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Dynamical heart beat correlations 
during running
Matti Molkkari1*, Giorgio Angelotti2, thorsten emig2,3 & esa Räsänen1,2

fluctuations of the human heart beat constitute a complex system that has been studied mostly 

under resting conditions using conventional time series analysis methods. During physical exercise, 

the variability of the fluctuations is reduced, and the time series of beat-to-beat RR intervals 
(RRIs) become highly non-stationary. Here we develop a dynamical approach to analyze the time 
evolution of RRI correlations in running across various training and racing events under real-world 
conditions. In particular, we introduce dynamical detrended fluctuation analysis and dynamical partial 
autocorrelation functions, which are able to detect real-time changes in the scaling and correlations 
of the RRis as functions of the scale and the lag. We relate these changes to the exercise intensity 

quantified by the heart rate (HR). Beyond subject-specific HR thresholds the RRIs show multiscale 
anticorrelations with both universal and individual scale-dependent structure that is potentially 
affected by the stride frequency. These preliminary results are encouraging for future applications 
of the dynamical statistical analysis in exercise physiology and cardiology, and the presented 

methodology is also applicable across various disciplines.

�e increasing popularity and accuracy of wearable devices and sensors present new opportunities to study 
human physiology in a continuous, non-invasive manner for a huge number of subjects under real-world condi-
tions. �ese devices enable the measurement of a plethora of physiological and mechanical signals such as the 
heart rate, beat-to-beat (RR) intervals, overall motion via GPS, motion of speci�c body locations via accelerations, 
and skin temperature. �ese data can be recorded in real time, o�en at 1 s intervals, and uploaded to web services. 
To date, most recorded data are not analyzed in scienti�c rigour due to a lack of suitable models for the dynamics 
of physiological signals under various intensities of exercise load, and also due to restricted availability of the 
data (property of industry and users). �is limits opportunities for a better understanding of complex physi-
ological processes, diagnostics and monitoring for patients in rehabilitation, and the optimal training of athletes.

However, it has been long known that a variety of physiological conditions and cardiac diseases a�ect heart 
rate variability (HRV) and the correlations in RR  intervals1. In exercise physiology, HRV is o�en used at rest 
to evaluate recovery, fatigue and overtraining. It is known that during exercise the overall variability of the RR 
intervals (RRI) is strongly suppressed. Regardless, the RRI correlations contain valuable information even dur-
ing  exercise2–4. For example, the possibility to determine certain physiological thresholds, such as the anaerobic 
threshold, from the frequency spectrum of HRV has been  examined5,6. O�en the relative importance of low-
frequency (LF: 0.04–0.15 Hz) and high-frequency (HF: 0.15–0.4 Hz) spectral power is studied during exercise. 
Using this concept as a measure of the relative sympathetic (SNS) and parasympathetic nervous system (PNS) 
activity, it has been shown that the PNS activity decreases dramatically during  exercise7. In contrast, the SNS 
activity remains unchanged past the �rst ventilatory threshold before increasing  abruptly7. However, the use 
of the HF/LF ratio to measure cardiac sympatho-vagal balance has been  criticized8. Moreover, it is known that 
Fourier decomposition of dynamic signals is o�en hampered by non-stationarity.

To overcome the complications of Fourier methods and non-stationarities, we base our analysis on detrended 
�uctuation  analysis9 (DFA), which was developed to measure correlations in non-stationary time series by utiliz-
ing systematic  detrending9–11. Furthermore, we are interested in analyzing real world exercises recorded with 
readily available commercial sports watches. Hence, we study real-time correlations of RRIs during marathon 
races (group M) and freeform training runs (group T). Such uncontrolled data may be plagued by severe non-
stationary conditions, and the conventional division into short- and long-scale DFA  exponents10,12 is likely to 
be insu�cient. To this end, we introduce dynamic DFA (DDFA) for the accurate determination of time- and 
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scale-dependent scaling exponents α(t, s) with high temporal resolution. To check the consistency of our meth-
odology, we also apply similar dynamic approach to partial autocorrelation functions (PACFs) to obtain their 
dynamic counterpart (DPACF).

