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Abstract. We establish lower-edge spectral and dynamical localization for a multi-
particle Anderson model in a Euclidean space R

d, d ≥ 1, in presence of a non-trivial
short-range interaction and an alloy-type random external potential.

1. Introduction. The N-particle Hamiltonian in the continuum

1.1. The model. This paper follows, with some stylistic modifications (and with a
shortened form of presentation), a series of arXiv accounts of an earlier vedrsion of
the same work: cf. [6], [7] [9]. We consider an N -particle Anderson model in Rd with
interaction, where N > 1 and d ≥ 1 are arbitrary integers. The model Hamiltonian
H = H(N)(ω) is a random Schrödinger operator of the form

(1.1) H(N)(ω) = −
1

2
∆ + U + V(ω)

acting on functions from L2(Rd × · · ·×Rd) ≃ L2(Rd)⊗N . This means that we consider
N quantum particles in Rd. The joint position vector is x = (x1, . . . , xN ) ∈ RNd, where

component xj = (x
(1)
j , . . . , x

(d)
j ) ∈ Rd represents the j-th particle, j = 1, . . . , N . Next,

−
1

2
∆ = −

1

2

∑

1≤j≤N

∆j

is the standard kinetic energy operator obtained by adding up the kinetic energies
− 1

2∆j of the individual particles; here, ∆j denotes the d-dimensional Laplacian.
The interaction energy operator is denoted by U: it is the operator of multiplication

by a function RNd ∋ x 7→ U(x), the inter-particle potential. Finally, V(ω) is the
operator of multiplication by a function

(1.2) RNd ∋ x = (x1, . . . , xN ) 7−→ V (x1;ω) + · · · + V (xN ;ω),

where V : Rd × Ω → R is a random field, relative to a probability space (Ω,F ,P),
generating an external potential acting on individual particles.

Assumptions on U(x) and V (x;ω) are discussed below. In essence, U is required to
be of short-range while V is assumed to be of the so-called alloy-type.

In this paper, we analyse spectral properties of H by using the method called the
Multi-scale analysis (MSA), more precisely, a multi-particle adaptation of a single-
particle ‘continuous-space’ version of the MSA (MPMSA for short). Our main result
is Theorem 1.1, asserting that
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• with probability one the spectrum of operator H(ω), in an energy band I0(η∗) =
[E0, E0+η∗] near the lower edge E0, is pure point, with an exponential decay of
the corresponding eigenfunctions; such a phenomenon is known as exponential
spectral localization;

• compactly supported wavepackets ψ remain rapidly decaying (localised) under
the action of the reduced propagator e−itHPI0(η∗)(H), where PI0(η∗)(H) is the

spectral projection on I0(η∗); this phenomenon is called dynamical localization.

Theorem 1.1 is the first rigorous result available in the literature on localization in
multi-particle continuous-space Anderson models. For N = 1 (a single-particle model),
spectral localization was initially established in [11], [18] by means of the single-particle
MSA (briefly: SPMSA), whereas in [2] dynamical and spectral localization was proved
with the help of an alternative Fractional Moment Method (FMM). The fact that
dynamical localization is derived in this paper from the MPMSA estimate, in our view
puts both forms of localization on essentially equal footage. We thank Abel Klein for
the stimulating discussion of this issue.

For lattice (tight-binding) Anderson models, the MPMSA has been developed in
papers [12], [13], [14]. An alternative approach based on a multi-particle adaptation
of the FMM was successfully employed in [3], still for multi-particle lattice Anderson
models; see also [4]. Note that the multi-particle version of the FMM, like its single-
particle counterpart, leads directly to the proof of dynamical localization.

1.2. Basic notation. Throughout this paper, we fix integers N > 1 and d ≥ 1 (as was
said, they can be arbitrary) and work with configurations of n distinguishable quantum
particles in Rd where n varies from 1 to N . The configuration space of an n-particle
system is the Euclidean space

(
Rd

)n
which is canonically identified with Rnd. A similar

identification is used for cubic lattices:
(
Zd

)n ∼= Znd.
We use the notation [[a, b]] for segments of integer values: [[a, b]] := [a, b] ∩ Z.
It is convenient to endow Rd and Rnd with max-norms: for x = (x(1), . . . , x(d)) ∈ Rd

and x = (x1, . . . , xN ) ∈ RNd,

(1.3) |x| = max
1≤i≤d

|x(i)|, |x| = max
1≤j≤n

|xj |.

