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We analyze theoretically the dynamical transport through a weakly coupled semiconductor superlattice,

under an ac potential with frequencies in the THz regime, by means of a general model for time-dependent

sequential tunneling within a nonequilibrium-Green’s-function framework. Highly doped superlattices present,

under certain conditions, the formation of electric-field domains at a static dc voltage bias. We find that the

THz signal drives the system from a stationary current toward an oscillatory time dependence as the ac

intensity increases. However, the current oscillates periodically in the MHz regime, reflecting an ac-induced

motion and recycling of traveling domain walls. Finally, we predict that on further increasing the intensity of

the ac potential, the tunneling current undergoes a transition from a periodically time-dependent state to a

stationary one in which a homogeneous electric-field distribution builds up along the sample.

DOI: 10.1103/PhysRevB.67.035330 PACS number~s!: 73.21.Cd, 73.40.Gk, 73.50.Fq

I. INTRODUCTION

The peculiar synergy between ac forcing potentials and

quantum confinement has given rise to phenomena observed
in double barriers, double quantum wells ~QW’s!, and super-
lattices ~SL’s!.1–9 As a brief survey, we should mention nega-
tive pumping of electrons,10,11 dynamical localization,11,12

photoinduced sequential tunneling,13 bistability between
positive and negative current,14 and recently proposed Fermi
pumps.15 In addition, the effect of an ac potential in strongly
interacting nanostructures such as quantum wires,16 quantum
dots, and double quantum dots has been addressed
recently.17–20 However, the majority of the experimental and
theoretical works have dealt with stationary transport prop-
erties and the dynamical behavior of driven nanostructures
has been comparatively neglected. An attempt in this direc-
tion is given in this work.

Weakly coupled n-doped semiconductor SL’s have been
shown to exhibit a rich variety of strongly nonlinear behavior
resulting from the interplay between resonant tunneling pro-
cesses and charging effects.21 In the high-doping case, this is
reflected in the formation of electric-field domains inside the
SL when an external dc bias is applied in the contact regions.
More exciting is the spontaneous generation of self-sustained
oscillations of the electric current at a fixed dc bias when the
well doping is lowered. Recently, experimental22 and
theoretical23 studies have addressed the influence of a low-
frequency ac signal on the time-dependent current in SL’s.
The application of an external ac potential, though very
weak, has been shown to dramatically alter the dynamical
state of the system. When the ac frequency is incommensu-
rate with the natural frequency of the SL, intriguing routes to
chaos giving rise to complicated Poincaré maps have been
observed.24 In that case, the ac frequency is of the order of
tens of MHz and it results in an adiabatic modulation of the
SL electrostatic drops.

Here, we are interested in the opposite regime—we inves-
tigate the time dependent current through a multiple-
quantum-well system driven by a high-frequency ac poten-

tial, V i
ac(t)5V i

accos(v0t), where f ac5v0/2p is of the order of

several THz, and V i
ac is the ac amplitude in the ith well. It is

well known that in this case photoassisted tunneling takes

place, and the electronic states develop sidebands which act

as new tunneling channels.5,14 Furthermore, as the applied ac

frequency and intensity are of the order of the typical ener-

gies in a semiconductor QW ~energy levels and broadening

due to scattering of the order of tens of meV!, they should be

incorporated on equal footing. The competition between

these scales of energy is thus expected to give rise to differ-

ent properties. In Ref. 14, the time-averaged transmission

probability for electrons tunneling sequentially in the pres-

ence of an ac potential was studied by means of a transfer-

Hamiltonian-based model. Local equilibrium within the

QW’s was assumed in order to calculate the stationary cur-

rent. In this work, our aim is to present a model for studying

the dynamics of the sequential current in ac-driven weakly

coupled SL’s in the THz regime. The application of a time-

dependent potential to a nanostructure breaks the time trans-

lational invariance of the system. To fully address this non-

equilibrium situation, we use the Keldysh formalism which

allows us to obtain general expressions for the tunneling cur-

rent in the presence of an ac potential. The electron-electron

interaction will be included self-consistently within a mean-

field ~Hartree! approximation along with appropriate bound-

ary conditions.25,26

The paper is organized as follows. In Sec. II, we thor-

oughly explain the theoretical model that we use to calculate

the sequential-tunneling current through a dc-biased

multiple-quantum-well structure in the presence of an intense
ac potential. Section III contains our numerical results and
we discuss the ac-induced dynamical transition that we find.
Eventually, in Sec. IV we present the conclusions.

