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Abstract—The present work deals with an Ordinary
Differential Equation (ODE) model specifically designed
to describe the COVID-19 evolution in Italy. The model
is particularised on the basis of National data about
the infection status of the Italian population to obtain
numerical solutions that effectively reproduce the real
data. Our epidemic model is a classical SEIR model that in-
corporates two compartments of infected subpopulations,
representing diagnosed and undiagnosed individuals
respectively, and an additional quarantine compartment.
Possible control actions representing social, political,
and medical interventions are also included. The numerical
results of the proposed model identification by least square
fitting are analysed and commented with special emphasis
on the estimation of the number of asymptomatic infective
individuals. Our fitting results are in good agreement with
the epidemiological data. Short and long-term predictions
on the evolution of the disease are also given.

Index Terms—COVID-19, epidemic ODE model,
coronavirus, epidemic spread in Italy, system control
and identification.

I. INTRODUCTION

I
N January 2020, China announced the outbreak of a novel

virus, now known as SARS-CoV-2, in the Wuhan region;

after about two months, the whole World is still facing the

problem of the fast epidemic spread, often characterised by

severe health consequences and high number of deaths.

The dynamics of the contagious and of the spread from China

to all the other Countries is studied introducing suitable mathe-

matical models which are able to describe the present evolution

as well as to provide possible predictions.
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The basic characteristics of the epidemic spreads can be

analysed making use of simple and well known model struc-

tures already adopted for different virus diseases. From the SIR

(Susceptible-Infected-Recovered classes) model [1], the speci-

ficity of the different epidemic spreads has required the introduc-

tion of additional compartments, as in the SEIR model [2], [3],

with the Exposed class modelling the individuals infected but

not yet infectious, or the SIRC one [4], with the Cross–immune

individuals that can loose immunity and can be re–infected.

In more recent cases, further refinements in the mathematical

models have been introduced to catch the specificities of each

epidemic. This has been done for the measles disease [5]–[7]

where, despite a vaccine does exist, the presence of immuno–

depressed individuals required more specific mathematical mod-

els to include them [8]. Another relevant example is represented

by the HIV/AIDS disease, where different classes in the popula-

tion are required to model the social behaviours and the different

stages of the disease evolution [9]–[14].

At present, the COVID-19 case represents, from a modelling

point of view, a new challenge for a mathematical approach. In

fact, while the known simple models are able to describe the epi-

demic dynamics and to give a reasonable prediction with a short

time forecast, a greater effort must be devoted to determine more

specific mathematical models able to describe all the classes in

which the populations can be divided according to the epidemic

diffusion, contagion, presence of symptoms and their level,

severity of the produced illness, extent of therapies required.

Examples are given in [15]–[17]. Moreover, an important issue is

the inclusion in the model of all the possible intervention actions

for prevention and containment of the epidemic spread, as well as

the medical requirements and therapies as done in [18]. We note

that the inclusion of the possible controls in the mathematical

description of the initial COVID-19 outbreak is particularly

important in the present case, even before the design of specific

control strategies, because some social, political and medical

actions are activated after the first notifications, so influencing

the available epidemiological data. For this reason, the inclusion

of the control actions in the epidemic model is mandatory for

an effective infection dynamics modelling and for a reliable

identification procedure.

In the present work, the COVID-19 outbreak in Italy is

analysed and discussed by means of an ODE (Ordinary
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Differential Equation) model previously introduced in [18], here

adapted to the Italian case and described in Section II. In Sec-

tion III, the parameter identification is performed to fit the epi-

demiological data of the Italian spread, provided by the National

Institute of Health of Italy (ISS) [19]. The role played by some

crucial factors on the numerical results is deeply analysed, with

particular emphasis on one of the most uncertain term subject to

several opinions, i.e. the number of asymptomatic individuals.

The potential negative effects of this term on the long-term

disease evolution are shown in Section III-B. Section IV is

devoted to the use of the model, tuned on the Italian situation, to

provide possible predictions on short and long-term evolutions.

In Section V, some conclusions and future work are outlined.

