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Abstract. A self-interacting dark matter halo can experience gravothermal collapse, result-
ing in a central core with an ultrahigh density. It can further contract and collapse into a
black hole, a mechanism proposed to explain the origin of supermassive black holes. We study
dynamical instability of the core in general relativity. We use a truncated Maxwell-Boltzmann
distribution to model the dark matter distribution and solve the Tolman-Oppenheimer-Volkoff
equation. For given model parameters, we obtain a series of equilibrium configurations and
examine their dynamical instability based on considerations of total energy, binding energy,
fractional binding energy, and adiabatic index. Our numerical results indicate that the core
can collapse into a black hole when the fractional binding energy reaches 0.035 with a central
gravitational redshift of 0.5. We further show for the instability to occur in the classical
regime, the boundary temperature of the core should be at least 10% of the mass of dark
matter particles; for a 109 M� seed black hole, the particle mass needs to be larger than a
few keV. These results can be used to constrain different collapse models, in particular, those
with dissipative dark matter interactions. �.
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1 Introduction

The study of dynamical instability of a self-gravitating system and its collapse to a black
hole has a long history [1, 2]. Early work analyzed the evolution of stellar clusters in general
relativity and examined conditions for their relativistic instability with linear perturbation
theory [3–5]. The techniques and tools of numerical relativity and N-body simulations were
further developed in [6–8], which can be used to trace full evolution in the nonlinear regime.

Recently, we proposed a scenario to explain the origin of supermassive black holes in
the early universe [9]; see also [10–12]. This is based on the mechanism that a self-interacting
dark matter halo can experience gravothermal collapse. Dark matter self-interactions can
thermalize the inner halo over cosmological timescales [13–20]; see [21] for a review. As a
self-gravitating system with a finite size, the halo has negative heat capacity, and the self-
interactions transport heat from the central region at late stages of the evolution, resulting in
a core with an ultrahigh density [22–25]. The core can further contact and collapse into a seed
black hole [26], which would grow into a supermassive one by accreting baryonic matter. We
used a semi-analytical method and derived the condition for triggering dynamical instability
of the core. Following Chandrasekhar’s criterion [1], i.e., requiring the pressure averaged
adiabatic index of the gravothermal system to be less than its critical adiabatic index, we
found the instability occurs when the 3D central velocity dispersion of dark matter particles
reaches ∼ 0.57c at which the adiabatic index is 1.62.

In this work, we systematically study the dynamical instability of a collapsed halo. We
use a truncated Maxwell-Boltzmann distribution to model the dark matter distribution near
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the relativistic limit. This is well motivated, as the self-interactions thermalize dark matter
particles. In addition, the core is gravitationally bound and particles with a sufficiently high
velocity can evaporate and escape from the gravitational pull of the core. We then implement
the distribution with the Tolman-Oppenheimer-Volkoff equation [27, 28] and find a series
of equilibrium solutions. For each of them, we evaluate its thermal dynamical properties
and test its instability. Besides the Chandrasekhar’s criterion, we will use the turning-point
method [29–31] to examine instability conditions based on considerations of total energy,
binding energy, and fractional binding energy, as illustrated in Figure 1 schematically.

We will compare our numerical results to those from relativistic N-body simulations [7]
and show that the agreement is excellent, i.e., they all indicate that the system can collapse
into a black hole when the fractional binding energy reaches 0.035 with a central gravitational
redshift of 0.5. Thus the method developed in this work may have broad applications as it
is computationally inexpensive. We will further study conditions for the classical Maxwell-
Boltzmann distribution to be valid, and discuss their implications for constraining models
proposed to explain the origin of supermassive black holes via the gravothermal collapse of
dark matter halos. In particular, we show that although the presence of dissipative interac-
tions could help speed up the gravothermal evolution of a halo, they may make it difficult for
the core to eventually collapse into a black hole because of energy loss.

The paper is organized as follows: We present the classical truncated Maxwell-Boltzmann
distribution and its Tolman-Oppenheimer-Volkoff equation in Sec. 2. We discuss instability
conditions and numerical results in Sec. 3. We study conditions for the classical distribution
to be valid and constraints on dark matter models in Sec. 4, discuss connections with the
nonrelativistic fluid model in Sec. 5, and conclude in Sec. 6.

2 The truncated Maxwell-Boltzmann model

We treat the high-density central region of a collapsed SIDM halo as a gravitationally bound
system. Since dark matter particles with sufficiently high energies will evaporate and move to
the outer envelope, it is natural to introduce a distribution function with an energy cutoff to
model the system. In this work, we take a truncated Maxwell-Boltzmann distribution, based
on Michie-King models [32, 33]. Consider the following general form [34, 35]

f(ε ≤ εc) =
1− e(ε−εc)/kBT

e(ε−µ)/kBT − η , f(ε > εc) = 0, (2.1)

where ε is the kinetic energy, εc the cutoff energy, T the temperature and µ the chemical
potential. And they are a function of radius. The number factor η is +1 and −1 for bosons and
fermions, respectively, and kB is the Boltzmann constant. Note ε =

√
|p|2c2 +m2c4 −mc2,

where |p| is the momentum and m the mass of dark matter particles, and we have subtracted
the rest mass in defining µ. For a dilute gas of classical particles, ε−µ� kBT , the distribution
function reduces to the truncated Maxwell-Boltzmann form

f(ε ≤ εc) = eµ/kBT (e−ε/kBT − e−εc/kBT ), f(ε > εc) = 0. (2.2)

We introduce the following dimensionless variables [36], w(r) ≡ εc(r)/kBT (r), α(r) ≡
µ(r)/kBT (r), and b ≡ kBT (R)/mc2, where R is the boundary radius of the system. Following
the Tolman-Klein law [37, 38] for a gravothermal system, we have the relation w(r) = α(r)−
α(R). The temperature at a given radius is related to the one at r = R as T (r) = T (R)/[1−
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Figure 1: Schematic illustration of the formation of a seed black hole via the gravothermal
collapse of a self-interacting dark matter halo. At late stages of gravothermal evolution,
the halo can be divided into two regimes, i.e., a collapsed central core with an ultrahigh
density (orange) and a cuspy outer envelope (gray). As it further contracts, the total mass
of the collapsed core remains almost constant. The elliptical circles denote the sequence of
dynamical instability conditions when the core collapses into a seed black hole.

bw(r)]. It indicates that the system does not follow an isothermal distribution globally in
general relativity, although it can be achieved locally.

Given the distribution function, one can readily derive the equation of state and express
the number density n, energy density ρ, thermal energy density u, and pressure p as

n(r) =4
√

2πgm3(c3/h3)eα(R)In(b, w),

ρ(r) =4
√

2πgm4(c3/h3)eα(R)Iρ(b, w),

u(r) =4
√

2πgm4(c5/h3)eα(R)Iu(b, w),

p(r) =(8/3)
√

2πgm4(c5/h3)eα(R)Ip(b, w),

(2.3)

respectively, where g = 2s+ 1 is the spin multiplicity of dark matter particles, h the Planck
constant as a normalization factor, and c the speed of light; the I(b, w) functions stand for
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integrals of [35]

In(b, w) ≡
(

b

1− bw

)3/2 ∫ w

0
(ew−x − 1)

(
1 +

bx/2

1− bw

)1/2(
1 +

bx

1− bw

)
x1/2dx,

Iρ(b, w) ≡
(

b

1− bw

)3/2 ∫ w

0
(ew−x − 1)

(
1 +

bx/2

1− bw

)1/2(
1 +

bx

1− bw

)2

x1/2dx,

Iu(b, w) ≡
(

b

1− bw

)5/2 ∫ w

0
(ew−x − 1)

(
1 +

bx/2

1− bw

)1/2(
1 +

bx

1− bw

)
x3/2dx,

Ip(b, w) ≡
(

b

1− bw

)5/2 ∫ w

0
(ew−x − 1)

(
1 +

bx/2

1− bw

)3/2

x3/2dx.

(2.4)

For the model we consider, the Tolman-Oppenheimer-Volkoff equation can be written
as

dM
dr

= 4πr2ρ,
dw
dr

= − G

rc2

(
1− bw
b

)
4πpr3 +Mc2

rc2 − 2GM
, (2.5)

where G is the Newton constant, M(r) is the enclosed mass at radius r, and ρ(r) the density.
We impose the following boundary conditions: M = 0 and w = w(0) at r = 0; M = M(R)
and w = 0 at r = R. To further simplify the calculation, we introduce a fiducial length scale
defined as [35]

ζ = λC

(mPl

m

)( 8π3

geα(R)

)1/2

with r = ζr̂, (2.6)

where mPl = (~c/G)1/2 is the Planck mass and λC = ~/mc the Compton wavelength of the
particle. With the fiducial length, we can express thermal dynamical quantities of the system
using their corresponding dimensionless counterpart denoted with a “hat” as n = (c2/Gmζ2)n̂,
ρ = (c2/Gζ2)ρ̂, u = (c4/Gζ2)û, p = (c4/Gζ2)p̂ and M = (c2ζ/G)M̂ , and uniquely determine
their profiles for a given set of b and w(0).

