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a b s t r a c t

We investigate the use of the Hurst exponent, dynamically computed over a weighted

moving time-window, to evaluate the level of stability/instability of financial firms.

Financial firms bailed-out as a consequence of the 2007–2008 credit crisis show a neat

increasewith time of the generalized Hurst exponent in the period preceding the unfolding

of the crisis. Conversely, firms belonging to other market sectors, which suffered the least

throughout the crisis, show opposite behaviors. We find that the multifractality of the

bailed-out firms increase at the crisis suggesting that themulti fractal properties of the time

series are changing. These findings suggest the possibility of using the scaling behavior as a

tool to track the level of stability of a firm. In this paper, we introduce amethod to compute

the generalized Hurst exponent which assigns larger weights to more recent events with

respect to older ones. In this way large fluctuations in the remote past are less likely to

influence the recent past.We also investigate the scaling associatedwith the tails of the log-

returns distributions and compare this scaling with the scaling associated with the Hurst

exponent, observing that the processes underlying the price dynamics of these firms are

truly multi-scaling.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The search for scaling behaviors in financial markets is nowadays a very rich discipline [1–11] where the growing
amount of empirical data is continuously advancing the understanding of markets behaviors. Two types of scaling [12,13]
are observed and studied in the finance literature: the first one is associated with any volatility measure and its scaling in
time (e.g. moments of the returns distribution), while the second one reflects the behavior of the tails of the distribution
of returns. In this paper we look at both of them and at the relationship between the two by using the generalized Hurst
exponent (GHE) approach. Previous works [14,15] have highlighted that the value of the GHE allows one to characterize the
stage of development of a market, with values of the GHE greater than 0.5 indicating a low stage of development, typical of
the emerging markets, while values of the GHE lower than 0.5 correspond to an advanced stage of development. Here we
studywhether the same paradigm can be applied to characterize the level of stability of a firm. To this purpose we introduce
a weighted average to compute the dynamical generalized Hurst exponent obtaining a finer differentiation in the historical
time series by smoothing the propagation of large fluctuations from the remote past to the near present. Although multi-
scaling analysis based on the GHE has been already extensively pursued in the literature [9–11,14–20], the dynamics of the
GHE has been scarcely investigated [21]. From a technical perspective a dynamical study of multi-scaling properties is very
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challenging because onemust analyze a long enough time-period to obtain a reliable statistics but simultaneously the time-
periodmust be short enough to catch changes occurring at given times. In this workwe have used an exponential smoothing
on a moving time-window and studied the best combination of window sizes and exponential weights that satisfies both
these requirements. In particular, our analyses have been focused in determining whether the GHEmay be used to track the
stability of firms from several market sectors. The data are from 395 stock prices of companies listed in the New York Stock
Exchange (NYSE) and have been provided by Reuters. We have analyzed several companies belonging to different market
sectors but we have focused our attention on the companies most severely involved in the unfolding of the 2007–2008
‘‘credit crunch’’ crisis. The scaling analysis based on the estimation of the GHE is also compared to the one associated with
the behavior of the tails of the distribution.

This paper is structured as follows: Section 2 recalls the definition of the GHE; Section 3 describes the weighted-average
algorithm; in Section 4 the empirical analysis is performed and a proper choice of the parameters of the system is discussed;
Section 5 introduces the scaling of the distributions of the returns whose relations to the GHE is reported in Section 6;
in Section 7 we provide significance tests to assess the validity of our conclusions; a summary and outlook are drawn in
Section 8.

2. Generalized Hurst exponent

The generalized Hurst exponent is a tool to study directly the scaling properties of the data via the qth-order moments of
the distribution of the increments and it is associated with the long-term statistical dependence of a certain time series S(t),
with t = (1, 2, . . . , k, . . . , 1t), defined over a time-window 1t with unitary time-steps.1 Being a measure of correlation
persistence, it is necessarily related to fundamental statistical quantities which turn out to be the qth-order moments of the
distribution of the increments, defined as Refs. [14,22]

Kq(⌧ ) =
h|S(t + ⌧ ) � S(t)|qi

h|S(t)|qi
, (1)

where ⌧ can vary between 1 and ⌧max and h·i denotes the sample average over the time-window. Note that for q = 2, Kq(⌧ )
is proportional to the autocorrelation function: C(t, ⌧ ) = hS(t + ⌧ )S(t)i. The generalized Hurst exponent is then defined
from the scaling behavior of Kq(⌧ ) when the following relation holds:

Kq(⌧ ) / ⌧ qH(q). (2)