II. THE EPIDEMIC MODEL

The proposed mathematical model is a suitable extension of

the classical SEIR model describing the dynamics of an epi-

demic disease characterized by the presence of a not negligible

incubation period (E-phase), when the individuals are infected

but not yet infectious [20]. Since the present study aims to

evaluate the impact of the asymptomatic infected population on

the Italian epidemic spread, the model accounts for the following

significant aspects: A) the presence of a quarantined popula-

tion, containing people spending a precautionary period of total

isolation or waiting for test, B) the distinction in the infected

population between diagnosed and undiagnosed patients, and

C) the presence, among the latter population, of a fraction of

asymptomatic infective individuals. The assumed structure ap-

pears to be appropriate to mimic the Italian government actions

related to test policy and mandatory quarantine. The included

compartments also allow us to provide an explicit evaluation the

size of asymptomatic undiagnosed infectives. More in details,

the models includes six state variables representing the following

quantities at time t:
� S(t): number of susceptible individuals;
� E(t): number of exposed individuals, i.e. infected that,

having low viral load, are assumed unable to transmit the

infection;
� Iu(t): number of undiagnosed infective patients including:

(i) the ones that will be always asymptomatic, or feebly

symptomatic, during their whole infection period; (ii) the

ones that will develop recognisable symptoms. So, in the

absence of evident symptoms, they can be diagnosed only

by performing a swab test;
� Id(t): number of diagnosed infective patients who are

receiving medical treatments (to cure the infection or its

complications). Although infective, we assume that they

cannot transmit the virus since their contacts occur only

with operators equipped with personal protective devices,

making their contagiousness almost zero;
� Q(t): number of people suspected of being infected. They

are temporarily isolated and tested for positivity or simply

quarantined for precautionary reasons;
� R(t): number of recovered patients, healed spontaneously

or after therapy.

Fig. 1. Block diagram of model (1).

Accounting for the mentioned subpopulations, we describe

the spread of COVID-19 in Italy by means of the following

time-varying ODE system (see also the block diagram reported

in Fig. 1):

Ṡ(t) = B − β(1−u3(t))S(t)Iu(t) + bnQ(t)

+ u2(t)cnQ(t)− au1(t)S(t)− µS(t),

Ė(t) = β(1−u3(t))S(t)Iu(t)− au1(t)E(t)

− kE(t)− µE(t),

İu(t) = kE(t)− au1(t)Iu(t)− hφIu(t)

− γ(1− φ)Iu(t)− µIu(t),

İd(t) = hφIu(t) + hφ(1− n)Q(t)− γId(t)

+ u2(t)c(1− n)Q(t)− µId(1−u4(t))Id(t),

Q̇(t) = au1(t)(S(t) + E(t) + Iu(t))− bnQ(t)

− hφ(1− n)Q(t)− u2(t)cQ(t)− µQ(t),

Ṙ(t) = γ(1− φ)Iu(t) + γId(t)− µR(t), (1)

where

n =
S(t)

S(t) + E(t) + Iu(t)
. (2)

In system (1), B is the net input rate in compartment S and it

accounts for newborn susceptible individuals (but also for the

balance between immigration and emigration);µ is the per capita

death rate owing to causes not related to the infection (natural

death of the population) and it represents the loss rate from any

compartment of the model except for Id; µId is the per capita

death rate of diagnosed patients Id (and obviously it is µId > µ
because of the disease complications);β is the relative infectivity

of individuals in compartment Iu and accounts for two main

factors, i.e. the probability of a contagion from one infected-

susceptible contact (related to the aggressiveness of the virus)

and the frequency of contacts; φ represents the fraction of the

infective population Iu that shows recognisable symptoms and,

then, goes to a medical structure for isolation and therapies; k, h
and γ are the per capita transition rates throughout the observed

phases of the intra-host disease progression, reported in Fig. 2. In

particular, (i) k describes the transition from the infected, E, to

the infective phase, Iu, and it is k = 1/τi, where τi is the mean
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Fig. 2. Observed intra-host disease progression for COVID-19.