To trigger the onset of dynamical instability, the system needs to be in the relativistic
limit. This requirement puts constraints on b and w(0). It is useful to consider the product
of b and w(r), the normalized cutoff energy

bw(r) =
εc(r)/mc

2

1 + εc(r)/mc2
, (2.7)

where we have used the relation T (r) =
[
1 + εc(r)/mc

2
]
T (R). In the ultrarelativistic limit

εc � mc2, bw → 1. In the opposite limit, bw → 0. Since b = kBT (R)/mc2 determines the
temperature at the core boundary, a higher b value indicates a hotter thermal bath. w(r) is
related to the cutoff energy as w(r) = εc(r)/kBT (r). For w � 1, the distribution reduces to
the usual Maxwell-Boltzmann form without a truncation, as indicated in equation (2.2).

The 3D velocity dispersion v(r) ≡
√

3p/ρ = c
√

2Ip(b, w)/Iρ(b, w) also characterizes
the relativistic extent of the system. In [9], we showed that when v(0) approaches 0.57c,
dynamical instability can be triggered. In addition, the adiabatic index of the system

γ(r) = 1 +
p

u
= 1 +

2

3

Ip(b, w)

Iu(b, w)
(2.8)

approaches 4/3 and 5/3 in ultra- and nonrelativistic limits, respectively; see Appendix A for
detailed derivation.
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Figure 2: 3D velocity dispersion (left) and adiabatic index γ (right) vs. normalized cutoff
energy bw = εc/(mc

2 + εc) for b = kBT (R)/mc2 = (0.5, 0.1, 0.03, 0.01, 0.001). The dashed
horizontal lines denote v/c = 0.57 (left) and γ = 1.59 (right), at which the system approaches
the relativistic regime and dynamical instability may occur.

To gain insight into instability conditions, we first use equations (2.3) and (2.4), and find
the radially independent equation of state without imposing constraints from equation (2.5).
We choose b = 0.001, 0.01, 0.03, 0.1, and 0.5 and evaluate v and γ as a function of bw, as
shown in the left and right panels of Figure 2, respectively. We see that it is easier to reach
the relativistic limit if b is higher, i.e., a hotter thermal bath. For b = 0.5, bw ∼ 0.3 for
achieving v ∼ 0.57c at which γ ∼ 1.59. But when b decreases to 10−3, bw needs to be close
to 1. For the latter case, both v and γ are hardly changed over the wide range of bw. For
low b, the equation of state is stiff, indicating that the system is hard to compress and reach
instability. The results shown in Figure 2 provide guidance in choosing boundary conditions
as we discuss further in the next section.

3 Dynamical instability

The instability of a self-gravitating spherical system sets in when the gravitational energy
becomes comparable to its mass energy, GM2/R ∼ Mc2, where M and R are the total
mass and characteristic radius, respectively. To be more quantitative, one often considers
the compactness of a system calculated as C = GM/c2R [39]. For a typical neutron star,
M ∼ 2 M� and R ∼ 12 km, we have C ∼ 0.25. For a M ∼ 109 M� black hole, R ∼
2GM/c2 ∼ 3× 109 km and C ∼ 0.5. Its average density is ∼ 6× 102 kg/m3, lower than the
water density. As we will discuss later, for a gaseous sphere with M ∼ 109 M�, C ∼ 0.04
when the instability is triggered. Overall, the heavier the system, the easier for it to collapse.

3.1 The adiabatic index

A more concrete way to determine the system’s instability is by checking its adiabatic index.
Chandrasekhar first derived the instability conditions for a spherical system in the context
of general relativity [1]. Consider the background metric ds2 = gαβdxαdxβ = −e2Φ(r)c2dt2 +
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e2Λ(r)dr2 + r2dΩ, where Φ(r) and Λ(r) satisfy the following conditions

e2Φ(r) = exp

(∫ ∞
r

4p(r′)r′3 +M(r′)c2

r′(r′c2)− 2GM(r′)
dr′
)
, e2Λ(r) =

(
1− 2GM(r)

c2r

)−1

. (3.1)

The pulsation equation of a perfect fluid is given by [1]

ω2e2(Λ−Φ)
(
ρ+

p

c2

)
ξ =

4

r

dp
dr
ξ − e−(2Φ+Λ) d

dr

[
e3Φ+Λγp

r2

d(r2e−Φξ)

dr

]
+

8πG

c2
e2Λp

(
ρ+

p

c2

)
ξ − 1

ρc2 + p

(
dp
dr

)2

ξ, (3.2)

where ξ is the Lagrangian displacement and ω is its corresponding oscillation frequency. If
ω2 < 0, the Lagrangian displacement ξ receives unbounded growth and the self-gravitating
system becomes unstable. The boundary conditions for equation (3.2) are ξ(0) = 0 and
p(R) = 0.

Choosing the Lagrangian displacement ξ = reΦ that satisfies the boundary conditions,
one can show that the system becomes unstable if the pressure-averaged adiabatic index 〈γ〉
is less than the critical adiabatic index γcr

〈γ〉 ≡
∫ R

0 γe3Φ+Λpd3r∫ R
0 e3Φ+Λpd3r

< γcr, (3.3)

where

γcr ≡
4

3
+

1

36

∫ R
0 e3Φ+Λ[16p+ (e2Λ − 1)(ρc2 + p)](e2Λ − 1)r2dr∫ R

0 e3Φ+Λpr2dr
(3.4)

+
4πG

9c2

∫ R
0 e3(Φ+Λ)[8p+ (e2Λ + 1)(ρc2 + p)]pr4dr∫ R

0 e3Φ+Λpr2dr
+

16π2G2

9c4

∫ R
0 e3Φ+5Λ(ρc2 + p)p2r6dr∫ R

0 e3Φ+Λpr2dr
;

see Appendix B. The choice of ξ is not unique, but the result is not sensitive to the particular
form of ξ as long as the boundary conditions are satisfied [1]. In the limit ρ � p/c2 and
Φ,Λ → 0, the pulsation equation (3.2) reduces to its Newtonian form and γcr = 4/3; see
Appendix C for a heuristic derivation in the Newtonian limit. For a monatomic ideal gas,
4/3 < 〈γ〉 < 5/3 [39–41]. Thus the instability could hardly occur in the context of Newtonian
gravity. On the other hand, in general relativity γcr increases due to relativistic corrections,
which are O(p/ρc2). As a result, the spherical system can reach the dynamical instability
condition 〈γ〉 < γcr before the particles become ultrarelativistic, i.e., 〈γ〉 → 4/3 as p→ ρc2/3.

3.2 The turning-point method

Aside from the instability condition based on the adiabatic index, we will also use the turning-
point method [29–31] and show the former could be conservative, i.e., dynamical instability
could occur before the condition shown in equation (3.3) is satisfied. Once the boundary
temperature parameter b is fixed, the equation of state only depends on one parameter, i.e.,
the central energy cutoff w(0). We can define an energy functional S as a function of those
two variables,

S = S [b, w(0)] . (3.5)
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The turning-point ansatz [31] states, for a fixed b value, the marginally stable configu-
ration reaches at

∂S

∂w(0)

∣∣∣∣
b

= 0 (3.6)

This tuning point separates the stable and unstable branches along the one parameter se-
quence of w(0). The turning-point method has been applied to study various stellar sys-
tems [42–45] and gaseous spheres [46, 47]. Our application is similar to those to a rotating
relativistic star [44] with its angular momentum being replaced by b in our model.

We consider S = {E, B, ε}, where E, B, ε are total energy, binding energy, fractional
binding energy, respectively. The total energy E = Mc2 is associated with the Schwarzschild
mass M of the sphere, the binding energy B = Erest − E, and Erest is the total rest energy
calculated as [41]

Erest =

∫ R

0
mn(r)c2

(
1− 2GM(r)

rc2

)−1/2

d3r. (3.7)

The fractional binding energy is ε = B/Erest. It is easy to see that the internal energy of the
system E − Erest = −B can be written as the sum of kinetic and potential energies,

E − Erest =

∫ R

0

[
1− 2GM(r)

rc2

]−1/2

u(r)d3r +

∫ R

0

[
1−

(
1− 2GM(r)

rc2

)−1/2
]
ρ(r)c2d3r,

(3.8)
respectively, where u = (ρ−mn)c2.

We will find the parameter regions that satisfy ∂S/∂w(0)|b = 0 for S = E, B and ε,
respectively. The corresponding turning points separate the stable and unstable branches of
the sequence, and delineate various extents of instabilities. We again convert E, Erest, and B
into dimensionless quantities Ê = (G/c4ζ)E = M̂ , Êrest = (G/c4ζ)Erest and B̂ = (G/c4ζ)B.
We will also use the interior redshift

Z(r) = e−Φ(r) − 1 =

(
1 +

εc(r)

mc2

)(
1− 2GM(R)

c2R

)−1/2

− 1 (3.9)

to indicate the relativistic extent of the system. Either high εc or high compactnessGM(R)/c2R
will lead to high interior redshift, though they are interrelated.

