ≈ 1trh,i; shortly before this rh,2/rh reaches
a nearly constant value.

in Section 2.1 cannot be expected to apply in this regime,
as the light component does not dominate. In this regime
the decrease of rh,2/rh with m2/m1 can be explained quali-
tatively by the fact that if the BH have larger stellar masses
then there is a stronger tendency towards mass segregation
(see Breen & Heggie (2012a) for a discussion of this topic).

We now consider the comparison with theory more
quantitatively in the regime M2/M1 . 0.1. In Fig. 2 we
can see that values of rh,2/rh are also in quantitative agree-
ment with equation 4 for m2/m1 & 10 in the sense that
the power law index is approximately confirmed. However
rh,2/rh increases more rapidly then is expected by equation
4 for m2/m1 < 10 and M2/M1 < 0.05. This behaviour is
possibly explained by equation 6, which predicts a different
power law index for Spitzer stable systems than in equa-
tion 4. Indeed for the lowest values of M2/M1 the slope is
approximately consistent with equation 6. Nevertheless the
stellar mass ratios of interest are m2/m1 & 10 as realistic
ratios for systems containing BH sub-systems would be in
this range.

The variation of rh,2/rh withM2/M1 over a range of dif-
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Figure 2. The variation of rh,2/rh with m2/m1. The points rep-
resent the values of rh,2/rh given in Table 1. The lines represent

the expected variation of rh,2/rh with m2/m1 (fitted curves of
the form b(m2/m1)0.4) as given by the theory in Section 2.1. The

lines have only been included for M2/M1 < 0.1 as this is where
the theory is expected to apply. The empirical measured varia-
tion of rh,2/rh with m2/m1 is in good agreement with theory in
Section 2.1, when m2/m1 & 10 and M2/M1 < 0.1. See text for
further details.

 0.1

 1

 0.01  0.1

r h
,2

/r
h

M2/M1

N=128k
N=64k
N=32k

Predicted Dependence

Figure 3. The variation of rh,2/rh with M2/M1. The points
represent the values of rh,2/rh for the case m2/m1 = 10 with N =

32k, N = 64k and N = 128k. The line represents the expected
variation of rh,2/rh with M2/M1 as given by the theory in Section

2.1.

ferent N is shown in Fig. 3, for the case of m2/m1 = 10. For
the case of N = 32k the variation is less than expected from
equation 4 (see Section 2.1). The variation is approximately
of the same form, i.e. rh,2/rh ∝ (M2/M1)

a, but a ≈ 0.3 for
the case of m2/m1 = 10 and N = 32K, which is less than
the expected value of a ≃ 0.6. (Here we ignore the depen-
dence on the Coulomb logarithms). The variation of rh,2/rh
with M2/M1 comes into better agreement with equation 4
with increasing N , with the case of N = 128k being in good
agreement with the theory in Section 2.1. This seems to in-
dicate that the disagreement is caused by small values of N2.
One of the assumptions under which equation 4 is derived is
that rc ≪ rh,2, but it is possible that rc,2 ≈ rh,2 for small N2

as shown in equation 5. In this case one of the assumptions
underlying the theory is not satisfied.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  1000  2000  3000  4000  5000

r h
,2

/r
h

 Time (N-body units)
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Figure 4. rh,2/rh vs time (in N-body units). N-body runs with
initial values N = 64k, M2/M1 = 0.02, m2/m1 = 20 (thick line)
and m2/m1 = 10 (thin line). Time is set so that core collapse
occurs at t = 0 for both systems. rh,2/rh has been smoothed to

make the plot clearer. The values of rh,2/rh in the graph are in
approximate agreement with the results from the two-component

gas model given in Table 1.

3.2 rh,2/rh in N-body runs

In Section 2.1 it was predicted that rh,2/rh would increase
with increasing m2/m1 in a system with fixed M2/M1 and
N . This prediction will now be tested with direct N-body
runs (see Section 4). The initial conditions are realisations of
the Plummer Model with N = 64k, M2/M1 = 0.02 and two
different values of m2/m1 (10 and 20). We have compared
the values of rh,2/rh in Fig. 4. The value of rh,2/rh is indeed
larger for m2/m1 = 20 than for m2/m1 = 10 as expected.
This effect was confirmed using a two-component gas code in
the previous subsection. However mass is conserved in the
gas models whereas in the more realistic N-body systems
mass is lost over time. Therefore we need to ensure that
we are comparing the values of rh,2/rh for both the runs
at constant M2/M1. For the two runs in Fig. 4 mass is lost
from the BH sub-system at approximately the same rate (see
Fig.11, bottom), as predicted by the theory in Section 2.5.
The mass loss from the light component is negligible over
the length of these N-body runs: less than 5% of the light
component is lost during the entire run. Therefore while
M2/M1 does decrease with time over the runs in Fig. 4, the
values of M2/M1 for both runs are approximately the same
at any given time.

The variation of rh,2/rh with M2/M1 is shown in Fig.
5 for the N-body run with N = 64k, m2/m1 = 10 and
M2/M1 = 0.02. Initially rh,2/rh = 1 before being quickly
reduced due to mass segregation. The BH sub-system starts
producing energy when rh,2/rh reaches ≈ 0.1 and M2/M1

begins to decrease at this point. The variation of rh,2/rh with
M2/M1 is again less then expected from equation 4, with the
result indicating a dependence of rh,2/rh ∝ (M2/M1)

0.28.
Although this is not in agreement with equation 4 if we ne-
glect the coulomb logarithm, the results are in good agree-
ment with the gas model.
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Figure 5. rh,2/rh vs M2/M1. The solid line represents results

from an N-body run with initial values N = 64k, M2/M1 =
0.02 and m2/m1 = 10. The results are smoothed to make the
value of rh,2/rh clearer. The dotted line is the best matching

curve of the form b
(

M2/M1)a (where a and b are constants, the

best match values being b ≈ 0.33 and a ≈ 0.28). The points are
results from the two-component gas model (see Table 1), where
M2/M1 is fixed. At the beginning of the run rh,2/rh = 1 before

mass segregation rapidly reduces its value, whence the vertical
line segment in the top right corner.

3.3 Central potential

In section 2.5 we made the assumption that the main contri-
bution to the central potential is from the light component.
In order to test this assumption the central potential and
the relative contribution of each component to the central
potential (φ2/φ1), have been measured in a series of two-
component gas models with M2/M1 = 0.02. These results
are presented in Table 2. The values in Table 2 were mea-
sured once the systems had reached a certain value of rh
(rh = 0.83). This was done in order to insure the systems
had reached a similar point in their evolution (see Fig. 6).
The variation in φc in Table 2 is only about a factor of 1.2
for fixed N even though m2/m1 varies by a factor of 5. The
variation in φ2/φ1 is higher, but the values are of the same
order of magnitude as the estimate in Section 2.5 and in-
deed in satisfactory agreement, considering that M2/M1 is
higher here. As the energy generation rate per unit mass is
∝ m3

2ρ
2
2/σ

7
2 (Heggie & Hut 2003), for systems with the same

value of N , M2/M1 and m1, as m2 increases the system can
produce the required energy at a lower central density, thus
the central potential is expected to becomes shallower with
increasing m2/m1 as seen in Table 2. This is also why two-
component systems with larger m2/m1 are stable against
gravothermal oscillation to higher values of N then for lower
m2/m1 (Breen & Heggie 2012a).

