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We calculate the spectrum of collective excitations of the XY spiral state prepared adiabatically or
suddenly from a uniform ferromagnetic F ! 1 condensate. For spiral wave vectors past a critical value,
spin wave excitation energies become imaginary indicating a dynamical instability. We construct phase
diagrams as functions of spiral wave vector and quadratic Zeeman energy.
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Spinor condensates of ultracold atoms [1–10] are the
latest addition to many-body systems with multicompo-
nent order parameters. The high symmetry of such systems
manifests itself through the possibility of a variety of spin
textures and topological defects. Although spin textures
have been observed in liquid crystal nematics and super-
fluid 3He, their nonequilibrium quantum dynamics are
accessible in spinor condensates. Many open problems of
quantum magnets and spinful superfluids, from the Kibble-
Zurek mechanism of nucleating topological defects across
a quantum phase transition [11] to fundamental limits of
spinor Bose-Einstein condensation magnetometers [12]
require understanding the dynamics of spin textures.

We investigate theoretically the stability of spin spirals
in ferromagnetic S ! 1 condensates (see Fig. 1). This
simple spin structure can be prepared experimentally by
applying a magnetic field gradient direction perpendicular
to the magnetization axis [13]. A magnetic field gradient
induces relative motion for different spin components
which gives rise to a spiral magnetization with faster
(slower) winding for stronger (weaker) gradients.

Our main result is the prediction of dynamical instabil-
ities for spiral states, summarized in Fig. 2. Rotation of the
magnetization vector from the XY plane to the z axis drives
the instability at small quadratic Zeeman energy while
rotations within the XY plane are responsible at large
quadratic Zeeman energy. Surprisingly, we observe un-
stable modes can have wave vectors considerably larger
than that of the initial spiral state. Previous works that have
studied instabilities in spinor condensates include Castaing
instabilities [14] in incoherent noncondensed two compo-
nent 87Rb [15] and the modulational instability of a uni-
form spinor condensate [16–18].

We analyze the mean-field and collective modes of the
Gross-Pitaevskii equation derived from the Hamiltonian
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where !" with " ! x, y, z are annihilation operators for
F ! 1 bosons with mass m and $F"%#$ are angular mo-
mentum operators. We use a matrix notation with sup-
pressed indices where &, T, and y denote the complex
conjugate, transpose, and the conjugate transpose, respec-
tively. For example, ! (!y) is a column (row) vector
while Fz is a matrix.

Interaction strengths are given by g0 ! 4%@2a0=m,
gs ! 4%@2$a0 " a2%=3m [7] in terms of the s-wave scat-
tering lengths aF for two atoms colliding with total angular
momentum F and ! denotes normal ordering. For 87Rb,
a0 ! 101:8aB and a2 ! 100:4aB where aB is the Bohr
radius [19] giving positive gs and ferromagnetic
interactions.

This Hamiltonian has a U$1% ' SO$2% symmetry of
global phase rotations and spin rotations about the z axis.
The chemical potential ! and linear Zeeman energy p are
Lagrange multipliers controlling the corresponding con-
served quantities

 h!y!i ! n; h!yFz!i ! nfz (2)

where n is the total particle density and fz is the z compo-
nent of the magnetization per particle.
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FIG. 1 (color online). From left to right: magnetization vector
in the XY spiral state for fully polarized, partially polarized,
fz ! 0, and after fragmentation.
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Because of conservation of Fz, static magnetic fields
enter through the quadratic Zeeman energy q instead of the
linear Zeeman energy p. Moreover, q can be further ma-
nipulated through the ac Stark shifts. From here on, we
take representative values q ! 70 HzG"2 B2 where B is
the magnetic field and n ! 2:2( 1014 cm"3 [4]. We ne-
glect here magnetic dipole interactions [20,21].

The XY spiral state is prepared from an initial cigar
shaped condensate with uniform XY magnetization by
applying a magnetic field gradient along the axial or z
axis. After switching off the gradient, the transverse mag-
netization is imaged. It is fully polarized for q ! fz ! 0
and is suppressed due to population of the mz ! 0 compo-
nent of ! when q ! 0 or fz ! 0. Fragmentation into
domains carrying different magnetization vectors occurs
when there is an instability.

Nonequilibrium dynamics governs the generation of the
XY spiral state. We focus on studying the resulting non-
equilibrium stationary state which we describe as a coher-
ent condensate. They are mean-field solutions of the Gross-
Pitaevskii (GP) equations implied by Eq. (1) which carry
XY spiral order. In contrast to stable ground states, these
nonequilibrium stationary states are in general metastable
and decay via linear and nonlinear processes. We consider
their linear stability by analyzing the spectrum of collec-
tive modes. The distinction between stable and metastable
stationary states also arises for spinless bosons in a moving
optical lattice [22,23] and four-wave mixing instabilities in
optics such as the superradiance instability [24].