3.3 Numerical results

We use the fourth-order Runge-Kutta algorithm [48] to solve the Tolman-Oppenheimer-
Volkoff equation (2.5), together with equation (2.4), assuming the two input parameters
b = kBT (R)/mc2 and w(0) = εc(0)/kBT (0). The algorithm is robust and well-suited to solve
implicit differential equations, especially when they are stiff as in our case. Given the results
shown in Figure 2, we choose b = {0.1, 0.2, 0.3, 0.5}. For each fixed b value, we scan over the
central energy cutoff w(0) and find corresponding equilibrium configurations. We then evalu-
ate their thermal quantities and examine their stability conditions. We collect our numerical
results in Table 1, Appendix D, and highlight the main findings in what follows for b = 0.1.

Figure 3 (top left) shows pressure-averaged adiabatic index 〈γ〉 (blue) and critical index
γcr (orange) vs. 3D velocity dispersion v(0), and gravitational redshift Z(0). As v(0) increases,
〈γ〉 gradually decreases from its value in the nonrelativistic limit 5/3, while the γcr increases
from ∼ 4/3 due to corrections in general relativity. It reaches the critical value 1.62 when
v(0) = 0.566c [9], which corresponds to Z(0) = 0.750. The results are largely insensitive to
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Figure 3: Dynamical variables vs. central 3D velocity dispersion v(0) and redshift Z(0)
of a gravothermal system near the onset of general relativistic instability. From top left
to bottom right panels, the blue curves denote the pressured-averaged adiabatic index 〈γ〉,
fractional binding energy ε, binding energy B̂, and total energy Ê, for stable (solid) and
unstable (dashed) configurations, respectively. The vertical line indicates where the instability
condition is reached (dotted). In the top left panel, the orange curve denotes the critical
adiabatic index γcr (solid), horizontal lines denote 〈γ〉 = 5/3 in the Newtonian limit and 4/3
in the ultrarelativistic limit (dotted). In the other panels, the horizontal line indicates the
maximal value of the corresponding dynamical variable (dotted). The boundary temperature
is fixed to be b = kBT (R)/mc2 = 0.1.

a specific value of b. For b = 0.1–0.5 we consider, according to the adiabatic index criterion,
dynamical instability occurs when 〈γ〉 reaches 1.62 at v(0) = (0.566–0.564)c, corresponding
to Z(0) = 0.750–0.622; see Table 1.

The “insensitivity” reflects the degeneracy between the boundary temperature b and the
central cutoff energy w(0) in determining the equation of state as indicated in Figure 2. In
our numerical study, for given b, we scan w(0) to find the configuration that satisfies the
instability condition. If a system has a low boundary temperature, the instability can be
triggered only if the central cutoff is high enough so that the evaporation effect is suppressed
and more particles are retained on the high-energy tail. For example, to satisfy the adiabatic
index criterion, w(0) = 0.662 for b = 0.5, while w(0) = 4.05 for b = 0.1, as shown in Table 1.
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Figure 3 (top right) shows the fractional binding energy ε = (Êrest− Ê)/Êrest (blue) vs.
v(0) and Z(0). As v(0) increases, ε first increases and reaches its maximum εmax = 0.0352
at v(0) = 0.506c, corresponding to Z(0) = 0.548, then decreases. From the turning-point
method, εmax separates the equilibrium configuration into two branches, i.e., stable (solid) and
unstable (dashed). The pattern is universal, i.e., εmax = 0.0352–0.0356 at Z(0) = 0.548–0.522
is the turning point for b = 0.1–0.5. We also find that 〈γ〉 = 1.63 at the turning point of the
fractional binding energy, which is slightly higher than 1.62 from the adiabatic index criterion.

Earlier studies [3–5] suggest that a system becomes dynamically unstable when its frac-
tional binding energy reaches maximum. Fully relativistic N-body simulations [7] show that
the system can collapse to a black hole when ε ≈ 0.035 at Z(0) ≈ 0.5, in excellent agreement
with what we find based on the semi-analytical method. In several unstable cases found in [7],
the oscillation frequency of radial linear perturbations is still positive, i.e., the adiabatic index
condition is not satisfied. Thus the criterion γcr > 〈γ〉 is a sufficient, but may not be necessary
condition for the dynamical stability.

Figure 3 (bottom left) shows binding energy B̂ = (Êrest − Ê) vs. v(0) and Z(0). B̂
reaches its maximum B̂max = 8.49 × 10−4 at v(0) = 0.395c, corresponding to Z(0) = 0.297,
then decreases. B̂max separates the configuration into stable (solid) and unstable (dashed)
branches. Similarly, Figure 3 (bottom right) shows the total energy Ê vs. v(0) and Z(0). The
maximum value of the total energy is Êmax = 3.47×10−2 at v(0) = 0.225c and Z(0) = 0.087.
According to the turning-point method, the system becomes unstable when Êmax or B̂max is
reached. However, it is unlikely that the system could collapse into a black hole at this stage.
Instead, it would further evolve until the instability condition based on fractional binding
energy or adiabatic index is met. Figure 1 summarizes our numerical results schematically
and illustrates the sequence of dynamical instability conditions when a self-interacting dark
matter halo collapses to a black hole.

To see whether the four collapsing stages denoted in Figure 1 occur chronologically,
we need to trace the time evolution of a collapsing system. In Sec. 5, we will estimate the
dynamical timescale for collapsing into a seed black hole for the configurations satisfying the
instability conditions shown in Figure 3. It turns out that the timescale associated with the
total energy criterion is a factor of ∼ 3 longer than the other three ones, which are comparable.
In this work, we search for quasi-equilibrium, static solutions to the Tolman-Oppenheimer-
Volkoff equation. It is interesting to see if the system deviates from a quasi-equilibrium state
after passing the stage of the total energy criterion, and we will leave it for future work.

In Figure 4, we show radial profiles for normalized cutoff energy bw (top left), cutoff
energy εc/mc2 (top right), density ρ̂ (middle left), 3D velocity dispersion v/c (middle right),
temperature kBT/mc2 (bottom left), and adiabatic index γ (bottom right), for marginally
stable configurations with criteria based on the adiabatic index (dash-dotted orange), frac-
tional binding energy (dotted purple), binding energy (dashed blue) and total energy (solid
magenta). We fix the boundary temperature to be b = kBT (R)/mc2 = 0.1 and adjust the
central cutoff function w(0) to find the corresponding marginal configurations. It is clear that
εc/mc

2, so as for bw(0), becomes higher for a stronger instability condition, which is expected.
For a given configuration, the cutoff energy drops significantly towards outer regions r̂ → 1.
The v and ρ̂ profiles follow a similar behavior. The temperature becomes higher towards
the center due to the gravitational redshift effect. The adiabatic index decreases towards
inner regions as the pressure increases and the equation of state becomes softer accordingly.
And it is much softer for a stronger instability criterion, in particular, the configuration with
γ(0) ≈ 1.59 has 〈γ〉 = γcr ≈ 1.62.
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Figure 4: Radial profiles of bw = εc(r)/[mc
2 + εc(r)], cutoff energy εc/mc

2, density ρ̂,
3D velocity dispersion v/c, temperature kBT/mc2, and adiabatic index γ, for marginally
stable configurations with the criteria based on the adiabatic index (dash-dotted orange),
fractional binding energy (dotted purple), binding energy (dashed blue) and total energy
(solid magenta). We fix b = kBT (R)/mc2 = 0.1.