The distance ‘dist’ below is induced by this norm. In terms of the max-norm, the balls
of radius L are cubes of sidelength 2L with the edges parallel to the co-ordinate axes
(such cubes are alternatively called boxes throughout the paper). Specifically, in Rd

the open ball of radius L centered at u = (u(1), . . . ,u(d)) is

CL(u) :=
d
×

i=1

(
u(i) − L, u(i) + L

)
⊂ Rd

while the ball in Rnd centered at u = (u1, . . . , un) is

(1.4) CL(u) =
n
×

j=1
CL(uj) ⊂ Rnd.

Sometimes we will also use the symbol C
(n)
L (u) and use the term an n-particle box, to

put an emphasis on the number of particles in the system. For our purposes, it suffices
to consider only cubes centered at lattice points u ∈ Zd and u ∈ Znd; consequently,
letters u, v, w and u,v,w will refer to points in the corresponding lattices.

Given an integer n ≥ 1, we define for each j ∈ [[1, n]] the projection Πj : Rnd → Rd

extracting the position of the jth particle: Πj(x1, . . . , xn) := xj . Further, define the
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‘full one-particle projection’ ΠC
(n)
L (u) of C

(n)
L (u):

ΠC
(n)
L (u) :=

n
∪

j=1
Πj C

(n)
L (u) ⊂ Rd.

Given a cube CL(u), define its outer layer (of width 2), by

(1.5) Cout
L (u) = CL(u) \ CL−2(u), u ∈ Znd.

We denote by 1A the characteristic function of a set A ⊂ Rnd and also, with a
standard abuse of notation, the operator of multiplication by this function.

From now on we will omit subscript L2(R
nd) in the notation ‖ · ‖L2(Rnd) for

the vector and operator norms in L2(R
nd). We will denote by X the operator of

multiplication by the norm

(1.6) (XΨ)(x) = |x|Ψ(x), x ∈ RNd.

1.3. External random potential. The random potential acting on each individual
particle is of the so-called alloy-type, i.e. it has the following structure:

(1.7) V (x;ω) =
∑

y∈Zd

Vy(ω)ϕ(x − y),

where the random amplitudes Vy(ω) satisfy the conditions (E2)–(E3) and the ‘bump
function’ ϕ satisfies the conditions (E4)–(E5); see below. However, our results remain
valid in a more general situation where the bump functions are not necessarily identical,
provided that conditions (E4)–(E5) hold uniformly.

1.4. Interaction potential. As was said above, the interaction energy operator U(x)
in Eqn (1.1) acts as multiplication by a function x ∈ RNd 7→ U(x) ∈ R. More generally,
we suppose that functions x ∈ Rnd 7→ U(x) ∈ R are given, for n ∈ [[1, N ]], accounting
for the energy of n-particle ‘sub-configurations’; this is stressed by employing the com-
mon notation U(x). Consequently, the term ‘interaction’ will address the whole family
of these functions. For n = 1, function U(x), x ∈ Rd, gives a ‘background’ one-particle
potential. In this paper we do not assume isotropy, symmetry or translation invariance
of the interaction. However, the condition of finite range (see (1.9)) is essential.

Suppose that a partition of a configuration x ∈ Rld is given, into complementary
sub-configurations xJ = (xj)j∈J and xJ c = (xj)j∈[[1,n]]\J , with ∅ 6= J ( [[1, N ]].
Next, define the distance between xJ and xJ c :

(1.8) dist(xJ ,xJ c) := min
[
|xi − xj | : i ∈ J , j ∈ J c

]
.

We say that the interaction has range r0 ∈ (0,∞) if, for all n ∈ [[2, N ]] and x ∈ Rld,

(1.9) dist(xJ ,xJ c) > r0 =⇒ U(x) = U(xJ ) + U(xJ c).

Observe that the finite range condition does not impose restrictions on one-particle
potential U(x) for x ∈ Rd.

1.5. Assumptions.

(E1) The interaction has a finite range r0 ≥ 0 and all functions x ∈ Rnd 7→ U(x),
n ∈ [[1, N ]], are non-negative and bounded.

(E2) There exists a constant v ∈ (0,∞) such that

(1.10) P { 0 ≤ V0 ≤ v } = 1.
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(E3) The marginal distribution of random variables Vs is uniformly Hölder-continuous:
∃ a, b > 0 such that for all ǫ ∈ [0, 1],

(1.11) sup
t∈R

P(t ≤ Vs < t+ ǫ) ≤ a ǫb.

