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Within the framework of time-dependent density-functional theory �TDDFT�, we derive the dynamical
linear response of local-density approximation plus U functional and benchmark it on NiO, a prototypical Mott
insulator. Formulated using real-space Wannier functions, our computationally inexpensive framework gives
detailed insights into the formation of tightly bound Frenkel excitons with reasonable accuracy. Specifically, a
strong hybridization of multiple excitons is found to significantly modify the exciton properties. Furthermore,
our study exposes a significant generic limitation of adiabatic approximation in TDDFT with hybrid functionals
and in existing Bethe-Salpeter-equation approaches, advocating the necessity of strongly energy-dependent
kernels in future development.
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Computing many-body excitations of weakly to strongly
interacting materials continues to be a major challenge for
first-principles studies.1 Following the great achievement of
density-functional theory �DFT� in ground-state calculations
using the local-density approximation �LDA�,2,3 time-
dependent DFT �TDDFT� �Refs. 4 and 5� has promised to be
an affordable and accurate theoretical framework to study the
dynamical linear response of weakly interacting materials
ranging from finite6–8 to extended systems.1,9–11 While TD-
DFT is formally exact in describing the time-dependent den-
sity, in practice the lack of knowledge of the proper analyti-
cal form of the action functional highlights the immaturity of
its full potential in studying dynamics of real materials. For
example, there is not yet an affordable first-principles local
functional that includes proper particle-hole interactions at
the two-particle level to allow the exciton formation, leaving
the computationally expensive perturbation theory1,12 �as-
suming small enough interactions� or the highly param-
etrized cluster model13 the only option. Due to this well-
known limitation, the applicability of TDDFT �with existing
approximation� to strongly correlated materials remains ba-
sically unexplored.

Recently, a significant improvement in the ground-state
calculations of strongly interacting Mott insulators is made
via the new LDA+U functional,14,15 in which strong intra-
atomic Coulomb interactions are introduced at the screened
Hartree-Fock level. Similar to the hybrid functionals,16 the
inclusion of nonlocal exchange allows opening of the Mott
gap and gives also reasonable quasiparticle excitation ener-
gies. �Here we do not limit TDDFT or DFT to the Kohn-
Sham framework, and we consider LDA+U and other hybrid
functionals as implicit functionals of density within DFT.�
This physically motivated approach has led to important un-
derstanding of orbital- and charge-ordered systems.17–20 On
the other hand, to date the study of charge excitation within
LDA+U scheme has been very limited and its applicability
to strongly interacting Mott insulators remains unclear. It is
thus interesting and timely to explore the dynamical linear
response of LDA+U functional within the framework of TD-
DFT.

In this Rapid Communication, we examine the strength
and weakness of LDA+U in describing charge excitations of
strongly interacting Mott insulators, by developing diagram-
matically the dynamical linear response of LDA+U func-
tional within TDDFT framework �TDLDA+U�. The result-
ing formula in tackling local excitations connects TDLDA
+U �and other hybrid functionals� to a Bethe-Salpeter equa-
tion �BSE� �Ref. 21� with intra-atomic Hartree-Fock kernels.
The framework is then implemented on the basis of
symmetry-respecting Wannier functions �WFs�,19,22 which
not only dramatically reduce the computation expense but
also facilitate a comprehensive real-space picture of local
excitons. The integrated methodologies are applied to the
study of tightly bound d-d Frenkel excitons in NiO, a repre-
sentative Mott insulator. Our diagrammatic approach allows
a step-by-step elucidation of the effects of different compo-
nents of the interaction kernel. Specifically, multiple tightly
bound �by �6 eV� excitons form inside the Mott gap and
are found to hybridize strongly to give reasonable excitation
energies and highly anisotropic q-dependent spectral weights
observed recently.23 Furthermore, our results illustrate a se-
rious general limitation of adiabatic approximation widely
employed in most state-of-the-art TD-hybrid methods24 and
BSE approaches,25–27 and advocate the necessity of energy
dependence in future design of approximations within these
theoretical frameworks.