These values serve as a rough guide to how the varia-
tion of m2/m1 will affect the system. If we consider systems
with fixed N ,M2 andM2/M1 and use similar reasoning as in
Section 2.5, we would expect systems with lower m2/m1 to
last slightly longer than systems with higher m2/m1. This is
because the average energy contribution per binary is depen-
dent on the depth of the central potential. The deeper the
central potential the greater the average energy contribution
per binary will be, and therefore it is expected that for fixed

Table 2. Variation of |φc| and φ2/φ1 with m2/m1 for systems
with M2/M1 = 0.02. The values are measured in the post-collapse
phase of evolution when the systems have reached a certain size
(rh ≈ 0.83).

m2/m1 N = 32k N = 128k
|φc| φ2/φ1 |φc| φ2/φ1

50 1.55 0.10 1.62 0.15
20 1.67 0.14 1.80 0.22
10 1.85 0.18 2.00 0.28
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Figure 6. Top: |φc| vs rh for gaseous systems with fixed N
(128k) and M2/M1 = 0.02; the different values of m2/m1 are
10, 20 and 50. Bottom: φ2/φ1 vs rh for the same systems as in

the top figure. This plot shows that the contribution of the light
component to the central potential is dominant.

M2/M1 a two-component system with m2/m1 = 20 will lose
mass slightly faster than a system with m2/m1 = 10.

4 EVOLUTION OF THE BH SUB-SYSTEM:

DIRECT N-BODY SIMULATIONS

4.1 Overview

In order to study BH sub-systems we carried out a number
of N-body simulations using the NBODY6 code (Nitadori &
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10 P. G. Breen and D. C. Heggie

Table 3. Parameters used for N-body runs. In all cases the ini-
tial conditions were realisations of the Plummer Model (Plummer
1911). The values of trh,i (the initial half-mass relaxation time)
are calculated using Λ = 0.02N for the coulomb logarithm.

N m2/m1 M2/M1 trh,i (N-body units)
32k 10, 20 0.01, 0.02 471
64k 10, 20 0.01, 0.02 851
128k 20 0.02 1552

Aarseth 2012). Because of the computational cost of large
N simulations we have mostly limited ourselves to runs with
N = 32k and 64k. The total mass ratios used wereM2/M1 =
0.01 and 0.02. The stellar mass ratios used werem2/m1 = 10
and 20. An additional run with N = 128k, M2/M1 = 0.02
andm2/m1 = 20 was also carried out to increase the number
of systems withN2 > 102. These parameters are summarised
in Table 3 and the results of these runs are given in Table
4. The evolution of the fraction of mass remaining in BH
(M2/M2,i) in all runs is shown in Figs 10, 11 and 12.

First we will discuss the qualitative behaviour of sys-
tems containing a BH sub-system. We do this by consider-
ing the case m2/m1 = 20, M2/M1 = 0.02 and N = 64k,
which we refer to henceforth as (20,0.02,64k). The graphs
of rh and rc against time for this run are shown in Fig. 7.
The BH population quickly segregates to the centre of the
system causing core collapse to occur in the BH sub-system.
For the parameters of this model, this takes approximately
0.3trh,i (where trh,i is the initial half-mass relaxation time)
to occur. The collapse time for other parameter choices is
discussed at length in Breen & Heggie (2012a). In Fig. 7 this
occurs at 270 N-body units. We will refer to this as the first
collapse. This is followed by a phase of powered expansion.
This can be seen in Fig. 7 where, after the first collapse,
both rc and rh increase up until ∼ 5000 N-body units. As
BH escape, the BH sub-system becomes less efficient at pro-
ducing energy (see Section 2.3) and the rate of expansion
decreases. The core stops expanding and begins to contract
again at ≈ 7500 N-body units; at this stage there is only
15% of the BH sub-system remaining (see Fig. 11, bottom,
solid line). Most of the remaining BH escape before ≈ 9500
N-body units leaving the system with a single remaining BH
binary from ∼ 11500 N-body units. The contraction of the
core that begins after ≈ 7500 N-body units shall be referred
to as the second core collapse or recollapse. As with the first
core collapse the core is contracting because there is not
enough energy being produced to meet the energy demands
of the cluster. As the core (which is dominated by the low
mass stars as most of the BH have escaped) becomes smaller
towards the end of the run the remaining BH binary starts
to interact strongly with the light stars, producing energy
more efficiently. This causes the more rapid increase in rh
seen towards the end of the plot. The contraction of the
core was still ongoing at the end of the run. The core will
presumably continue to contract until balanced evolution is
restored. If the last remaining BH binary is providing most
of the energy, then how long that binary persists in the sys-
tem depends on the hardness of that binary. Assuming the
last BH binary is only slightly hard it is possible that the
core contracts sufficiently for a single BH binary to produce
the required energy to power the expansion of the system.
Ultimately the BH binary will become hard enough to cause
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Figure 7. N-body run (20,0.02,64k), i.e. with N = 64k,
m2/m1 = 20 and M2/M1 = 0.02. Bottom: rc vs time (N-body
units). At t = 270 N-body units core collapse occurs. After most

of the BH have escaped (t ≈ 7500) the core starts to re-collapse.
Top: rh vs time (N-body units). rh initially expands rapidly be-

fore gradually slowing down as the BH sub-system dissolves. From
t ≈ 10000 to ≈ 15000 there is little change in rh as the system
is no longer in a balanced energy generating phase of evolution.
The expansion after t ≈ 15000 results from a single remaining
BH binary which becomes more active as the core collapses.

its ejection from the system. However if it is extremely hard
it is likely that the binary gets ejected from the system dur-
ing the second core collapse. If this happens the collapse of
the core will continue until light binaries are produced as in
a one-component model.

4.2 The rate of loss of BH

Now we compare the values of Ṁ2 with the theory of Sec-
tion 2.5 (equation 10). Ṁ2 is estimated by calculating the
average mass loss rate over the time taken (from the start
of mass loss) for the BH sub-system to lose 50% of its ini-
tial mass (i.e. 0.5M2,i/T50%; where T50% is the time taken
from tcc until 50% of the BH sub-system has escaped, see
Table 4 for details). Note that there is a small systematic
error introduced by measuring mass loss from the point at
which it first occurs. The values of Ṁ2 (in units of 10−3t−1

rh,i)
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Table 4. Results from N-body runs with parameters given in Table 3. The values given are stellar mass ratio (m2/m1), initial total mass
ratio (M2/M1), initial total particle number (N), initial number of BH (N2), core collapse time (tcc), the time at which 50% (T50%)
and 90% (T90%) of the initial BH total mass has escaped, the recollapse time of the system, the rate of mass loss from the sub-system

−Ṁ2, ζ (see Section 2) and the number of the figure which plots the fraction of remaining BH mass (M2/M2,i) with time. Times for
T50%, T90% and the recollapse are given in N-body units and given in brackets in units of trh,i. Times for T50%, T90% and the recollapse

are measured from the time at which core collapse finishes. The value of T90% for the case m2/m1 = 20, M2/M1 = 0.01 and N = 32k
(marked with ∗) is actually the point where 88% mass loss occurs; after this point all that remains in the system is a single binary BH.