(E4) The function ϕ : Rd → R is nonnegative, bounded and compactly supported:

(1.12) diam(suppϕ) ≤ r1 <∞.

(E5) ∀ L ≥ 1 and u ∈ Zd,

(1.13)
∑

y∈CL(u)

ϕ(x − y) ≥ 1CL(u)(x).

1.6. The main result. Let E0 denote the lower edge of H
(N)
0 (ω), where operator

H
(N)
0 (ω) is given by

(1.14) H
(N)
0 (ω) = −

1

2
∆ +

N∑

j=1

U(xj)

and defined uniquely as the self-adjoint extension from the set C2
0 (RNd) of compactly

supported twice-differentiable functions on RNd. Due to nonnegativity of summands
U(xj), the value E0 is nonnegative.

Theorem 1.1. Assume conditions (E1)– (E5) and let operator H(N)(ω) be as in Eqn
(1.1) (defined formally as a unique self-adjoint extension from the domain C2

0 (RNd)).
Then ∃ nonrandom constants η∗ > 0 and m∗ > 0 such that, with P-probability one,
either the spectrum of operator H(N)(ω) in the interval I0(η∗) := [E0, E0+η∗] is empty
or the following localization properties hold true.

(i) The spectrum of H(N)(ω) in I0(η∗) is pure point, and the eigenfunctions Ψj(x;ω)

of H(N)(ω) with eigenvalues Ej(ω) ∈ I0(η∗) satisfy exponential bounds

(1.15)
∥∥1C(u)Ψj( · ;ω)

∥∥ ≤ cj(ω)e−m∗|u|, u ∈ ZNd.

(ii) ∀ s > 0 and any compact subset K ⊂ RNd, there exists a number C = C(s,K) ∈
(0,+∞) such that the following bound holds:

(1.16) E

[
sup
t∈R

∥∥∥Xs e−itH(N)(ω)PI0(η∗)(H
(N)(ω))1K

∥∥∥
]
≤ C,

where PI0(η∗)(H
(N)(ω)) stands for the spectral projection of the operator H(N)(ω)

to I0(η∗).

Remarks. 1. In assumption (E1), we can relax the boundedness condition by
allowing ‘hard-core interactions’: ∃ d0 ∈ (0, r0) such that ∀ n ∈ [[2, N ]] and x =
(x1, . . . , xn) ∈ Rnd,

min
1≤i<j≤n

|xi − xj | < d0 =⇒ U(x) = +∞,

and U(x) is uniformly bounded from above when min
1≤i<j≤n

|xi − xj | ≥ d0.
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2. The possibility that the spectrum of H in I0(η∗) is empty can be excluded by
more specific conditions in assumption (E1) and (E2). Viz., if, in addition to (1.10),
we suppose that ∀ ǫ > 0 the probability P(0 < Vs < ǫ) > 0 then with P-probability
one, the spectrum of operator H in I0(η∗) is non-empty. Hence, by Theorem 1.1,
under this additional assumption, the spectrum of H in I0(η∗) is pure point, and the
corresponding eigenfunctions are exponentially localized.

If, furthermore, we set U(x) ≡ 0 (no background potential) then the value E0

becomes 0.

3. In assumption (E3), Hölder continuity can be relaxed to a form of log-Hölder
continuity.

4. A direct application of general results on local regularity of (generalized) eigen-
functions of Schrödinger operators, (cf. Theorem 2.4 from [10]; see also [1], [19]) leads
to the following property. The eigenfunctions Ψj(x;ω) with eigenvalues E0 ≤ Ej(ω) ≤
E0 + η∗ satisfy the bounds:

(1.17) |Ψj(x;ω)| ≤ c̃j(ω) e−em∗|x|, x ∈ Rd×N ,

with m̃∗ > 0 and random constants c̃j(ω) ∈ (0,+∞).

5. Theorem 1.1 addresses the spectrum of operator H in the whole Hilbert space
L2(R

Nd). This, of course, covers subspaces Lsym
2 (RNd) and Lasym

2 (RNd) formed by sym-
metric and antisymmetric functions (bosonic and fermionic subspaces, respectively).