Processes exhibiting this scaling behavior can be divided into two classes: (i) Processes with H(q) = H , i.e. independent
of q. These processes are uniscaling (or unifractal) and their scaling behavior is uniquely determined by the constant H
(Hurst exponent or self-affine index [14]). (ii) Processes with H(q) not constant. These processes are called multiscaling (or
multifractal) and each moment scales with a different exponent. Previous works have pointed out how financial time series
exhibit scaling behaviors which are not simply fractal, rather multi-fractal, or multiscaling [14,15]. The GHE is computed
from an average over a set of values corresponding to different values of ⌧max in Eq. (1) [15,16,23]. The analysis based on the
generalized Hurst exponent is very simple as all the information about the scaling properties of a signal is enclosed in the
scaling exponent H(q).

3. Weighted exponential smoothing

To take into account the fact that the recent past is more important than the remote past we can assume that the infor-
mational relevance of observations decays exponentially. This ‘exponential smoothing’ is attained by defining weights as

ws = w0 exp

⇣

�
s

✓

⌘

, 8 s 2 {0, 1, 2, . . . , 1t � 1} (3)

where ✓ is the weights’ characteristic time and its inverse is the exponential decay factor ↵ = 1
✓
. The parameter w0 is given

by Ref. [24]

w0(↵) =
1 � e�↵

1 � e�↵1t
. (4)

The weighted average over the time-window [t � 1t + 1, t] for a general quantity f (xt) is thus

hf iw(t) =

1t�1
X

s=0

ws f (xt�s) (5)

1 Here, to simplify notation, we use unitary time-steps; generalization to arbitrary time-steps is straightforward.



Author's personal copy

3182 R. Morales et al. / Physica A 391 (2012) 3180–3189

Fig. 1. Prices of four bailed-out companies FannieMae, American International Group (AIG), FreddieMac,WashingtonMutual (WM) plus Lehman Brothers

(LBH) as function of time.

Fig. 2. Logarithmic returns, r , for the time series of the Freddie Mac stock prices as function of time t in the period between 1 January 1996 and 30 April

2009. The large fluctuations corresponding to the unfolding of the 2007–2008 crisis are clearly visible.

and the weighted GHE (wGHE) is therefore obtained by substituting the normal averages in Eq. (1) with weighted averages:

Kw
q (t, ⌧ ) =

h|S(t + ⌧ ) � S(t)|qiw(t)

h|S(t)|qiw(t)
. (6)

From the scaling law in Eq. (2) this leads to the linear relation

ln(Kw
q (t, ⌧ )) = qHw(q) ln (⌧ ) + const (7)

from which the wGHE can be computed. In the next section we apply this tool to the empirical time series.

4. Empirical analysis

The empirical time series here analyzed include daily stock prices from 1 January 1996 to 30 April 2009 (see Fig. 1 where
we plot the prices of Fannie Mae, American International Group (AIG), Freddie Mac, Washington Mutual Corp (WM) and
Lehman Brothers Holdings (LBH)). From these prices we define a new time series of the daily log-returns

r(t) = ln(P(t + 1)) � ln(P(t)) (8)

where P(t) is the daily price. In Fig. 2 an example of log-returns for the Freddie Mac stock price is shown. Not surprisingly,
these returns exhibit large fluctuations in the crisis period. From the log-returns we have then computed the wGHE by
using Eq. (7). In analogy with Refs. [16,15,23] we have estimated the Hw(q) as an average of several linear fits of Eq. (7) with
⌧ 2 [1, ⌧max] and varying ⌧max between 5 and 19 days. As proxy of the statistical uncertainty of the scaling law we have
computed the standard deviation of the Hw(q) over this range of ⌧max. To track the evolution of the stage of development
of a certain company, we have studied the dynamics in time of the wGHE on overlapping time-windows with a constant 50
days shift between any two successive windows.
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Fig. 3. Weighted generalized Hurst exponent Hw(q = 1) as a function of time for American International Group (AIG). Left panel: 1t = 200 days time-

window. Right panel: 1t = 400 days time-window. The characteristic time is kept constant at ✓ = 300 days in both plots. The points are reported in

correspondence of the end of the time-window.

Fig. 4. Weighted generalized Hurst exponent Hw(q = 1) as a function of time for American International Group. The overlapping time-windows are

1t = 1250 days, with ✓ = 250 days. The values are plotted in correspondence of the end of the time-window (solid black line). The shaded areas around

the tick-line plot represent the sizes of the standard deviations.