We perform a unitary transformation from the lab frame
to a frame comoving with the XY spiral order. This is
accomplished by the substitution

 ! ! exp$i&zFz%!; (3)

where & is the spiral wave vector. Equation (1) with the
substitution

 p ! p# i&
m

rz; q ! q# &2

2m
(4)

gives the comoving frame Hamiltonian. After performing
this transformation, we can do a similar analysis as in
Ref. [25]. However, notice there is an important gaugelike
term linear in the momentum. We use this unitary trans-
formation as a formal step in the mathematical analysis,
but we note continuous Raman excitation [26] may physi-
cally implement such a transformation.

We first focus on the adiabatic limit where the popula-
tions for components of ! can adjust to accommodate XY
spiral order. This occurs via fz conserving spin flip pro-
cesses that mix the components of !. Gains in the inter-
action energy then offset the kinetic energy cost for the
winding spiral. We note the adiabatic limit here refers to
preparation of the spiral state on time scales slower than
that of spin flips which occur in tens of milliseconds but
faster than the trap oscillation frequencies which are of the
order of hundreds of milliseconds for the long axis. For
states prepared on slower time scales, Kohn oscillations
[27] describing center of mass motion for different spin
components could play a significant role for instabilities of
the spiral state.

Uniform mean-field solutions in the comoving frame
and a Cartesian basis are given by ! ! ###
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which give the conserved quantities of Eq. (3) by construc-
tion. It is instructive to also consider this mean-field solu-
tion in the lab frame using the fz ! #1, 0, "1 basis where
") *e"i&z; 1; e#i&z+T . Notice each component of " is an
eigenstate of Pz the total momentum along z although " as
a vector is not. Moreover, the fluctuations of Pz given by
h!P2

zi ! n"y!P2
z" scales with the particle number.

Here ' is a global phase that spontaneously breaks U$1%
phase rotation symmetry while ( gives the orientation of
the magnetization vector in the XY plane and breaks SO$2%
spin rotation symmetry. '? is the relative phase between
the z and transverse components and given by '? ! %=2
and '? ! 0 for antiferromagnetic and ferromagnetic in-
teractions, respectively. ) controls the relative magnitude
between the z and transverse components. The GP equa-
tions give

 Q*3 # $1"Q%* ! fz; (6)

where * ! tanh$)% and Q ! q=2gsn. As in Ref. [25], we
find three classes of polar, ferromagnet, and XY spiral state
solutions. The polar (ferromagnet) state occurs for fz ! 0
and Q> 1 (fz ! ,1) and neither support XY spiral order.
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FIG. 2 (color online). Collective mode phase diagrams for
fz ! 0 against spiral wave vector & and quadratic Zeeman
energy q in the adiabatic and sudden (inset) limits. DI1 (DI01)
indicates a dynamical instability with one branch of unstable
modes beginning at k ! 0 (k > 0). DI2 indicates a dynamical
instability with two distinct branches of unstable modes.
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Focusing first on the fz ! 0 case, we analyze next the
spectrum of collective fluctuations +" where ! !###
n

p $"# +"%ei!t. Bogoliubov analysis gives the excita-
tion energies !k implicitly via the eigenvalue equation

 

0 ! det
Mk "!k N

"N& "M&
"k "!k

" #
;

Mk !
k2

2m
"!"

$
p# &kz

m

%
Fz #

$
q# &2

2m

%
F2
z

# g0n"y"# g0n""y # 2gsn"&"T;

N ! g0n""T # gsn"T";

(7)

in a matrix notation with "y" (""y) a scalar (matrix).
We consider the one-dimensional case where kz ! k.

The XY spiral state spontaneously breaks U$1% ' SO$2%
symmetry of global phase and spin rotations giving a
gapless charge and spin mode with linear dispersions.
However, the spin mode can develop imaginary frequen-
cies indicating a dynamical instability with several distinct
types of behavior. The first is a branch of unstable modes
starting at k ! 0 denoted by DI1 (Fig. 3). The second is a
branch of unstable modes starting at k > 0 denoted by DI01.
The third is two distinct branches of unstable modes start-
ing at k ! 0 and k > 0 denoted by DI2 (inset Fig. 3).

We construct the phase diagrams of Fig. 2 as functions
of the spiral wave vector & and quadratic Zeeman energy q
by characterizing the behavior of the spin mode. We first
consider the adiabatic limit characterized by an interpola-
tion between long-wavelength instabilities in the limit of
large and small q. Both instabilities can be thought of as
unwinding of the spiral order, but with qualitatively differ-
ent origins.

When q is zero, the system is rotationally symmetric and
the spiral state arbitrary SO$3% rotations can unwind the
magnetization vector from the XY plane to the z axis.

Small q provides a potential energy barrier which can be
overcome with sufficient kinetic energy stored in the non-
uniform winding. Small fluctuations corresponding to such
rotations can then grow exponentially giving rise to a
dynamical instability. In particular, fluctuations in the di-
rection of the magnetization vector drive the instability.