II. THEORETICAL MODEL

The Hamiltonian for independent electrons in weakly
coupled N QW’s under the influence of an ac potential is
given by
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H5 (
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@Ek i
1V i

accos~v0t !#ck i

† ck i

1(
i51

N

(
k i

@Ek i
1V i

accos~v0t !#dk i

† dk i

1 (
k ik j H i5L j51
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1H.c.!

1 (
i51

N21

(
k ik i11

~Tk ik i11
dk i

† dk i11
1H.c.!. ~1!

Here, ck i

† (ck i
) are the creation ~annihilation! operators in

the leads, dk i

† (dk i
) are the creation ~annihilation! operators in

the wells, and Tk ik j
are the tunneling matrix elements. k i

represents the set of the quantum numbers. We will assume
that the quasiparticle spectrum in the QW’s will be that of an

isolated two-dimensional electron gas: Ek i
5\2k i ,uu

2 /2m

1k i ,z . Here, m is the effective mass and z is the direction
perpendicular to the interfaces. Finally, in Eq. ~1!, the emitter
~collector! lead is denoted by L (R).

The tunneling current traversing the ith QW is derived
from the time evolution of the particle density n i :27

^ṅ i&5

i

\
^@n i ,H#&, ~2!

where n i5(k i
dk i

† dk i
. Now we made use of the continuity

equation which links the particle density at the ith well to the
current density flowing from the (i21)th QW to the ith QW,
I i21,i , and to the current density flowing from the ith QW to
the (i11)th QW, I i ,i11:

^ ṅ i&5

I i ,i112I i21,i

e
, ~3!

where I i ,i11 and I i21,i take the following form:

I i21,i~ t !52

ie

\ F (
k i21k i

Tk i21k i
^dk i21

† ~ t !dk i
~ t !&

2Tk ik i21
* ^dk i

† ~ t !dk i21
~ t !&G , ~4!

and

I i ,i11~ t !52

ie

\ (
k ik i11

@Tk ik i11
^dk i

† ~ t !dk i11
~ t !&

2Tk ik i11
* ^dk i11

† ~ t !dk i
~ t !&# . ~5!

Equations ~4! and ~5! may be written in terms of the follow-
ing off-diagonal nonequilibrium Green’s functions:

Gk ik j

, ~ t ,t8!5i^dk j

† ~ t8!dk i
~ t !&. ~6!

Applying the analytic continuation rules of Ref. 28 to the
equation of motion of the off-diagonal time-ordered Green’s

functions @Eq. ~6!# along a complex contour ~Keldysh,
Kadanoff-Baym, etc.!, one readily obtains an expression for
the tunneling current flowing from the ith QW to the (i

11)th QW:

I i ,i11~ t !5

2e

\
Re (

k ik i11

uTk ik i11
u2E dt@Gk i11

r ~ t ,t !gk i

,~t ,t !

1Gk i11

, ~ t ,t !gk i

a ~t ,t !# , ~7!

Here, gk i

a(,) is the advanced ~lesser! Green’s function which

includes the effect of the ac signal and scattering processes
for an isolated QW. The scattering processes allow a non-
equilibrium quasiparticle to relax its excess energy ~e.g., due
to interactions with ionized impurities or LO phonons!. We
use a phenomenological relaxation-time approximation by
introducing a self-energy as an energy-independent constant
~which is denoted by g5ImSsc). Of course, this model
might be improved by means of a microscopic calculation of
Ssc due to the aforementioned scattering processes or even
due to electronic exchange-correlation effects. In fact, ex-
change interaction effects have been shown to alter the ab-
sorption coefficient in QW’s and SL’s.29 Nevertheless, we
account for the Coulomb interaction in a mean-field scheme,
which is a good approximation in large-area heterostructures
for the physical effects discussed below. To include exchange
effects would result in a loss of simplicity of the model, and
we expect them not to alter qualitatively the results discussed
below. Indeed, Ssc may vary substantially from sample to
sample. In our calculations we shall take g from available
experimental data.10

On the other hand, in Eq. ~7! Gk i

r(,) corresponds to the

retarded ~lesser! Green’s function which includes tunneling
events. Now, our task consists of deriving the explicit formu-
las for these Green’s functions in the sequential tunneling
regime, which is the dominant mechanism in weakly coupled
SL’s.21 In this regime, the scattering lifetime (;1 ps) is
much shorter than the tunneling time (;1 ns) and thus the
tunneling self-energy can be neglected to a good extent in