The values of Ṁ2 are given in units of 10−6 N-body units, (or 10−3 t−1

rh,i
for the values in brackets); these are measured between the loss

of the first BH and 50% of the BH, by Ṁ2 = −0.5M2,i/T50%. The values given in the subscript and superscript are the upper and lower
90% confidence limits assuming that BH escape is a Poisson process. The values of ζ were measured by assuming Ė/|E| ≈ ṙh/rh (which

holds if |E| ∝ GM2/rh and Ṁ is small) and evaluating
0.138N

ln Λ

2

3

d(r
3

2

h
)

dt
(≈ trh

ṙh

rh
N-body units) between 2tcc and tcc +T50%.

d(r
3

2

h
)

dt
was

evaluated by taking the slope of the best fit line to r
3

2

h
; the typical errors with the fitted lines were small, < 3%.

m2

m1

M2

M1
N N2 tcc T50%

a T90%
a recollapse timea −Ṁ2

b ζ Figures

10 0.01 32k 34 530 2070 (4.4) 5610 (11.9) 8748 (18.6) 2.43.6
1.5 (1.11.7

0.7) 0.03 10 (Top)
20 0.01 32k 17 380 850 (1.8) 3000∗ (6.3∗) > 8000 (17.0) 5.910.6

2.9 (2.85.0
1.4) 0.06 10 (Top)

10 0.02 32k 66 492 1658 (3.5) 5702 (12.1) > 11876 (25.2) 6.08.1
4.4 (2.83.8

2.1) 0.06 10 (Bottom)
20 0.02 32k 33 419 940 (1.9) 3816 (8.1) > 9902 (21.0) 10.616.0

6.8 (5.07.5
3.2) 0.10 10 (Bottom)

10 0.01 64k 66 920 3650 (4.2) 12950 (15.2) > 13000 (15.3) 1.41.8
1.0 (1.21.6

0.9) 0.03 11 (Top)
20 0.01 64k 33 404 1750 (2.1) 5400 (6.8) > 7844 (9.2) 2.94.3

1.8 (2.43.6
1.5) 0.05 11 (Top)

10 0.02 64k 131 690 3230 (3.7) 12740 (14.6) > 15580 (17.9) 3.54.3
2.9 (2.63.2

2.1) 0.05 11 (Bottom)
20 0.02 64k 66 270 2680 (3.2) 9495 (11.3) > 19600 (23.4) 3.75.0

2.7 (3.24.2
2.3) 0.08 11 (Bottom)

20 0.02 128k 131 650 4120 (2.7) > 7076 (4.6) > 7076 (4.6) 2.43.0
2.0 (3.84.6

3.0) 0.08 12

a Units: N-body units (trh,i)
b Units: 10−6 N-body units (10−3 t−1

rh,i
)

are plotted in Fig. 8. The error bars (estimated as stated
in the caption of Table 4) are large because N2 is relatively
small, and most data points are consistent with a value of
approximately 3×10−3t−1

rh,i. Equation 10, with canonical val-
ues of α, β and ζ implies that the values in Fig. 8 should be
nearly 6.1 × 10−3t−1

rh,i and we will now consider reasons for
the discrepancy.

First, this estimate can be improved upon by taking
into account the fact that the system expands as energy
is being generated, increasing the relaxation time and in
turn decreasing the mass loss rate. The improved estimate
can be calculated by using equation 12 to estimate the time
taken for half the BH to be lost and evaluating Ṁ2 as was
done in Table 4. This results in a slightly smaller estimate
of 5.4×10−3t−1

rh,i, which is still significantly larger than most
of the values in Table 4.

Another factor is that the values of ζ for most of the
runs are smaller than the canonical value used for the esti-
mate (i.e. ζ ≈ 0.09). Equation 12 predicts an approximately
linear dependence of Ṁ2 on ζ, and this is clearly confirmed
in Fig. 9. The solid line, which represents the predicted val-
ues of Ṁ2 with varying ζ, nevertheless lies above all the
numerical results and outside the confidence intervals for all
but a few of the runs. However by adjusting the value of
α/β (in equations 10 and 12 α and β only appear in the
form α/β) from α/β ≈ 0.068 (the value estimated on the
basis of theoretical arguments) to α/β ≈ 0.051 the theory
comes into very good agreement with the values of Ṁ2. This
can be seen in Fig. 9 where the dashed line represents the
predicted values of Ṁ2 based on a value of α/β ≈ 0.051.
The discussion of Section 2.5 makes it clear that the canon-
ical values of α and, especially, β are subject to uncertainty,
the latter resting entirely on approximate theoretical argu-

ments. The suggested revision of α/β cannot be ruled out
on these grounds.

Equation 13 allows us to test the theory constructed in
Section 2.5, in a ζ-independent way. In Fig. 13 the observed
dependence of M2 on rh is in satisfactory agreement with
the predictions based on equation 13.

The lower values of ζ in Table 4 may result from sys-
tems in which the BH sub-system is incapable of producing
the required energy for the system to achieve balanced evo-
lution. This could possibly be due to the small values of N2;
most of these models reach values of N2 (at time T50%) be-
low the point at which the theory of Section 2.5 is expected
to apply (see Section 2.3). If a system is not in balanced
evolution it is expected to undergo contraction of the inner
Lagrangian radii relative to rh, qualitatively as in conven-
tional core collapse. This is illustrated in Fig. 14 for three
of the N-body runs in Table 4. The systems with smaller
values of ζ show greater contraction. Note that the values
ζ are only evaluated over the period to T50% and appear
to decrease after T50% (∼ 3000). Indeed this is what would
be expected as the expansion is affected by the weakening
energy generation (see also Fig. 7).

In this section we have assumed that mass segregation
concentrates the BH in the centre of the system by the time
of the first core collapse. Though this prevents further con-
traction of the central BH sub-system, this is not true of
all the BH, as discussed in Appendix B and Morscher et al
(2012). The outermost BH can continue contracting after
core collapse has occurred, indicating that mass segregation
can continue in the outermost parts of a system for a while
after core collapse. This results in additional heating which
is not associated with energy production. The effect of this
heating is expected to be small for the models in Table 3
due to the small particle number, although the effect may
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Figure 8. Ṁ2 (units of 10−3t−1

rh,i
) versus initial value of

N2. Error bars indicate confidence limits (see Table 4 for

details). Circles represent (20,M2/M1, N), squares represent
(10,M2/M1, N), filled symbols represent (m2/m1, 0.02, N),
unfilled symbols represent (m2/m1, 0.01, N), larger symbols
(m2/m1,M2/M1, 64k) (with the exception of the largest circle
on the right which corresponds to (20, 0.02, 128k)) and smaller
symbols (m2/m1,M2/M1, 32k). For cases with the same or simi-
lar initial values of N2 some of the values were adjusted by . 10%

