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ABSTRACT

Context. The supersonic motion of gravitating objects through a gaseous ambient medium constitutes a classical problem in theoretical
astrophysics. Its application covers a broad range of objects and scales from planetesimals, planets, and all kind of stars up to galaxies
and black holes. In particular, the dynamical friction caused by the wake that forms behind the object plays an important role for the
dynamics of the system. To calculate the dynamical friction for a particular system, standard formulae based on linear theory are often
used.
Aims. It is our goal to check the general validity of these formulae and provide suitable expressions for the dynamical friction acting
on the moving object, based on the basic physical parameters of the problem: first, the mass, radius, and velocity of the perturber;
second, the gas mass density, soundspeed, and adiabatic index of the gaseous medium; and finally, the size of the forming wake.
Methods. We perform dedicated sequences of high-resolution numerical studies of rigid bodies moving supersonically through a ho-
mogeneous ambient medium and calculate the total drag acting on the object, which is the sum of gravitational and hydrodynamical
drag. We study cases without gravity with purely hydrodynamical drag, as well as gravitating objects. In various numerical experi-
ments, we determine the drag force acting on the moving body and its dependence on the basic physical parameters of the problem, as
given above. From the final equilibrium state of the simulations, for gravitating objects we compute the dynamical friction by direct
numerical integration of the gravitational pull acting on the embedded object.
Results. The numerical experiments confirm the known scaling laws for the dependence of the dynamical friction on the basic
physical parameters as derived in earlier semi-analytical studies. As a new important result we find that the shock’s stand-off distance
is revealed as the minimum spatial interaction scale of dynamical friction. Below this radius, the gas settles into a hydrostatic state,
which – owing to its spherical symmetry – causes no net gravitational pull onto the moving body. Finally, we derive an analytic
estimate for the stand-off distance that can easily be used when calculating the dynamical friction force.
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1. Introduction

The motion of gravitating objects through a gaseous ambient
medium is a classical problem in theoretical astrophysics. Of
special interest is the force acting on the object as it deter-
mines typical evolution or equilibration time scales. This force
is caused by two main mechanisms, purely hydrodynamic drag
and dynamical friction. Even without gravity, the flow of the gas
will be perturbed by the body because it acts as an obstacle and
blocks the gas in front of it. This causes an exchange of momen-
tum between the embedded body and the surroundings, leading
to a hydrodynamic drag force on the object. On Earth, for exam-
ple, this gives rise to the air resistance of all flying objects, a drag
force that tends to oppose the motion of the body. For a moving
massive body in an astrophysical setting, its gravitational attrac-
tion onto the surrounding leads to the formation of a wake of
higher-than-average density behind the moving object, and, as a
result, to a gravitational pull of the dense region onto the body.
This additional force is again directed opposite to the motion of
the body and leads to a slow down. This force is usually called
gravitational drag force or dynamical friction (Chandrasekhar
1943; Ostriker 1999). Hence, the total drag force acting on a
gravitating body is the sum of the hydrodynamic drag and dy-
namical friction.

Its astrophysical application covers a wide range of fields,
as pointed out recently by Lee & Stahler (2014). In the com-
mon envelope phase, the decay time of the secondary compan-
ion is driven by dynamical friction (Ricker & Taam 2008, 2012),
as is the important survival rate of planets around evolved stars
(Villaver & Livio 2009). Further applications include the settling
of massive stars in molecular clouds (Chavarría et al. 2010), the
drag on a star in the accretion flow around black holes (Narayan
2000), the coalescence of black holes (Armitage & Natarajan
2005), and the migration of planetesimals (Grishin & Perets
2015). In the framework of planet evolution, dynamical fric-
tion plays a role in the change of planetary inclination owing
to the interaction with the disk (Rein 2012; Teyssandier et al.
2013). The dynamical interactions of evolved stars that move
through the interstellar medium (ISM) determine the observa-
tional properties of the dust in the envelope (Slavin et al. 2004;
van Marle et al. 2011; Meyer et al. 2014a,b, 2015).

This incomplete list of applications shows that the phe-
nomenon of dynamical friction is widespread and of general
importance. However, there is still no satisfying derivation of
the force on the object despite many years of research (see
e.g. Lee & Stahler 2014). In this study, we tackle this important
problem of dynamical friction via direct numerical modelling.
We perform hydrodynamical simulations of a gravitating body
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moving supersonically through a homogeneous medium and ex-
tract the dynamical friction on the object. We analyse in detail
the scaling of the drag with important physical parameters of the
problem such as Mach number and mass of the object and others,
and compare this to existing formulae for dynamical friction.

The paper is organized as follows. In Sect. 2, we summa-
rize the status on formulae for dynamical friction. In Sect. 3, we
describe the hydrodynamics equations and the physical and nu-
merical set-up of the simulations. In Sect. 4, we present compar-
ison simulations to laboratory experiments for non-gravitating
objects moving at supersonic speed through air. In Sect. 5, we
present the simulations of gravitating objects for various phys-
ical parameters and discuss the implications on the dynamical
friction. In Sect. 6, we present a new formula for the drag force.
In Sect. 7, we give a brief summary of the study.

2. Analytical estimates of dynamical friction

A first account of dynamical friction was given by
Chandrasekhar (1943) who calculated the dynamical fric-
tion of a star embedded in a stellar cluster. His results were
later adapted to the motion of stars through the ISM or galaxies
through the intergalactic medium. Here, the ambient gas is
typically treated as a static hydrodynamic continuum which is
traversed by a moving body of mass M and the velocity V∞. Us-
ing the impulse approximation, where the moving mass perturbs
the surroundings only for a finite time, Ruderman & Spiegel
(1971) derived a general formula for the dynamical friction
force FDF acting on the mass M:

FDF = 4πρ∞

(

GM

V∞

)2

CA. (1)

In Eq. (1), ρ∞ denotes the ambient constant density, G is
the gravitational constant, and CA stands for the Coulomb
logarithm

CA = ln (smax/smin) , (2)

where smin and smax correspond to the minimum and maximum
impact parameter of the interaction. A very similar expression
for the drag on a star moving in a zero temperature medium was
derived by Bondi & Hoyle (1944) who analysed the change in
momentum by the gas that is collected in a very thin line be-
hind the object. Additionally, they derived relations for the gas
accretion rate onto the body.

To apply Eq. (1) to various physical problems, the relevant
length scales smin and smax need to be known. Typically, for
smax the maximum extension of the medium is assumed. For the
minimum length, smin, the situation is not so clear and no gen-
eral accepted recipe exists. Often, either the physical radius R
of the object is chosen or, when the body becomes very small,
smin ≈ max (R,RA). Here RA stands for the accretion radius

RA =
2GM

V2
∞

· (3)

Recently, Cantó et al. (2011) derived an approximation for smin

using ballistic orbit theory; however, it does not account for the
pressure. Obviously, the question of the correct minimum radius
of the object is still not clarified and remains ambiguous.

While Eq. (1) was derived for a pressureless medium (dust),
some corrections have to be applied if pressure effects play a
role. In the supersonic case – with V∞ > c∞, where c∞ denotes
the soundspeed of the unperturbed medium – a bow shock forms

in front of the object where additional energy can be dissipated.
Using the linearized fluid equations Ruderman & Spiegel (1971)
and Rephaeli & Salpeter (1980) derive a correction to the above
equation that depends on the Mach number of the object.

In an important work, Ostriker (1999) extended the above
analysis and studied the time-dependent dynamical friction force
acting on a massive object embedded into a gaseous medium
in the sub- and supersonic regime. Her analysis resulted in
an expression for the coefficient CA, very similar to that of
Rephaeli & Salpeter (1980), which includes a time-dependent
maximum radius, smax ∼ V∞t, where t is the time the object
has interacted with the gas. Her analysis is based on linear per-
turbation theory and is useful for studying time-dependent phe-
nomena. The expression for the supersonic case reads

CA = ln















V∞t

smin

(

M2 − 1

M2

)1/2














, (4)

where M = V∞/c∞ denotes the Mach number of the problem.
Obviously, if we set smax = V∞t, then Eqs. (2) and (4) agree
with each other in the limit of largeM because pressure effects
become less important for highly supersonic flows. Here, we are
not interested in the time-dependent process, but focus on the
final stationary state instead.