We have also performed a finer scan of b values for marginally stable configurations
under the adiabatic index criterion, and the results are summarized in Table 2, Appendix D.
For b = 0.09–5.0, the configurations that satisfy 〈γ〉 ≈ γcr = 1.62 have a central velocity
dispersion of v(0) = (0.588–0.566)c, compactness of C ' 0.0236–0.0793, and the central
redshift of Z(0) ' 0.889–0.613. Thus the instability condition exhibits a universal pattern.
For b & 1, pair production of dark matter particles could be relevant, and we will leave it for
future work.
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4 Constraining dark matter models

We have demonstrated the conditions of dynamical instability for a gravothermal system.
Our study assumes a classical truncated Maxwell-Boltzmann distribution, which neglects
quantum statistics. To examine the validity of this assumption, it is useful to calculate
the de Broglie thermal wavelength in relativistic thermodynamics λdB = ~/|p|. Setting
ε = [

√
1 + (pc/mc2)2 − 1]mc2 = 3kBT/2, we have

λdB = λC

[(
1 +

3kBT

2mc2

)2

− 1

]−1/2

. (4.1)

In the nonrelativistic limit kBT/mc2 � 1, this reduces to the familiar expression λdB =
λC
√
mc2/3kBT , where λC is the Compton wavelength, and typically λdB � λC. They become

compatible, λdB ∼ λC, when the temperature is comparable to the particle rest mass, i.e., in
the relativistic regime. When the ultrahigh density core collapses, we demand the thermal de
Broglie wavelength much smaller than the average separation distance, i.e., nλ3

dB � 1, where
n is the number density of dark matter particles. In the relativistic regime λdB ' λC, so we
have nλ3

dB ∼ (Mseed/mR
3)λ3

C � 1, where Mseed is the mass of seed black holes. Using the
compactness relation C = GMseed/Rc

2, we can write nλ3
dB = C3(mPl/Mseed)2(mPl/m)4, and

hence

nλ3
dB ≈ 0.27

(
C

0.04

)3(109 M�
Mseed

)2(
5 keV

mc2

)4

� 1. (4.2)

Thus for given Mseed, we can derive a lower limit on the particle mass m.
Consider a benchmark case discussed in [9], where the core of a 6.8 × 1011 M� halo

collapses to a seed black hole withMseed = 1.9×109 M�. Such a seed could further grow into
a supermassive black hole with a mass of 2.2×109 M� through accreting baryonic matter, to
be consistent with observations of the J1205-0000 quasar at redshift 6.7 [49]. J1205-0000 has
a low accretion efficiency, and hence a massive ∼ 109 M� seed is needed if one assumes an
Eddington accretion history. Taking these into account, the particle mass needs to be larger
than a few keV such that the classical truncated Maxwell-Boltzmann distribution is valid.

We further check constraints on the boundary temperature b = kBT (R)/mc2 and the
central cutoff energy w(0) = εc(0)/kBT (0). Consider a 109 M� core, when the onset of
dynamical instability occurs, the boundary radius is R = GMseed/Cc

2 ≈ 10−3 pc, where we
take C = 0.04. Setting the characteristic length scale ζ = λC(mPl/m)(8π3/geα(R))1/2 to be
R/R̂ and taking m = 1 GeV/c2 and R̂ = 0.37, see Table 1 (b = 0.1), we find α(R) ≈ −44
for fermionic dark matter, g = 2. The central degeneracy α(0) = α(R) +w(0) must be much
less than −1 for classical distribution to be valid, i.e., −µ(0)/kBT (0)� 1; see equation (2.2).
Thus there is an upper limit on w(0), i.e., w(0) � 43. As shown in Figure 4 (top left), the
instability condition requires bw(0) & 0.3. For b ∼ 0.1, we have w(0) & 3. In this case, the
core can collapse to a seed black hole when the system is still in the classical regime where
quantum effects are negligible. On the other hand, for b ∼ 0.001, the required w(0) would
be larger than 300. Thus for the core to collapse to a black hole in the classical regime, the
boundary temperature needs to be b & 0.1 at the onset of the instability.

This can be used to test the collapse models based on self-interacting dark matter. In [9],
the self-interactions are purely elastic and gravothermal collapse could occur early enough to
explain the origin of supermassive black holes at high redshifts after taking into account the
effects of baryons. Recent studies [11, 12] consider dissipative interactions, as they could
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speed up the onset of gravothermal collapse [24, 25, 50]. However, it is not clear whether
dynamical instability can be triggered in this case, as the temperature of the central core
may not reach the quasirelativistic limit, i.e., b ∼ 0.1, due to the energy loss induced by the
dissipative interactions. It is possible that the energy release could be confined within the
collapsing core as the radiation particle has a mean free path much less than the core radius.
A detailed study is needed to further assess those models.

In this study, we have assumed a spherical symmetry. Dark matter self-interactions lead
to a spherical shape of the inner halo [14, 51]. They also induce viscosity that can dissipate
away net angular momentum of the core inherited from the main halo in a short timescale [9].
Thus our spherical assumption is self-consistent and well justified. It is interesting to see
whether our work can be generalized to axisymmetric cases. Fully relativistic numerical
simulations show that a marginally unstable system can collapse into a black hole containing
90% of the total mass even if it rotates at the mass shedding limit (Keplerian speed) [52–54].
Given this encouraging result, we expect our overall findings in this work could be valid for
axisymmetric systems as well.

5 Connecting to the conducting fluid model

Another direction is to develop a formalism that bridges the relativistic truncated Maxwell-
Boltzmann model in this work, the analytical SIDM halo model [18], as well as the nonrela-
tivistic conducting fluid model [22]. The latter has been widely used to study the gravothermal
collapse of SIDM halos. The two essential parameters in our model, i.e., boundary temper-
ature b = kBT (R)/mc2 and central energy cutoff w(0) = εc(0)/kBT (0), would be ultimately
related to the halo parameters and the self-interacting cross section. To fully establish such
relations, one would need simulations with a relativistic fluid model, which is beyond the
scope of this work. Here, we highlight a few useful comparisons between our results and those
in the relevant literature.

In the nonrelativistic limit bw(r)� 1, the Tolman-Oppenheimer-Volkoff equation (2.5)
for w(r) becomes dw/dr = −GM(r)/(br2c2). For the truncated model, one can show [35]

dp

dr
=

b

1− bw
(
p+ ρc2

) dw

dr
= bρc2 dw

dr
, (5.1)

where the last equality assumes the nonrelativistic limit. Thus we obtain the Newtonian
hydrostatic equation dp/dr = −GM(r)ρ/r2. Ref. [18] uses the hydrostatic equation and pro-
poses an analytical model to describe an SIDM halo when it reaches the maximal gravother-
mal expansion. It further assumes an isothermal equation of state p = ρv2/3 over the in-
ner halo, where the 3D velocity dispersion v is a constant, and hence the adiabatic index
is fixed to γ = 5/3. In this case, kBT/m = v2/3 is a constant, and we have a sim-
ple relation of b = kBT/mc

2 = (v/c)2/3. Using the relation εc(r) = w(r)kBT , we find
dεc/dr = −GM(r)m/r2, thus εc is the escape energy as expected.

When the SIDM halo reaches its maximal expansion, v ≈ Vmax = 1.64rs
√
Gρs [18],

where Vmax is the maximal circular velocity of the initial halo, rs and ρs are its scale radius
and density, respectively. Since rs ∝ M

1/3
200 /c200 and ρs ∝ c3

200/f200, where M200 is the
halo mass, c200 is the concentration and f200 = ln(c200 + 1) − c200/(c200 + 1), we obtain a
scaling relation of b ∝ M

2/3
200 c200/f200 in the context of the analytical SIDM halo model [18].

For a collapsed halo, v increases with the evolution time and it becomes much larger than
Vmax, as we will show an example later. It is interesting to see whether the scaling relation
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b ∝M2/3
200 c200/f200 still holds in the collapse phase. Qualitatively, if the initial halo has a high

mass and concentration, the collapsed inner halo has a large energy reservoir, leading to a
high boundary temperature.

We further compare our numerical results with simulations in [9] based on the nonrel-
ativistic conducting fluid model. Consider the J1205-0000 benchmark case again [9], where
ρs ≈ 8.1 × 107 M�/kpc3 and rs ≈ 10 kpc for the halo with a mass of 6.8 × 1011 M� and
Mseed = 1.9×109 M� [9]. Taking b = 0.1, the instability occurs when the compactness reaches
C = 3.9× 10−2, see Table 1, and we can obtain the boundary radius as R = GMseed/Cc

2 ≈
2.3×10−3 pc. The average density within R is 〈ρseed〉 = 3Mseed/(4πR

3) ≈ 3.5×1025 M�/kpc3.
For comparison, the simulations based on the nonrelativistic fluid model find that the average
density of the collapsed halo is 〈ρin〉 ∼ 1011ρs = 8.1 × 1018 M�/kpc3 at the last snapshot
shown in Figure 1 of [9]. We see that 〈ρseed〉 / 〈ρin〉 ∼ 4.4× 106, a significant difference. Thus
the simulated halo needs to evolve further for matching 〈ρseed〉, which requires a relativistic
version of the conducting fluid model towards the end.

When the instability occurs, the central 3D velocity dispersion reaches the relativistic
limit, v(0)/c =

√
3p/ρc2 ≈ 0.57, but on the boundary v(R)/c ≈ 8.8 × 10−3 (b = 0.1), see

Table 2. Interestingly, v(R)/c is comparable to the velocity dispersion found in the fluid
simulations v/c ≈ 10 ×

√
12πρsr2

s/c
2 = 37.4Vmax/c ≈ 3.8 × 10−2, derived from the last

snapshot in Figure 1 of [9] assuming the hydrostatic condition. During the gravothermal
collapse the change in the velocity dispersion is much milder than that in the density, as the
pressure increases as well and v ∝

√
p/ρ. One may consider exactly mapping the thermal

quantities, such as ρ and p, from the truncated Maxwell-Boltzmann model, to those from the
fluid model. However, this is challenging because the adiabatic index γ varies dynamically
towards the onset of the instability, as illustrated in Figure 3, but the original nonrelativistic
fluid model assumes a specific value of γ = 5/3 [22]. To resolve this, we could consider a
relativistic fluid model and find a class of solutions by varying γ from γ = 5/3 to 4/3.