to stop the symbols from overlapping. To a first approximation
Ṁ2 is independent of m2/m1, M2/M1 and N .
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Figure 9. Ṁ2 (units of 10−3t−1

rh,i
) versus value of ζ; error bars

indicate 90% confidence limits (see Table 4 for details). The sym-
bols represent the same runs as in Fig. 8, the solid line represents
the predicted values of Ṁ2 using the value of α/β = 0.068 (based
on theoretical arguments), and the dashed line represents the pre-
dicted values of Ṁ2 using the value of α/β = 0.051 (the empirical
value). For cases with the same or similar values of ζ some of
the values of ζ were adjusted by ±5% to stop the symbols from
overlapping. See text for details.
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Figure 10. Fraction of initial mass remaining (M2/M2,i, where
M2,i is the initial mass of the heavy component) vs time (in N-
body units) for the cases N = 32k with M2/M1 = 0.01 (Top)
and M2/M1 = 0.02 (Bottom). In both figures the dashed line
represents m2/m1 = 10 and the solid line represents m2/m1 =
20. T = 0 is set as the time when first mass loss occurs, which is

at approximately the same time as the first core collapse.

be more significant in larger systems and may be enhanced
by the presence of a mass spectrum.

4.3 Lifetime of BH sub-systems

Now that the dependence of Ṁ2 on cluster properties has
been discussed, it is natural to move on to considering how
long the BH sub-system lasts. For this purpose we shall de-
fine the life time of the BH sub-system as the time taken
from the core collapse of the BH sub-system (which occurs
at tcc) until the BH sub-system has lost 90% of its initial
mass (T90%). These values are given in Table 4, where it
can be seen that T90% ∼ 10trh,i. Equation 12 in Section
2.5 can be used to estimate the life time of the sub-system
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Figure 11. Fraction of initial mass remaining (M2/M2,i, where
M2,i is the initial mass of the heavy component) vs time (in N-
body units) for the cases N = 64k with M2/M1 = 0.01 (Top)
and M2/M1 = 0.02 (Bottom). In both figures the dashed line
represents m2/m1 = 10 and the solid line represents m2/m1 =
20. T = 0 is set at the time when the first mass loss occurs, which

is at approximately the same time as the first core collapse.

(using α/β = 0.051). For M2/M1 = 0.01 the theory pre-
dicts T90% ∼ 2.2trh,i and T90% ∼ 5.2trh,i for M2/M1 = 0.02.
These values are significantly smaller than the values seen
in Table 4. As stated in the previous subsection most of the
values of ζ in Table 4 are below the value used in Section 2.5.
Adjusting ζ to 0.05 in equation 12 increases the predicted
values of T90% to 4.0trh,i for M2/M1 = 0.01 and 9.3trh,i for
M2/M1 = 0.02. These values are still significantly smaller
than those given in Table 4 with the corresponding value of
ζ. The difference between the empirically found values and
the theoretical estimates might be accounted for by the fact
that the theory assumes a constant value of ζ; however ζ is
expected to decrease as the BH sub-system evaporates (see
Section 4.1). This behaviour is illustrated by the behaviour
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Figure 12. Fraction of initial mass remaining (M2/M2,i, where
M2,i is the initial mass of the heavy component) vs time (in N-

body units) for the case N = 128k with M2/M1 = 0.02 and
m2/m1 = 20. T = 0 is set at the time when the first mass loss
occurs, which is at approximately the same time as the first core
collapse.
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Figure 13. Evolution of M2 vs rh for the N = 32k and 64k mod-
els in Table 4. The thick dashed line is the theoretical prediction
(see equation 13) for the initial value of M2/M1 = 0.02 and the

thick solid line is the theoretical prediction for the initial value
of M2/M1 = 0.01. The value of rh,i used in equation 13 was 0.77

and the empirical value of α/β ≈ 0.051 was used for all models.
In all cases the behaviour of the N-body runs is in approximate
quantitative agreement with the predicted behaviour until there
are only a few BH remaining.

of rh in Fig. 7. There is a hint that the same decrease of
ζ with decreasing N may also be present in one-component
models (Alexander & Gieles 2012). Also as can be seen from
the values of ζ in Table 4 some systems appear to be inca-
pable of achieving balanced evolution at any time through-
out the loss of the BH sub-system.

The expected evolution of a BH sub-system can be il-
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Figure 14. Relative contraction in Lagrangian radii (40%, 30%,
20% and 10%) over time (N-body units) for (20,0.02,64k) solid

line, (10,0.02,64k) dashed line and (10,0.01,64k) dot dash line.
T = 0 in all models is set at the time mass loss starts from the
BH sub-system. Radii are measured in units of the half-mass ra-
dius. The values of ζ for the three runs are 0.08, 0.05 and 0.03,
respectively. The parameter ζ measures the dimensionless expan-
sion rate of the half-mass radius and the figure shows that slow
expansion is associated with relative contraction of the inner La-

grangian radii.

lustrated using Fig. 9. If we assume that the BH sub-system
is capable of achieving balanced evolution, after the for-
mation of the BH sub-system ζ and −Ṁ2 are predicted to
rapidly reach the balanced evolution values of ζ ≈ 0.09 and
−Ṁ2 ≈ 4 × 10−3t−1

rh,i (just to upper right of the large filled
circle). As the BH sub-system loses mass it will eventually
reach the point where it is no longer capable of generating
the energy needed for balanced evolution. After this the sys-
tem will move down the dashed line towards the origin. As it
does so the rate of mass loss decreases, prolonging the life of
the BH sub-system. This picture may explain the longer life-
times given in Table 4 and is consistent with the evolution
of rh in Fig. 7.

Finally we briefly consider the recollapse time of these
systems (see Table 4). This is the time between the first and
second core collapse. It can be interpreted as approximately
the time it takes for the system to achieve balanced evo-
lution once the BH sub-system has been exhausted. Most
of the N-body runs do not reach the second core collapse,
and therefore mostly lower limits on the recollapse time are
given in Table 4. From the results in Table 4 this time is at
least roughly the same time as the core collapse time of a
one component Plummer model (≈ 15trh,i see Heggie & Hut
2003) but can be longer because of the offsetting effect of
BH heating.

5 GRAVOTHERMAL OSCILLATIONS

The conditions for the onset of gravothermal oscillations in
two-component models have been studied by Breen & Heg-
gie (2012a), who found that the value of N2 (the number of

heavy stars) could be used as an approximate stability con-
dition (where the stability boundary is at N2 ∼ 3000) for a
wide range of stellar and total mass ratios (2 6 m2/m1 6 50
and 0.1 6 M2/M1 6 1.0). Breen & Heggie (2012b), who
researched the onset of gravothermal oscillation in multi-
component systems, found that the parameter called the
effective particle number Nef (defined as M/mmax) could
be used as an approximate stability condition for both
the multi-component systems they studied and the two-
component models of Breen & Heggie (2012a). The stability
boundary they found was at Nef ∼ 104, which is also con-
sistent with the stability boundary of the one-component
model at N = 7000 (Goodman 1987). However both those
stability conditions relied on the assumption that the heavy
component (or heavier stars for the multi-component case)
dominated the evolution of the system, in the sense that the
heavy component determined the rate of energy generation.
This is not the case for the systems considered in the present
paper as the total mass in the heavy component is so small,
and so Nef will not be considered further. (In the systems
considered in this paper the heavy component dominates the
production of energy, but the light component controls how
much energy is created.) We will now investigate the onset
of gravothermal oscillation for the systems of interest in the
present paper (where M2/M1 ≪ 1.0 and m2/m1 & 5).