Results
Our main result is the discovery of scale-dependent anticorrelations ( α < 0.5 ) in the RRIs during running that 
vary with the heart rate. �e anticorrelations appear a�er the HR exceeds a subject-speci�c threshold. �eir 
magnitude and the scale with the most dominant anticorrelations changes with exercise intensity. We �nd that 
the DDFA method can reliably determine the dynamic, scale-dependent scaling exponent α(t, s) (please see the 
Supplementary Information for its numerical validation). Hence, it provides a powerful method for measuring 
multiscale correlations of non-stationary physiological signals. �e results from the DDFA and DPACF methods 
are found to be mutually consistent.

Marathon races. Figure 1 demonstrates our methods applied to a single marathon run (subject M1) of 
group M. �e color-coded value of the scale-dependent exponent α(s) is shown in the �rst row as a function of 
the binned heart rate (HR) (Fig. 1a) and also as a function of running time t (Fig. 1c). Over the studied scales 
s from 5 to 5000 heart beats, the scaling exponent α(s) exhibits complex behavior that could not be adequately 
described by the conventional division into short- and long-range scaling exponents. We consider the HR-
dependent shi� to anticorrelated RRIs at the shortest scales s � 10–30 as the most interesting of our observa-
tions. As the heart rate increases the anticorrelations extend to slightly longer scales until there is a qualitative 
change at approximately 175 BPM. �e strongest anticorrelations shi� from the shortest scales to roughly 20 
beats, and gradually re�ll the shortest scales as the HR is increased even further. At larger scales s � 100 the RRIs 
become mostly non-stationary ( α > 1 , fractional-Brownian-motion-like behavior). In contrast, a typical 24-h 
RR-tachogram of a healthy subject at rest usually displays 1/f or pink noise on long time scales (or low frequen-
cies � 0.05 Hz), corresponding to α = 1 , and larger values for α at the shortest scales or higher  frequencies1.

�e black curve in Fig. 1a corresponds to the conventional DFA exponent α1 over the scales from 4 to 16 heart 
beats. It shows almost linear decrease to values around 1/2 and below, when the DDFA exponent α(s) displays 
short-scale anticorrelated behavior. However, this simpler estimate is not su�cient for uniquely distinguishing 
the presence of anticorrelations from their shi� to slightly longer scales. To explore the scale dependence of the 
anticorrelations in more detail, we show in Fig. 1e the probability density for the values of α(s) for six di�erent 
scales s from 5 to 20 heart beats as a function of the binned HR. On all six scales, the probability is maximum for 
α < 1/2 with a HR dependent modulation and an absence of anticorrelations on the two largest scales s = 15, 20 
for lower beat rates.

In order to estimate the relevant time scales of the physiological processes behind the observed anticorrelated 
beat intervals, we have also performed a DPACF analysis. �e result is shown for lags between 1 and 20 heart 
beats in Fig. 1b and d. �e PACF reveals direct anticorrelations (negative values) a�er a time lag of 1 and 2 beats, 
starting at low exercise intensities, and additional anticorrelations up to about 10 beats beyond HR of about 175 
BPM, being consistent with the DDFA results. �e probability density of the DPACF values for lags between 1 
and 6 beats, shown in Fig. 1f, con�rm dominant direct anticorrelations on the shortest time scales of 1–2 beats, 
and 4 beats for high exercise intensities (here HR � 170).

Subject M1 as the chosen example has the most prominent anticorrelations and particularly simple, almost 
linear, trend in the HR over the whole marathon. �e individual DDFA and DPACF results, similarly to Fig. 1, 
for all the subjects of group M are shown in Supplementary Fig. S5. �e results share qualitative similarities 
across the subjects, as they all exhibit short-scale suppression of correlations and the appearance of anticorrela-
tions as a function of the HR. However, some di�erences are also apparent, as only three subjects (M1, M3, and 
M7) show the shi� of the anticorrelations to elevated scales at the highest exercise intensities. Some short-scale 
anticorrelations, particularly for subject M6 and to some extent for M4 and M5, also appear at elevated scales, 
but these happen at lower intensities and are likely di�erent in origin. Regardless, additional research is required 
to determine the e�ect of individual strains relative to standard physiological thresholds on the results.