length of the incubation period; (ii) h refers to the transition

from Iu to Id and it is h = 1/τs, where τs is the mean time

elapsed until the occurrence of the first recognisable symptoms;

(iii) γ models the exit from the infective compartments Iu and

Id due to recovery from the infection and, then, it is γ = 1/τr
where τr is the mean recovery period. Then, according to the

meaning of φ and to the disease progression, the exit rates from

Iu are: φh, for that part of Iu that will show symptoms, and (1−
φ)γ, for the remaining part that will be always asymptomatic or

feebly symptomatic. Conversely, an infective patient can exit the

compartment Id after infection recovery, as well as for the death

caused by the infection. For the sake of simplicity, we assume

the same recovery rate γ for both subpopulations Iu and Id.

The time-varying variables u1, u2, u3, and u4 represent

control actions (bounded between 0 and 1), modelling inter-

vention measures adopted by the Italian government to contain

the disease outbreak (from the first positive notifications). In

particular, u1 represents the action aimed to stimulate, or force,

a test campaign on the population (even without any suspect of

infection), or to isolate people for a precautionary period because

of a suspect of infection. For the sake of simplicity and in the

absence of other specific indications, we assume that this action

is uniformly distributed among people in compartments S, E
and Iu. Then the per capita transit rates from S, E, Iu to Q are

all equal to au1, where a represents the maximal fraction of the

entire population that could reasonably be isolated and tested

per day, according to the available medical resources and the

government investments in buying new ones. The assumption

on the fluxes entering Q produces an internal composition of

the quarantined compartment that reflects the same proportions

of the source populations S, E, Iu. This fact implies that the

fractionn, given by Eq. (2), represents the probability of picking

up a susceptible individual from Q.

The control u2 represents the efficacy of the health system in

providing the results of the performed swab samples for COVID-

19 testing and, again, it depends on medical and economical

constraints. The factor u2 is used to scale the per capita exit

rate c, which is the time necessary for the health structures

to provide the positive/negative result of a test (i.e. c = 1/τt,
where τt is the mean time for a test result). Disregarding the

critical aspect of false positive and false negative test results,

the fraction n defined in Eq. (2) is a practical approximation

of the probability of getting a negative result when a swab

sample is randomly tested inside Q. Therefore, the total outflow

resulting from sample testing, cQ, can be split into the portion

c(1− n)Q entering the diagnosed infective compartment Id,

and the portion cnQ entering the susceptible compartment S.

Furthermore, b is the per capita exit rate from Q after waiting

the precautionary isolation period suggested to people suspected

of infection (b = 1/τq , where τq is the quarantine period, usu-

ally equal to or longer than the period required for symptom

emergence after the infection). So, assuming that the part nQ
of the total quarantined population Q is actually susceptible,

the return rate into S is bnQ. Conversely, the remaining part

(1− n)Q, if not selected for a test, could exit Q because of the

emergence of symptoms. Assuming again that only a fraction

φ of the population (1− n)Q will develop recognisable symp-

toms, the flux of people exiting Q to enter Id is expressed by

hφ(1− n)Q.

Moreover, the control u3 represents the effect on the rela-

tive infectivity β produced by the precautionary measurements

assumed by the government to keep the health population far

from the possible contagious sources. It accounts for all the

government decrees introduced to limit the physical interac-

tions among people, but also for the informative campaign for

hygienic measures, TV/radio announcements, and so on.

The last control u4 refers to the efficacy of therapies in curing

side effects of COVID-19. The introduction of u4 is intended

to model the reduction of the observed value of the per capita

death rate from Id.

We finally notice that the fraction (1− φ) of asymptomatic (or

feebly symptomatic) infectives in Iu not entering Id to be cured

is actually unknown. Studies reported in [21] try to evaluate such

a quantity, which is of great interest since it represents the quota

of undiagnosed infective population that can be circulating and

then responsible for the epidemic spread.