In contrast, large q explicitly breaks full SO$3% rota-
tional symmetry and confines rotations that unwind the
spiral order to the XY plane. Such rotations proliferate
near the quantum phase transition to the polar state when
fluctuations in the magnitude of the magnetization vector
are large.

This large q instability maps to the instability of current
carrying states for spinless bosons [28]. Here the SO$2%
magnetization order parameter maps to the U$1% order
parameter of spinless bosons. The critical fluctuations
near the transition to the polar state map to those of bosons
near the Mott transition.

From the above arguments, we expect the XY spiral state
to be stable for wave vectors less than &2=2m) q or
&2=2m) $q" qc% when q is small or large, respectively.
Here qc marks the transition point from the ferromagnet to
the polar state in the uniform system. The boundaries in
Fig. 2 can be obtained explicitly [29]
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which gives &2=2m - q and &2=2m ! $qc " q%=3 in
agreement with the small and large q limits, respectively.
We find the size of this region of instability scales with the
strength of interactions gsn and vanishes in the limit of
zero interactions.

Also notice in Fig. 2 an isolated line of stability at small
q and intermediate &. In the DI01 region surrounding this
line, the instability is weak with the imaginary part of !k
relatively small. The energetic arguments at small q seem
to suggest increasing & makes the XY spiral state more
unstable but this ignores the appreciable change in popu-
lations as & continues to increase.

The spiral state in this limit has a significant polar
component. It has been shown previously that the polar
state has a dynamical instability with a characteristic wave
vector k) ##############

2mgsn
p

[16]. When the spiral wave vector is
on the order of this characteristic wave vector, the spiral
order suppresses the instability of the polar component and
the spiral state becomes less unstable.

After analyzing the fz ! 0 case in detail, we now briefly
discuss the fz ! 0 case. The collective mode phase dia-
grams for the adiabatic limit are shown in the top of Fig. 4
with fz ! 0:05 to the left and fz ! 0:5 to the right. The
small fz phase diagrams are qualitatively similar to the
fz ! 0 case. However, there is no polar state which only
occurs for fz ! 0 but there is an additional region which
exhibits a spin mode exhibiting a dispersion with negative
frequencies describing a Landau instability. For large fz,
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FIG. 3 (color online). Representative collective mode disper-
sions for fz ! 0 and q ! 0:2 Hz in the adiabatic limit illustrat-
ing one (two) branches of unstable modes. c (s) denotes the
charge (spin) mode.
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the phase diagrams no longer exhibit a characteristic peak
for the stable region as a function of q.

So far the results have been focused on the adiabatic
limit where the components of ! can adjust due to mag-
netization spin flip processes. In practice, the preparation
of the XY spiral state can also occur on a time scale shorter
than that of spin flips. We thus briefly comment on quali-
tatively similar results in the sudden limit where the pop-
ulations of each component cannot change from their
initial values. To take this effect into account, we consider
mean-field solutions of the GP equation of the form !" !###
n

p
"ei!"t with !x ! !y ! !z and " is as in Eq. (5).

Notice the components of ! evolve at different frequen-
cies, which allows for solutions with the necessary popu-
lations for each component.

We then perform the same analysis of the collective
modes as in the adiabatic limit. This gives for fz ! 0 in
the sudden limit the phase diagrams in the inset of Fig. 2.
The origin of the instabilities in the sudden limit is the
same and the region where the XY spiral state is stable is
given by
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which gives &2=2m ! q=2 and &2=2m ! $qc " q%=2 for
the small q and large q limits, respectively. The fz ! 0:05
and fz ! 0:5 phase diagrams for the sudden limit are
shown in the bottom of Fig. 4 and exhibit the same struc-
ture as the adiabatic limit.

In this Letter we have focused on the one-dimensional
limit relevant for cigar shaped condensates. However, the
formalism we used can be readily adapted for the three-
dimensional case. In particular, one simply takes kz !

k cos, where , is the angle between the mode wave vector
and spiral wave vector in Eq. (7).

In summary, we studied a possible mechanism for the
instability of the XY spiral state. Focusing on the limits
where the XY spiral is prepared adiabatically or suddenly,
we demonstrated that when the spiral wave vector exceeds
a critical value spin wave energies become imaginary. This
indicates the presence of a dynamical instability and ex-
ponential growth of fluctuations. We traced the physical
origin of these instabilities to unwinding of the magneti-
zation vector through rotations from the XY plane to the z
axis for small quadratic Zeeman energy q and within the
XY plane for large q.
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FIG. 4 (color online). Collective mode phase diagrams for
fz ! 0:05 (left) and fz ! 0:5 (right) against spiral wave vector
& and quadratic Zeeman energy q in the adiabatic (top) and
sudden (bottom) limits. DI (LI) indicates a dynamical (Landau)
instability. DI1, DI01, and DI2 are described in Fig. 2.
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