To further study the consistency of the results between the di�erent subjects, the aggregated DDFA (top) and 
DPACF (bottom) results for all members of group M are shown in Fig. 2 as a function of both the absolute (le�) 
and relative (right) HR. �e most notable features are the high-intensity elevated-scale anticorrelations starting 
to appear at 87% and 95% relative HR, or at the absolute HR of 175 BPM (this congruence on the absolute scale 
is likely to be coincidental). In these ranges also the conventional DFA exponent α1 (black curve) drops slightly 
below 1/2, but its limitations are apparent, as it is based on linear regression over the scales of 4–16 beats. �e 
anticorrelations at lower intensities (approximately 155–175 BPM) appear to be more condensed on the relative 
scale (roughly 78–87%, with a more concentrated maximum between 80–85%), which is apparent both on the 
DDFA results and in the more pronounced dip of the short-scale exponent α1 . �ere is also a band of short-scale 
suppressed correlations with a trend towards longer scales at even lower relative HR ( ≈ 72–79%) that is practically 
indistinguishable on the absolute scale. On the relative scale, the DPACF results also show a sharper transition 
into anticorrelated behavior at approximately 80% HR for lag τ = 1 , whereas on the absolute scale the transition 
is more gradual. �ese lag τ = 1 anticorrelations appear consistently for all the subjects and become stronger 
with increasing HR, and also appear at longer lags at the regions where the DDFA anticorrelations shi� to larger 
scales. Naturally, the aggregated results should be interpreted with care as they represent an average result over all 
the samples. Secondly, there is uncertainty in the maximum HR values of the subjects. Nevertheless, the results 
suggest that neither the absolute nor the relative scale is universal for di�erent individuals.
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freeform training runs. In order to study the correlations of RRIs over a wide range of exercise durations 
and intensities, we perform the same analysis for subjects in group T. It is instructive to consider �rst a single 
exercise of one subject which is shown in Fig. 3. It consists of six intervals of high-intensity running, each inter-
val lasting about 160 s with the subsequent intervals reaching higher and higher intensities. As a function of 
exercise time t the DDFA exponent α(s) (Fig. 3c) and the PACF (Fig. 3d) consistently reveal strong anticorrela-
tions of RR intervals that develop rapidly a�er the start of the intense interval. �e shortest-scale anticorrelations 
span to longer and longer scales with increasing HR in the latter intervals. �e earlier lower-intensity intervals 
exhibit anticorrelations at elevated scales, separated by a band of correlations from the shortest scale anticorrela-
tions. �is behavior was already suggested by some of the marathon data (M4, M5, and M6), and in a following 
analysis we will relate these to a distinct band of anticorrelations appearing at moderate exercise intensity. At 
rest between the intervals the anticorrelations rapidly vanish. �e DPACF shows strong lag τ = 1, 2 anticorrela-
tions, whose magnitudes are in accordance with the short-scale DDFA anticorrelations as observed in group M. 
�e existence of patches of anticorrelations over time lags up to 10 beats is also consistently observed with the 
elevated-scale DDFA anticorrelations. As a function of HR, the anticorrelated behavior develops rapidly a�er an 
intensity threshold ( ≈ 175 BPM) (see Fig. 3a). �e elevated-scale anticorrelations are visible as a spike of sup-

Figure 1.  Beat-to-beat (RR) interval correlations for the Marathon race of subject M1. Note that the upper-le� 
and upper-right color bars refer to (a, c) and (b, d), respectively. (a) Color-coded dynamic (DDFA-1) scaling 
exponent α(t, s) on di�erent scales s (y-axis) as a function of binned HR (x-axis). Here α(t, s) is averaged over 
those dynamic segments, whose average HR falls within 0.1 BPM wide bins. �e values for empty bins are 
linearly interpolated if the gap does not exceed 0.5 BPM. �e black solid line shows the mean together with 
the standard deviation (thin lines) and the the standard error of the mean (thick lines, barely visible) of the 
conventional short-scale (4–16 RRIs) scaling exponent α1 . �e exponent is computed in moving windows of 50 
RRIs in HR bins of 2 BPM. (b) Color-coded partial autocorrelation functions (DPACF-0) C(t, τ) with di�erent 
lags τ (y-axis) as a function of the binned HR. (c) Similar to (a) but as a function of time during the marathon 
race. �e instantaneous heart rate is overlaid on the data. (d) Similar to (b) but as a function of time. �e values 
that do not pass the non-zero signi�cance test as described in the text are shown in white. (e) Probability density 
histogram for α(t, s) for di�erent scales s as a function of the HR. (f) Probability density histogram of the 
DPACF-0 for di�erent lags τ as a function of the HR. �e histograms in (e, f) consist of 31-by-31 bins, and the 
probability densities are separately normalized for each HR bin, so that they better depict the distributions as a 
function of the HR instead of measuring the prevalence of di�erent HR regions. Furthermore, the color bar is 
capped at the 99.5th percentile to avoid outliers dominating the color scale.
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pressed correlations at approximately 172  BPM with a weak tail towards short scales and lower intensities. �is 
latter phenomenon is more visible in the DPACF data (Fig. 3b) as a weak band of anticorrelations surrounded by 
correlated bands at shorter and longer lags.