In addition to these analytic estimates there have been many
numerical studies of moving gravitating objects embedded in a
gas. The first to address this issue numerically was Hunt (1971)
who used a special shock fitting method to calculate the flow
around the body and the accretion rate onto it. Later, Shima et al.
(1985) were the first to use modern fluid dynamical methods on
this problem and performed axisymmetric simulations in spher-
ical polar coordinates. In their now classic paper they studied
the drag force and the accretion rate onto the object as a func-
tion of the velocity and found very rough qualitative agreement
with Eqs. (1) and (2), when using for smin the inner radius of
the computational domain. Most of the subsequent simulations
dealt with open inner boundary conditions and focused on the
mass accretion rate onto the object. An introductory summary
to this Bondi-Hoyle-Littleton accretion process is given in the
review article by Edgar (2004). In this paper we do not study
accretion onto the object and only study rigid bodies. The main
focus lies on the accurate computation of the dynamical friction
and – as a pre-requisite – on the determination of the minimum
integration radius smin.

The validity of the formula by Ostriker has been demon-
strated by Sánchez-Salcedo & Brandenburg (2001) who showed
agreement for moderate Mach numbers in non-linear, isother-
mal simulations. However, they used a Plummer-type poten-
tial with a smoothing length much larger than RA. Later,
Kim & Kim (2009) reanalysed dynamical friction for extended
bodies through numerical simulations. However, they did not
consider objects with a rigid surface (like stars), but used again a
Plummer-type potential with a smoothing length, and hence their
results may be more applicable to galaxies moving in the inter-
galactic medium. They compare their results to the formula by
Ostriker (1999) and provide a new fitting formula involving RA.
They used an axisymmetric cylindrical coordinate system, which
suffers in terms of limited resolution close to the centre.

Starting with Ruffert (1994) and Ruffert & Arnett (1994)
there have been many simulations considering the three-
dimensional (3D) flow around an accreting object. An interesting
feature discovered in these first studies is the onset of unstable
flow when breaking the axial symmetry, an effect that is most
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pronounced in planar two-dimensional (2D) flows that are non-
physical, however. A comprehensive summary of the 2D and
3D simulations that have been carried out has been given by
Foglizzo et al. (2005). They point out that the origin of the insta-
bility, i.e. under what conditions it is expected and its effect on
the drag force, is still not understood. In this paper we avoid the
question of instability and focus on purely axisymmetric flows.

It is useful to compare the drag formula Eq. (1) to
standard hydrodynamic drag formula. Dimensional analyses
(Landau & Lifshitz 1966) yields the hydrodynamical drag force
acting on an object with cross section A:

Fhydro =
1

2
CD ρ∞ V2

∞ A. (5)

The dimensionless drag coefficient CD contains the details of
how the body and the medium physically interact with each
other, e.g. through surface effects and the dependence on lam-
inar vs. turbulent flows. If we use the accretion radius to set the
interaction cross section A = πR2

A
, the ratio of the hydrodynam-

ical drag and the dynamical friction is given by

Fhydro

FDF

=
CD

2CA

· (6)

In this study, we determine the dependence of dynamical fric-
tion acting on a rigid, gravitating body moving supersonically
through a homogeneous medium on the basic physical parame-
ters of the system. First, we demonstrate that the dynamical fric-
tion scales like Eq. (1) and we derive an analytic relation for the
as yet undetermined minimum length scale smin of the problem,
and finally give a convenient expression for the dynamical fric-
tion in general.

3. Physics and numerics

3.1. Problem set-up

We model gravitating, spherical objects with a given mass M
and radius R moving with supersonic speed V∞ through a ho-
mogeneous medium that is characterized by its mass density ρ∞,
pressure p∞, and temperature T∞ or soundspeed c∞. As an initial
condition, the object is placed instantaneously into the ambient
medium and the evolution of the gaseous system is followed us-
ing time-dependent hydrodynamical simulations. After the sys-
tem reaches a steady state we determine the gravitational pull of
the gas onto the object (the dynamical friction) as well as the
hydrodynamic drag.

3.2. Equations

We study the motion of the ideal gas by solving the Euler
equations

∂ρ

∂t
+ ∇ · (ρu) = 0 (7)

∂

∂t
ρu + ∇ · (ρu ⊗ u) + ∇p = ρ aext (8)

∂e

∂t
+ ∇ · [(e + p)u] = ρu · aext. (9)

Here, ρ denotes the gas mass density, u the velocity, p the gas
pressure, and e = ekin + eth the total (kinetic and thermal) energy
density of the gas. The acceleration due to external forces aext is
given by the gravitational attraction of the moving object

aext = −
GM

r2
er, (10)

where r is the distance from the centre of the object to the po-
sition under consideration. We close the equations of hydrody-
namics with the ideal gas equation of state:

p = (γ − 1)eth. (11)

Gas pressure, density, and temperature are related via

p =
kB

µ mH

ρT, (12)

where µ is the mean molecular weight, kB the Boltzmann con-
stant, and mH the mass of the hydrogen atom. The soundspeed
of the gas is given by

c∞ =

√

γ
p

ρ
· (13)

In our simulations we use a constant value of the adiabatic ex-
ponent γ. We study the influence of different γ-values on the
dynamical friction in dedicated parameter series, see Sect. 5.7.

From the given values of the density ρ∞ and pressure p∞ of
the initially homogeneous medium, its adiabatic index γ, and the
speed V∞ of the moving object, the associated Mach number of
the system is given as

M = V∞/c∞. (14)

3.3. Numerics

Simulations are carried out using the open-source code PLUTO
(Mignone et al. 2007), version 4. Part of the simulations were
carried out with a new in-house developed CUDA version for
usage on GPUs. We use a Runge-Kutta time stepping scheme
of second order with a second-order reconstruction of states in
space, a van Leer limiter in the reconstruction step, and a Harten-
Lax-van Leer solver for the Riemann problem.

Equations (7) to (9) are solved in the co-moving frame of the
object, i.e. the object is at rest in the modelling frame and the ini-
tial velocity of the surrounding homogeneous gas corresponds to
the physical speed of the solid body. We use a 2D spherical grid
(r, θ) assuming axial symmetry. The object is fixed at the ori-
gin of the coordinate system and the gas flows into the negative
z-direction. The solid surface of the moving spherical object is
represented as boundary conditions at the radial inner boundary
of the computational domain. Here, we use reflecting boundary
conditions, corresponding to a non-accreting object. The com-
putational domain extends in the radial direction from the radius
R of the object up to Rdomain = 100 or 1000 R. The symmetry
axis of the domain is aligned with the trajectory of the object.
In the polar direction, the computational domain extends from 0
to π using a grid spacing uniform in angle. To obtain high reso-
lution at the area of interest around the object and to ensure an
approximately quadratic grid spacing in the radial and the polar
direction of each grid cell, we use a logarithmic grid spacing in
the radial direction.

At the outer radial boundary Rdomain, we set the boundary
conditions according to the flow of the surrounding gas. In the
upper hemisphere (for θ ∈ [0, π/2]), we implemented an inflow
boundary condition, i.e. all ghost cells are set to the unperturbed
values of the surrounding medium. In the lower hemisphere (for
θ ∈ [π/2, π]), we implemented a zero-gradient boundary condi-
tion so that the out-flowing material can leave the computational
domain without reflections. As already mentioned, we perform
simulations in axial symmetry and therefore at θ = 0 (positive
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z-axis) and at θ = π (negative z-axis) we make use of axisym-
metric boundary conditions.

Simulations with a size of the body of R = 0.1 R⊙ are per-
formed on a grid consisting of 700 × 480 grid cells, simulations
with a smaller size of the body of R = 0.01 R⊙ are performed
on a grid consisting of 860 × 400 grid cells. We present a corre-
sponding convergence study in detail in Appendix C.

3.4. Assumptions and simplifications

The numerical experiments are performed to determine the dy-
namical friction in a general astrophysical context. Hence, we do
not take into account effects that depend on a specific system un-
der investigation such as radiative heating and cooling. The flow
is assumed to be inviscid. Self-gravity of the gas is not taken
into account. Effects of magnetic fields are not investigated. The
long-evolution problem of a time-dependent slow-down of the
moving body by the acting dynamical friction is not included
in this study (see Sánchez-Salcedo & Brandenburg 2001 for a
discussion of this issue). The formula for dynamical friction is
derived within the co-moving frame of the moving body. The
object is treated as a rigid body where no accretion through its
surface is allowed. The medium is considered to behave like an
ideal gas.