Gk i

r(,) . As a result, one assumes an equilibrium distribution

function for each QW, since the electrons that tunnel relax
their energy excess almost instantaneously. Taking into ac-
count these considerations, the effect of the ac potential con-
sists of introducing a global phase in the expression for these

Green’s functions: Gk i

r(,)(t ,t8)5exp@(ieVi
ac/\v0)(sin v0t

2sin v0t8)#Ḡki

r (,)(t2t8), where Ḡk i

r (,)(t2t8) is the static re-

tarded ~lesser! QW Green’s function. They have the follow-
ing expressions:

Ḡk i

r ~ t2t8!52iu~ t2t8!exp@2i~Ek i
1g !~ t2t8!# , ~8!

and

Ḡk i

,~ t2t8!'E de

2p
e ie(t2t8)

2g

~e2Ek i
!2

1g2
f i~e !, ~9!

where f i(e) is the Fermi-Dirac distribution function for the
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ith QW, f i(e)51/@11exp(e2evi
)/kBT# (ev i

is the Fermi en-

ergy at the ith QW and T is taken as the lattice
temperature30!. A similar transformation applies for

gk i

a(,)(t ,t8). Eventually, by inserting the obtained expres-

sions for the nonequilibrium Green’s functions @Gk i11

r ,, (t ,t8)

and gk i

a ,,(t ,t8)] into Eq. ~7!, we arrive at the expression for

the tunneling current between two QW’s irradiated with a
THz field in the sequential tunneling regime:

I i ,i11~ t !5

2e

\ (
k ik i11

uTk ik i11
u2 (

m52`

m5`

Jm~b !H cos~b sin v0t2mv0t !E de$Ak i11
~e1m\v0!Ak i

~e !@ f i~e !

2 f i11~e1m\v0!#%1sin~b sin v0t2mv0t !E de@Ak i11
~e1m\v0!Reḡk ik i

a ~e ! f i11~e1m\v0!

1ReḠk i11k i11

r ~e1m\v0!Ak i
~e ! f i~e !#J , ~10!

where Ak i
is the spectral function for the ith isolated QW

including scattering, and Jp is the pth Bessel function whose

argument is given by b5e(V i
ac

2V i11
ac )/\v0. Notice that

here we assume that the ac potential is spatially uniform
along a QW ~but different from that of its neighbors! and b
is independent of the QW index.3

The current ~10! may be written as I(t)5I0

1( l.0@I l
coscos(lv0 t)1Il

sinsin(lv0 t)#, where I0 is the time-

averaged current. I l
cos and I l

sin contain higher harmonics for

l.0. Now, since we are interested in the photoassisted tun-
neling regime, we require \v0.g .10 This means that the
electrons experience at least one cycle of the ac potential
between two successive scattering events. In addition, the
scattering lifetime represents the lowest temporal cutoff
above which our assumption of local equilibrium within each
QW holds. Therefore, the explicit time variation of I(t) van-
ishes and we are left with the implicit change of I0 with
respect to time. This variation ~in time scales larger than
\/g) results from the evaluation of the continuity equation
for i51, . . . ,N , where N is the number of wells, supple-
mented with Poisson equations, constitutive relations, and
realistic boundary conditions.26,31 In the following para-
graphs, we shall elaborate on this.

The total current density traversing the sample is the sum
of the tunneling current plus the displacement current, i.e.,
I(t)5I i ,i111(e/d)(dV i /dt), where e is the static permit-
tivity, d is the barrier width, and V i is the voltage drop in the
ith barrier. I i ,i11 depends on n i and n i11. Since we have
assumed that the electrons reach local equilibrium within
each QW, the electronic densities n i depend on the QW
Fermi energies ev i

. The electronic densities are coupled to

the SL electrostatic drops by means of Poisson equations.
For a given set $ev i

%, n i evolves according to the continuity

equation ~3!. In these equations, the current ~10! is a func-
tional of the Fermi energies and the set of SL voltage drops
~denoted by F): I i ,i115I i ,i11(ev i

,ev i11
,F), where F is

calculated with the help of discrete Poisson equations. The
Poisson equation yields the potential drops in the barriers, V i

(i51, . . . ,N11), and in the wells, Vv i
(i51, . . . ,N):

Vv i

w
5

V i

d
1

en i~ev i
!2eNw

2«
, ~11!

V i11

d
5

V i

d
1

en i~ev i
!2eNw

«
, ~12!

where w is the well thickness, and Nw is the external doping
at the QW’s.