Next, we study the typical behavior of RRI correlations when averaged over many running exercises of di�er-
ent intensity and duration, but for the same subject to avoid e�ects due to individual variability. �e correspond-
ing aggregated results from DDFA and DPACF analysis for the subject T07 are shown in Fig. 4, representing 
a total running distance of 1889 km. For this large data set, we obtain good statistics for the aggregated data 
and expect them to provide a reliable representation of the typical RRI correlations as function of the exercise 
intensity. Indeed, both DDFA exponent α(s) and DPACF clearly show two distinct bands of anticorrelated RRIs 
(see Fig. 4a,b). �e �rst band at moderate exercise intensity ( ≈ 125–170 BPM) displays a distinct, approximately 
exponential, trend in the DDFA anticorrelations shi�ing to longer scales as a function of the HR. It is plausible 
that the elevated scale anticorrelations appearing at lower intensities in Fig. 3 and for M4, M5, and M6 originate 
from this band of anticorrelations. �e corresponding band in the DPACF results is split by a band of strong 
positive correlations. �e latter band of anticorrelations at high exercise intensities ( � 175 BPM) does not show a 
clear trend as a function of the HR, although there is tendency towards spanning to longer scales with increasing 
intensity. Notably, the anticorrelations remain present even at the shortest scales and lag. �is is in contrast to 
some of the marathon data, where the highest-intensity anticorrelations appear at elevated scales. �is could be 

Figure 2.  Aggregate beat-to-beat (RR) interval correlations as a function of heart rate for all subjects of 
group M. (a) Average values for α(t, s) for each scale s (y-axis) and HR bin (x-axis). �e solid line depicts the 
conventional short-range α1 . (b) Average values for C(t, τ) for each lag τ (y-axis) and HR bin (x-axis). In (a, b), 
the data is processed as in Fig. 1. (c, d) Similar to (a, b) but as a function of the relative HR. In (c, d), the data is 
processed as in Fig. 1, but with the distinction that the relative HR bin width is 0.001, the interpolation threshold 
is 0.005, and the bin width for the conventional short-scale exponent α1 in (c) is 0.01.

Figure 3.  Beat-to-beat RR interval correlations for one interval exercise from group T. (a) Dynamic scaling 
exponents (DDFA-1) α(t, s) (colors) and the conventional short-range α1 (solid line) as a function of the binned 
HR. (b) DPACF-0 correlations C(t, τ) as a function of the binned HR. (c, d) As in (a, b) but as a function of 
time, and in (c) the HR value is overlaid on the data. For details on the data processing, see the caption of Fig. 1.
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due to the di�erent nature of the exercises, as in the marathon races these anticorrelations appear a�er prolonged 
exercise at high intensity, and changes in, e.g., body temperature or electrolyte balance may in�uence the results. 
On the other hand, in the discussion section we make an argument that this could be due to interactions with 
the stride frequency. �e conventional α1 indicates the suppression of correlations that is consistent with the 
DDFA anticorrelations when taking into account its limitation to the scales of 4–16 beats. �e α1 is clearly insuf-
�cient to capture anticorrelated behavior concentrated on thin bands of scales. Figure 4c,d shows the probability 
density plots of α(s) and PACF values for di�erent scales s and lags τ , respectively. �e existence of two regions 
with anticorrelated RRIs is clearly visible. �ey are separated by a region with positive correlations (or α > 1/2).