The critical number of stars (Ncrit) at which gravother-
mal oscillations first manifest was found for the gas models
with M2/M1 = 0.05, 0.01 and, m2/m1 = 5, 10, 20, and 50
(see Section 3). The results are given in Table 5. The values
of N2 at Ncrit for the runs in Table 5 are given in Table 6.
The values for M2/M1 = 0.5 and 0.1 from Breen & Heggie
(2012a) have also been included in Tables 5 and 6 for ref-
erence. For fixed m2/m1, the system becomes unstable at
a roughly fixed value of N2 (N2 ≈ 1500 for M2/M1 = 0.05
and N2 ≈ 900 for M2/M1 = 0.01). These results suggest
that N2 still provides an approximate stability condition (for
fixed M2/M1) even for models in which the heavy compo-
nent only makes up a tiny fraction of the system.

Given that the theory in the present paper is built
around the assumption that the light component determines
the evolution of the BH sub-system, it may be surpris-
ing that the appearance of gravothermal oscillations seems
solely determined (for fixed M2/M1) by the number of stars
in the heavy component. However this may be explained if
one considers the unique structure of systems containing a
BH sub-system. The presence of a BH sub-system tends to
produce a system with two cores, one small BH core and
another much larger light core, which is larger than the
half mass radius of the BH sub-system (Merritt et al 2004;
Mackey et al 2008; also see Fig. 15 in the present paper).
As gravothermal oscillation in a one-component system re-
quires a small core to half mass ratio (Goodman 1987), the
light system itself is expected to be highly stable against
gravothermal oscillations. However as the BH sub-system
has to meet the energy generation requirements of the en-
tire system, the BH sub-system can have a very small ratio
of core radius to half mass radius (see Section 2). If the
onset of gravothermal oscillation is a result of the BH sub-
system itself becoming unstable then it would be expected
that the BH sub-systems would have similar structure at
the stability boundary. This is indeed the case as can be
seen in Fig. 15 which shows the post collapse density profile
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Table 5. Critical values of N in units of 104

m2

m1
\M2

M1
0.5 0.1 0.05 0.01

50 30 100 130 450
20 13 36 63 180
10 7.2 22 32 90
5 4.0 10 17 40

Table 6. Values of N2 at Ncrit in units of 103

m2

m1
\M2

M1
0.5 0.1 0.05 0.01

50 3.0 2.0 1.3 0.9
20 3.2 1.8 1.6 0.9
10 3.4 2.2 1.6 0.9
5 3.6 2.0 1.7 0.8

of two systems (with m2/m1 = 50 and m2/m1 = 10) near
the stability boundary (i.e. N is slightly smaller than Ncrit):
the profiles of the heavy component are almost identical (in
terms of density contrast, i.e. ρ2/ρh,2) whereas the profiles
of the light component are significantly different. In fact if
one were to plot the BH sub-systems in units of ρc,2 vs rc,2
the BH sub-systems would be nearly indistinguishable. We
study this more quantitatively below.

The Goodman stability parameter (Goodman 1993) (or
a somewhat modified version (Breen & Heggie 2012a,b)) has
been found to provide a stability criterion. The Goodman
stability parameter is defined as

ǫ ≡
Etot/trh
Ec/trc

,

where Ec is the energy of the core. The critical value for the
one-component model is log10 ǫ ≈ −2. This condition was
also found to apply for the Spitzer stable two-component
models studied by Kim, Lee & Goodman (1998). However,
Breen & Heggie (2012a) found the critical value of ǫ to vary
for the Spitzer unstable models they studied. They found
that by slightly modifying the definition of ǫ (ǫ2) a much
improved stability criterion could be found, with a critical
value log10 ǫ2 ≈ −1.5. We can test a version of these pa-
rameters for the BH sub-systems by suitably modifying ǫ
to

ǫBH ≡
EBH/trh,2
Ec,2/trc,2

where Ec,2 and EBH are the energy of the BH core and
the total energy of the BH sub-system respectively. ǫBH was
measured for a range of systems with M2/M1 = 0.01 and
the results are presented in Table 7 along with the values
of rc,2/rh,2 (following the discussion of the previous para-
graph). As can be seen in Table 7 all the systems with large
enough m2/m1 have similar values of log10 ǫBH and rc,2/rh,2
at their corresponding value of Ncrit which supports the as-
sertion that the onset of gravothermal oscillation depends
on the structure of the BH sub-system.

The critical values of log10 ǫBH are larger than the val-
ues of log10 ǫ found for two-component models by Kim, Lee
& Goodman (1998) and Breen & Heggie (2012a), and that
found for the one-component model by Goodman (1993) by
approximately 1.7 dex. Also the critical values of rc,2/rh,2
are larger than the corresponding critical value for a single-
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Figure 15. Postcollapse density profile in gas models of two-

component systems with M2/M1 = 0.01 near the onset of
gravothermal oscillations for m2/m1 = 50 (N = 4.3 × 106, top)
and m2/m1 = 10 (N = 8.5 × 105, bottom). The following is
shown in the plot: ρ1 (thin line), ρ2 (thick line), ρtot (dashed
line), core radius of heavy component rc,2 (×), core radius of
light component rc,1 (∗) and rh,2 (+). The core radii have been

defined as rc,i =
√

9σ2
c,i

/(4πρc,i). For the case of m2/m1 = 50,

the BH sub-system creates a density hole in the light component:
the density of lights in the centre is approximately a factor of 2
less then its highest value (which occurs at log r/rh ≃ −0.5). The

remarkably large value of rc,1 for this case results from the low
value of ρc,1 and a high value of σ2

c,1 caused by the presence of

the BH sub-system.

component system (Goodman 1987), i.e. rc/rh ≈ 0.02. This
may be because the maximum radius of the isothermal re-
gion in the BH sub-system is larger than rh,2, as was hinted
by Breen & Heggie (2012a). If the condition for gravothermal
instability is that the density contrast across the isothermal
region exceeds some critical value, and if the edge of this re-
gion is well outside rh,2, then it can be understood why the
critical value of rc,2/rh,2 is larger than Goodman’s value. To
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Table 7. Values of log10 ǫBH and rc,2/rh,2 near Ncrit for systems
with M2/M1 = 0.01. For the corresponding values of Ncrit see
Table 5. The results in this table indicate that gravothermal os-

cillation manifests once a certain value of rc,2/rh,2 (or log10 ǫ) is
reached. See text for details.

m2/m1 5 10 20 50

rc,2/rh,2 0.14 0.12 0.12 0.11
log10 ǫBH −0.21 −0.30 −0.31 −0.32

investigate this, the size of the isothermal region was mea-
sured for (50,0.01,4.3×106), which is shown in Fig. 15 (Top).
The edge of the isothermal region (riso) was defined as the
radius at which σ2

2 reaches 80% of it central value. This gives
rc,2/riso ≈ 0.022 which is consistent with the value of rc/rh
found by Goodman (1987) for the one-component model.
(For a one-component gas model, rc/riso ≃ 0.016 near the
stability boundary.)