The boundary conditions at the contacts describe the
lengths of the depletion and accumulation layers as well as
the charge density at the leads ~see Refs. 25 and 26 for a
detailed discussion of the electrostatic model at the lead re-
gions!. The resulting system of algebraic-differential equa-
tions is closed after imposing charge and total voltage con-
servation. Notice that this system can be solved only self-
consistently, as the transmissions Tk ik i11

in Eq. ~10! depend

implicitly on the local electrostatic distribution through the
positions of the resonant levels. In turn, the resulting $ev i

%

depend as well self-consistently on the voltage drops through
Eqs. ~11! and ~12!. The numerical simulation begins with
physically sensible initial conditions. Then, we integrate the
resulting algebraic-differential system of equations by means
of backward differentiation formulas methods. The whole
procedure is repeated until numerical convergence is
achieved at each time step of Eq. ~3! for i51, . . . ,N . This
way, the dynamics of the total sequential current I(t) is fully
taken into account.

III. RESULTS

We present results for a N550 SL with 13.3-nm GaAs
wells and 2.7-nm AlAs barriers. Well doping is Nw52
310210 cm22 and we take g57 meV and f ac53 THz. In
Fig. 1~a!, the time average of I(t) is plotted as a function of
the applied dc bias, V. Without ac, the I-V curve shows
branches after the first peak. This feature is characteristic of
static electric-field domain formation.26 Resonant tunneling
takes place between the lowest QW subbands in part of the
SL ~the low-field region!, whereas electrons tunnel from the
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ground state to the first excited state of the downstream QW
in the high-field region. In the presence of an ac signal, the
branches become smoother (b50.25), and finally they coa-
lesce and a plateau clearly forms (b51). This is the key
signature of current self-oscillations. It is well known that by
decreasing the doping in a SL, the electric-field domain con-
figuration becomes unstable, and self-sustained current oscil-
lations occur due to the periodic recycling of the domain
wall.21 By increasing b further, the plateau starts to be re-
placed by a positive differential resistance region. There is a
similar well-known phenomenon in weakly coupled SL’s
driven only by dc voltages: under a critical value of the car-
rier density, neither static nor moving domain walls exist and
the electric field drops homogeneously across the whole

sample. This may be effectively achieved by either applying
a transverse magnetic field32 or raising the temperature.33 In
our case, the doping density is constant and it is the ac po-
tential that tunes this transition. To illustrate this, we have
calculated I(t) for a fixed bias V51.1 V @see Fig. 1~b!#. For
b50, the current achieves a constant value after a transient
time. As b increases (b51), the current oscillates with a
frequency in the range of MHz, much smaller than f ac . This
is a result of the motion of the accumulating layer of elec-
trons, and its recycling in the highly doped contacts ~see
below!. Then the ac potential induces a transition from a
stationary configuration toward a dynamic state likely via a
supercritical Hopf bifurcation. Below, we shall show that the
existence of photosidebands and their influence on the non-

linear behavior of the system drives the SL toward oscilla-
tions. For b51.5 the current is damped and I(t) reaches a
uniform value. This is a striking feature—an oscillation dis-

appearance induced by an ac potential.34

The ac-induced transition from static electric-field do-
mains toward homogeneous field distribution through self-
sustained current oscillations is illustrated in Fig. 2. We ob-
serve how the charge density through the structure, at fixed
dc bias, undergoes a transition from being accumulated in the
43rd QW, independently of time ~stationary electric-field do-
mains! at zero ac potential, to presenting periodic oscillations
(b51). Increasing b further (b51.5), a homogeneous
charge distribution is reached and the electric field and
charge are uniformly distributed through the sample ~with
small inhomogeneities at the emitter contact!. A qualitative
explanation of this transition is as follows.

Let v(F) denote the average drift velocity due to tunnel-
ing between two QW’s with local electric field F. Within a
semiclassical approximation, the current ~10! can be approxi-
mated by I i ,i115en iv(F i)/L, where the electronic drift ve-
locity is given by v(F)5I(Nw ,Nw ,F)L/eNw . Here, the
current I(Nw ,Nw ,F) is evaluated by using Eq. ~10! after
imposing n i5n i115Nw and setting an average interwell
electric field F along the SL period L5d1w .31 In what
follows, we neglect the contribution from diffusivity, which
can be important at very low electric fields.31 As shown in
Ref. 35, the sufficient condition for stationary electric-field
domains to form reads

Nw*Nw
eff[«vm

Fm2FM

e~vM2vm!
, ~13!