�e aggregated data for all the subjects of group T are shown in Supplementary Fig. S4. Most subjects show 
common qualitative similarities in the form of two anticorrelated bands as described for T07. However, for 
some subjects the split into the two anticorrelated regions is not that clear; particularly there is the lack of cor-
related shortest scale behavior separating these two regions. In the absence of the correlated bands the behavior 
is remarkably simple; the higher the intensity, the more prominent the anticorrelations are in both magnitude 
and scales covered. In addition to individual intrinsic cardiac variability, a possible explanation could be dif-
ferent training practices and external conditions, as for example T05 shows behavior that is most similar to the 
marathon data. Another explanation could be highly regular running motion, which could promote correla-
tions induced by, e.g., muscle contractions and blood pressure variations, which is an argument set forth in the 
next section. It is also worth noting that T11 reported problems with the chest strap, and as a result his data has 
unusually high amount of missed beats (up to 50%). Despite of this, two regions of suppressed correlations are 
present that are consistent with the other subjects, highlighting the robustness of the methodology.

We assessed the suitability of higher order detrending for our analysis and decided to employ DDFA-1 due 
to the following reasons: (1) the qualitative behavior remains the same at the shortest scales, which is the most 
interesting region for dynamic exercise intensity analysis, (2) the short-scale bias in DFA is larger and crossover 
scales are shi�ed with higher order methods, (3) higher orders of DDFA appear to require longer dynamic seg-
ments for similar statistical accuracy and have increased computational cost.

Finally, we point out that it is important to check the reliability of our DDFA and DPACF methods with 
respect to trends. Hence, we have �ltered the data of subject T07 according to the condition that the standard 
deviation of the HR within the dynamic segments is smaller than the values for certain quantiles. We �nd that 
the observation of the bands with anticorrelations is robust and independent of the choice of the quantile �lter. 

Figure 4.  Aggregate beat-to-beat (RR) interval correlations for all the exercises of one subject (T07) in group 
T. (a) Average values for α(t, s) for each scale s (y-axis) and binned HR (x-axis). �e solid line shows the 
conventional short-range α1 . (b) Average values for C(t, τ) for each lag τ (y-axis) and binned HR (x-axis). (c) 
Probability density histogram for α(t, s) for di�erent scales s as a function of the HR. (d) Probability density 
histogram for C(t, τ) for di�erent lags τ as a function of the HR. Note that the probability densities are separately 
normalized for each HR bin. For details on data processing, please see the caption of Fig. 1.
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In fact, the anticorrelations appear stronger when limiting to dynamic segments with less HR variation, as the 
averaging is not performed over segments with transient changes in the HR that could lead to spurious correla-
tions. �e exact results of this analysis for six di�erent choices of quantiles are shown in Supplementary Fig. S6.

Discussion
It is important to understand the physiological mechanism causing the observed anticorrelations. Due to the lack 
of time series for other physiological variables, we can present below only simple arguments that we consider to 
be potentially relevant for explaining the observed dynamic correlations. First, we point out that there are three 
physiologically relevant time scales that fall into the range over which the anticorrelations occur: (1) the stride 
frequency which is typically around 85 strides per leg and per  minute13, (2) the respiration cycle which is typi-
cally three to �ve heart beats long, and (3) arterial blood pressure �uctuations, i.e., the so-called Mayer waves, 
which result from an oscillation of sympathetic vasomotor tone and is of the order of 10 s14.

All three processes are cyclic and hence can induce periodic modulations to the heart rate through hemo-
dynamics. Such periodicities could result in anticorrelated RRIs when observed at scales similar to the period 
measured in heart beats. Furthermore, the overall heart rate variability is reduced under exercise due to with-
drawal of cardiac vagal tone and parasympathetic  control2–4, i.e., the local short-term RRIs are more regular 
without 1/f- or Brownian-like di�usion for extended periods of time. �erefore, subtler patterns should become 
more discernible, as they are not masked by the complex �uctuations of a healthy heart under resting conditions. 
Similarly, the relative magnitudes of the modulating signals could a�ect the scale-dependence of the anticor-
relations. If some of the e�ects is much stronger, it will mask higher frequency periodicities as they will appear 
correlated when superimposed on the stronger lower frequency oscillations. Additionally, when a periodic sig-
nal is sampled at discrete intervals, the result is a new signal whose period depends on the sampling frequency. 
�is e�ect is manifested, e.g., when the in�uence of the blood pressure variations due to the stride frequency is 
sampled at each heart beat.