6 CONCLUSION AND DISCUSSION

6.1 Summary

In this paper we have studied systems intended to resem-
ble those containing a significant population of black holes
(BH), i.e. two-component systems with one component be-
ing the BH and the other the rest of the stars in the sys-
tem. It was argued in Section 2.4 that mass loss by evap-
oration due to two body relaxation in the BH sub-system
does not cause significant mass loss of BH and can be ne-
glected. The principal mechanism for removing BH, for the
models considered in the present paper, is superelastic en-
counters involving BH binaries and single BH in the core of
the BH sub-system. By considering these systems to be in
balanced evolution, predictions were made regarding the BH
sub-system, for example the escape rate of BH (see Section
2.5). Some of the potential limitations of the theory were
also discussed in Section 2.3.

The theory in Sections 2.1 and 2.2 makes predictions
about the structure of the BH sub-system, particular re-
garding the variation of rc,2/rh,2 with m2/m1 and M2/M1

(see equation 5). (Here the subscripts 2 and 1 refer to the BH
and the other stars, M , m denoted the total and individual
masses, and rc, rh the core and half-mass radii, respectively).
The theory was tested in Section 3.1 with gas models and
was found to be in good agreement with theory under the
condition that m2/m1 & 10 and that N & 128k (see Figs 2
and 3). The disagreement with the theory outside of those
conditions may be attributable to small N2 and the fact that
the systems become Spitzer stable at low m2/m1. One of the
assumptions of the theory was that the BH sub-system only
made a small contribution to the central potential (see Sec-
tion 2.5), which was tested in Section 3.3 by measuring the
contribution to the central potential of each component in
a series of simulations.

It was argued in Section 2.5 that the rate of mass loss
from the BH sub-system should be approximately indepen-
dent of the properties of the BH sub-system (i.e.M2/M1 and
m2/m1). This theory only requires that the light component
regulates the rate of energy production and does not rely on
the stronger assumption that energy is transported through
the BH sub-system as outlined in Section 2.1. In Section 4.2

the results of a number of N-body runs were presented (see
Table 3 and Table 4) and the results were used to test the
predicted mass loss rates from Section 2.5. With the excep-
tion of systems with m2/m1 = 10 and M2/M1 = 0.01, the
mass loss rates for the BH sub-system were all consistent
with a value of Ṁ2 ∼ 3.0 × 10−3t−1

rh
, where trh is the half-

mass relaxation time of the entire system. However most of
the runs had a lower value of the dimensionless expansion
rate ζ than expected and Ṁ2 was found to vary approxi-
mately linearly with ζ (see Fig. 9). Once the variation of
ζ was taken into account and the value of α/β (where α,
β are dimensionless parameters determining the energy and
central potential) was adjusted to 0.051 (see Sections 2.5
and 4.2), there was good agreement between the empirical
values of Ṁ2 in Table 4 and the predicted values of Ṁ2

made using equation 12. The low values of ζ seen in Table
4 may result from the small number of BH in these systems
which possibly results in the inability of the BH sub-system
to maintain balanced evolution. Larger simulations will be
required before this explanation can be confirmed.

In Section 5 we considered gravothermal oscillations in
systems containing a BH sub-system. This extends the pa-
rameter space of two-component clusters studied by Breen
& Heggie (2012a) to lower values of M2/M1 for m2/m1 > 5.
The results in this section imply that the gravothermal insta-
bility manifests when the BH sub-system reaches a certain
profile (see Fig. 15 and Table 7). A version of the Good-
man stability parameter was also tested for systems with
M2/M1 = 0.01 and was found to provide an approximate
stability condition, although the critical value was signifi-
cantly larger than the value measured for one-component
models. The difference between the critical values for the BH
sub-systems and the one-component models may result from
the fact that the BH sub-system is approximately isother-
mal to larger radii than rh,2. The ratio between rc,2 and
the radius of the isothermal region (riso) was measured for
a selected model and was found to be consistent with the
critical value of rc/riso found for a one-component system.
These results indicate that the onset of gravothermal oscilla-
tion for systems containing a BH sub-system is determined
by the properties of the BH sub-system.

6.2 Astrophyical issues

In the present paper we have made several simplifying as-
sumptions. Importantly we have ignored stellar evolution
and the effect of a mass spectrum. A mass spectrum can in-
crease the rate of evolution of a system (Gieles et al 2010),
which by the theory in Section 2.5 would lead to a faster
escape rate of BH. On the other hand mass loss via stel-
lar evolution from the formation of the BH can cause the
system to expand (Mackey et al 2008) increasing the relax-
ation time in the system. This in turn would reduce the rate
of energy generation in the system, which by the theory in
Section 2.5 would prolong the life of the BH sub-system.

Another simplifying assumption was not to consider the
removal of BH by natal kicks, which if large could signifi-
cantly reduce the retained BH population. The topic of na-
tal kicks for black holes is still under debate, so here we will
only give the topic very general consideration. The ejection
of BH by natal kicks is itself an energy source, which heats
the system in qualitatively the same way as a BH ejected by
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Figure 16. The parameter space of two component systems di-
vided up into different regions depending on their structure and
the conditions for the onset of gravothermal oscillations. See text
and Table 8 for details

superelectic encounters with binaries. Also if a natal kick is
not significant enough to remove a BH from the system the
BH would shed much of the kinetic energy gained from the
kick to the other stars in the system. This is analogous to
the results of Fregeau et al (2009), who found that adding
natal kicks to white dwarfs was an additional energy source.

Another topic we have ignored is the presence of more
than one stellar population in many globular clusters. In the
typical scenario for the formation of the second generation
stars in a globular cluster (Ventura et al 2001) ejecta from
asymptotic giant branch stars cools and collects in the centre
of the cluster. If a BH sub-system is already present at the
centre this could lead to a significant increase in the stellar
mass of the BH (Krause et al 2012; Leigh et al 2012) and by
the theory in Section 2 an increase in the total mass of the
BH sub-system would increase its life time. Even in a single
population scenario physical collisions can occur between
BH and other stars in the system (Giersz et al 2012), and
this also would increase the total mass in the BH sub-system.

We have not considered systems which contain an in-
termediate mass black hole (IMBH) alongside a BH sub-
system. A recent radio survey by Strader et al (2012) found
no evidence of IMBH in the three globular clusters M15,
M19, and M22. However, there could be other clusters which
contain both an IMBH and a BH sub-system and this would
be an interesting topic for future work.

6.3 Classification of two-component systems

In Section 5 we considered gravothermal oscillations in sys-
tems containing a BH sub-system. This extends the param-
eter space of two-component clusters studied by Breen &
Heggie (2012a) to lower values of M2/M1 for m2/m1 > 5.
But there are rather distinct physical characteristics of the
systems studied in the two papers, as we have already seen
in the study of gravothermal oscillations (Section 5). Here
we attempt to summarise these ideas.