Lastly, we examine timescales for the ultrahigh density core to collapse into a black hole.
For the gravothermal collapse of an SIDM halo, thalo ∼ O(100)/[rsρs(σ/m)

√
4πGρs] [22],

where σ/m is the self-scattering cross section. The presence of the baryonic potential could
shorten the collapse timescale by a factor of ∼ 100 [9] and rsρs(σ/m) is typically 0.1–1 [24],
we take thalo ∼ 1/

√
4πGρs after neglecting O(1) numerical factors. We estimate the timescale

for collapsing into a seed as tseed ∼ 1/
√

4πG 〈ρseed〉. For the J1205-0000 benchmark, 〈ρseed〉 ≈
3.5× 1025 M�/kpc3 based on the adiabatic index criterion and ρs ≈ 8.1× 107 M�/kpc3, and
hence tseed ∼

√
ρs/ 〈ρseed〉 = 1.5 × 10−9thalo ∼ 69 days, where we take thalo = 124 Myr for

J1205-0000 [9]. Thus the timescale for collapsing into a seed black hole is extremely short
compared to that of the gravothermal collapse of an SIDM halo.

For the J1205-0000 benchmark, we have further checked that the tseed values associated
with the adiabatic index, fractional binding energy, and binding energy criteria are compara-
ble, but a factor of ∼ 3 shorter than the one with the total energy criterion. This indicates
that the total energy criterion may not be a sufficient condition for collapsing into a black
hole. On the other hand, the system may deviate from a hydrostatic equilibrium after the
total energy criterion is satisfied, which we will leave for future work. In addition, we have
a scaling relation of 〈ρseed〉 ∝ Mseed/R

3 ∝ 1/M2
seed, where R = GMseed/Cc

2 is used. For the
SIDM model, Mseed ∼ 10−3M200 [9, 22], and we expect that the compactness C, a dimen-
sionless quantity, is largely independent of specific halo parameters. Thus the collapse time
increases with the initial halo mass as tseed ∝ 1/

√
〈ρseed〉 ∝M200.
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6 Conclusions

The origin of supermassive black holes remains unknown and the gravothermal collapse of
dark matter halos is a promising mechanism to explain the puzzle. In this work, we have
investigated a key aspect of this mechanism, i.e., dynamical instability of the ultrahigh den-
sity core produced at late stages of gravothermal evolution. We used a truncated Maxwell-
Boltzmann distribution to model the dark matter distribution in the core, solved the Tolman-
Oppenheimer-Volkoff equation in a self-consistent way, and obtained a series of equilibrium
configurations. We examined four instability conditions based on considerations of total en-
ergy, binding energy, fractional binding energy, and adiabatic index. As the core contracts,
these conditions would be satisfied in sequential order. The adiabatic index criterion is the
strongest among the four. We have also compared our results from the semi-analytical method
to those from fully relativistic N-body simulations and found a good agreement. In particular,
both show the instability can occur when the fractional binding energy reaches 0.035 with a
central gravitational redshift of 0.5.

We further found that to meet the instability condition in the classical regime, the bound-
ary temperature of the core should be at least 10% of the mass of dark matter particles. In
addition, the classical Maxwell-Boltzmann distribution is valid only if the particle mass is
larger than a few keV for a 109 M� seed black hole. We have also shown that the timescale
for collapsing into a seed black hole is extremely short compared to that of the gravothermal
collapse of an SIDM halo. In the future, we could extend our work to study dynamical insta-
bility of a self-gravitating quantum sphere, and whether the presence of a baryonic potential
would help trigger the instability. In addition, signatures of the gravothermal collapse could
be tested using observations of satellite dwarf galaxies of the Milky Way [55–63] and sub-
structures of galaxy clusters [64], as the interplay between self- and tidal interactions could
seed up the process. It would be interesting to explore formation of seed black holes in those
systems.
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A Adiabatic index for an ideal fluid

The adiabatic index of a fluid is defined as γ ≡ (∂ ln p/∂ lnn)s locally in spacetime. The
solution for an ideal fluid is often parametrized as p = K(mn)γ , where K and γ are not
explicit functions of n in an adiabatic process. We show the derivation of the adiabatic index
of an ideal fluid. For an adiabatic process, the first law of thermodynamics tells dU = −pdV ,
where U is the total internal energy and V is the volume. Suppose N is the total number
of particles, u is the internal energy density and n is the number density, U = Nu/n and
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V = N/n. Since N is a constant, we have

d
(u
n

)
= −p d

(
1

n

)
= Kmγnγ−2dn, (A.1)

where the ansatz p = K(mn)γ is used for the last equality. For ideal gas, K and γ are
independent of n. Integrating both sides of equation (A.1) gives u = Kmγ(γ − 1)−1nγ =
(γ−1)−1p. Since u = (ρ−mn)c2, there is a general relation between ρ and p, i.e., (ρ−mn)c2 =
p(γ − 1)−1 [39, 41, 65]. Thus we have γ = 1 + p/u, which can be further expressed in terms
of b and w,

γ(b, w) = 1 +
p

u
= 1 +

2

3

Ip(b, w)

Iu(b, w)
, (A.2)

where Ip and Iu are given in equation (2.4). In the nonrelativistic limit bw → 0 (Ip ' Iu),
γ → 5/3; in the ultrarelativistic limit bw → 1 (Ip ' Iu/2), γ → 4/3.

B Chandrasekhar’s instability condition

The pulsation equation (3.2) is derived by perturbing the equilibrium solution to the Einstein
equation with a Lagrangian displacement ξ [1]. Here we take a series of steps and convert it
into an integral form. Multiplying its both sides by a factor of r2eΦ+Λξ and integrating it
over r, we get (G = c = 1)

ω2

∫ R

0
e3Λ−Φ(ρ+ p)r2ξ2dr = −

∫ R

0
(r2e−Φξ)

[
e3Φ+Λγp

r2
(r2e−Φξ)′

]′
dr + 4

∫ R

0
eΦ+Λr

dp
dr
ξ2dr

−
∫ R

0
eΦ+Λ

(
dp
dr

)2 r2ξ2

ρ+ p
dr + 8π

∫ R

0
e3Λ+Φp(ρ+ p)r2ξ2dr, (B.1)

where “ ′” denotes “d/dr” for simplicity. Taking the first term on the right hand side of (B.1),
and integrating it by parts, we have

−
∫ R

0
(r2e−Φξ)

[
e3Φ+Λγp

r2
(r2e−Φξ)′

]′
dr =

∫ R

0
e3Φ+Λγp

r2

[
(r2e−Φξ)′

]2 dr
− ξe2Φ+Λγp(r2e−Φξ)′

∣∣R
0
, (B.2)

where the total derivative term vanishes after imposing the boundary condition ξ(0) = 0 and
p(R) = 0. Integrating the second term by parts gives rise to

4

∫ R

0
eΦ+Λr

dp
dr
ξ2dr = −4

∫ R

0
eΦ+Λ[ξ2 + 2rξξ′ + rξ2(Φ′ + Λ′)]pdr

= −4

∫ R

0
eΦ+Λ(ξ2 + 2rξξ′)pdr − 16π

∫ R

0
e3Λ+Φp(ρ+ p)r2ξ2dr, (B.3)

where we have used 2e−2Λ(Φ′ + Λ′)/r = 8π(ρ+ p) from the Einstein equation.
For the third term on the right hand side of (B.1), we substitute dp/dr with

dp
dr

= −(ρ+ p)

[
M + 4πpr3

r(r − 2M)

]
= −(ρ+ p)

[
1

2r
(e2Λ − 1) + 4πpre2Λ

]
(B.4)
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and find

−
∫ R

0
eΦ+Λ

(
dp
dr

)2 r2ξ2

ρ+ p
dr =

−
∫ R

0
eΦ+Λ(ρ+ p)

[
1

4
(e2Λ − 1)2 + 4πpr2(e2Λ − 1)e2Λ + 16π2p2r4e4Λ

]
ξ2dr. (B.5)

We take ξ(r) = reΦ as the trial function, which satisfies the boundary condition ξ(0) = 0.
From the Einstein equation, we have 2Φ′e−2Λ/r − (1− e−2Λ)/r2 = 8πp, thus

ξ2 + 2rξξ′ = r2e2Φ + 2r2(1 + rΦ′)e2Φ =
[
3r2 + 8πpr4e2Λ + r2(e2Λ − 1)

]
e2Φ. (B.6)