�is latter phenomenon could explain some of the qualitative di�erences in the dynamic correlations between 
the subjects. For some subjects (particularly T08, but also T02, T03, T10, and T12) the RRIs show clearly de�ned 
behavior under exercise, becoming short-scale anticorrelated at moderate intensity, with the magnitude and the 
scale of the anticorrelations increasing in conjunction with intensity. In contrast other subjects exhibit more 
complex RRI-correlations where the simple anticorrelations are interrupted by bands of decreased or altered 
correlations at shorter scales (please see Supplementary Figs. S4 and S5 for the individual RRI-correlation plots as 
a function of the HR). �ese more correlated bands appear at heart rates corresponding to sampling frequencies 
where typical stride frequencies would look correlated at the shortest scales. If these bands arise from the stride 
frequency, that could also explain the better congruence on the absolute HR scale in Fig. 2, as there is generally 
less variance in the stride frequencies than in the maximum heart rates.

�ese considerations would imply that the (anti)correlations arise from underlying universal cardiolocomotor 
mechanisms, but detailed response to exercise may depend on individual physiology, biomechanics of running 
and training  status6. Furthermore, the onset of the anticorrelations, their strength, and scales of appearance 
show individual variability. Studying the relationship of these variables to standardized thresholds and markers 
in exercise physiology could allow utilizing the dynamic correlations for monitoring the exercise intensity in 
real-time without the knowledge of parameters such as the maximal oxygen uptake (VO2max) or maximum 
heart rate. We are aware of the possibility that the universal emergence of anticorrelations at elevated heart rates 
is most likely a�ected by other physiological factors beyond the ones discussed here. Clearly, further research is 
required, but the approach herein provides a promising avenue forward.

conclusions
Our main result is the discovery of multiscale anticorrelations in RR intervals during running exercises under 
real-world conditions. �e anticorrelations have a dynamical structure that depends on the exercise intensity 
as measured by the heart rate. �e characteristics of the dynamical structure are revealed by our methodology, 
in particular the dynamic detrended �uctuation analysis and dynamic partial autocorrelation functions, which 
we anticipate becoming useful tools in data analysis across various disciplines. While we have demonstrated the 
capability to study the dynamical RRI correlations during varying real-world circumstances, a more systematic 
evaluation of the methodology is required to control for exercise conditions.

�e observed anticorrelations appear on short scales (a few beats) at low to moderate exercise intensities. 
As the intensity is increased, the anticorrelations increase in magnitude and span to longer scales (up to 20–30 
beats). �is simpli�ed picture is complicated by correlations arising potentially from interactions with the regular 
running motion when the stride frequency is appropriately proportional to the heart beat. �ese correlations 
mask the anticorrelated behavior on bands of increasing or decreasing scales at moderate and high exercise 
intensities, respectively. At rest, e.g., between running intervals, the anticorrelations rapidly vanish, and appear 
immediately when the intensity is increased again. �ese changes happen before the HR saturates at the level 
necessary to maintain the ongoing exercise intensity. Hence, our �ndings allude the possibility of quantifying 
the relative exercise intensity by measuring the dynamic correlation exponent α(t, s) in real time during exercise.

�is report of our initial �ndings serves as a prelude for highlighting the potential of the dynamic correlation 
analysis so that further advances could be pursued. It is highly desirable to develop a theoretical model for the 
complex dynamics of the cardiovascular feedback loops during high-intensity exercise load that can explain the 
observed time scales for the anticorrelated RR intervals. Clearly, a more systematic study with subjects perform-
ing speci�c exercise protocol should be performed to verify our observations. Besides, a thorough validation 
and calibration of our results with data collected during running exercise in a physiology laboratory is a natural 
next step for our study to relate the changes in the dynamic correlations to standard exercise physiology models. 
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�e inclusion of accelerometer data, from which the stride frequencies could be derived, would facilitate the 
veri�cation of the running modalities as a possible cause for the bands of correlations present for some subjects.