The above model formulation has been previously proposed

and discussed in particularised to the initial outbreak of the

epidemic spread in Hubei, investigating its asymptotic properties

in the uncontrolled case; in [18] the same model is used to

provide qualitative evaluations of the impact of different control

strategies on the future trend of the epidemic.

III. ASSESSMENT OF THE MODEL PARAMETERS

The model parameters have been fixed according to a priori

knowledge, coming from the literature, or have been inferred

from official Italian data sources, like the Italian National Insti-

tute of Statistics (ISTAT) and the National Institute of Health

of Italy (ISS). The ISS data are provided by the national Civil

Protection Department and are reported on the data repository

GitHub [19], which is updated daily since February 24.

At the moment of the manuscript revision, the available data

were updated up to May 4. However, in the analysis of the

following sections, we refer to two different notification periods:

1) a short period from February 24 up to March 23; this period

includes two weeks after the first strong Italian decree limiting

social contacts (March 9, 2020) and it was used for investigating

the crucial role of the parameter φ on the disease evolution; 2) a

long time interval (whole notification period) from February 24

until May 4 used for the estimation of the model parameters.
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TABLE I
VALUES OF THE A PRIORI FIXED PARAMETERS

TABLE II
ESTIMATED MODEL PARAMETERS OBTAINED WITH umax

3
= 0.99

A. Parameter Tuning

The parameters B and µ have been evaluated from ISTAT

demographic data from 2011 up to the last available year,

2018 [22]. Concerning the per capita death rate µ, it has been

fixed to the mean value over the period 2011–2018 of the ratio

between the number of deaths per year and the number of Italians

at the end of the same year, µ = 2.81 · 10−5 days−1. As the

Italian population size can be considered constant over the period

of interest, the net input rate B has been approximated by the

product of the total number of Italians as of the 1st of January

2020, It2020 = 60.317 · 106 [24], and the estimated value of µ,

as follows

B = It2020 · µ ≈ 1.69 · 103 persons · day−1. (3)

We exploited ISS epidemiological data [19] to get an indica-

tion on the maximal fraction of the population that is isolated

and tested per day. So, denoting by δj the j-th notification day,

with δ1 representing February 24, we fixed a to the mean value

of the ratio

ρ(δj) =
#admin. tests at δj

It2020
, j = 1, 2, . . . , (4)

along the considered notification period. Then, two different

values of a are obtained in the chosen notification intervals:

1.57 · 10−4 for interval 1) and 5.12 · 10−4 for interval 2). Table I

reports the value of a obtained for the second period that we used

for the final estimation of β, µId, γ and φ (see Table II).

The per capita rates b and c, that allow people to exit

the quarantine compartment Q, are fixed on the basis of the

current policy adopted by the government or the local insti-

tutions. Since a precautionary quarantine period of 15 days

(almost corresponding to the period required for symptoms

emergence after the infection) is suggested to suspected people,

we fixed b = 1/τq = 1/15 days−1 [16], [23]. Moreover, we set

c = 1/τt = 1/2 days−1 since the mean time τt required for the

test result is currently of almost two days, as specified by the

Italian Ministry of Health [24].

Concerning the disease progression, the parameters k and h
are fixed on the basis of known time constants given by the World

Health Organization and confirmed by the literature [15], [16]. In

particular, since an exposed individual becomes infective after

nearly 3–7 days, we fixed k = 1/τi = 1/6 days−1. Similarly,

since about 5 days are required from the end of the incubation pe-

riod up to the first symptoms appearance, we seth = 1/τs = 1/5
days−1. On the other hand, we decided to estimate the recovery

rate γ directly from the available epidemiological data.

The fixed parameter values are reported in Table I.

Concerning the relative infectivity β, the per capita death

rate µId , the recovery rate γ and the fraction φ of symptomatic

infectives in Iu, they are estimated by a least square fitting of

the following ISS data: i) daily number of diagnosed individuals

that are currently positive, ii) total number of recoveries among

all diagnosed positives, iii) total number of notified deaths. Data

i)-iii) can be simulated, for each notification day δj , by means

of the following quantities coming from model (1):

i) Id(δj),

ii)

∫ σ=δj

σ=δ0

γId(σ)dσ,

iii)

∫ σ=δj

σ=δ0

µId(1− u4(t))Id(σ)dσ,

where δ0 is January 1.