Putting all the relevant terms together, we have

ω2

∫ R

0
e3Λ+Φ(ρ+ p)r4dr = 9

∫ R

0
e3Φ+Λγpr2dr

− 4

∫ R

0
e3Φ+Λ[3r2 + 8πpr4e2Λ + r2(e2Λ − 1)]pdr − 8π

∫ R

0
e3(Φ+Λ)p(ρ+ p)r4dr

−
∫ R

0
e3Φ+Λ

[
r2

4
(e2Λ − 1)2 + 4πpr4(e2Λ − 1)e2Λ + 16π2p2r6e4Λ

]
(ρ+ p)dr

=

∫ R

0
e3Φ+Λ(9γ − 12)pr2dr − 1

4

∫ R

0
e3Φ+Λ[16p+ (e2Λ − 1)(ρ+ p)](e2Λ − 1)r2dr

− 4π

∫ R

0
e3(Φ+Λ)[8p+ (e2Λ + 1)(ρ+ p)]pr4dr − 16π2

∫ R

0
e3Φ+5Λ(ρ+ p)p2r6dr. (B.7)

We determine the critical stability condition by setting the right hand side of equation (B.7)
to 0 and rewrite it as 〈γ〉 − γcr = 0, where

〈γ〉 ≡
∫ R

0 e3Φ+Λγpr2dr∫ R
0 e3Φ+Λpr2dr

(B.8)

is the pressure-averaged adiabatic index of the system, and

γcr ≡
4

3
+

1

36

∫ R
0 e3Φ+Λ[16p+ (e2Λ − 1)(ρ+ p)](e2Λ − 1)r2dr∫ R

0 e3Φ+Λpr2dr

+
4π

9

∫ R
0 e3(Φ+Λ)[8p+ (e2Λ + 1)(ρ+ p)]pr4dr∫ R

0 e3Φ+Λpr2dr
+

16π2

9

∫ R
0 e3Φ+5Λ(ρ+ p)p2r6dr∫ R

0 e3Φ+Λpr2dr
(B.9)

is the critical adiabatic index. A similar derivation can also be found in [66].

C Critical adiabatic index in the Newtonian limit: a heuristic derivation

For the illustration purpose, we follow [40] and show a heuristic derivation of the instability
condition in the Newtonian limit. The idea is to obtain the pulsation equation of a Newtonian
star of mass M and radius R with spherical symmetry, δR̈ + (k/M)δR = 0 and determine
the effective “spring constant” k of the star. A tachyonic instability will develop if k/M < 0.
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Consider a particle on the surface, it is pulled by an inward gravitational force f̄g =
GM/R2 ≈ Gρ̄2R and an outward force due to pressure f̄p ≈ p̄/R, with the boundary con-
dition p(r = R) = 0. The system is in equilibrium when f̄g − f̄p = 0. Let’s perturb
the system radius R → R + δR while keep its total mass M fixed. This leads to per-
turbations in the density and pressure δρ̄ = −3ρ̄δR/R and δp̄ = −3γ̄p̄δR/R, respectively,
where have used γ̄ ≈ (∂ ln p̄/∂ ln ρ̄)s and ρ̄ = mn̄. The resulting changes in the force are
δf̄p = − (3γ̄ + 1) f̄pδR/R and δf̄g = −5f̄gδR/R. The acceleration related to the net force
is δR̈ = (δ̄fp − δ̄fg)/ρ̄ = −3 (γ̄ − 4/3)Gρ̄δR. We can identify 3 (γ̄ − 4/3)Gρ̄ as k/M . The
spherical system will undergo an exponential growth or decay under small radical perturbation
if γ̄ − 4/3 < 0.
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D Summary of numerical results

Table 1: Properties of equilibrium configurations, where we fix the boundary temperature
parameter as b = kBT (R)/mc2 = 0.1, 0.2, 0.3, and 0.5 and scan over the central energy cutoff
w(0) = εc(0)/kBT (0) for each b. From the 2nd to 14th columns, we show their total energy
Ê = M̂ , total rest energy Êrest, binding energy B̂, fractional binding energy ε, system radius
R̂, compactness C = GM(R)/c2R = M̂/R̂, central interior redshift Z(0), central energy cut
off εc(0), central energy density ρ̂(0), central pressure p̂(0), central velocity dispersion v(0),
pressure averaged adiabatic index 〈γ〉, and critical adiabatic index γcr, respectively. For each
case, we underscore marginally stable configurations following instability criteria based on
total energy, binding energy, fractional binding energy, and adiabatic index by underscoring
w(0) and the corresponding critical values. The electronic version of the data can be found
at https://github.com/michaelwxfeng/truncated-Maxwell-Boltzmann.

b = kBT (R)/mc2 = 0.1
w(0) Ê = M̂ Êrest B̂ ε R̂ C = M̂/R̂ Z(0) εc(0)/mc2 ρ̂(0) p̂(0) v(0)/c 〈γ〉 γcr

0.1 2.72074× 10−2 2.72729× 10−2 6.54443× 10−5 2.39961× 10−3 6.82000× 100 3.98936× 10−3 1.41544× 10−2 1.01010× 10−2 4.99973× 10−4 1.42585× 10−6 9.24965× 10−2 1.66545 1.34070
0.3 3.29993× 10−2 3.32285× 10−2 2.29264× 10−4 6.89961× 10−3 2.89200× 100 1.41053× 10−2 4.28931× 10−2 3.09277× 10−2 8.69198× 10−3 7.40805× 10−5 1.59902× 10−1 1.66301 1.35554
0.6 3.47240× 10−2 3.51790× 10−2 4.54900× 10−4 1.29311× 10−2 1.63800× 100 2.11990× 10−2 8.71214× 10−2 6.38296× 10−2 5.82063× 10−2 9.86165× 10−4 2.25450× 10−1 1.65936 1.37799
1.1 3.29600× 10−2 3.36735× 10−2 7.13463× 10−4 2.11877× 10−2 9.64001× 10−1 3.41909× 10−2 1.64064× 10−1 1.23591× 10−1 3.55962× 10−1 1.09378× 10−3 3.03616× 10−1 1.65331 1.41580
1.5 3.02662× 10−2 3.10835× 10−2 8.17290× 10−4 2.62934× 10−2 7.25001× 10−1 4.17464× 10−2 2.28846× 10−1 1.76464× 10−1 9.92442× 10−1 4.12090× 10−2 3.52943× 10−1 1.64851 1.44620
1.9 2.72897× 10−2 2.81385× 10−2 8.48824× 10−4 3.01659× 10−2 5.81001× 10−1 4.69701× 10−2 2.96903× 10−1 2.34552× 10−1 2.33058× 100 1.21454× 10−1 3.95398× 10−1 1.64377 1.47651
2.3 2.43394× 10−2 2.51671× 10−2 8.27673× 10−4 3.28872× 10−2 4.88001× 10−1 4.98757× 10−2 3.68726× 10−1 2.98693× 10−1 4.95282× 100 3.09617× 10−1 4.33059× 10−1 1.63912 1.50646
2.7 2.15635× 10−2 2.23348× 10−2 7.71245× 10−4 3.45311× 10−2 4.25001× 10−1 5.07375× 10−2 4.44974× 10−1 3.69819× 10−1 9.88713× 100 7.19304× 10−1 4.67177× 10−1 1.63459 1.53571
3.2 1.84498× 10−2 1.91224× 10−2 6.72639× 10−4 3.51754× 10−2 3.78001× 10−1 4.88088× 10−2 5.47883× 10−1 4.70526× 10−1 2.22039× 101 1.89599× 100 5.06132× 10−1 1.62919 1.57054
3.4 1.73316× 10−2 1.79606× 10−2 6.28996× 10−4 3.50209× 10−2 3.68001× 10−1 4.70966× 10−2 5.91899× 10−1 5.15125× 10−1 3.03421× 101 2.74353× 100 5.20825× 10−1 1.62714 1.58366
3.7 1.58026× 10−2 1.63652× 10−2 5.62545× 10−4 3.43745× 10−2 3.61001× 10−1 4.37745× 10−2 6.61622× 10−1 5.87271× 10−1 4.80814× 101 4.71035× 100 5.42124× 10−1 1.62423 1.60212
4.05150 1.42556× 10−2 1.47424× 10−2 4.86859× 10−4 3.30243× 10−2 3.68001× 10−1 3.87378× 10−2 7.50107× 10−1 6.81035× 10−1 8.17923× 101 8.74006× 100 5.66189× 10−1 1.62117 1.62117
4.2 1.36891× 10−2 1.41457× 10−2 4.56567× 10−4 3.22761× 10−2 3.78001× 10−1 3.62145× 10−2 7.90144× 10−1 7.24120× 10−1 1.02219× 102 1.13099× 101 5.76136× 10−1 1.62002 1.62810
4.5 1.27271× 10−2 1.31271× 10−2 4.00052× 10−4 3.04753× 10−2 4.13001× 10−1 3.08160× 10−2 8.76941× 10−1 8.18182× 10−1 1.60208× 102 1.89661× 101 5.95948× 10−1 1.61808 1.63933

b = kBT (R)/mc2 = 0.2
w(0) Ê = M̂ Êrest B̂ ε R̂ C = M̂/R̂ Z(0) εc(0)/mc2 ρ̂(0) p̂(0) v(0)/c 〈γ〉 γcr