Such controlled and systematic studies are not only necessary to elucidate the speculative nature of the 
results herein, but they are further motivated by potentially enabling the application of this methodology in 
exercise physiology. We expect that the reported RR interval correlations are suitable to represent a dynamical 
“�ngerprint” of the exercise-induced cardiovascular load. Hence, our methodology—which could be integrated 
with the present devices on the market—has a potential to become a new tool in real-time exercise monitoring 
without previous knowledge of maximal thresholds such as the maximum hearth rate and lactate or ventilatory 
thresholds.

Materials and methods
Heart rate data during exercise. We study real-time correlations of RRIs during exercises of various 
intensities. All heart rate data for this study have been collected during regular running training and racing 
under real-world conditions, i.e., outside the laboratory. Two groups of data were used for our theoretical analy-
sis. �e �rst group of data was recorded by human volunteers during their regular running training with freely 
chosen intensity and volume (group T). �e study period was at least 4 weeks, and some subjects provided data 
over a longer period of time. We obtained institutional approval and informed consent (Massachusetts Institute 
of Technology Committee on the Use of Humans as Experimental Subjects exemption for the employed protocol 
has been granted under protocol no. 1711132002). �e research was performed in accordance with the rules 
and regulations set by the participating universities. �is group involved 12 volunteers (5 female, 7 male, with 
an age span from 27 to 65 years). �eir performances span a wide range from top national level to recreational 
runners: the personal bests in 10 km range from 29 min 31 s to 44 min 57 s, in marathon from 2 h 43 min 20 s 
to 4 h 26 min 3 s.

During exercises, heart rate (HR), RR intervals (RRI), running velocity and distance were recorded using a 
Garmin heart rate monitor HRM4-Run and a GPS watch (Forerunner 935, Garmin Inc., Olathe, KS, USA). A 
previous study has investigated and validated the accuracy of this  HRM15. �e data were recorded by the GPS 
watch in the Flexible and Interoperable Data Transfer (FIT)  format16 and subsequently uploaded by the subjects 
to a web service that we had launched for this study. �e total number of exercise �les analyzed per subject 
(samples) varied between 18 and 261, with total covered distances from 150 to 1889 km.

�e second group of data was obtained by selecting randomly the marathon races of 7 subjects from data 
uploaded to the Polar Flow web  service17 (group M). Within registration to Polar Flow, the subjects have given 
their consent for the use of their data for research purposes. �e metadata were provided by the users of this 
web service (all male, with an age span from 28 to 53 years, and marathon �nishing times between 3 h 30 min 
and 4 h 17 min). HR and RRIs were recorded for this group of subjects with a Polar heart rate monitor H10 and 
a Pro Strap (Polar Electro Oy, Kempele, Finland). Recently, the RR signal quality of this HRM has been shown 
to be excellent from low- to high-intensity activities in comparison to a ECG Holter  device18. In both groups T 
and M, the subjects provided their maximum and resting heart rates. Summaries of all the metadata for the two 
groups are shown in Supplementary Table S1.

As ECG data is not available, we do not attempt to remove ectopic beats or other artifacts based on physi-
ological criteria. �erefore we merely remove technical artifacts, such as missed beats, that can be isolated with 
reasonable certainty. �e details for this data preprocessing are provided in Supplementary Appendix A.

conventional methods. For comparison we apply ordinary detrended �uctuation  analysis9,11 to the RRI 
time series. By computing the root-mean-squared �uctuations F(s) around local trends at multiple scales s, the 
method assesses power law scaling relations F(s) ∝ s

α characterized by the scaling exponent α . In the context of 
HRV, typically two exponents are determined, for short- ( α1 ) and long-scale ( α2 ) correlations,  respectively10,12. 
We extract the conventional short-scale (4–16 RRIs) scaling exponents α1

10 in segments consisting of 50 RRIs. 
We compute the �uctuation functions in maximally overlapping windows for enhanced statistical  properties19. A 
summary of the DFA method is provided in Supplementary Appendix B. We also provide a helpful summary of 
partial autocorrelation functions in Supplementary Appendix C before introducing their dynamic counterparts 
here.