6. As can be seen from bounds used in the proof of Theorem 1.1, when we in-
crease the number of particles N , keeping fixed the assumptions on U(x) and V (x, ω)
and preserving the upper bound on U(x) and the range of interaction r0, the width η∗

guaranteed in Theorem 1.1 tends to 0 (in fact, rather rapidly, which is somewhat disap-
pointing). This can be formally attributed to insufficiencies of the version of MPMSA
developed in the current paper, but in fact the roots of the prooblem are deeper and
stem from the situation occurring already in the SPMSA (when the dimension d in-
creases). We refer the reader to [7] and [9] for more details.

2. The MPMSA estimate and spectral localization

2.1. Hamiltonians in finite cubes. In the proof of Theorem 1.1 we will focus on

properties of finite-volume versions HC = H
(N)
C (ω) of Hamiltonian H. More precisely,

let C = C(N)(u) be an N -particle box and consider the operator H
(N)
C (ω) in L2(C),

(referred to as the Hamiltonian of the N -particle system in C), of the same structure
as in Eqn (1.1):

(2.1) H
(N)
C (ω) = −

1

2
∆C + U + V(ω).

Here ∆C stands for the Laplacian in C with Dirichlet’s boundary conditions on ∂C.
The spectrum of HC will be denoted by σ(HC).
Under conditions (E1)–(E5), for for P-almost all ω ∈ Ω, operator HC is correctly

defined in L2(C), as a self-adjoint extension from the domain C2
0 (C). Moreover, HC

has a discrete spectrum, since its resolvent

(2.2) GC(E) =
(
HC − E

)−1
, for E ∈ R \ σ

(
HC

)
,
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is a compact integral operator; properties of GC(E) will be at the centre of our atten-
tion. The integral kernel

(2.3) C×C ∋ (x,x′) 7→ GC(x,x′;E), x,x′ ∈ C,

is known as the Green function of HC.
The MPMSA is based on an asymptotical analysis of resolvent GC(E) as C ր RNd.

More precisely, cubes C will have the form

C = CLk
(u), u ∈ ZNd, k = 0, 1, . . . ,

where positive integers Lk (called length-scales or briefly scales) are determined by a
recurrence involving a starting value L0 and a parameter α > 1:

(2.4) Lk = [Lα
k−1] + 1 ∼ (L0)

αk

, k ≥ 1.

Here [·] stands for the integer part. In future, we will take α = 3/2. Nevertheless, to
keep a connection with earlier references, we will continue using symbol α. A similar
agreement will be applied to the parameter β > 0 appearing below (see Eqn (3.1)):
we will set β = 1/2. The integer L0 > 0 will be eventually assumed to be sufficiently
large.

Summarising, for future references,

(2.5) α = 3/2 , β = 1/2 , L0 is a positive integer, large enough.

Consequently, in the course of the argument, we will often work with n-particle

Hamiltonians H
(n)
C = H

(n)
C (ω), of the same form as in (2.1), with n = 1, . . . , N . Mutatis

mutandis, definitions and facts introduced/noted for an N particle system will be used
for a system of n particles as well.

For a concise summary of the MPMSA as an inductive process in n and Lk we
refer the reader to [13], [14]; in the present paper we follow the same principal steps
(modified by the transition from a lattice to a continuous-space model). Specifically,

to derive the crucial MPMSA estimate (2.14) for the Hamiltonian H
(N)
CLk

, we assume

that these estimates are established for Hamiltonians H
(n)
CLl

(i) ∀ n ∈ [[1, N − 1]] and

length scale Ll, l ≥ 0, and (ii) for n = N and Ll with 0 ≤ l ≤ k − 1; we then aim to
reproduce this estimate for n = N , at scale Lk. The basic tools in the case n = 1 are
provided by the SPMSA (cf. the monograph [20] where the continuous-space version
of the SPMSA is presented in detail, along with an extensive bibliography). Next, the

scale induction for operators H
(n)
CLk

with n > 1 includes two principal components:

• initial L0-scale MPMSA bounds;
• derivation of the bounds at scale Lk, assuming that that they are established

at the scale Lk−1.

These components require distinctive arguments and use different properties from as-
sumptions (E1)– (E5).

2.2. Separable cubes and Wegner-type bounds. As was commented on in [7]
and [9] (and earlier in [12], [13], [14] and [8] in the context of tight-binding models),
the principal difficulty encountered while attempting to extend the SPMSA to the

MPMSA is that for N > 1 the random field x ∈ RNd 7→
N∑

i=1

V (xi;ω) features a ‘strong

dependence’ at distance even when the underlying potential x ∈ Rd 7→ V (x;ω) is
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generated by IID variables Vy(ω). To this end, in paper [5] we introduced the concept
of separable pairs of multi-particle cubes for which we establish the so-called Wegner-
type bounds. For reader’s convenience, we reproduce the result of [5] in this subsection.