3.5. Calculation of the drag force

The total drag force acting on an object moving through an am-
bient medium can be calculated from the momentum balance in
the final equilibrium state (Landau & Lifshitz 1966). In our case,
the object is moving along the z-direction and we have to con-
sider the z-component of Eq. (8), which reads in equilibrium

∇ · (ρuzu) +
∂p

∂z
− ρaz = 0, (15)

where az denotes the z-component of the gravitational accelera-
tion due to the moving object. Integrating over the whole volume
of the computational domain we can convert the first two parts
into surface integrals and obtain

∫

in

[

(ρuzu) + pn
]

· d f +

∫

Vol

ρazdV +

∫

out

[

(ρuzu) + pn
]

· d f = 0,

(16)

where d f is the surface element and dV the volume element,
and the subscripts in and out refer to the inner and outer bound-
ary of the computational domain. The first term of Eq. (16) repre-
sents the total hydrodynamical force acting on the surface of the
body, which is the sum of a momentum transport, F tra

in
, through

the body’s surface (e.g. for porous objects or open, accreting
bodies) and a pressure force, F

prs

in
, acting directly on the body.

The second term is the dynamical friction force on the body,
FDF, which is obtained by integrating over the whole volume of
the domain. The sum of these two contributions must be bal-
anced by the corresponding momentum transport and pressure
terms at the outer boundary, F tra

out and F
prs
out, respectively. In our

case, the first surface integral in Eq. (16) is taken at the surface
of the moving object – here the radius, R, of the spherical body –
and the last surface integral at the outer boundary of the domain,
Rdomain. In the case of an impermeable rigid body, F tra

in
= 0, and

we obtain the final force balance as

F
prs

in
+ FDF + F tra

out + F
prs
out = 0. (17)

We calculate all these forces for our simulations and evaluate the
importance of the different contributions. Equation (17) shows
that the drag acting on an object can either be evaluated at the
inner boundary (plus gravity) or solely at the outer boundary.

4. Comparison to laboratory experiments

In computational astrophysics, it is only rarely possible to test
numerical algorithms against laboratory experiments. However,
in the case of the problem on hand – a sphere moving superson-
ically through a gaseous medium – experimental data is avail-
able for non-gravitating moving bodies. To check the validity of
our numerical ansatz and prove the accuracy of the code, includ-
ing set-up, boundary conditions, and the calculation of the drag
force, we perform comparison simulations of a body moving
supersonically through a homogeneous gaseous medium (air),
which can be compared to existing data from laboratory experi-
ments, namely by van Dyke (1982) and Billig (1967).

4.1. Morphology

The black-and-white photograph in van Dyke (1982), Fig. 266,
shows the result of a laboratory experiment of a spherical non-
gravitating body moving with supersonic velocity through air.
We present the right half of the original image in Fig. 1, bot-
tom panel. The morphology of the system is characterized by
a standing shock front ahead of the moving sphere, a clearly
visible shock boundary between the unperturbed and the per-
turbed gaseous medium, and a low-density region past the mov-
ing object.

We model the same experiment numerically within our
framework described in the previous section. Here, we switch
off the gravitational force of the moving body and use an adia-
batic exponent for air of γ = 1.4. The body is moving into the
positive z-direction; actually, simulations are performed in the
co-moving frame of the body, hence, the gas flow is initialized
into the negative z-direction. The homogeneous gas is initialized
with a constant density ρ∞. The Mach number of the flow is set to
M = V∞/c∞ = 1.53. In the whole computational domain the ini-
tial condition is given by the unperturbed flow. At the start of the
simulation the rigid sphere is embedded and perturbs the flow.
We run the model until an equilibrium state has been reached.

In Fig. 1, upper panel, we show the morphology of the
gas density around the sphere in the numerical experiment.
Clearly visible is the bow shock in front of the sphere where
the gas flow changes from supersonic to subsonic velocities,
the shock front dividing the perturbed from the unperturbed
gas, and the low-density region behind the moving body. As
expected, the gas density reaches a maximum directly in front
of the sphere. A visual comparison with the experimental data
from van Dyke (1982), Fig. 266, as presented in Fig. 1, shows
excellent agreement between the numerical experiment and the
laboratory experiment in terms of their morphological charac-
teristics. Furthermore, the magnitude of the density jump at the
shock front from the numerical simulation agrees closely with
the well-known analytical Rankine-Hugoniot jump conditions.
In contrast to the axisymmetric and inviscid numerical result,
the laboratory experiment shows that the low-density region past
the moving object is subject to weak turbulence that cannot be
captured in the idealized simulation setting.

The following comparison checks for the shock front physics
and its dependence on the Mach number.
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Fig. 1. Visualization of a comparison simulation result of a sphere
embedded in air flow (γ = 1.4) at a Mach number M = 1.53.
The homogeneous gas arrives from the top and flows in the negative
z-direction. Shown is the density distribution for the final equilibrium
state in the central part of the computational domain around the sphere.
Upper panel: numerical results, black lines denote iso-density contours.
Bottom panel: laboratory data from van Dyke (1982, Fig. 266).

4.2. Stand-off distance of the shock front

As we point out below, the shock’s stand-off distance, RSO,
plays a crucial role in determining the dynamical friction on a
gravitating moving body. Here, we measure RSO from the cen-
tre of the moving spherical object. To test the dependence of
the shock front on the problem’s Mach number, M, we com-
pute a sequence of models for the same set-up as in the previ-
ous section but with a variety of different inflow velocities V∞.
Figure 2 shows the resulting stand-off distance of the shock,
measured from the centre of the sphere, as a function of M.
The RSO decreases with increasing M and approaches asymp-
totically a value of RSO → 1.14 in the limit of highly super-
sonic flow. This outcome of the numerical experiments can be
directly and quantitatively compared to the laboratory experi-
ments by Billig (1967), using a derived fit to the laboratory data
given by RSO/R ≃ 1 + 0.143 exp (3.24/M), where R denotes
the geometrical radius of the moving sphere. The results from

2 4 6 8 10 12 14

M

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

R
S
O
/R

This study

Van Dyke & Gordon (1959)

Billig (1967)

Fig. 2. Quantitative comparison of the shock’s stand-off distance as
function of Mach number. The solid black line denotes the relationship
derived from laboratory experiments as given in the main text. Small red
dots represent results from numerical experiments for the same set-up.
Blue dots denote early numerical results by van Dyke & Gordon (1959).

the numerical and laboratory experiments are quantitatively in
very good agreement, as shown in Fig. 2. They are consistent
with each other at both extremes, weak shocks (M = 1.53) and
strong shocks (M → ∞). In the regime of moderate shocks
(M ∼ 2 . . . 4), the numerical experiments show slightly larger
stand-off distances than the laboratory experiments. Addition-
ally, in the numerical framework, the position of the shock front
is associated with a certain grid cell, more specifically its cen-
tre; no further interpolation has been applied. Hence, the visible
steps in the numerical data visualize the finite spatial resolution
of the numerical experiments.

4.3. Hydrodynamical drag force

In Fig. 3 we show the contributions of the different forces act-
ing on the gas and the sphere. Shown are the pressure force act-
ing on the body, F

prs

in
, together with the pressure and momentum

flux at the outer boundary. As is expected from Eq. (17), the sum
of all three force contributions, Ftot, adds up to zero. The error
for the total force increases slightly for higher Mach numbers,
but it is always below 2% for all simulations. In this case the
hydrodynamic drag acting on the body, given by F

prs

in
, is nega-

tive which indicates a force opposing the direction of motion of
the body. The standard drag force, as given in Eq. (5), depends
quadratically on the velocity V∞ of the object. Our numerical
results clearly confirm this expected quadratic scaling with V∞,
see added solid line in Fig. 3.

5. Simulations of dynamical friction

Now we turn to astrophysical applications and consider the
motion of a gravitating body through a homogeneous gaseous
medium. For supersonic speeds a shock front ahead of the mov-
ing body is produced that is very similar to the morphology
found in the laboratory experiments for the non-gravitating bod-
ies. Figure 4 shows the steady state solution for the gas mass
density and the velocity field for one of our simulations. In front
of the object a bow shock forms where the material is deceler-
ated from supersonic to subsonic speeds. After passing the shock
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Fig. 3. Force contributions in the equilibrium state according to Eq. (17)
for the non-gravitating, rigid sphere in air, given as a function of the
Mach number. F

prs

in
denotes the pressure force measured at the surface

of the sphere, F
prs
out the pressure force measured at the outer boundary of

the computational domain, and F trs
out the momentum transport through

the outer boundary. The sum of these three forces is denoted by Ftot.
The curve describes a parabola with F ∝ M2.