Following the standard procedure,28 the linear response
can be derived from the equation of motion �Dyson equation�
of Kohn-Sham particle shown diagrammatically in Fig. 1.29

In addition to LDA potentials, site-local �s-local� screened
Hartree-Fock interactions and the double-counting terms
among local orbitals are introduced in LDA+U. Taking the
derivative of LDA+U Green’s function with respect to the
external potential, the response function �,

��x1t1;x2t2� = �
p1h1p2h2

Mp1,h1

�x1 Lp1h2;h1p2
�t1t2;t1t2�Mp2,h2

x2 , �1�

is formulated by creating particle-hole �p-h� pairs at position
x2 and time t2, with probability amplitude Mp2,h2

x2
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��p2

� �x2��h2
�x2�, followed by the propagation of the p-h

pairs expressed in terms of the p-h correlation function L,
and finally the annihilation of p-h pairs at x1 and a later time
t1 with probability amplitude Mp1,h1

�x1 as shown in Fig. 1�b�.
The equation of motion of L �BSE� involves irreducible ker-
nel I, including bare Hartree �fH�, exchange correlation fxc,
s-local screened Hartree-Fock, and double-counting terms.
The s-local Fock interaction directly provides the attraction
between p-h pairs of orbitals that U is applied to. For the
study of local d-d excitations, the original fLDA and the
double-counting contributions are meant to counter each
other approximately and should be neglected, leaving only
the s-local screened Hartree-Fock contribution. �Besides, the
long-range screening of fH is inefficient at short distance.�
This diagrammatic representation of the equation of motion
makes it apparent that one is allowed to visualize the physi-
cal effects of interaction kernels by turning them on one after
another, as presented below.

For the study of local excitations, it is most convenient
and efficient to employ a real-space s-local basis.30 Further-
more, it is advantageous to have orbitals that diagonalize the
one-particle density matrix such that they enter only as either
pure particle or hole orbitals. To this end, we implemented
the above TDLDA+U framework using the energy-resolved
symmetry-respecting Wannier functions19,22 that are con-
structed without mixing the occupied and unoccupied
bands.29 In this basis, the complicated six-dimensional exci-
ton wave function, �i�xx��, can be decomposed into small
number of “bare” exciton wave functions as direct products
of one particle ��p� and one hole ��h� orbitals, �i�xx��
=�phcph

i �p�x��h
��x��. This gives an easy visualization of ex-

citon wave functions and a direct computation of various
experimental “form factor.” Moreover, the strong binding
suppresses significantly the kinetics of the exciton such that
only very few short-range neighbors are necessary in solving
the BSE, significantly reducing the computational expense.
In fact, even a single-site calculation is found quite accurate
for NiO.29

The LDA+U calculation for type-II antiferromagnetic
�AFM� NiO �U=8 eV,J=0.95 eV� is performed by an all-
electron full-potential method using linearized augmented
plane-wave basis.31 It gives the correct ground state of NiO
with high-spin configuration, leaving only the spin-minority
channel active for s-local d-d charge excitations. The rhom-
bohedral symmetry, dictated by the AFM order along �111�
direction, splits the d-Wannier orbitals into two unoccupied
eg, two occupied eg�, and one occupied ag orbitals. In the
rest of the Rapid Communication, we denote 1→ �eg1 ,ag�,
1�→ �eg2 ,ag�, 2→ �eg1 ,eg1� �, 2�→ �eg2 ,eg2� �, 3→ �eg2 ,eg1� �,
and 3�→ �eg1 ,eg2� � for different p-h pairs �p ,h� forming bare
excitons. Within this notation, ��q ,�� is thus
�ijMi

�qLij�q ,��Mj
q. Here Mi

q��eiq·xMi
xdx gives the prob-

ability amplitudes in momentum space corresponding to the
anisotropic form factor of inelastic x-ray and electron
scattering.23,32