Since the period of notification is strongly influenced by

an increasing number of government restrictions but also by

an increasing health risk awareness within the population, we

estimated β, µId , γ and φ by accounting for rapidly increasing

control actions. More in details, we assumed u1 and u2 linearly

increasing, starting from the minimum value 0 on February

24 and achieving the maximal value 1 on March 9, in corre-

spondence to the decrees adopted by the Italian government to

force the people to stay at home and limit their social contacts.

Conversely, the control action u3 is assumed slightly increasing

from February 24 to March 9 and rapidly increasing afterwards

as a consequence of the mentioned government decree, reaching

the saturation value umax

3
about two weeks after the official

Italian government act. In the following sections, we considered

maximal values of u3 ranging in [0.8, 0.99]. In particular, the

extreme values of u3 are used to evaluate the influence of φ
on the disease evolution (see Section III-B). The highest value

umax

3
= 0.99 is instead used to obtain a good data fitting of the

notified positives (Section III-C). Consistently with the latest

available observations, we assume that the increase of u4 (which

models the efficiency of therapies against COVID-19 side ef-

fects) is delayed with respect to the other inputs. Also, we assume

that u4 reaches the maximum value of 0.7. Such a dynamical

behaviour of u4 was suggested by the slowdown of the number

of deaths shown by the data during the last notification days (see

Fig. 4).

Although the available data start from February 24 (first day

of notification), all the simulations reported in the following are
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Fig. 3. Time course of diagnosed infectives Id for different values of φ
in [0, 1]. Panels A, B: umax

3
= 0.8; time interval [0, 90] (panel A) and

[0, 600] days (panel B). Panel C: umax

3
= 0.99; time interval [0, 90]

days. Red dots: daily number of diagnosed positives in the short interval
1) [19].

Fig. 4. Panel A: Time-course of the daily number of diagnosed pos-
itives. Panel B: Total number of diagnosed recoveries. Panel C: Total
number of diagnosed deaths. Panel D: Number of daily new cases

(
∫

σ=δj+1

σ=δj
Id(σ)dσ). Red dots: ISS data [19]; data of panel D not used

for the fitting. Black triangles: model prediction. Simulations obtained
setting umax

3
= 0.99.

obtained by setting the initial state value on January 1st (δ0 =1-

Jan-2020), assuming that the first infected (exposed) individual

came to Italy on that day. So, the initial state is given by S(δ0) =
It2020,E(δ0) = 1 and Iu(δ0) = Id(δ0) = Q(δ0) = R(δ0) = 0.

B. Crucial Role of the Parameter φ

Let us now highlight the effect of the value of the symptomatic

fraction φ on the dynamical evolution of the epidemic. The eval-

uation of this effect has been made by simulating changes of φ
in the admissible range [0, 1]. We remark that the actual value of

this quantity could have a crucial impact on the long-term disease

evolution, especially when not very efficient lockdown measures

are accomplished. Moreover, the estimation of φ proved to be

critical at the beginning of the outbreak, i.e. when the epidemic

is increasing exponentially. The aim of the present section is

to highlight the difficulty of estimating φ when only few initial

data are available, as it was the case for interval 1) ending on

March 23. At the same time, our aim is to evidence the strong

impact that the parameterφ could have on long-term predictions.

So, the results reported in this section show how an inaccurate

estimation of φ could in principle lead to scarcely reliable

epidemic predictions. The evaluation of the fractionφ can indeed

be made more accurate implementing extensive COVID-19 test

campaigns for the population screening by direct measurements,

like done in a small Italian district [25]. In Section III-C, we

show that φ can actually be identified provided that a sufficient

number of data is available (e.g. notification period 2)).