Fig. 4. Density and velocity structure of the final quasi-stationary state
around a gravitating object moving with supersonic motion through a
gaseous homogeneous medium. The body is moving towards the pos-
itive z-direction. Density is colour-coded and black lines denote iso-
density contours. Velocities are given as arrows, scaled by the speed.

front, matter close to the object settles into a hydrostatic enve-
lope. The major difference to the non-gravitating case is that be-
hind the moving object a wake of higher-than-average density
instead of lower density is formed, which is a direct consequence
of the gravitational attraction of the body. In turn, this wake of
higher density yields a gravitational pull onto the object, which
slows it down. This is the phenomenon of dynamical friction.

As shown above in Eq. (17) the total drag acting on a gravi-
tating rigid body is the sum of the hydrodynamic drag (pressure
force on the body, F

prs

in
) and the dynamical friction, FDF. In our

case, behind the shock front a spherical hydrostatic shell forms
around the object such that the total pressure force on the object
is negligible. Hence, the total drag on the object is given solely

by dynamical friction, and in the following we concentrate on
this part only (see Fig. 6 below). For very high Mach numbers
the separation of the shock from the object’s surface becomes
very small such that no hydrostatic envelope can form, and pres-
sure effects will become important again.

The dynamical friction of a body moving with supersonic
speed through a gaseous homogeneous medium denotes a well-
defined problem, which involves a manageable amount of depen-
dencies. In the course of this section, we first give an overview
of the relevant problem parameters and how they are expected to
affect the amount of dynamical friction (Sect. 5.1). Afterwards,
we present our realized simulation series, each dedicated to in-
vestigating the impact of a specific parameter, and we discuss
the simulation results in terms of scaling laws (Sects. 5.5 to 5.7).
Most importantly, the simulations’ outcome reveal the stand-off
distance as the minimum spatial scale of the forming anisotropic
density structure around the moving body. We analyse and dis-
cuss this new aspect in-depth and derive a semi-analytical rela-
tion between the stand-off distance and the accretion radius from
fits to the numerical data in Sect. 5.3. Finally, we combine these
findings to derive a convenient semi-analytical expression for the
dynamical friction (Sect. 6).

We would like to point out again that we do not assume an a
priori validity of the classic drag formula as stated in Eq. (1). Our
procedure is to check the scaling of each parameter in Eq. (1) in-
dividually and confirm the existence of the logarithmic term. Af-
ter this we demonstrate that the minimum distance smin in Eq. (2)
is closely related to the stand-off distance of the shock from the
object. We then present a new formula for calculating smin from
the basic physical parameter of the problem.

5.1. Relevant parameters of the problem

First of all, the moving object is characterized by its mass M and
velocity V∞. The impact of these parameters on the dynamical
friction is analysed and discussed in Sects. 5.5 and 5.6. For high
enough masses or small enough velocities, the smallest scale of
interaction with the gas is set by the gravity of the moving ob-
ject rather than its geometrical radius. In these cases, the mov-
ing body can also be treated as a point mass, as is usually done
in semi-analytical approaches, e.g. in the derivation by Ostriker
(1999). Its geometrical radius R becomes important for the in-
teraction with the surrounding gas in cases of either low mass
or high velocities. We investigate the impact of the geometrical
radius in Sect. 5.3.

The gaseous homogeneous medium is characterized by two
of the four quantities: mass density ρ∞, pressure p∞, temper-
ature T∞, or soundspeed c∞. The remaining two are then de-
termined according to Eqs. (12) and (13). In the following, we
will choose the gas mass density ρ∞ and soundspeed c∞ as
the independent variables; the mass density enters directly the
force term of the gravitational pull of the wake onto the moving
body and the soundspeed of the medium sets the Mach number
M = V∞/c∞ of the shock.

The thermodynamics of the gas is controlled by its caloric
and thermal equations of state Eqs. (11) and (12) with the adi-
abatic index γ as the only free parameter. Most importantly for
the shock physics, the adiabatic index controls how the gaseous
medium reacts in case of compression and expansion.

While the object is moving through the gaseous medium, a
wake of higher density will form behind the object, which grows
in time. For a known interaction time t, the extent of the wake
is constrained by smax = V∞t. We discuss the dependence of the
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Table 1. Overview of the series of simulations performed.

ID M [MJup] R [R⊙] M c∞ [kms−1] γ Rdomain [R⊙] Figures

Fiducial simulation
F 60 0.01 4.0 58 5/3 10 Figs. A.1 and A.2

Fiducial simulation with larger domain size
C 0.01 25 Fig. 9

Variation of the mass of the perturber
M1 10 . . . 50 0.1 Fig. 8 and 16
M2 1 . . . 120 0.01 Figs. 7, 8, 10 and 16

Variation of the velocity of the perturber
V1 0.1 3.5 . . . 20.0 49 1.2 Fig. 12, 13 and 15
V2 0.01 2.2 . . . 10.9 53 1.4 Figs. 12, 13, 15 and 16
V3 0.1 2.0 . . . 9.0 58 5/3 Figs. 4, 8 and 16
V4 0.01 2.0 . . . 50.0 58 5/3 Figs. 5, 7, 8, 11–13, 15–17
V5 0.01 2.0 . . . 20.0 63 2.0 Figs. 12, 13, 15 and 16
V6 0.1 2.0 . . . 10.0 77 3.0 Figs. 12, 13 and 15
V7 0.1 2.0 . . . 10.0 89 4.0 Figs. 12, 13 and 15

Variation of the soundspeed of the medium
S 0.01 1.6 . . . 12.6 18.3 . . . 183 5/3 Figs. 8 and 16

Variation of the adiabatic index of the medium
G 0.1 4.4 53 1.2 . . . 6.0 Fig. 14 and 15

Notes. Each row represents a series of individual simulations, mostly varying a single basic set-up parameter. The columns denote from left to right
the label of the simulation series, the mass, the radius, and the velocity of the perturber, the soundspeed of the gaseous medium, the adiabatic index
of the medium, and the outer radius of the computational domain. The last column gives the figure numbers associated with the data processing of
the simulation series. The body velocity is given in units of Mach. If the value of a parameter is not explicitly specified, the value from the fiducial
simulation, given in the top row, is used.

dynamical friction on the maximum extent of the wake in more
detail in Sect. 5.4.

In summary, the dynamical friction of a massive body mov-
ing supersonically through a gaseous homogeneous medium de-
pends only on the mass of the body M, the velocity of the body
V∞, its geometrical radius R, the mass density ρ∞ of the gas, its
soundspeed c∞, the adiabatic index γ, and the maximum extent
of the wake smax.

In Ruderman & Spiegel (1971), the authors give an expres-
sion for the dynamical friction as given in Eq. (1). In this for-
mula, the dynamical friction also depends on the minimum
length scale smin of the interaction, a result of the spatial inte-
gration limits of the analytical derivation. From the analysis of
the relevant parameters above, it follows that the parameter smin

is actually not a free parameter, but has to be a function of the
parameters given above. In Sect. 5.3, we compute the minimum
length scale of the interaction from our numerical solutions, as-
sociate this length scale with the shock’s stand-off distance, and
derive its dependence on the relevant problem parameters.

In the following, we present the numerical experiments per-
formed. The dependence of the dynamical friction on each of the
relevant parameters is determined in a single or multiple dedi-
cated simulation series. Table 1 gives an overview of the simu-
lation series and their physical and numerical parameters. Ow-
ing to the scale-freedom in the equations of the problem, the
gas mass density can be chosen arbitrarily; we use a value of
ρ∞ = 1.5 × 10−4 g cm−3 in all the simulations performed. In the
table, the velocity of the body is given in units of Mach. Simu-
lations with varying soundspeed of the medium (series “S”) use
the same velocity of the perturber, hence yield different Mach
numbers as well. Simulations with varying adiabatic index of the
medium (series “G”) use varying initial values of the gas pres-
sure to keep the soundspeed the same in all simulations of the
series.

5.2. The gas mass density

The dynamical friction should scale linearly with the density of
the environment:

FDF ∝ ρ∞. (18)

This scaling behaviour is a direct consequence of the fact that
the total dynamical friction is given by the sum of all the grav-
itational pulls from the environment onto the body. Each gravi-
tational pull scales linearly with the density of the environment.
Additionally, the hydrodynamical equations (see Sect. 3.2) are
scale-free in density, and so the flow morphology is independent
of the initial density of the medium.