Table 8. Summary of the different regions in the parameter space
of two-component systems. The table states whether a given dy-
namical process is dominated by the light or heavy component
of the system. trh represents the two-body relaxation time within
rh, trc represents the two-body relaxation time within rc, GTO
stands for gravothermal oscillations, with reference to which com-
ponent contains the large isothermal region which becomes un-
stable, and the final column represents whether or not the system
is Spitzer stable; (for Region IV, since N2 ∼ 2, Spitzer instability

is not an appropriate concept). See text for further details.

Region trh trc GTO Spitzer stable

I light heavy light Y
II heavy heavy heavy N
III light heavy heavy N
IV light light light −

In order to differentiate between two-component sys-
tems a classification scheme has been devised that divides
the two-component system parameter space into four regions
(see Fig. 16). The criteria used to divide the parameter space
are, (a) whether or not the isothermal region which becomes
gravothermally unstable is associated with the heavy com-
ponent (regions II & III) or the light component (regions I &
IV), (b) whether or not the system is Spitzer stable (region
I) or Spitzer unstable (regions II & III) and (c) whether or
not the two-body relaxation process within rh is dominated
by the heavy component (region II) or the light component
(regions I, III & IV). The differences between the regions
are summarised in Table 8. We shall now justify the classifi-
cation by considering each of the criteria used more closely.

The simplest distinction to make is between systems
which are Spitzer stable and these which are Spitzer unsta-
ble, that is systems which achieve equipartition of kinetic
energy by mass segregation and those which cannot. Spitzer
(1987) constructed the following stability condition

M2

M1

< 0.16

(

m2

m1

)

−
3

2

based on theoretical arguments and some simplifying as-
sumptions. However a study by Watters, Joshi & Rasio
(2000), using Monte Carlo simulations, found Spitzer’s con-
dition to be too strong and suggested a different condition
of similar form with a different constant and power, for the
range of stellar mass ratios they studied (m2/m1 < 7). For
simplicity the Spitzer (1987) condition is used in Fig. 16
to divide the parameter space. The important differences
between Spitzer stable and Spitzer unstable systems are,
first, that equipartition of kinetic energy holds after mass
segregation (i.e. m2σ

2
2 = m1σ

2
1) and, second, that for any

appreciable value of m2/m1 the value of M2/M1 has to be
significantly small. Both the systems in the present paper
and the systems studied by Breen & Heggie (2012a) fall
into the more general class of Spitzer unstable systems. Re-
gion I consists of Spitzer stable two-component systems, and
occupies the lower left part of Fig. 16.

Gravothermal oscillations in Spitzer stable systems were
studied by Kim, Lee & Goodman (1998). They argued that
because of the small values of M2/M1 (and the high values
of m2/m1) the heavy component was confined to the centre
of the system. They showed that the systems they studied
became gravothermally unstable once a certain ratio of en-
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ergy flux at rh and rc (i.e. ǫ) was reached, and that this
value was the same as that for a one-component system. As
the bulk of the system is in the light component this implies
that the instability results from a large isothermal region
in the light component. These remarks justify the entries in
line 1 of Table 8.

One situation where the concept of Spitzer stability is
inappropriate is where the number of heavy particles is small
(N ∼ 2). As the heavy particles tend to find their way
to the core of the system and form a binary, the role of
the heavy component is still significant, because this binary
becomes the power source for the system lying inside the
core of the light system. That is why these systems have
been given their own classification, although they may be
regarded as the extreme of low M2/M1 for both Spitzer
stable and Spitzer unstable systems. Clearly in this case if
gravothermal oscillations are found, they will result from a
large isothermal region in the light component, hence the
entries in line 4 of Table 8.

Finally the last division in Fig. 16 is between Regions II
& III. The space occupied by Regions II & III consists en-
tirely of Spitzer unstable models. The difference between
these two models depends on the value of M2/M1. The
case where M2 ≪ M1, includes the topic of interest in the
present paper (i.e. systems containing BH sub-systems). Due
to small M2/M1 in these systems the light component dom-
inates at rh and thus the rate of energy generation is regu-
lated by the light component. In the case where M2 & 0.1M1

the heavy component has a significant effect on the relax-
ation process within rh, particularly when M2 ∼ M1 (Breen
& Heggie 2012a). The distinction between the two cases is
clear when considering extreme values ofM2/M1, but the ex-
act division between the two is unclear and may have some
dependence on m2/m1. This is why a shaded area sepa-
rates the two regions in Fig. 16. In both cases the onset of
gravothermal instability is associated with a large isothermal
region in the heavy component (see Section 5 in the present
paper and Breen & Heggie (2012a)). Another reason for the
distinction between regions II & III is the theoretical ar-
guments given in Section 2.6: if we consider tidally limited
systems, M2/M1 is expected to grow with time for region II
systems and decrease with time for region III systems.
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APPENDIX A: ENERGY TRANSPORT IN

SYSTEMS CONTAINING A BH SUB-SYSTEM

It has been a fundamental assumption in the present paper
that, in a system containing a BH sub-system, the major-
ity of energy generated first flows throughout the BH sub-
system and is then transferred to the rest of the system via
two-body relaxation. In this section we will discuss the va-
lidity of such an assumption. We will do this by considering
the energy generated by a BH binary as it hardens and is
ultimately ejected from the system, as was done for the one-
component case by Heggie & Hut (2003). We shall assume
that the BH binary mostly generates energy by encounters
with single BH. This is a reasonable assumption as long as
there are sufficient BH for the central region to be domi-
nated by them. We can divide the life of the BH binary in
the system into five energy generating phases as follows:

(1) After the BH binary is formed the interactions be-
tween the binary and the other BH will not be energetic
enough to remove either from the sub-system. During this
phase all the energy that is generated must be deposited
within the BH sub-system.

(2) After phase (1) the binary then starts giving the sin-
gle BH enough energy to escape the BH sub-system. The
single BH will typically receive more kinetic energy from an
encounter with a BH binary than the binary itself. During
this phase the BH binary remains in the BH sub-system and
the increase in the kinetic energy of the centre of mass (c.m.)
of the binary is deposited in the BH sub-system. Some of the
energy of the single BH, however is deposited directly into
the light component though how much is discussed further
below.

(3) At some point the c.m. of the BH binary will receive
enough kinetic energy that it too can escape from the BH
sub-system along with the single BH. As the density is much
lower outside the BH sub-system, however, the binary is
unlikely to deposit much energy until it returns to the higher
density region in the centre of the BH sub-system.

(4) The single BH starts receiving enough energy to es-
cape from the system. The BH binary still escapes from the
BH sub-system but remains bound to the whole system and
ultimately returns to the BH sub-system.

(5) Finally the BH binary escapes from the system and
the binary contributes no more energy to the system.

Using the same approach as Heggie & Hut (2003, see
page 225, Box 32.1), we will now consider where the energy
generated by each hard binary is distributed. As stated in
Section 2.5 the amount of energy generated by each hard
binary is expected to be ∼ 10m2|φc| and we will assume
as in Section 2.5 that φ2/φ1 ≈ 10−1. We will consider in
turn heating from BH which do not escape the sub-system,
from subescapers (BH which escape from the sub-system
but not from the system) and finally from BH which escape
the system.