To investigate how φ affects the future disease evolution,

while analysing some critical issues of its estimation, in the

present section we restrict the parameter identification on the

shorter interval 1). At the beginning of the outbreak, φ is

scarcely identifiable and it actually plays a minor role on the

data fitting. Moreover, provided that β is suitably tuned, any

value in [0, 1] can be chosen to obtain a quite satisfactory fit

of the notified positives. Nevertheless, the long-term prediction

strongly depends on the value of φ and completely different

scenario can be obtained choosing different values. Going into

the details, we performed the following trial and error procedure

to simulate the effect of the variability of φ: (a) φ is fixed in [0,

1]; (b) for each fixed φ, an estimation of β, µId and γ is provided

according to the epidemiological data i)-iii); (c) the impact of

the value of φ is evaluated by inspecting the consequent disease

evolution.

Fig. 3 depicts the simulated Id course for different φ values in

[0, 1]) and for differentu3 maximal levels (0.99, highly effective;

0.8 not very effective). Indeed, as it is clear from panel B of

Fig. 3, when umax

3
= 0.8 the peak of Id can change remarkably

depending on φ. The peak amounts to about 100–200 thousand

of infectives either for high φ (let us say higher than or equal

to about 0.6) or for very small φ (less then or equal to about

0.001), while it reaches about 6 millions of infectives when φ
is around 0.1. Also the peak position can change considerably

with the value ofφ. The maximum time displacement of the peak

is obtained for intermediate values of φ (around 0.3), while it

is evidently shortened for φ high or very small. We notice that

quantifying the peak of Id is actually an important predictive

aspect of the epidemic course, since it gives the maximal con-

comitant number of infectives showing severe symptoms and

needing treatments or medical ventilation, hence representing

the most urgent problem that the national health system must

cope with.

The influence of φ is strongly reduced if a more efficient

lockdown is performed, i.e. if u3 reaches the highest value

umax

3
= 0.99. Then, the peak could vary from about 50000 to

130000 (see panel C of Fig. 3).

C. Estimation of the Model Parameters From Data Fitting

Considering all the epidemiological data on the notification

period 2), from 24-Feb to 4-May, we provide an estimation of

the parameters β,µId , γ and φ. The other parameters are fixed as

suggested in Table I while the maximal value of the control u3

has been fixed to 0.99. The results of the estimation are reported
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Fig. 5. Panel A: control actions used for the fitting. Panel B: time
course of the state variables.

in Table II. The related optimal curves obtained by least square

fitting of the epidemiological data i)-iii) are reported in panels A-

C of Fig. 4, while the model reconstruction of the daily new cases

is reported in panel D of the same figure. The control actions

exploited for the fitting and the time course of state variables are

reported in Fig. 5.

From the estimation of φ given in Table II (φ = 0.12) it

emerges that there is approximately one symptomatic patient

out of 10 infectives within Iu. We also notice that if the lock-

down were not sufficiently strict and properly performed, this

estimated value would represent a critical value since it could

produce some millions of concomitant infectives in Id needing

medical treatments (so causing the collapse of the Italian health

system). This can be deduced from Fig. 3 where the highest peak

of Id is obtained for φ = 0.1, umax

3
= 0.8.

We finally note that, in principle, the value of the critical

parameter φ could be measured directly by means of exten-

sive screening campaigns on the entire Italian population. An

example of such a kind of campaign is reported in a recent

study on the local population of the small Italian district Vò

Euganeo [25]. According to that study, an extensive screening

campaign was performed on the entire population of the district,

starting from February 22 and collecting data during about one

week. The results of the study revealed that the 2.5 % of the

tested population, turned out to be positive. This value is in line

with the results in [26]. Since Vò Euganeo is considered as one of

the first crucial Italian foci of COVID-19, the sample cannot be

assumed as representative of the entire Italian population, which

probably had a lower diffusion of the virus at the time of the study

and, consequently, a lower percentage of positives. Denoting by

f(t) the fraction of the entire Italian population that is actually

positive at time t, according to the compartmental model (1), we

get

f(t)=
E(t)+Iu(t)+Id(t)+(1−n)Q(t)

S(t)+R(t)+E(t)+Iu(t)+Id(t)+Q(t)
. (5)

Fig. 6 depicts the behaviour of f(t) for different values of φ.