5.3. Minimum spatial scale of interaction

The total dynamical friction acting on the moving body is given
by the spatial integral over the gravitational pull of the surround-
ing gaseous medium. According to Eqs. (1) and (2), it is expected
to scale with the value of a minimum spatial interaction scale
smin according to the Coulomb logarithm:

FDF ∝ ln(smax/smin). (19)

Below this minimum interaction scale, the gaseous medium is
assumed to exert no net gravitational pull on the body. What ac-
tually sets the minimum interaction scale is an open discussion
in the literature.

5.3.1. Spatial force analysis

In our study, the approach of direct numerical experiments al-
lows us to properly determine the minimum spatial interaction
scale in the case of gaseous media quantitatively. In order to de-
rive the impact of each spatial scale individually, we first calcu-
late the gravitational drag force acting on the object from the gas
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Fig. 5. Fractions of the gravitational drag force f (ri) to the total gravi-
tational drag force acting on the moving object as a function of distance
to the object. The vertical solid lines mark the stand-off distance RSO of
the shock ahead of the object, and the dashed vertical lines denote the
accretion radius RA according to Eq. (3). Results are shown for simu-
lations with three different Mach numbersM as labelled in the bottom
left corners.

inside a specific shell at radius ri with a radial shell thickness of
ri+1/2 − ri−1/2,

f (ri) = −

∫

S (ri)

GM

r2
ρ(x) êr dV, (20)

where the volume of shell S (ri) is given by

S (ri) = 2π

∫ π

0

∫ ri+1/2

ri−1/2

r2 sin(θ) dr dθ. (21)

The total gravitational force acting on the object is given by the
sum over all shells:

Fnumerical
DF =

∑

i

f (ri). (22)

Even though the above Eq. (20) is written in vector form, only
its z-component is non-zero due to the axial symmetry of the
problem. The net gravitational drag will lead to a slow-down of
the body, which is moving along the positive z-direction.

In Fig. 5, we show the fractions of the gravitational force
f (ri) as a function of radius or distance to the moving body, re-
spectively. The spatial analysis of the force is shown for three
simulations with Mach numbers M = 2, 4, and 8. Simulation
parameters are given in Table 1, series “V4”.

The spatial analysis clearly reveals the so-called stand-off
distance RSO of the shock front as the searched for minimum
spatial interaction scale smin:

smin = RSO. (23)

The associated bow shock forming in front of the body is visible
in the density morphology depicted in Fig. 4. The shock front
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Fig. 6. Force contributions for the equilibrium state according to
Eq. (17) for the gravitating, rigid sphere, given as a function of the Mach
number. F
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denotes the pressure force measured at the surface of the

sphere, Fnumerical
DF

denotes the total dynamical friction calculated accord-

ing to Eq. (22), F
prs
out the pressure force measured at the outer boundary

of the computational domain, and F trs
out the momentum transport through

the outer boundary. The sum of these four forces is denoted by Ftot.

RSO denotes the radius, where the flow changes from supersonic
to subsonic velocities. Moreover, the density morphology around
the body is characterized by the formation of a hydrostatic en-
velope extending up to RSO. This hydrostatic envelope is very
close to spherical symmetry, as also depicted in Fig. A.1. Hence,
although this region marks the highest gas mass density, and in
principle might have the strongest gravitational impact owing to
its closeness, the net gravitational pull within this hydrostatic
envelope (r < RSO) turns out to be negligible. The stronger com-
pression in the forward direction of the trajectory of the moving
body yields a slight deviation from spherical symmetry, which
actually results in a small gravitational acceleration instead of a
drag, but this effect is negligible compared to the total dynami-
cal friction and is only marginally visible in Fig. 5 by eye for the
case of highest Mach number; here the fraction of the dynamical
friction force close to but still below the stand-off distance has a
positive sign, indicating positive acceleration of the body.

Clearly, the shells inside the sphere around the object with ra-
dius RSO do not contribute to the total dynamical friction force,
because around the object a spherically symmetrical hydrostatic
envelope forms. This is confirmed in Fig. 6 where we plot the
individual contributions to the total drag force on the spherical
body as a function of Mach number. As shown, the contribu-
tion of the pressure force, F

prs

in
, acting on the object is negligible.

From this we can conclude that i) to calculate the drag acting
on the object it is sufficient to consider the dynamical friction
alone; and that ii) the relevant quantity for the minimum inter-
action scale smin is given by RSO. Additional simulations with
fixed Mach number M but different object masses M give the
same result for the spatial analysis of the force.

5.3.2. Convenient expression for the stand-off distance

It is the aim of this study to derive a general expression for the
dynamical friction that allows the acting gravitational drag to
be computed from the relevant problem parameters without the
need of direct numerical simulations. As revealed in the previous
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section, this expression for the dynamical friction will include a
scaling with

FDF ∝ ln(smax/RSO). (24)

In the next step of our investigation, we derive an expression
for the stand-off distance, which is based on the basic problem
parameters only. Therefore, we make use of the apparent rela-
tionship of the stand-off distance RSO to the accretion radius RA

(see Eq. (3) for the definition of the accretion radius).
Figure 5 seems to indicate that RSO is directly proportional

to the accretion radius RA. Since RA scales as ∝ M/V2
∞ we check

these scaling laws for the stand-off distance as well. We use
a series of simulations where we systematically vary the mass
M of the object and its velocity V∞. Simulation parameters are
given in Table 1, series “M2” and “V4”. The results are shown
in Fig. 7. Both panels show least-square fit lines that support
the fact that RSO ∝ M/M2. For larger M the stand-off dis-
tance becomes smaller according to RSO ∝ M

−2 as shown in
the top panel of Fig. 7. For fixed M, lowering the object mass
yields a smaller stand-off distance in agreement with RSO ∝ M
as shown in the bottom panel of Fig. 7. This outcome confirms
the scaling laws as long as the geometrical extent of the body R is
small compared to RSO. For high Mach shocks and for low body
masses, respectively, the stand-off distance cannot decrease to
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Fig. 8. Correlation of the shock’s stand-off distance RSO with the non-
linearity parameter η, as given in Eq. (26), for various model sequences.
In the top panel, RSO is normalized by the object radius R. For η > 1, a
dashed line representing the relation RSO/R = η is superimposed. In the
bottom panel, RSO is normalized by the corresponding accretion radius.

smaller radii and approaches the size of the body R instead. In
all other cases, RSO is directly proportional to RA:

RSO ∝ RA. (25)

An important difference between the two radii is given by the
fact that the stand-off distance depends on the thermodynamics
of the system. As a consequence, we study the impact of the adi-
abatic index γ on the stand-off distance and the final dynamical
friction term in Sect. 5.7 below.

To investigate further the proportionality between the two
radii, we perform additional simulations varying the mass, ra-
dius, and velocity of the object as well as the soundspeed of the
medium. Detailed simulation parameters are given in Table 1. To
find a useful general expression for the stand-off distance RSO we
utilize the non-linearity parameter

η =
GM

(M2 − 1)c2
∞R
=

1

2

M2

M2 − 1

RA

R
, (26)

as introduced by Kim & Kim (2009). In Fig. 8 we show the
stand-off distance RSO and the ratio of RSO/RA as a function of
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the non-linearity parameter η. As seen in the top panel, for η > 1
(larger M, lowerM) we find the scaling RSO/R ∝ η with an un-
known proportional constant close to unity as indicated by the
added dashed line. This is in good agreement with the results of
Kim & Kim (2009). The largest deviation from this trend is seen
in the rightmost green triangle, which belongs to a simulation in
the weakly supersonic regime M = 1.25. A spatial analysis of
the final configuration of this model shows that behind the shock
front and around the object the gaseous medium is not in hydro-
static equilibrium – as for the supersonic cases – but displays
small residual motions that did not disappear even in long-term
runs. So, we expect deviations from the following relation (27)
for non-supersonic flows, a regime that is not part of the present
study and that will have to be explored in future studies. For
comparison, we denote that the rightmost red square belongs to
a simulation withM = 2, but even larger η than the green trian-
gle run, and matches the found relationship much more closely.