Definition 2.1. Let n = 1, . . . , N and assume J is a non-empty subset in {1, . . . , n}.

We say that a cube C
(n)
L (y) is J -separable from cube C

(n)
L (x) if

(2.6)
( ⋃

j∈J

Πj C
(n)
L+r1

(y)
) ⋂ ( ⋃

i/∈J

Πi C
(n)
L+r1

(y)
⋃

ΠC
(n)
L+r1

(x)
)

= ∅,

where R is the constant from condition (E3).

Next, a pair of cubes C
(n)
L (x), C

(n)
L (y) is said to be separable if dist

(
C

(n)
L (x),C

(n)
L (y)

)
>

2N(L+ r1) and, for some non-empty set J ⊂ [[1, n]],

• either C
(n)
L (y) is J -separable from C

(n)
L (x),

• or C
(n)
L (x) is J -separable from C

(n)
L (y).

Fix an interval I ⊂ R. Given n = 1, . . . , N , q > 0 and L0 ≥ 2, define the following

property W2(n)(=W2(n,L0, β)), for random n-particle Hamiltonians H
(n)
C where C =

C
(n)
l (x) and l ≥ L0.

W2(n): For all l ≥ L0 and any separable pair of cubes C
(n)
ℓ (x), C

(n)
ℓ (y),

(2.7) P
{
∃E ∈ I : neither C

(n)
l (x) nor C

(n)
l (y) is E-CNR

}
< e−lβ/2

.

Theorem 2.1. For any q > 0 and a bounded interval I ⊂ R, there exists L∗
W =

L∗
W(q, I) ∈ (0,+∞) such that W2(n) holds true for all n = 1, . . . , N and L0 ≥ L∗

W.

Proof. See [5]. �

The following Lemma 2.1 and Corollary 2.1 give useful insight into the property of
separability. For the proofs, see [7].

Lemma 2.1. Given n ≥ 2, set κ(n) = nn.
(A) For any L > 1 and n-particle configuration x ∈ Znd, there exists a collection
of n-particle cubes CL(l)(x(l)), l = 1, . . . ,K(x, n), with K(x, n) ≤ κ(n) and L(l) ≤
2n(L+ r1), such that if a vector y ∈ Znd satisfies

(2.8) y /∈

K(x,n)⋃

l=1

CL(l)(x(l)),

and dist
(
C

(n)
L (x),C

(n)
L (y)

)
> 2n(L+r1), then the pair (C

(n)
L (x),C

(n)
L (y)) is separable.

(B) A pair of cubes of the form C
(n)
L (x), C

(n)
L (0) is separable, provided that

(2.9) |x| > 2(n+ 2)(L+ r1).

Corollary 2.1. Fix two integers, n ≥ 2 and L > 1, and let κ(n) < ∞ be the number
defined in Lemma 2.1. Set B = 4n(L+ r1) + 1 and consider an n-particle cube CL(x)
and 2κ(n) + 1 disjoint concentric annular sets A1(x), . . ., A2κ(n)+1 around CL(x):

Aj(x) = CL+jB(x) \ CL+(j−1)B(x), j = 1, . . . , 2κ(n) + 1.

Then at least one of the annuli A2j−1(x), 1 ≤ j ≤ κ(n) + 1, contains no cube CL(y)
not separable from CL(x).
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2.3. Singularity and double singularity. The crucial bound in the MPMSA is an
upper-bound for the probability of the so-called double singularity (2.14). It is based
on the following concept.

Definition 2.2 ((E,m)-singularity and nonsingularity). Let E ∈ R and m > 0. We

say that cube C
(n)
L (u) ⊂ Rnd, 1 ≤ n ≤ N , is (E,m)-nonsingular ((E,m)-NS) if

E ∈ R \ σ(HCL(u)) and for any y ∈ CL(u)out
L (u) ∩ ZNd, the L2-norm of the operator

1C1(u) GCL(u)(E)1C1(y) satisfies the bound

(2.10) ‖ 1C1(u) GCL(u)(E)1C1(y) ‖ ≤ e−γ(m,L,n),

where the quantity γ(m,L, n) ( = γN (m,L, n)) is defined by

(2.11) γ(m,L, n) := mL
(
1 + L−1/8

)N−n+1

, 1 ≤ n ≤ N.