where vM (vm) is the maximum ~minimum! electron drift
velocity attained at an electric field given by FM (Fm). Un-
like the minimum velocity, the maximum drift velocity is
very sensitive to the external ac potential. We see from the
time average of Eq. ~10! that first current peak ~i.e., vM) is

weighted by J0
2(b) at low values of b ~the zero-photon

peak!. As b increases, the THz potential produces photoas-
sisted tunneling with absorption and emission of photons. As
a result, the zero-photon peak is quenched as the contribution

of terms with JpÞ0
2 (b) begins to grow. This is a consequence

of the photoassisted formation of sidebands.10,14 The overall

effect is that Nw
eff decreases as b increases. For a certain

critical value of b @bcrit;1; see Fig. 1~b!#, we find Nw

&Nw
eff and the steady electric-field domain configuration is

no longer stable. The system evolves spontaneously toward
self-sustained current oscillations.

On the other hand, once the dynamical configuration is
stable, increasing b will tend to drive the SL to a trivially
homogenous electric-field profile ~see Fig. 2, lower panel!.
The reason for that is the complicated shape of the time-
averaged drift velocity induced by the ac potential. The ac
potential opens up new tunneling channels due to photon
absorption and emission10,14 and their relative weight and
their contribution to v(F) depend in a nontrivial way on the
ac frequency and intensity, the sample characteristics and the
scattering processes involved. This can lead to a I-V curve
exhibiting positive differential resistance with a Z shape un-

FIG. 1. ~a! I-V curves for different values of b at fixed f ac

53 THz. Lines are used to guide the eye. Curves for b50, b
50.5, b51, and b51.5 have been shifted 0.05, 0.91, 5.46, and

9.35 A/cm2, respectively, for clarity. At b50 and b50.25 the

electric-field domain formation is stable, the total current is station-

ary, and it results in discontinuous branches. With increasing b ,

branches coalesce, causing the development an oscillatory pattern at

b50.5, followed by a flat plateau that is formed at b51. Larger

values of b involve a smooth, increasing curve of current with

voltage ~see b51.5) ~b! Time-resolved electric current for a dc bias

V51.1 V. The variation with b shows the dependence of the state

character ~static or dynamic! on the ac potential. Schematically, the

transition ~static electric-field domains!→~moving electric-field do-

mains! takes place at around b51, whereas the process ~moving

electric-field domains!→~homogeneous electric field! occurs at

around b51.5.
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like the electric-field domain case, which exhibits a I-V
curve with an N shape.35 Even though an analytical estima-
tion of the different transition points cannot be obtained, the
previous argument explains why an ac field may induce a
dynamical transition from stable stationary domains to trav-
eling field domains and a homogeneous electrostatic configu-
ration by modifying the effective electronic drift velocity
with the dimensionless ac parameter b .

IV. CONCLUSIONS

In summary, we propose a theoretical model which allows
the evaluation of the time-dependent sequential-tunneling
current through dc-biased semiconductor SL’s in the pres-
ence of an ac potential. We predict that an intense ac poten-
tial with a frequency of the order of the energies of the sys-
tem ~THz! induces a continuous transition for the current as
a function of the ac intensity. The electronic current becomes
time dependent with a frequency of the order of MHz. It
corresponds roughly to the inverse of the tunneling rate per
number of wells, as it occurs in SL’s which present self-

sustained oscillations without any ac external force. By in-

creasing the THz field intensity further, the current becomes

stationary again, and the electric field is homogeneous

through the sample. Hence an ac potential could be used to

induce and control frequency oscillations through the
sample. Notice that the role played here by the ac potential is
not to serve as a special triggering, but to drive the system to
a distinct dynamical state. Very recent experimental evidence
in strongly coupled SL’s demonstrates that the control over
the internal frequencies may be feasible in the GHz regime.36
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FIG. 2. Left panels: Time evolution of electron densities as a function of the index well. Lighter areas mean larger densities. Right panels:

Time evolution of the voltage drop at the barriers ~last barrier has been omitted for simplicity!. Lighter areas indicate larger values of the

electric field. Top: b50 ~no ac potential is present!. Electrons are accumulated mainly in well 43, forming a domain wall which separates

high and low electric-field regions. Middle: b51 ~self-sustained oscillations!. The domain wall drifts along part of the SL. The monopole

is clearly visible at well 39, moves toward well 47 and dissolves at the collector. Notice the oscillatory behavior of the electric fields, which

is correlated with the monopole motion. Bottom: b51.5 ~homogeneous case!. Voltage drops almost linearly across the sample and conse-

quently no accumulation layer is formed.
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7 M.H. Pedersen and M. Büttiker, Phys. Rev. B 58, 12 993 ~1998!;
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