For η < 1 (larger M, lower M) we enter the regime where
the stand-off distance is limited by the size of the object R, and
therefore the ratio RSO/R remains constant. For this regime of
low η, Kim & Kim (2009) find a different scaling because they
used a smoothed gravitational potential to model their perturber
instead of the solid surface used in our study. Using the definition
of η (Eq. (26)), the proportionality RSO/R ∝ η implies

RSO ∝
1

2

M2

M2 − 1
RA for RSO ≫ R. (27)

Relation (27) represents a suitable expression for the stand-off
distance. As pointed out above, the proportionality constant for
the simulations performed so far seems to be very close to unity,
but the relation still lacks the effect of different equations of state,
i.e. any dependence on the adiabatic index γ. We investigate this
dependence in detail in the following section.

The bottom panel of Fig. 8 confirms again the proportion-
ality between the stand-off distance and the accretion radius for
different Mach numbers, object masses, and soundspeeds in the
regime RSO ≫ R. We also checked that a change in the size
R of the moving body does not influence the stand-off distance
as long as R remains substantially smaller than RSO. Hence, the
curves for R = 0.1 and R = 0.01 are identical.

5.4. Maximum extent of the wake

The maximum extent of the wake past the body determines the
size of the perturbed region, which will contribute to the total
dynamical friction via its gravitational pull. In Eq. (1), the maxi-
mum extent of the wake enters as the outer radius of the integral
smax in the Coulomb logarithm CA:

FDF ∝ ln(smax/RSO). (28)

For an infinite medium, the size of the wake smax is given by the
duration of the movement of the perturbing object. For a body
starting its journey at t = 0 with a constant velocity V∞, the
time-dependent size of the wake smax at a later time t is given by
the distance travelled smax(t) = V∞t.

Relation (28) implies that the dynamical friction increases
as long as the body is moving through the medium, leading
to a larger and larger wake. In principal, the dynamical fric-
tion seems to approach an infinitely high force for an infinitely
long travelling object. In practice, the dynamical friction can-
not grow infinitely, not even for an infinitely large medium,
because the dynamical friction acting on the body leads to a
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Fig. 9. Scaling of dynamical friction with the size of the forming wake
for model C in Table 1.

slow-down of the object on a dynamical timescale of the gas-
body interaction (Sánchez-Salcedo & Brandenburg 2001). The
dynamical timescale of dynamical friction is given as the ratio of
the initial momentum of the moving object and the acting force
tDF = MV∞/FDF. Hence, the velocity of the perturber mono-
tonically decreases in time until the body is at rest. As a conse-
quence, the dynamical friction first increases (owing to a grow-
ing extent of the wake) to a maximum value and then decreases
(owing to the slow-down of the body).

Here, we model the evolution of the system on timescales
much smaller than the timescale for the slow-down of the body
to extract the acting dynamical friction as a function of the rel-
evant initial system parameters. As a next step, we check the
scaling of the dynamical friction force with the extent of the
wake. We compute the resulting dynamical friction by numer-
ically integrating the gravitational pull of the forming wake onto
the body up to different radii within the computational domain.
As a result, we obtain the individual contributions of the wake
at each radius. For further analysis, we extended the size of the
computational domain to Rdomain = 25 R⊙ (model C); other simu-
lation parameters correspond to the fiducial case (model F) given
in Table 1.

As shown in Fig. 9, the scaling of the numerically determined
drag force with the extent of the wake follows the expected loga-
rithmic relation. In the following, simulations make use of an ar-
bitrary size of the computational domain, which should be much
larger than the stand-off distance of the shock. Finally, the act-
ing dynamical friction can then be determined using the scaling
relation Eq. (28). We use an outer radius of the computational
domain of either 100 R or 1000 R, depending on the specified
radius R of the moving body.

5.5. Mass of the perturber

The dimensional part of the dynamical friction formula – as writ-
ten in Eqs. (1) and (5) – is expected to scale with the mass of the
object squared:

FDF/CA ∝ M2. (29)

The physical explanation for this scaling relation is that the mass
of the object first causes the accumulation of high density in the
wake (a gravitational back-reaction, which scales linearly with
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Fig. 10. Correlation of the ratio of dynamical friction and Coulomb log-
arithm with the mass of the perturber.

the mass of the object) and secondly, the gravitational pull of the
wake onto the object denotes a gravitational interaction, which
again scales linearly with the mass of the object. This argument
is based on a linearization of the equations to relate the forming
wake to a linear scaling with M.

Within our numerical framework, we can compute the total
dependence of the dynamical friction on the mass, and can fur-
ther check, if the dependence on M can be properly split into
a scaling with M2 in the dimensional part and its further de-
pendence within the dimensionless Coulomb logarithm CA. We
have performed numerical simulations for various masses M of
the perturber. Simulation parameters are given in Table 1, series
“M2”. The resulting scaling of the ratio of dynamical friction
and the Coulomb logarithm is shown in Fig. 10. The numerical
experiments confirm the expected scaling very accurately.

5.6. Velocity of the perturber

The dimensional part of the dynamical friction formula – as writ-
ten in Eqs. (1) and (5) – is expected to scale with the inverse of
the velocity of the object squared:

FDF/CA ∝ V−2
∞ . (30)

This scaling can only be true for supersonic motion and actually
denotes a peculiarity of the dynamical friction because usually
hydrodynamical drag forces (see Eq. (5)) scale with the square
of the velocity, V2

∞. In the case of dynamical friction, however, a
faster body is already further away from the high-density wake
once it has formed. The distance of the body to the forming wake
scales linearly with its velocity and the gravitational pull scales
with the inverse of the distance squared.

As shown above, this inverse scaling with V2
∞ of the dynami-

cal friction force can be understood in terms of an effective cross
section that is given by the accretion radius, Racc, that decreases
with higher velocities of the body. This gives rise to the scaling
of the dynamical friction with the inverse of the velocity of the
object squared.

We have performed numerical simulations for various ve-
locities V∞ of the perturber. Simulation parameters are given in
Table 1, series “V4”. The resulting scaling of the ratio of dy-
namical friction and drag coefficient is shown in Fig. 11. Again,
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Fig. 11. Correlation of the ratio of dynamical friction and Coulomb log-
arithm with the velocity of the perturber.

the numerical experiments confirm the expected scaling. Devi-
ations from the scaling law occur for very high Mach numbers
because the stand-off distance cannot shrink to arbitrarily small
values and approaches the geometrical radius of the body instead
(compare discussion in Sect. 5.3 for details, especially Fig. 7).

5.7. Adiabatic index

All the simulations presented in the previous sections use an adi-
abatic index of γ = 5/3. This was also the one and only value
for the adiabatic index investigated in Kim & Kim (2009). How-
ever, the compression in the shocked region around the object,
as well as the compression in the wake behind the moving body,
depends on the equation of state in use and so on the value of the
adiabatic index. In an extreme case (e.g. for very large values of
the adiabatic index), the gaseous medium becomes incompress-
ible because any compression (i.e. increase in density) causes the
pressure to increase infinitely, which causes an infinitely strong
pressure force, and the medium directly relaxes towards an iso-
density morphology again.

To further investigate the generality of our results so far we
perform a variety of additional model sequences using different
adiabatic indices. Detailed set-up parameters of these simulation
series are given in Table 1.

The correlation of the stand-off distance with the velocity
of the perturber is shown in Fig. 12, but now for a variety of
different values of the adiabatic index γ. For large Mach numbers
M, the stand-off distance approaches the geometrical radius of
the object. For lowerM, as indicated by the coloured lines, all
simulation series confirm the scaling law of RSO/R ∝ M

−2 as
previously determined in Fig. 7.

In Fig. 13 top panel, the correlation of the stand-off distance
with the non-linearity parameter η is shown for different values
of γ. Coloured lines indicate linear fits in the log-log plane of
the plot. Since we found RSO/R ∝ η for γ = 5/3 in agreement
with Kim & Kim (2009), we assume the following more general
relation,

RSO

R
= g(γ) η, (31)
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Fig. 12. Correlation of the shock’s stand-off distance with the Mach
number for different values of the adiabatic index γ. Dots denote results
from the numerical simulations. The coloured lines represent the scaling
of RSO/R ∝ M

−2.

where the factor g(γ) describes the dependence on the adiabatic
index γ. Specific values of this function are obtained according
to the linear fits to the numerical experiments, namely

γ 1.2 1.4 5/3 2.0 3.0 4.0

g(γ) 2.17 1.33 1.00 0.95 1.22 1.70

For large values of the adiabatic index, namely γ = 3 and 4, the
accuracy of the fit values has to be taken with care, because the
fits only rely on three or four data points.