First of all, to fully capture the advantages of the weighted average method, a choice of the parameters ✓ and 1t , namely
the characteristic time and the width of the time-window, has to be made. In particular the time-window 1t must be large
enough to provide good statistical significance but it should not be too large in order to retain sensitivity to changes in
the scaling properties occurring over time. In order to satisfy both these requirements we take a rather long time-window
1t combined with a relatively short characteristic time ✓ . For instance, in Fig. 3 we show how the manipulation of the
parameters ✓ and 1t affects the dynamics of the Hurst exponent of the company AIG. As it can be appreciated in the figure,
which shows plots for AIGwith time-windows of respectively 200 days (left panel) and 400 days (right panel) while keeping
✓ = 300 days, the shape of the outline shrinks and gets neater as the time-window is increased. The left panel of Fig. 3 shows
more noisy dynamicswhen1t is smaller. Conversely, in the right panel we can appreciate that a slimmer outline is achieved
by increasing the statistics, but duly weighting it. We find the best match of the two parameters to be 1t = 1250 days (five
years of trading time) and ✓ = 250 days (one year of trading time). The result of this is shown in Fig. 4 for AIG where the
thick lines are the averageHw(1) and the bands are the standard deviations over ⌧max between 5 and 19 days [16,15,23]. This
choice of the parameters has been optimized in order to obtain a sufficiently large statistics, while still allowing to perform
the analysis on the moving window. At the same time the events are weighted such that not all the information present
in the time series is given the same importance. One can see that the firm shows a well-defined increasing trend, with a
transition from values <0.5 to values >0.5.

We focus on Hw(1) even though, especially for the bailed-out companies, it would also be interesting to look at Hw(2),
which, as we said, is associated to the scaling of the auto-correlation function of the time series. However, in spite of
the behavior being very similar to that observed for Hw(1), the second moment is not defined (the tails of the returns
distributions of these firms have ↵ < 2 and hence the variance diverges) and thus it is difficult to interpret the real meaning
of Hw(2).

In Fig. 5 the dynamics in time of Hw(1) for the companies Freddie Mac and Fannie Mac is reported. These are public
government sponsored enterprises which in September 2008 had to be put into conservatorship by the US Treasury; namely
the huge debts of these companies were purchased by the US government. After playing a central role in the market during
the mortgages’s boost both firms defaulted. Their fate is pretty well pictured by the dynamical wGHE. Indeed, there is a
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Fig. 5. Weighted generalized Hurst exponent Hw(q = 1) as a function of time. Left panel: Freddie Mac. Right panel: Fannie Mae. The increasing trend over

the whole period highlights a transition from values of Hw(1) < 0.5 to values of Hw(1) > 0.5. This suggests a progressive change in the stability of the

companies under study.

Fig. 6. Weighed generalizedHurst exponentHw(q = 1) as a function of time. Left panel: GeneralMotors, a company thatwent bankrupt following Chrysler

in June 2009. Its bankruptcy was classified as the fourth largest in US history. Right panel: Washington Mutual Corp. The increasing trend over the whole

period highlights a transition from values of Hw(1) < 0.5 to values of Hw(1) > 0.5. This suggests a progressive change in the stability of the companies

under study.

clearly visible trend in these plots showing how the value of Hw(1) for these companies has been increasing since 1996
until 2009. This is particularly interesting if we compare the two very similar panels. According to Refs. [14,15] these trends
might suggest a transition from a stable stage of the companies to an unstable one.

Other bailed-out companies which show similar trends are shown in Fig. 6. Again the trend is increasing and crossing
over the value of 0.5 towards the end of the time-period when the crisis fully unfolded.

We have compared these results with those obtained by looking at other companies either from the financial sector or
belonging to other market sectors to test the significance of these results. For example, in the Basic Materials sector, we
find many companies whose dynamical wGHE decreases in time, thus exhibiting an opposite behavior to that shown by
the bailed-out companies in the financial sector. An example is reported in Fig. 7 where the dynamical wGHE’s for two
companies belonging to the sector of Basic Materials are shown. We notice a very definite overall decreasing trend, as if
the companies’ securities gained persistence in going through the period of crisis. This is in agreement with what has been
considered as the boost of the commodities market during the crisis, where investors were turning away from the financial
sector.