Dynamic segmentation. �e dynamic behavior of the time series can be studied by performing the analy-
sis in moving temporal segments. However, to guarantee su�cient statistical accuracy, the length of these seg-
ments is dictated by the largest scale s (DFA) or the lag τ (PACF), resulting in diminished temporal resolution 
for small scales. �erefore, we propose a dynamic segmentation procedure, where the segment length is varied 
as a function of the scale or the lag: 

1. Choose a function for determining the segment lengths ℓ(s) as a function of the scale s. Here we adopt a 
simple linear relationship ℓ(s) = as where a is a constant. Smaller values increase the temporal resolution 
but also the statistical noise. �e dynamic length factor a itself may also be varied for di�erent scales.

2. For each scale divide the time series into segments of length ℓ(s) . �e segments themselves may be overlap-
ping if desired for smoother results. Identify the segments Ss,t by their temporal indices t, which may be, 
e.g., the mean time within the segment or any other suitable quantity.

Dynamic detrended �uctuation analysis (DDFA). �e dynamic segmentation together with the maximally 
overlapping windows in the DFA scheme enables the following procedure for dynamic DFA (DDFA): 
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1. Perform the dynamic segmentation for each scale s. �e value of a = 5 was found to be an acceptable value 
for the dynamic length factor, which is employed in all of our DDFA calculations.

2. Utilizing overlapping windows, compute the �uctuation function in each segment Ss,t at scales {s − 1, s, s + 1} . 

Denote the logarithmic �uctuation function at these scales by F̃t(s − 1), F̃t(s) and F̃t(s + 1) , respectively.

3. In each segment, compute the dynamic scaling exponent α(t, s) by the �nite di�erence  approximation20 

 where h
−

= log(s) − log(s − 1) and h+ = log(s + 1) − log(s) are the logarithmic backward and forward 
di�erences. Fluctuation functions computed with maximally overlapping windows are empirically found to 
be smooth enough to permit the direct application of the �nite di�erence scheme.

�e performance of the method is numerically validated by applying it to simulated time series with known 
properties. Supplementary Appendix D explains the details for analytically obtaining the theoretically expected 
scale-dependency of DFA scaling exponents for di�erent processes. In Supplementary Appendix E these theo-
retical results are utilized for con�rming the acceptable performance of the DDFA method.

Dynamic partial autocorrelation function (DPACF). In order to obtain a local estimate of the partial autocor-
relation function C(τ ) we compute it using an approach similar to that of the DDFA algorithm. �e steps of this 
approach can be summarized as follows: 

1. Perform dynamic segmentation for each lag τ . �e value of a = 10 was found to be an acceptable value for 
the dynamic length factor, which is utilized in all of our DPACF calculations.

2. In each segment Sτ ,t , perform polynomial detrending of order m.
3. For each segment, compute C(τ ) by, for example, solving the Yule-Walkers equations with the Levinson-

Durbin recursive  scheme21. Choose each time for the maximum lag the parameter for which we are estimat-
ing the partial autocorrelation function. Denote this dynamic PACF by C(t, τ).

Resorting to the central limit theorem, it is a known result that the partial autocorrelation function is approxi-
mately non-zero at 5% signi�cance level if |C(t, τ)| < 1.96/

√
ℓ(τ) . �e evaluation of this signi�cance band is 

statistically valid only if ℓ(τ) � 30 and therefore if τ > 3 for a = 10.
Notice that in DPACF the detrending is applied to the original time series in contrast to the integrated series 

in DDFA. �erefore, the results would be expected to be qualitatively similar when the DPACF detrending order 
is one smaller than the DDFA detrending order n. �is explanation is complicated by, e.g., the removal of linear 
correlations in PACF. However, the relationship m ≈ n − 1 is supported by empirical observations.

While both DDFA and DPACF measure dynamic correlations, it is important to realize the qualitative dif-
ference between them. DDFA describes the collective behavior of all beats over the scale s, whereas DPACF 
considers the average behavior of individual beats separated by the lag τ (with the linear dependence from the 
preceding lags removed)

Data availability
All data generated and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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