We now demonstrate in Fig. 2 the physical effects of the
above interaction kernels on forming the low-energy Frenkel
excitons in NiO, by switching them on one after another in
the corresponding BSE presented in Fig. 1�b�. The BSE is
solved as a linear equation via the standard sparse iterative
method.29 �A broadening of �=0.2 eV is introduced in cal-
culating L in accordance to the experimental resolution.23�
For clarity, only contributions that lead to the bound Frenkel
excitons are shown. As a reference, the unbound p-h excita-
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FIG. 1. �Color online� �a� Dyson equation with LDA+U poten-
tial vs. �b� Dynamical linear-response function �, correlation func-
tion L�p1h2 ;h1p2�, and the corresponding BSE with LDA+U
kernel.
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FIG. 2. �Color online� Imaginary parts of p-h correlation func-
tion Lij denoted as �i ; j� by solving BSE for �a� L0: unbound p-h
pair and L: bare exciton, �b� L with s-local Fock, and �c� L with
s-local Hartree-Fock. Experimental excitation energies are indicated
by the arrows. �d�, �e�, and �f� illustrate the spectral weight of L0,
low-energy exciton in L, and high-energy exciton in L, respectively,
via three-dimensional isovalue contours in q space. The black solid
circles indicate q=7 Å−1. Spectral weight in �e�/�f� resembles very
well the experimental ones corresponding to the blue�leftmost�/red
arrows.
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tions, L0, containing no interaction kernel, is shown in Fig.
2�a�. L0 gives basically the creations of p-h pairs across sites
�intersite d-d excitations� that contribute at small momentum
but are eventually overwhelmed by the on-site excitations at
larger momentum. Not surprisingly, the excitation energies
correspond to the energy difference of LDA+U eigenvalues
encapsulating a large Coulomb interaction �of order U� due
to the addition of a particle and a hole at different atoms. In
addition, a broad spectrum �5–10 eV� is obtained, reflecting
the high mobility of such unbound p-h pairs and their strong
coupling to the oxygen p orbitals.

For intrasite excitations, however, the interaction kernel
can dramatically modify the excitations. As shown in Fig.
2�a�, upon switching on the Fock kernel within the same
pairs, which encapsulates the strong binding of p-h pairs, the
excitations collapse into three well-defined doubly degener-
ate bare excitons at 1–2 eV via binding energies �6 eV.
This seemingly large binding energy is a necessary conse-
quence of the large s-local Coulomb repulsion present in
NiO and other strongly correlated materials. Preserving the
particle number at each site, the s-local charge excitations
should not be subject to the Hubbard-U energy scale of add-
ing or removing one particle. On the other hand, since one-
particle Green’s function used to build L0 includes the energy
scale of U, such effects must be countered by a strong attrac-
tion of the same scale in any proper theory of p-h pairs, as
demonstrated here. Benefiting from the lack of decay process
deep inside the Mott gap, these bare excitons have very long
lifetime �negligible line width beyond the experimental res-
olution�. Due to the well-defined point-group symmetry of
these Wannier orbitals �and thus Mi

q�, the resulting bare ex-
citons possess well-defined angular structure in their spectral
weight. As shown in Fig. 2�d�, a prominent anisotropy of � is
found with the strongest weight along �111� directions and
vanishing weight along �001� directions, in agreement with
the recent experiment.23 In addition, the dipole-forbidden na-
ture is revealed clearly by a hollow center at q→0.

Next, we activate the scattering process among different
p-h pairs in the remaining part of the Fock kernel, IF. These
additional couplings between bare excitons introduce an in-
teresting effect of strong hybridization and split the exciton
energies into two sets. As illustrated in Fig. 2�b�, this strong
hybridization results in new large off-diagonal elements of L
in the bare exciton basis and the double-peak structure in the
diagonal elements. From the conventional eigenvector point
of view, this is equivalent to having exciton eigenfunctions
of each energy containing superposition of the above bare
excitons. Indeed, the q dependence of excitons for the low-
energy and the high-energy peaks now shows significant dif-
ferences, as shown in Figs. 2�e� and 2�f�. Along �111� direc-
tions, the former has a vanishing weight �new nodal
directions�, while the latter shows strong enhancement, re-
flecting the antibonding and bonding nature of the superpo-
sition, respectively. Such strong hybridization of multiexci-
tons is absent in weakly correlated systems but should be
expected from most strongly correlated systems with open
shells.

Finally, upon addition of the s-local Hartree kernel, IH, the
overall exciton spectrum is further modified. As shown in
Fig. 2�c�, an overall blueshift of the spectrum is observed,

originated from the screening �weakening� of the exciton
binding energy via the diagonal elements of IH. In addition,
without altering the q-dependent spectral weight signifi-
cantly, the off-diagonal elements of IH further split the exci-
ton energies. Both features are expected from the Kramers-
Kronig relation in the typical dynamical screening process.