In the bottom panel of Fig. 13, the stand-off distance is
shown in units of the accretion radius as a function of the Mach
number. Here too the previously determined correlation between
the stand-off distance and the accretion radius (Eq. (27)) can be
generalized to include the dependence on the adiabatic index γ
via

RSO =
g(γ)

2

M2

M2 − 1
RA. (32)

This function is presented as coloured lines in the bottom panel
of Fig. 13. The values for g(γ) are as given above.

In Appendix B, we derive an analytical estimate of the
γ-dependence of the stand-off distance:

RSO

RA

.
(γ + 1)2

4γ















1 −

(

(γ − 1)

γ + 1

)γ−1














−1

− 1. (33)

This relation is shown in comparison to a simulation series of
varying adiabatic index in Fig. 14. The estimate does not allow
an exact determination, but it denotes an upper limit of the stand-
off distance. More importantly, the estimate follows the trend of
the γ-dependence when compared to the numerical experiments.

Owing to the similarity to the γ-dependence, we choose the
analytical estimate as the basis function of a fit to the numerical
data, but allow now for a shift in γ → γ + a and in RSO/RA →

RSO/RA + b

RSO

RA

≈
((γ + a) + 1)2

4(γ + a)















1 −

(

((γ + a) − 1)

(γ + a) + 1

)(γ+a)−1














−1

−1−b, (34)

with a and b as free fitting parameters. A least-square fit of this
function to the numerical data yields a = 0.1 and b = 0.18.
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Fig. 13. Correlation of the shock’s stand-off distance with the non-
linearity parameter η given in Eq. (26) (top panel) and the Mach number
(bottom panel). The top panel is analogous to the top panel of Fig. 8,
but now with results for different values of the adiabatic index γ. Dots
denote results from the numerical simulations. Coloured lines represent
the relations discussed in the main text.

Using Eq. (32) for theM = 4.0 numerical data in combina-
tion with the fitted function Eq. (34) gives an approximate func-
tion of g(γ)

g(γ) ≈
15

8















((γ + a) + 1)2

4(γ + a)















1 −

(

((γ + a) − 1)

(γ + a) + 1

)(γ+a)−1














−1

− 1 − b















(35)

with a = 0.1 and b = 0.18.

As a further check of the approximate function, we can
compare this relation with the tabular values above derived via
Eq. (31), see Fig. 15. The approximate function g(γ) for the over-
all γ-dependence gives reasonable results in comparison to the
numerical outcome. As stated previously, for large values of the
adiabatic index, namely γ = 3 and 4, the accuracy of the fit val-
ues (big blue dots) has to be taken with care, because the fits rely
only on three or four data points.
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Fig. 14. Stand-off distance in units of accretion radius RSO/RA as a func-
tion of the adiabatic index γ. The black line denotes the analytically
estimated upper limit given in Eq. (33).
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Fig. 15. Comparison of the semi-analytical approximation of the func-
tion g(γ), see Eq. (35), shown as a black line with numerically obtained
values. Small red dots denote the simulation series “G” with varying
adiabatic index; each red dot represents a single simulation. Larger blue
dots denote values derived by fitting the scaling of the stand-off distance
with the non-linearity parameter for a variety of different simulation se-
ries shown in the top panel of Fig. 13; each blue dot represents such
a fit value to a full simulation series. See main text for details of the
derivation.

6. New formula of dynamical friction

As a final step, we combine our obtained scaling law for the
stand-off distance, RSO, and the dependence on the adiabatic in-
dex, γ, to formulate a new general expression for the dynamical
friction of a gravitating body of mass M and radius R moving su-
personically with velocity V∞ through a homogeneous gaseous
medium of mass density ρ∞ and soundspeed c∞:

FDF = 4πρ∞

(

GM

V∞

)2

ln

(

smax

RSO

)

· (36)

The determination of the drag force from the basic problem pa-
rameters only requires an a priori knowledge of the stand-off dis-
tance. As shown above, the shock’s stand-off distance RSO can be
approximated by

RSO =
g(γ)

2

M2

M2 − 1
RA, (37)

with g(γ) given by Eq. (35).
Strictly speaking, the formula above for the stand-off dis-

tance is only valid for a stand-off distance larger than the geomet-
rical radius of the object. In the regime of large, low-mass bodies
moving with high velocity, the stand-off distance approaches the
value of the geometrical radius instead, and smin can be replaced
by the object size R.

We check the overall accuracy of this approximate determi-
nation of dynamical friction in direct comparison to the various
numerical experiments performed here, covering a broad param-
eter space in terms of the dimensionless non-linearity parameter
η = [2 (M2 − 1)/M2 R/RA]−1. The result of this comparison is
shown as the ratio of the force in the experiments and the ap-
proximate formula in Fig. 16. The approximate formula can be
used as a convenient tool to estimate the drag force from the ba-
sic parameters in reasonable accuracy. Especially in the regime
of 1 ≤ η ≤ 50 the estimated values match the numerical ex-
periments. The largest deviations are observed in the marginally
supersonic regime (M close to unity, denoted by the rightmost
greenish triangle) and in cases where the shock’s stand-off dis-
tance approaches the size of the object. This effect is visible
when comparing the numerical outcome in the regime of large η
for simulations with larger (green diamonds) and smaller object
radii (red squares) in the top panel of Fig. 16.

To compare how well our newly derived formula approx-
imates the drag force, FDF, we plot in Fig. 17 the numeri-
cally calculated drag force divided by the factor 4πρ∞ (GM/c∞)2

for varying Mach numbers of the perturber as black dots. The
relation

FDF/
(

4πρ∞ (GM/c∞)2
)

= CA/M
2 (38)

is shown as a solid black line, where we use CA = ln(smax/RSO)
with RSO according to Eq. (32). For the maximum radius in CA

we used rmax = 1000R. As can be seen, our approximative func-
tion for CA reflects the numerical data very well.

7. Summary

We derived a new formula for dynamical friction of a body
moving with supersonic speed through a homogeneous gaseous
medium. This formula was obtained by following an ansatz of
direct numerical modelling of the dynamical problem.

In 11 simulation series that include a total of slightly more
than 100 individual simulations, we scanned the parameter space
of the problem and derived the scaling relations of the dynam-
ical friction with the mass, velocity, and radius of the moving
body; the gas mass density, its soundspeed, and the value of the
adiabatic index; and the maximum extent of the forming wake.

7.1. Scaling relations

As expected, the dimensional part of the dynamical friction for-
mula as given in Eq. (36) scales proportionally to the mass of the
moving body squared, and to the inverse of its velocity squared.
Furthermore, the dynamical friction FDF scales linearly with the
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Fig. 16. Comparison of the newly derived approximate formula for
dynamical friction FDF with data from various numerical experiments
Fnumerical

DF
. The corresponding ratio is given as function of the non-

linearity parameter η. The top panel shows results from a variety of
simulations with adiabatic index γ = 5/3, varying the Mach number,
soundspeed, and object mass. The bottom panel shows results from a
variety of simulations with varying Mach number for different adiabatic
indices as labelled.

gas mass density and is proportional to the logarithm of the ra-
tio of the spatial extents of the forming wake and the shock’s
stand-off distance.

7.2. Minimum spatial interaction scale

The numerical experiments allow us to compute the total dy-
namical friction acting on the body and also to investigate the
individual contributions to the dynamical friction induced as a
function of the distance to the perturber. The outcome of this
analysis reveals that the region within the stand-off distance RSO

of the shock does not contribute to the dynamical friction of a
gaseous medium (see Fig. 5 and associated main text for de-
tails). At radii smaller than the stand-off distance, a spherically
symmetric stratified atmosphere forms around the moving body,
which (because of its symmetry) induces no net gravitational
pull or pressure force. Only at radii above the stand-off distance
does a wake of higher density form behind the moving body and
induce a gravitational drag force.
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Fig. 17. Normalized drag force as a function of the Mach number. The
solid line resembles our newly derived formula as given in Eq. (36).
The numerical data are given by the black dots, for which we we used
simulation series V4.

Hence, in the well-known formulae by Ruderman & Spiegel
(1971) or Ostriker (1999), it is the stand-off distance RSO of the
shock that determines the minimum length scale smin required in
the so-called Coulomb logarithm CA = ln(smax/smin):

smin = RSO. (39)

The formation of a spherically symmetric atmosphere (with ra-
dius RSO) around a gravitating object implies that the hydrody-
namical drag force vanishes in contrast to the non-gravitating
case, but for very high Mach numbers the shock moves very
close to the object so that RSO ≈ R. In this case, no spherically
symmetric envelope around the object forms and the hydrody-
namical drag becomes important again.