There are other sectors that have revealed instead no particular trend in the dynamical wGHE. We stress that even in the
Financial sector itself, the increasing trend found for the bailed-out companies is not common to others; for instance, many
companies, like American Express Co and Morgan Stanley show stable behaviors, with wGHE values steadily fluctuating
about 0.5. We will see in the next paragraph that the sectors exhibiting a defining trend in the dynamical wGHE are also
those showing extreme values in the tail exponents of their distributions of returns. Although the increase or decrease of
the wGHE is not simply related with the return statistics only, both behaviors are associated with the fluctuations of the
log-returns distributions.

5. Fat-tails and extreme events

The unfolding of the 2007–2008 ‘‘credit crunch’’ financial crisis hasmade all of us again aware that very large fluctuations
can happen with finite probability in financial markets. Indeed large fluctuations are very unlikely, say impossible, in a
normal statistics frame but are instead rather common in complex systems and they are properly accounted by non-
normal statistics. In order to quantitatively catch these large fluctuations we have investigated the scaling of the tails of
the distributions of the log-returns. In Fig. 8 we report the complementary cumulative distribution for the stock prices
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Fig. 7. Weighed generalized Hurst exponent Hw(q = 1) as a function of time for: Left panel–Noble Energy Inc.; Right panel–Occidental Petroleum. The

time-window is taken to be 1t = 1250 days and ✓ = 250 days.

Fig. 8. (Color online) Complementary cumulative distributions of the log-returns for the stock prices of Lehman Brothers (left panel) and American

International Group (right panel). The vertical green lines mark respectively one, three and ten standard deviations (from left to right). The black line

is the best fit of the tail region with the power law function F>(r) / r�↵ . The estimated best-fit exponent is ↵ ⇠ 1.7 for both companies.

of the same companies studied in the previous section. Let us recall that, given a probability density function F(x), its
complementary cumulative distribution2is defined by

F>(x) = 1 � F<(x) = 1 �

Z x

�1

F(s)ds. (9)

We can see from Fig. 8 that fluctuations above 3� have frequencies above 10�2 and therefore are occurring on average
several times a year. We can also observe that the tails decrease linearly in log–log scale. Indeed, we find, in the tail region,
good fits with the power law function F>(r) / r�↵ with ↵ ⇠ 1.7. Although the linear decrease of large fluctuations in
log–log scale is not necessarily a proof for power-law behavior, in this case the power law hypothesis is enforced by the
p-value test (p = 0.43 for AIG and p = 0.48 for LBH) [25]. However we stress that by excluding the recent unstable period
from the same dataset, i.e. taking off the years 2007–2009, a slightly different picture emerges with the scaling exponents
exhibiting larger values and the frequency of very large fluctuations becoming an order of magnitude smaller. Fig. 9 shows
the exponents for all the firms, computed both over the entire period and over the period excluding the crisis. As one can
appreciate, excluding the crisis period, the exponent increases for all firms and the occurrence of extreme events is much
lower than that observedwhen the crisis is included. In particular Fig. 9 shows how the financial sector forms a cluster at the
bottom end of the sorted companies, when the crisis period is included. It is also interesting to note that the firms belonging
to the Technology sector appear to be the most stable.

Values of the scaling exponents ↵ between 2 and 4 are commonly observed in these systems [26,27]. These distributions
typically have finite second moment � 2 = h(x� hxi)2i but diverging larger moments and this explains in turn why we find
very large values for the excess kurtosis (139 for AIG and 761 for LBH). The fact that the tail exponents change by including
or excluding in the statistics data referring to some extreme events is not a surprise though [28,29]. It is not a surprise either,
the fact that stock prices do not obey normal statistics. Nonetheless these large fluctuations over the last time-period when

2 The plot of F> in Fig. 8 is a so-called rank-frequency plot. This is a very convenient and simple method to analyze the tail region of the distribution

without any loss of information which would instead derive from gathering together data points with an artificial binning. In order to make this plot

from a given set of observations {x1, x2, . . . , xT }, one first sorts the T observed values in ascending order and then plots them against the vector

[1, (T � 1)/T , (T � 2)/T , . . . , 1/T ]. Indeed, we have that Rank(xi) = 1 � F>(xi).
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Fig. 9. (Color online) The tail exponents for all the companies analyzed including (lower curve) and excluding (upper curve) the time-period fromDecember

2007 to April 2009, when the crisis occurred. We notice a clustering of the financial sector (red) at very low values of ↵, with many points lying in the

region ↵ < 2. The other end of the curve, at high values of ↵, is instead mostly populated by the Technology (green), which has been the less affected by

the crisis. This is in agreement with the fact that the financial sector was the one most profoundly affected by the crisis and whose fluctuations were the

largest. Instead, before the crisis, the sector of Basic Material (blue) appears to be the most stable.

the crisis was unfolding may be somehow the cause for the increase of the wGHE, and this is what we are going to discuss
in the next section.