0.05 3.87808× 10−2 3.88743× 10−2 9.34786× 10−5 2.40464× 10−3 9.67200× 100 4.00960× 10−4 1.41753× 10−2 1.01010× 10−2 2.46406× 10−4 7.04972× 10−7 9.26448× 10−2 1.66545 1.34072
0.15 4.77866× 10−2 4.81207× 10−2 3.34059× 10−4 6.94210× 10−3 4.12300× 100 1.15903× 10−2 4.30859× 10−2 3.09278× 10−2 4.15840× 10−3 3.57900× 10−5 1.60686× 10−1 1.66299 1.35569
0.4 5.18443× 10−2 5.27274× 10−2 8.83084× 10−4 1.67481× 10−2 1.84400× 100 2.81151× 10−2 1.18857× 10−1 8.69556× 10−2 5.93008× 10−2 1.37078× 10−3 2.63338× 10−1 1.65680 1.39423
0.65 4.97407× 10−2 5.09868× 10−2 1.24612× 10−3 2.44400× 10−2 1.20100× 100 4.14160× 10−2 2.00179× 10−1 1.49422× 10−1 2.47787× 10−1 9.37848× 10−3 3.36967× 10−1 1.65052 1.43435
0.85 4.67140× 10−2 4.81152× 10−2 1.40117× 10−3 2.91212× 10−2 9.36001× 10−1 4.99081× 10−2 2.69793× 10−1 2.04808× 10−1 5.80946× 10−1 2.89401× 10−2 3.86583× 10−1 1.64544 1.46752
1.05 4.32590× 10−2 4.47129× 10−2 1.45394× 10−3 3.25173× 10−2 7.65001× 10−1 5.65476× 10−2 3.44027× 10−1 2.65807× 10−1 1.19109× 100 7.38002× 10−2 4.31138× 10−1 1.64034 1.50157
1.2 4.05844× 10−2 4.20226× 10−2 1.43828× 10−3 3.42264× 10−2 6.73001× 10−1 6.03036× 10−2 4.03116× 10−1 3.15789× 10−1 1.92873× 100 1.37321× 10−1 4.62161× 10−1 1.63649 1.52760
1.35 3.79259× 10−2 3.93103× 10−2 1.38436× 10−3 3.52163× 10−2 6.00001× 10−1 6.32097× 10−2 4.65490× 10−1 3.69827× 10−1 3.01906× 100 2.43204× 10−1 4.91598× 10−1 1.63264 1.55399
1.5 3.53324× 10−2 3.66322× 10−2 1.29981× 10−3 3.54828× 10−2 5.43001× 10−1 6.50687× 10−2 5.31533× 10−1 4.28522× 10−1 4.60834× 100 4.14967× 10−1 5.19751× 10−1 1.62879 1.58064
1.65 3.28360× 10−2 3.40276× 10−2 1.19160× 10−3 3.50187× 10−2 4.98001× 10−1 6.59355× 10−2 6.01703× 10−1 4.92480× 10−1 6.90365× 100 6.88165× 10−1 5.46849× 10−1 1.62497 1.60740
1.7 3.20294× 10−2 3.31808× 10−2 1.15138× 10−3 3.47003× 10−2 4.86001× 10−1 6.59040× 10−2 6.26103× 10−1 5.15151× 10−1 7.87346× 100 8.10392× 10−1 5.55681× 10−1 1.62370 1.61631
1.73635 3.14517× 10−2 3.25728× 10−2 1.12106× 10−3 3.44172× 10−2 4.77001× 10−1 6.59364× 10−2 6.44181× 10−1 5.31996× 10−1 8.65548× 100 9.11403× 10−1 5.62044× 10−1 1.62278 1.62278
1.85 2.96954× 10−2 3.07167× 10−2 1.02133× 10−3 3.32499× 10−2 4.53001× 10−1 6.55526× 10−2 7.02657× 10−1 5.87236× 10−1 1.15907× 101 1.30712× 100 5.81653× 10−1 1.61994 1.64293
2.0 2.75004× 10−2 2.83817× 10−2 8.81323× 10−4 3.10525× 10−2 4.29001× 10−1 6.41034× 10−2 7.84825× 10−1 6.66595× 10−1 1.69159× 101 2.07718× 100 6.06946× 10−1 1.61625 1.66912

b = kBT (R)/mc2 = 0.3
w(0) Ê = M̂ Êrest B̂ ε R̂ C = M̂/R̂ Z(0) εc(0)/mc2 ρ̂(0) p̂(0) v(0)/c 〈γ〉 γcr

0.033 4.75157× 10−2 4.76291× 10−2 1.13485× 10−4 2.38268× 10−3 1.19480× 101 3.97687× 10−3 1.40394× 10−2 9.99899× 10−3 1.59375× 10−4 4.51884× 10−7 9.22282× 10−2 1.66546 1.34065
0.133 6.14737× 10−2 6.20370× 10−2 5.63289× 10−4 9.07989× 10−3 4.03500× 100 1.52351× 10−2 5.77953× 10−2 4.15580× 10−2 5.77271× 10−3 6.64531× 10−5 1.85835× 10−1 1.66176 1.36328
0.267 6.48158× 10−2 6.59264× 10−2 1.11061× 10−3 1.68462× 10−2 2.27100× 100 2.85406× 10−2 1.19486× 10−1 8.70740× 10−2 3.81380× 10−2 8.90310× 10−4 2.64638× 10−1 1.65674 1.39468
0.467 6.22397× 10−2 6.38962× 10−2 1.65647× 10−3 2.59245× 10−2 1.38700× 100 4.48736× 10−2 2.18873× 10−1 1.62921× 10−1 1.94114× 10−1 8.05085× 10−3 3.52738× 10−1 1.64910 1.44387
0.633 5.78329× 10−2 5.96955× 10−2 1.86259× 10−3 3.12016× 10−2 1.04400× 100 5.53954× 10−2 3.09024× 10−1 2.34409× 10−1 5.08491× 10−1 2.89754× 10−2 4.13460× 10−1 1.64265 1.48675
0.733 5.48232× 10−2 5.67169× 10−2 1.89374× 10−3 3.33894× 10−2 9.07001× 10−1 6.04445× 10−2 3.67187× 10−1 2.81887× 10−1 8.33940× 10−1 5.54914× 10−2 4.46793× 10−1 1.63871 1.51344
0.8 5.27484× 10−2 5.46295× 10−2 1.88110× 10−3 3.44338× 10−2 8.33001× 10−1 6.33234× 10−2 4.07959× 10−1 3.15788× 10−1 1.13380× 100 8.28133× 10−2 4.68104× 10−1 1.63606 1.53165
0.867 5.06592× 10−2 5.25040× 10−2 1.84479× 10−3 3.51361× 10−2 7.70001× 10−1 6.57911× 10−2 4.50296× 10−1 3.51529× 10−1 1.51812× 100 1.20871× 10−1 4.88730× 10−1 1.63340 1.55012
0.967 4.75566× 10−2 4.93089× 10−2 1.75236× 10−3 3.55384× 10−2 6.92001× 10−1 6.87233× 10−2 5.16649× 10−1 4.08626× 10−1 2.29463× 100 2.05574× 10−1 5.18428× 10−1 1.62942 1.57809
1.033 4.55399× 10−2 4.72098× 10−2 1.66994× 10−3 3.53727× 10−2 6.49001× 10−1 7.01692× 10−2 5.62702× 10−1 4.49016× 10−1 2.97846× 100 2.86744× 10−1 5.37417× 10−1 1.62678 1.59677
1.067 4.45149× 10−2 4.61367× 10−2 1.62176× 10−3 3.51513× 10−2 6.30001× 10−1 7.06585× 10−2 5.87183× 10−1 4.70792× 10−1 3.39660× 100 3.38804× 10−1 5.47032× 10−1 1.62543 1.60645
1.12526 4.27849× 10−2 4.43162× 10−2 1.53130× 10−3 3.45539× 10−2 5.99001× 10−1 7.14271× 10−2 6.30406× 10−1 5.09562× 10−1 4.23693× 100 4.48081× 10−1 5.63266× 10−1 1.62311 1.62311
1.167 4.15683× 10−2 4.30293× 10−2 1.46104× 10−3 3.39546× 10−2 5.80001× 10−1 7.16693× 10−2 6.62419× 10−1 5.38688× 10−1 4.95051× 100 5.45061× 10−1 5.74723× 10−1 1.62145 1.63507
1.267 3.87411× 10−2 4.00187× 10−2 1.27768× 10−3 3.19270× 10−2 5.40001× 10−1 7.17426× 10−2 7.42982× 10−1 6.13138× 10−1 7.13493× 100 8.60887× 10−1 6.01643× 10−1 1.61750 1.66373