7.3. Relating the stand-off distance to the accretion radius

In a second step, to allow an easy computation of the stand-off
distance for general dynamical friction problems, we derived the
relation of the shock’s stand-off distance to the common defini-
tion of the accretion radius,

RA =
2GM

V2
∞

, (40)

depending only on the mass M and velocity V∞ of the perturber.
The stand-off distance is directly proportional to the accretion ra-
dius and the proportionality constant only depends on the Mach
number and the adiabatic index of the gas:

RSO =
g(γ)

2

M2

M2 − 1
RA. (41)

Additionally, the geometrical radius R of the moving body yields
a lower limit for the stand-off distance (RSO ≥ R).

Via an analytical estimate of the stand-off distance and fur-
ther fitting of the remaining free parameters, we gave an approxi-
mate relation of the dependence of the shock’s stand-off distance
on the adiabatic index γ of the gaseous medium

g(γ) =
15

8



















(γ′ + 1)2

4γ′















1 −

(

(γ′ − 1)

γ′ + 1

)γ′−1














−1

− 1 − b



















(42)

with γ′ = γ + a and values of a = 0.1 and b = 0.18.
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7.4. Updated formula of dynamical friction

Finally, we combined the derived scaling relations and the find-
ing on the stand-off distance to give an update of the well-known
formula of dynamical friction acting on a body of mass M mov-
ing at supersonic speed V∞ through a gaseous homogeneous
medium of mass density ρ∞,

FDF = 4πρ∞

(

GM

V∞

)2

ln

(

smax

RSO

)

, (43)

where smax denotes the extent of the wake and RSO can be ob-
tained using the derived formulae above.
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Appendix A: Hydrostatic equilibrium stratification

As mentioned in the text, behind the shock front and around the
object the material is highly subsonic and can be approximated
by assuming a hydrostatic equilibrium. The morphology is illus-
trated in more detail in Fig. A.1 where we show the stratification
of different physical quantities in different directions. The data
shown is extracted from a simulation with the fiducial parame-
ters specified in Table 1.

As is clearly visible, within the stand-off radius, as given by
the discontinuity of the solid curve, all three cuts agree with each
other and so the stratification is spherically symmetric. Because
the Mach number is very close to zero, it is hydrostatic as well.
Here, we derive analytical relations for this stratification that are
used in the following section of the Appendix to obtain an ana-
lytical estimate of the shock’s stand-off distance.

For spherical symmetry the equation of hydrostatic equilib-
rium reads

1

ρ

dp

dr
= −

dφ

dr
, (A.1)

where φ is the gravitational potential. Now we use an adiabatic
approximation for the pressure,

p = Kργ, (A.2)

where K is a constant, and integrate from a reference radius r0

to r, yielding

(

ρ

ρ0

)γ−1

= 1 −
γ − 1

c2
0

(φ(r) − φ0) . (A.3)

Here the subscript 0 refers to the reference radius r0 where the
values are known.

As a next step, we want to analyse the bow shock in front of
the object. We can find the physical properties behind the shock
from the standard jump conditions

ρ2

ρ1

=
(γ + 1)M2

1

(γ − 1)M2
1
+ 2

(A.4)

p2

p1

=
(γ + 1) + 2γ(M2

1
− 1)

γ + 1
· (A.5)

Here, the index “1” refers to the pre-shock values (supersonic
regime) and the index “2” to the post-shock (subsonic) regime.
These are valid in a reference frame moving with the shock. In
our case the shock is stationary in the co-moving frame of the
body, and we can directly apply the jump conditions if we know
the pre-conditions. The simulations show that the pre-shock val-
ues of density, pressure, and temperature at the stand-off radius
RSO are just the prescribed inflow values (at∞; cf. Fig. A.1).

To obtain the pre-shock Mach-numberM1 at this radius we
use the free-fall condition. From the conservation of energy (ki-
netic and gravitational), we obtain

M1 =M∞

(

1 +
1

xSO

)1/2

, (A.6)

where the coordinate x denotes the radial distance to the shock
front in units of the accretion radius, specifically xSO = RSO/RA.
Equation (A.6) matches the simulation outcome quite well
(cf. Fig. A.1).
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Fig. A.1. Stratification around the moving object. Values in front of the
moving object (θ = 0), perpendicular to its velocity (θ = 90), and behind
the object (θ = 180) are displayed. From top to bottom the panels show
gas density, pressure, Mach number, and entropy of the flow.

To obtain the (hydrostatic) post-shock density stratification
around the object we first use these normalizations to obtain the
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Fig. A.2. Stratification of gas density (upper panel) and pressure (bot-
tom panel) around the moving object. As in the previous figure, val-
ues in front of the moving object (θ = 0), perpendicular to its velocity
(θ = 90), and behind the object (θ = 180) are displayed. The addi-
tional red lines denote the analytical estimates obtained from Eqs. (A.7)
and (A.2), respectively. In the formula of the estimate, a value for the
stand-off distance of xSO = 0.533 was used, in accordance with the final
quasi-stationary state of the numerical experiment.
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with an arbitrary point x0, where ρ0 and c0 are known values
at the reference radius. If we now choose x0 = xSO, the other
quantities correspond to the desired postshock quantities and can
be obtained from the jump conditions usingM1 from Eq. (A.6).
The required shock-position xSO enters at this point as a free
parameter obtained from the numerical solution.

Appendix B: Estimate of the stand-off distance

Because the stratification around the object is nearly hydrostatic,
some limits can be obtained on xSO. Here, we use the strong
shock conditions, i.e.M1 → ∞ and obtain for the jumps in den-
sity and pressure

fρ ≡
ρ2

ρ1

=
γ + 1

γ − 1
(B.1)

fp ≡
p2

p1

=
2γM2

1

γ + 1
(B.2)

and hence for the post-shock soundspeed (in units of c∞)

c2
SO =

fp

fρ
=

2γM2
1

(γ + 1)2
(γ − 1). (B.3)

We now assume that for large distances, x → ∞, the density of
the post-shock stratification lies below the unperturbed density
ρ(x → ∞) ≤ ρ∞ as seen in the simulations. This is shown in
Fig. A.2 where the analytical post-shock stratification (red solid
curve) for large radii lies just below the unperturbed value ρ∞.
Inserting Eq. (B.3) into Eq. (A.7) yields
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Fig. C.1. Convergence test of the numerical set-up. Values on the hor-
izontal axis denote the total number of grid cells Nr × Nθ. The vertical
axis shows the relative deviation of the resulting stand-off distance RSO

(solid circles) and the dynamical friction Fnumerical
DF

(dashed circles) from
its corresponding value of the highest resolution run.

withM1 from Eq. (A.6). Solving for xSO finally leads to

xso ≤
(γ + 1)2

4γ
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This function is shown in Fig. 14 in comparison to data from
numerical simulations. While the relation (B.5) cannot give the
exact value for RSO it nevertheless provides a reasonable upper
limit for the stand-off distance, and follows the trend of the ob-
tained numerical results.

Appendix C: Convergence study

We ran simulations using varying grid sizes from roughly 103 up
to 106 grid cells in total (more precisely, we varied the num-
ber of grid cells from Nr × Nθ = 50 × 23 = 1150 up to
Nr × Nθ = 1720 × 790 = 1.3588 × 106 grid cells). The inner
radial boundary of these simulations was chosen as R = 0.01 R⊙.
Other simulation parameters correspond to the “fiducial set-up”
given in Table 1. From the final quasi-stationary state we deter-
mine the two most relevant physical quantities of our investiga-
tion, namely the shock’s stand-off distance RSO and the dynami-
cal friction Fnumerical

DF
acting on the moving body.

The results of this convergence study are presented in
Fig. C.1. Deviations are given as relative differences to the values
from the highest resolution simulation using more than 106 grid
cells. The numerical results show a clear convergence trend. For
numerical grids larger than 105 grid cells, the deviations be-
come negligibly small. To be on the very safe side, we chose
Nr × Nθ = 860 × 400 = 3.44 × 105 grid cells as our default res-
olution for the simulations performed. Simulations with a larger
inner radial boundary of R = 0.1 R⊙ require fewer grid cells in
the radial direction, especially owing to the logarithmic grid in
the radial direction. Nonetheless, we also use here a comparable
grid size of Nr × Nθ = 700 × 480 = 3.36 × 105 grid cells as our
default resolution.
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