Heating from BH which do not escape the sub-system
is involved in phases 1 (the single BH and the binary) and 2
(the binary). The amount of energy generated during phase
1 can be estimated in the same way as was done for the
one component case by Heggie & Hut (2003). The result is
that only about 3% of the total energy generation per hard
binary is generated during this phase. Including the direct
heating by the BH binary during phase 2, the total heating
from BH which do not escape the sub-system is about 5.5%.

Heating from subescapers is involved in phases 2 (the
single BH), 3 (the single BH and the binary) and 4 (the bi-
nary). The total amount of energy contributed by subesca-
pers is about 49%. Initially a subescaper indirectly heats the
BH sub-system, by m2φ2 for a single BH and by 2m2φ2 in
the case of the binary. The number of single subescapers is
expected to be approximately 4.3 and the number of encoun-
ters which cause the binary to become a subescaper is also
approximately 4.3. This is because in both cases 4.3 is the
typical number of encounters needed to increase the binding
energy of the binary by a factor of 10. This brings the total
amount of heating (including the direct heating considered
previously) to the BH sub-system to 18%.

What happens to a subescaper once it leaves the BH
sub-system is a point of uncertainty. It will indirectly heat
the light component up to some maximum radius (which
depends on its kinetic energy) reached by the BH. It is pos-
sible that afterwards the subescaper remains on a nearly
radial orbit and falls back into the BH sub-system, releas-
ing most of its energy there. In the case of one-component
systems Spitzer (1987) showed that if a particle is ejected
from the core its orbit is perturbed by the other stars in
the system, with the result that the particle misses the core
at the next pericentre of its orbit. However it is clear that
the more massive BH will be less significantly perturbed by
the light stars in the system, and may well return to the
sub-system at the pericentre of its orbit. If the BH does
return to the sub-system then most of its energy will be dis-
tributed there, and the same reasoning will also apply to
non-escaping BH binaries which are ejected from the core.
If almost all the heating from subescapers occurs in the BH
sub-system, then the total heating per binary (including the
other heating considered previously) to the BH sub-system
is now ≈ 54%.

Finally it is fairly easy to estimate the amount of en-
ergy resulting from escapers, which is m2|φc| per single BH
escaper and 2m2|φc| for the escape of the binary itself. The
heating is indirect and heating to each component is propor-
tional to the contribution of each component to the central
potential. Per hard binary the percentage of energy gener-
ated due to escape is the same as for a one-component sys-
tem, and is approximate 45%: of this about 10% goes into
the heating of the BH sub-system (as φc − φc,1 ≃ 0.1φc).
This type of heating is involved in phases 4 (the single BH)
and 5 (the binary and single BH). Therefore the heating
to the BH sub-system per hard binary may be as much as
59%. We have assumed (Sections 2.1 and 2.2) that all energy
heats the BH sub-system and is then conducted to the light
component. Clearly this assumption is only approximately
valid if the proportion of heating to the BH sub-system (per
BH binary) is ∼ 59%.

c© 2012 RAS, MNRAS 000, 1–20
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APPENDIX B: HEATING IN OUTER

LAGRANGIAN SHELLS

In this section we shall consider the heating by the BH
caused by the initial mass segregation. In simulations in
the present paper the BH are initially spread throughout
the system with the same velocity distribution as the other
stars. As the BH are much more massive than the other stars
the tendency towards equipartition of kinetic energy causes
the BH to lose kinetic energy to the other stars, which in
turn causes the BH to fall in the potential well of the clus-
ter. As stated in Section 2, these systems are usually Spitzer
unstable, and therefore equipartition of kinetic energy can-
not be achieved: BH continuously fall in the potential well
until they are concentrated in the centre of the system. The
time this process takes depends on the location of the BH,
as the process depends on the local relaxation time, which
varies significantly throughout the cluster. For BH which
start in the outer parts of the system this process takes the
longest, as the relaxation time is longest there and they have
to travel the furthest to reach the central region.

For BH whose orbits lie mostly outside the half-mass
radius of the whole system, the loss of energy causes an
increase in the mean kinetic energy, just as for orbits in
a 1/r potential. Also, the relaxation time at the location
of these BH considerably exceeds the half-mass relaxation
time. Though the equipartition time scale is smaller by a
factor of order m1/m2, there is some radius outside the
half-mass radius at which the equipartion timescale is com-
parable with the time of core collapse which, for parameters
of our typical models, can be taken to be roughly 0.3trh.
Throughout core collapse, therefore, we can expect the out-
ermost Lagrangian radii of the BH component to exhibit
a steady rise in velocity dispersion, while in intermediate
Lagrangian shells the velocity dispersion first increases and
then decreases. In the innermost Lagrangian shells the ve-
locity dispersion may be expected to decrease throughout
the time to the first core collapse.

This behaviour is illustrated in Fig. B1 with an N-
body run. This run uses m2/m1 = 5, which is smaller than
would be expected for a BH sub-system; however the small
value of m2/m1 allows for a large value of N2 (in this case
N2 = 1000), which more clearly illustrates the behaviour.
As can be seen in Fig. B1 (Bottom) the squared three di-
mensional velocity dispersion (v22) initially decreases for the
Lagrangian radii within ∼ rh and initially increases for the
larger Lagrangian radii. The heating in the outer Lagrangian
radii ends roughly when the radii enter rh (see Fig. B1 Top),
after which they show a decrease in v2 up until t ≈ 2500,
when there is an increase in v2 which is associated with
core collapse. By the time that core collapse has completed
(at t ≃ 3250) most of the BH (80%) have been segregated
to within ≈ 0.2rh. At this time the outermost Lagrangian
radius (90% of M2) has the highest value of v2 (Fig. B1
Bottom), though part of the increase may be attributable
to BH ejection. The outermost BH are still undergoing mass
segregation. Indeed as can be seen in Fig. B1 (Top) the out-
ermost Lagrangian radius continuously contracts even after
core collapse occurs.

The behaviour discussed in this section is not limited to
systems containing a BH sub-system; in fact any system with
a mass spectrum should also exhibit similar behaviour. The
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Figure B1. Evolution of the heavy component in a two com-
ponent N-body run with initial values N = 128k, m2/m1 = 5
and M2/M1 ≈ 0.038. The corresponding mass fractions are 1%,

2%, 5%, 10%, 20%, 30%, 40%, 50%, 62.5%, 75% and 90% of M2.
Bottom: Mean square velocity dispersion inside the Lagrangian

shell. The 90% shell becomes the hottest shell at t ≃ 1450 and
remains hotter than the next inner shell until well after tcc. Top:
plot of the radii of the Lagrangian shells in the heavy component.
The dotted line is rh, the half mass radius of the whole system.

important point is that continued mass segregation serves
to heat the low-mass component, and this kind of heating
may lower the required rate of energy generation from the
core, as energy is directly injected into the region near rh.
This effect has not been taken into account in the theory in
Section 2, but as the values of N2 are so small in Section 2
it is unlikely that this effect is significant.

This paper has been typeset from a TEX/ LATEX file prepared
by the author.
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