b = kBTR/mc
2 = 0.5

w(0) Ê = M̂ Êrest B̂ ε R̂ C = M̂/R̂ Z(0) εc(0)/mc2 ρ̂(0) p̂(0) v(0)/c 〈γ〉 γcr

0.02 6.16063× 10−2 6.17550× 10−2 1.48683× 10−4 2.40763× 10−3 1.53190× 101 4.02156× 10−3 1.41877× 10−2 1.01010× 10−2 9.77183× 10−5 2.80107× 10−7 9.27331× 10−2 1.66544 1.34073
0.1 8.22824× 10−2 8.32134× 10−2 9.31015× 10−4 1.11883× 10−2 4.35600× 100 1.88894× 10−2 7.30960× 10−2 5.26315× 10−2 6.19205× 10−3 8.99255× 10−5 2.08730× 10−1 1.66049 1.37116
0.18 8.51525× 10−2 8.67687× 10−2 1.61614× 10−3 1.86259× 10−2 2.66900× 100 3.19043× 10−2 1.35727× 10−1 9.89006× 10−2 3.06823× 10−2 8.12905× 10−4 2.81927× 10−1 1.65545 1.40298
0.28 8.26154× 10−2 8.48251× 10−2 2.20966× 10−3 2.60497× 10−2 1.80700× 100 4.57196× 10−2 2.19883× 10−1 1.62788× 10−1 1.10025× 10−1 4.61268× 10−3 3.54643× 10−1 1.64901 1.44473
0.36 7.85954× 10−2 8.10666× 10−2 2.47127× 10−3 3.04845× 10−2 1.43200× 100 5.48850× 10−2 2.92500× 10−1 2.19510× 10−1 2.38590× 10−1 1.30406× 10−2 4.04932× 10−1 1.64376 1.47970
0.44 7.38054× 10−2 7.63684× 10−2 2.56300× 10−3 3.35610× 10−2 1.18200× 100 6.24411× 10−2 3.70462× 10−1 2.82048× 10−1 4.59406× 10−1 3.11249× 10−2 4.50833× 10−1 1.63843 1.51604
0.48 7.12704× 10−2 7.38231× 10−2 2.55277× 10−3 3.45795× 10−2 1.08600× 100 6.56264× 10−2 4.11664× 10−1 3.15783× 10−1 6.18568× 10−1 4.60437× 10−2 4.72555× 10−1 1.63574 1.53470
0.54 6.73963× 10−2 6.98728× 10−2 2.47644× 10−3 3.54421× 10−2 9.67001× 10−1 6.96962× 10−2 4.76532× 10−1 3.69836× 10−1 9.40223× 10−1 7.95828× 10−2 5.03912× 10−1 1.63168 1.56326
0.58 6.48033× 10−2 6.71929× 10−2 2.38964× 10−3 3.55639× 10−2 9.02001× 10−1 7.18439× 10−2 5.21991× 10−1 4.08438× 10−1 1.22500× 100 1.12170× 10−1 5.24119× 10−1 1.62896 1.58265
0.6 6.35111× 10−2 6.58478× 10−2 2.33667× 10−3 3.54860× 10−2 8.72001× 10−1 7.28337× 10−2 5.45434× 10−1 4.28534× 10−1 1.39327× 100 1.32452× 10−1 5.34038× 10−1 1.62759 1.59243
0.64 6.09453× 10−2 6.31589× 10−2 2.21356× 10−3 3.50475× 10−2 8.19001× 10−1 7.44142× 10−2 5.93835× 10−1 4.70546× 10−1 1.79139× 100 1.82965× 10−1 5.53541× 10−1 1.62486 1.61217
0.662445 5.95204× 10−2 6.16558× 10−2 2.13537× 10−3 3.46337× 10−2 7.93001× 10−1 7.50572× 10−2 6.21927× 10−1 4.95258× 10−1 2.05635× 100 2.18273× 10−1 5.64303× 10−1 1.62333 1.62333
0.72 5.59314× 10−2 5.78406× 10−2 1.90924× 10−3 3.30086× 10−2 7.33001× 10−1 7.63046× 10−2 6.97282× 10−1 5.62469× 10−1 2.90495× 100 3.38632× 10−1 5.91365× 10−1 1.61940 1.65214
0.76 5.35030× 10−2 5.52369× 10−2 1.73389× 10−3 3.13901× 10−2 6.98001× 10−1 7.66518× 10−2 7.52709× 10−1 6.12854× 10−1 3.67288× 100 4.55200× 10−1 6.09759× 10−1 1.61668 1.67225
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Table 2: Properties of marginally stable configurations that satisfy the adiabatic index
criterion 〈γ〉 = γcr, given different values of the boundary temperature b = kBT (R)/mc2.
The description for each column can be found in the caption of Table 1 and v(R)/c is the
velocity dispersion on the core boundary. The electronic version of the data can be found
at https://github.com/michaelwxfeng/truncated-Maxwell-Boltzmann.

b w(0) Ê = M̂ R̂ C = M̂/R̂ Z(0) εc(0)/mc2 ρ̂(0) p̂(0) v(0)/c v(R)/c 〈γ〉 = γcr

5.0 6.48150× 10−2 2.06015× 10−1 2.59700× 100 7.93280× 10−2 6.12906× 10−1 4.79448× 10−1 1.60344× 10−1 1.71013× 10−2 5.65650× 10−1 3.36500× 10−3 1.62358
3.0 1.08185× 10−1 1.58573× 10−1 2.00600× 100 7.90492× 10−2 6.13491× 10−1 4.80491× 10−1 2.71859× 10−1 2.89847× 10−2 5.65552× 10−1 5.01669× 10−3 1.62356
2.0 1.62585× 10−1 1.28444× 10−1 1.63300× 100 7.86552× 10−2 6.14252× 10−1 4.81854× 10−1 4.16754× 10−1 4.44142× 10−2 5.65434× 10−1 8.39347× 10−4 1.62354
1.0 3.27070× 10−1 8.86277× 10−2 1.14300× 100 7.75395× 10−2 6.16612× 10−1 4.86021× 10−1 8.91191× 10−1 9.48500× 10−2 5.65059× 10−1 5.65015× 10−3 1.62347
0.5 6.62445× 10−1 5.95204× 10−2 7.93001× 10−1 7.50572× 10−2 6.21927× 10−1 4.95258× 10−1 2.05635× 100 2.18273× 10−1 5.64303× 10−1 3.66372× 10−3 1.62333
0.3 1.12526× 100 4.27849× 10−2 5.99001× 10−1 7.14271× 10−2 6.30406× 10−1 5.09562× 10−1 4.23693× 100 4.48081× 10−1 5.63266× 10−1 9.11920× 10−3 1.62311
0.2 1.73635× 100 3.14517× 10−2 4.77001× 10−1 6.59364× 10−2 6.44181× 10−1 5.31996× 10−1 8.65548× 100 9.11403× 10−1 5.62044× 10−1 7.05363× 10−3 1.62278
0.15 2.39865× 100 2.41230× 10−2 4.07001× 10−1 5.92702× 10−2 6.63548× 10−1 5.61946× 10−1 1.68117× 101 1.76500× 100 5.61211× 10−1 9.52828× 10−3 1.62239
0.14 2.60081× 100 2.24259× 10−2 3.93001× 10−1 5.70632× 10−2 6.70637× 10−1 5.72538× 10−1 2.03949× 101 2.14055× 100 5.61128× 10−1 1.01614× 10−2 1.62225
0.13 2.84350× 100 2.06203× 10−2 3.80001× 10−1 5.42638× 10−2 6.80073× 10−1 5.86379× 10−1 2.56589× 101 2.69362× 100 5.61190× 10−1 8.83738× 10−3 1.62209
0.12 3.14240× 100 1.86835× 10−2 3.69001× 10−1 5.06326× 10−2 6.93337× 10−1 6.05343× 10−1 3.40099× 101 3.57521× 100 5.61577× 10−1 5.28167× 10−3 1.62188
0.11 3.52490× 100 1.65825× 10−2 3.62001× 10−1 4.58080× 10−2 7.13594× 10−1 6.33260× 10−1 4.88977× 101 5.16148× 100 5.62734× 10−1 6.38807× 10−3 1.62159
0.1 4.05150× 100 1.42556× 10−2 3.68001× 10−1 3.87378× 10−2 7.50107× 10−1 6.81035× 10−1 8.17923× 101 8.74006× 100 5.66189× 10−1 8.76561× 10−3 1.62117
0.09 5.08620× 100 1.13990× 10−2 4.83001× 10−1 2.36004× 10−2 8.89250× 10−1 8.44163× 10−1 2.57654× 102 2.96813× 101 5.87872× 10−1 5.72277× 10−3 1.62023
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