The lowest curve is related to the fitting case with φ = 0.12,

umax

3
= 0.99 (Figs. 4, 5), while the remaining curves are model

predictions obtained supposing smaller φ values. In Fig. 6, data

from the Vò Euganeo study are also reported [25]. To account for

some spreading delay in the nationwide diffusion of the epidemic

with respect to the Vò Euganeo case, three different time points

are displayed: the beginning of the study (February 22), one

week later (February 29, the last day of the screening), and nearly

two weeks later (March 5). Our prediction of the positive fraction

Fig. 6. Time course of f(t) for different values of φ in [0, 1] and umax

3
=

0.99. Red dots: data reported in the study [25]; the estimated fraction
was reported at the beginning of the study, i.e. 22-Feb, after one week
(29-Feb), and after almost two weeks (5-Mar).

Fig. 7. Time-course of the diagnosed infectives Id. Simulations ob-
tained with umax

3
= 0.99 until May 4 and with umax

3
= 0.8, 0.9, 0.95, 0.99

from that day on.

in Italy on March 5 turns out to be approximately 20 times lower

than the one of the small district. The picture also shows that to

obtain a value of f close to the data [25], it would be required a

φ not larger than 0.01.

IV. MODEL PREDICTIONS AFTER MAY 4

The prediction of the future evolution of COVID-19 in Italy

starts from May 4, that is the last notification day available at the

time of the present manuscript revision, but also the first day of

the lockdown relaxation in Italy. The prediction is obtained as of

May 4 fixing the model parameters to the values of Tables I, II

and assuming different values for umax

3
so to represent different

effectiveness levels in the contact limitation implemented as

of that day in Italy. In particular, we present three different

scenarios obtained by reducing umax

3
from 0.99 to 0.95, 0.9 and

0.8.

The numerical simulations are reported in Fig. 7. We note

that the number of positives would keep on decreasing, and the

epidemic would fade away within about one year, if the so-called

new phase II will be able to keep umax

3
sufficiently high, i.e.

around 0.99-0.95. On the contrary, a more sensible reduction of

umax

3
could produce a new increase of the diagnosed positives

Id and, in principle, a second wave of the disease if no additional

restrictions were timely imposed. The lower umax

3
the higher the

speed of the restart, and the shorter the time interval to reach the

second peak. Indeed, as shown by Fig. 7, if umax

3
were 0.9 the

second increase would be very slow and it would be quite easy to

take additional restrictions to contain the situation. Conversely,
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if it were umax

3
≥ 0.8 the increase could be too sharp to allow

timely restrictions. Such results highlight to what extent the

current planning activity of the Italian government is crucial

in identifying efficient intervention measures to safely leave the

lockdown.

V. CONCLUDING REMARKS

A dynamical model specifically designed for the COVID-19

is used in this paper to describe the epidemic evolution in Italy.

Different kinds of control actions (social, political, and medical)

are explicitly modeled, so that it is possible to separate the intrin-

sic characteristics of the disease from the effects of interventions,

such as isolation, quarantine and test campaigns. Some crucial

parameters are identified on the basis of the Italian data. Our

numerical simulations by best fitting of national epidemiological

data agree rather well with available official data up to May 4.

Along with interesting results for what concerns the contagious

and the death rates, the most important aspect enlightened in the

results is a contribution to the characterisation of the number

of asymptomatic individuals, problem still open in the scientific

community and of great interest to better understand the present

and, more important, the future evolution of the disease. The

possibility of using the model here proposed for prediction of

the short and long time evolution is also illustrated showing some

possible scenarios.

Some generalizations of the present formulation can be the

object of our future work. As the model structure is modular,

additional compartments and parameters could be included or

some restrictive assumptions could be relaxed, in order to de-

scribe further epidemic aspects of COVID-19 in our country and

to predict new updated scenarios.

In view of its rather general formulation, the model presented

here could in principle be adapted to describe the COVID-19

epidemic in other countries.
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