6. Discussion

In order to understand the link between the two types of scaling, let us investigate the simple ideal case where the
underlying process is a randomwalk with x(t) = x(t � 1) + ⌘(t � 1) where x(t) = ln(P(t)). In this case, for an arbitrary ⌧ ,
the log-returns r(t, ⌧ ) = x(t + ⌧ ) � x(t) can be written as a sum of n = ⌧ random variables:

r(t, ⌧ ) =

⌧�1
X

s=0

⌘(s + t). (10)

If the ⌘(t) are i.i.d.., the Central Limit Theorem applies to r(t, ⌧ ) and there are two cases: (1) the probability distribution
function of ⌘(t) has finite variance and therefore the distribution of r(t, ⌧ ) converges to a normal distribution for large ⌧ ; (2)
the variance is not defined and the asymptotic distribution of r(t, ⌧ ) converges to a Levy Stable distribution. For distributions
well approximated by power-law functions in the tail region, the parameter that distinguishes between these two cases is
the tail index ↵. Namely ↵ � 2 leads to normal distributions, while ↵ < 2 leads to Levy Stable distributions. Moreover, given
that r(t, ⌧ ) is a sum of random variables and given that both cases (1) and (2) lead to stable distributions,3the probability
distribution p⌧ (r), of the log-returns must scale with ⌧ as [26,27]

p⌧ (r) =

8

>

<

>

:

1

⌧ 1/↵
p

⇣ r

⌧ 1/↵

⌘

if ↵ < 2

1

⌧ 1/2
p

⇣ r

⌧ 1/2

⌘

if ↵ � 2.

(12)

Accordingly, the q-moments scale as

E(|r(t, ⌧ )|q) =

(

⌧ q/↵E(|r(t, 1)|q) if ↵ < 2

⌧ q/2E(|r(t, 1)|q) if ↵ � 2.
(13)

Here E(· · ·) denotes the expectation value. Finally, if we restrict ourselves to the class of self-affine processes, i.e. those
processes x(t) where the probability distribution of {x(ct)} is equal to the probability of {cHx(t)}, for any positive c , and we
consider stationary increments, the q-moments must scale as

E(|r(t, ⌧ )|q) = c(q)⌧ qH . (14)

3 A distribution is stable if and only if, for any n > 1, the distribution of y = x1 + x2 + · · · + xn is equal to the distribution of n1/↵x + d, with d 2 R. This

implies

pn(y) =
1

n1/↵
p

✓

y � d

n1/↵

◆

(11)

where pn(y) is the aggregate distribution of the sum of the i.i.d. variables and p(x) is the distribution of the xi .
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Fig. 10. The differenceHw(1)�Hw(1.5) as function of time. This quantity is a simplemeasure ofmultifractality of the system, as it quantifies the departure

of thewGHE from the unifractal valueH ⇠ 0.5. From the top left, clockwise: FannieMae, FreddieMac,WashingtonMutual Corp andAmerican International

Group. The parameters for the weighted mean are ✓ = 250 days and 1t = 1250 days.

By comparing Eq. (13) with Eq. (14) we get

H =

⇢

1/↵ if ↵ < 2
1/2 if ↵ � 2.

(15)

Eq. (14) holds also for the moments computed using the weighted average, by substituting H with Hw and the expectation
values E(· · ·) with weighted averages. Processes with the property in Eq. (14) are deemed uniscaling. For ↵ � 2 we retrieve
H ⇠ 0.5 and the process scales as a Brownian motion.

Let us here stress that the result in Eq. (15) is only valid for a random-walk type i.i.d. process with defined noise
distribution and it is well known that financial time series cannot be described within this framework. However, Eq. (15) is
a valuable reference which can be used as a tool to compare the relation between the tail exponent and the Hurst exponent
in more complex signals.

Multifractality can be measured by tracking the difference Hw(q) � Hw(q0) (with q 6= q0) over the time-windows (see
Fig. 10). Intriguingly, this difference remains stable for most of the time for all the companies reported in the figure but,
instead, it increases as soon as the unstable period is reached, suggesting that the scaling properties of the time series
change with the unfolding of the crisis. We stress that the behavior observed in the empirical data is not necessarily related
to a change of the stochastic process underlying the financial time series. The increase in the multifractality of these kinds
of signals is likely to occur in the presence of large price fluctuations. In this case indeed, the attitude of the investors, and
thus the prices’ movements, in the short period, are very rarely reflecting the price behavior over larger periods.