So far, the above analysis has been performed with Wan-
nier functions associated with only one Ni site, which makes
the proposed framework extremely inexpensive and allows a
very clean real-space physical picture. More extensive
calculations29 including non-s-local �beyond one Ni site� ef-
fects resulted in a negligible energy reduction ��0.1 eV� in
the overall spectrum, and, in perfect agreement with the
experiment,23 a negligible dispersion. Indeed, the Frenkel ex-
citons in NiO are so tightly bound and so heavy to propagate
that the physics can be captured quite completely even with
only a single site. This further advocates strongly our choice
of employing Wannier basis for strongly correlated materials
in general.19,20,22,23

Overall, compared with the recently measured local d-d
excitations,23,32 the resulting theoretical spectrum of above
TDLDA+U performs unexpectedly well for such a simple
approximation. In great contrast to the qualitative failure of
TDLDA �Ref. 33� or the random-phase-approximation re-
sponse of LDA+U that give not even a hint of excitons,
TDLDA+U generates successfully the tightly bound Frenkel
excitons deep inside the Mott gap with good energy scales at
1–3 eV. Considering the enormous binding energies of
�6 eV and the complexity of the multiexciton coupling, this
degree of agreement is quite impressive, not to mention the
good q-dependent spectral weight that reflects the high qual-
ity of the exciton wave functions. Since the analytical struc-
ture of LDA+U is the same as the hybrid functionals and its
equation of motion contains similar kernel to that of existing
GW-BSE �Refs. 25 and 26� approximation, the same degree
of success should be expected from these approaches as well,
so should above general physical picture of the formation of
Frenkel excitons.

On the other hand, our study also reveals a generic limi-
tation of TDLDA+U and all these state-of-the-art approxi-
mations. While TDLDA+U puts the excitons in the right
energy range, it is unable to reproduce the fine structures of
the experimental excitons satisfactorily. Indeed, while three
charge excitation energies in the Mott gap were found ex-
perimentally �c.f. Fig. 2�, TDLDA+U only manages to pro-
duce two distinct energies. It turns out that the inability to
split resulting peaks into the fine structures is dictated by the
analytical structure of the approximations. This can be eluci-
dated by reformulating rigorously the BSE into an effective
Hamiltonian via the creation operator of bare excitons 	i
, bi

†,

Hef f = �
i

	ibi
†bi − �

i�j

Iij
Fbi

†bj + �
ij

Iij
Hbi

†bj , �2�

where 	i denotes the energy of the bare excitons in Fig. 2�a�.
In this representation, all the above physical effects are made
transparent: the hybridization due to the off-diagonal ele-
ments of IF and IH, and the blueshift of the excitonic energy
via the diagonal elements of IH. This representation also
proves that without terms that encapsulate interboson inter-
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actions, e.g., Iiji�j�bi
†bj

†bj�bi�, this class of approximations is
only capable of producing excitons in number equal to that
of the bare excitons �3
2=6 for NiO�, subject to degen-
eracy under the point-group symmetry. Thus, this generic
limitation can only be removed via higher-order kernel in
BSE or new generations of hybrid-functional kernels that
explicitly include time dependence.

This general conclusion is actually more stringent than
those in the present TDDFT literature. Without �-dependent
I, our results demonstrate exciton formation with correct
scale of large binding energy. Clearly, in this crudest level of
approximation, the known necessity of nonadiabatic
�memory-dependent� kernel fxc of TDDFT in the Kohn-
Sham framework34–36 would originate solely from the spatial
reduction in nonlocal Ixc into fxc.

12 On the other hand, to
allow any fine �multiplets� structure in strongly interacting
systems, a nonadiabatic kernel is absolutely necessary even
without the spatial reduction. Obviously, this is one key as-
pect that almost all the existing approximate functionals lack
and presents an essential and necessary step toward a proper
description of local excitations in strongly interacting sys-
tems, within all the existing theoretical frameworks.

In summary, a TDLDA+U method is derived within TD-
DFT framework and implemented on the basis of Wannier
functions. As a benchmark and an illustration, the formation
of tightly bound excitons in NiO are analyzed step by step. A
intriguing strong hybridization of multiple excitons is found
that gives reasonable excitation energies with a large �6 eV
binding energy and the observed highly anisotropic spectral
weight. Our computationally inexpensive approach not only
provides detailed insights into the formation of Frenkel ex-
citons but also demonstrates an intrinsic nonadiabaticity of
the interaction kernel in allowing fine structures in the exci-
tation spectra of strongly interacting systems. The lack of
such essential feature in nowadays hybrid functional and
BSE methods advocates the inclusion of explicit time depen-
dence in future design of approximate functionals.
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