7. Significance tests

The main problem one has to face when interpreting these results is the finite size of our sample. Especially for what
concerns the changes in the multifractality, one needs to verify that the fluctuations of the quantity H(q) � H(q0) (with
q 6= q0) are indeed larger than those expected for a unifractal process, whose fluctuations may be due only to the finite size
of the time series.

First of all, to test the significance of the raise of the wGHE we have simulated 1000 random normally distributed
series with 1t = 1250 and computed the quantiles corresponding to the {2.5%, 50%, 97.5%} confidence interval. The
values obtained are {0.4490, 0.4973, 0.5421}. Empirical values of Hw(1) falling in the interval (0.4490, 0.5421) are hardly
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Fig. 11. (Color online) The three horizontal lines correspond to the {2.5%(yellow), 50%(green), 97.5%(magenta)} quantiles obtained from the distribution

of 1000 Hw(1) from random series. Empirical values at the two extremes are outside the confidence interval.

Fig. 12. (Color online) The empirical multifractality tested against the FBM quantiles. Points lying beyond the magenta line confirm multifractality is

changing. Right panel: the trend of wGHE is destroyed by shuffling the time series.

distinguishable from a pure random walk. Nonetheless, one finds that values at the two extremes of the whole time period
are truly crossing over the random regime and have thus more than 97.5% chances not to be originated from a pure random
walk process (see Fig. 11). This holds for the other bailed-out firms as well. This also suggests that a raise is taking place
over the whole period and the firm is switching between two different stability regimes. Concerning the variation of the
multifractality over the crisis, caution has to be paid for the same reason as above. Sometimes even unifractal processes
exhibit fluctuating H(q) just because of the short size of the sample. To test that the change of multifractality that we
observe is really significant, we compare it with the case of Fractional Brownian motion (FBM), a unifractal process BH(t)
whose covariance is given by

Cov(BH(t)BH(t 0)) =
1

2
(|t|2H + |t 0|2H � |t � t 0|2H), (16)

where H > 0.5 corresponds to long-range dependence. We set H = 0.75 and simulate 100 FBM’s. For every simulation we
compute the Hw(1) and obtain mean and standard deviation Hw(1) = 0.7368 ± 0.0397. We also verify that our algorithm
returns sound values for the shuffled FBM series. After shuffling each of the simulated series we obtain Hw(1) = 0.4871 ±

0.0402, compatible with the expected H = 0.5. Then we test the multifractal behavior by computing Hw(1)�Hw(1.5) over
the FBM’s and obtaining the {2.5%, 50%, 97.5%} quantiles: {�0.0294, 0.0018, 0.022}. The comparison is reported in Fig. 12
(left panel), where we note that the points corresponding to the crisis are really beyond the quantiles and correspond thus
to a true change in multifractality.

Let us also mention that, although the time series of the wGHE’s is dependent, as the time windows are overlapping, the
trends are significant. This is demonstrated in the right panel of Fig. 12, where the trend is completely destroyed by shuffling
the time series. The statistics of dependent observations goes beyond the purpose of this work but we plan to address it in
future work (see Ref. [30] for a very interesting recent discussion).
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8. Conclusions

We have studied the scaling behavior in time of log-returns of the companies more severely affected by the ‘credit-
crunch’ crisis. The results obtained for these companies have been compared to those obtained for companies belonging to
different market sectors, showing persistent differences. To allow a reasonable differentiation in the time series we have
introduced a weighting procedure which renders recent events more significant that remote ones. With this exponential
smoothing method we have computed the weighted generalized Hurst exponent for overlapping time-windows spanning
a period of 13 years (1996–2009). The bailed-out companies reveal an increasing trend which crosses 0.5 hinting therefore
to a transition between different stages of development. This behavior, not observed for many other companies, including
others belonging to the financial sector itself, might suggest that the wGHE is conveying important information about the
stability of a company and that by tracking its value in time one could have a further tool to assess risk. A comparison with
the scaling of the distributions of the log-returns confirms that large fluctuations are related to the increase of the wGHE.
We have also looked at the multifractal behavior in time of these companies revealing an increase of multifractality when
the crisis occurred. These empirical facts will be the basis of future work aiming to realistically model the price formation
and evolution in financial markets [10,11,31]. Interesting perspectives are to extend this analysis to high frequency data and
to look at the statistics of the dependent wGHE time series.
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