Otherwise, CL(u) is called (E,m)-singular ((E,m)-S).

Observe that e−γ(m,L,n) < e−mL, for any L > 0 and n ∈ [1, N ].
Given an integer N > 2 and numbers p0, b > 0, introduce a sequence of positive

numbers,

(2.12) P (n, k, p0) = p0(1 + b)k4N−n, n = 1, . . . , N.

The only restriction upon the parameter p0 is that

(2.13) p0 > Ndα.

For notational brevity, the argument p0 of the function P will sometimes be omitted,
unless its value is to be specified explicitly.

The value of parameter b can be specified as b = 1/3 but the only place where it mat-
ters is Eqn (4.4). Therefore, we will keep symbol b to make the algebraic manipulations
more transparent.

Further, given an interval I ⊂ R, numbers m > 0, n ∈ [[1, N ]] and k ≥ 0, consider
the following property.

DS(m, p0, k, I, n): For all separable pairs of cubes C
(n)
Lk

(u), C
(n)
Lk

(v)

(2.14) P
{
∃ E ∈ I : C

(n)
Lk

(u) and C
(n)
Lk

(v) are (E,m)−S
}
≤ L

−2P (n,k,p0)
k .

Recall: Lk stands for an integer of the form (2.4), with α = 3/2 as in (2.5). The
abbreviation DS means ‘double singularity’.

As was mentioned before, property DS(m, p0, k, I,N) (which addresses Hamilto-

nians H
(n)
CLk

(u)(ω) and H
(n)
CLk

(v)(ω)), is critical for the N -particle MSA scheme; see

Theorem 2.2 below, establishing connections with the spectrum of the Hamiltonian
H(N)(ω). Once this property is verified for all k ≥ 0 (at the end of Section 6), it will
mark the end of the proof of assertion (i) of Theorem 1.1.

Theorem 2.2. Let I ⊂ R be an interval. Assume that for some m > 0, L0 > 2,
p0 > Ndα and for any k ≥ 0, property DS(m, p0, k, I,N) holds true, with Lk as in
Eqns (2.4), (2.5).

Then, with P-probability one,

(i) The spectrum of operator H(N)(ω) in I is pure point.
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(ii) The eigenfunctions Ψj(x;ω) of H(N)(ω) with eigenvalues Ej(ω) ∈ I satisfy the
exponential bounds similar to Eqn (1.15):

(2.15)
∥∥1C(u)Ψj( · ;ω)

∥∥ ≤ cj(ω)e−m|u|, u ∈ ZNd.

Theorem 2.2 represents an ‘analytic’ part of the MPMSA. (Probability plays a sub-
ordinate role here, reduced merely to the Borel–Cantelli lemma, which is guaranteed by
the fact that p > Ndα.) The proof of Theorem 2.2 follows the same line of arguments
as in previous publications and is omitted; cf. [13], [14]. (In fact, the idea of the proof
has not changed since [15].)

In view of Theorem 2.2, assertion (i) of Theorem 1.1 can be deduced from the
following Theorem 2.3.

Theorem 2.3. Under assumptions of Theorem 1.1, there exist η∗ > 0 sufficiently
small, p∗ > Ndα, and m∗ > 0 such that, for an integer L0 > 1 large enough, property
DS(m, p0, k, I,N) holds for all k ≥ 0, with p0 = p∗, m = m∗, interval I of the form
I0(η∗) = [E0, E0 + η∗] and length-scale Lk as in Eqns (2.4), (2.5).

Sections 3–6 are devoted to the proof of Theorem 2.3. This theorem represents a
‘probabilistic’ part of the MPMSA; unlike Theorem 2.2, its proof is quite sensitive to
particulars of a given model. Nevertheless, we will follow the same logical scheme as
in [14, Theorem 3].

Assertion (ii) of Theorem 1.1 is established in Section 7.

3. The N-particle MSA induction scheme

In view of Theorem 2.2, our aim is to check property DS(m, p0, k, I, n), i.e., (2.14),
for n = N . As was mentioned before, it is done by means of a combined induction, in
both k and n. Consequently, in some definitions below we refer to the particle number
parameter n, whereas in other definitions - where we want to stress the passage from
N − 1 to N - we will use the capital letter.

The reader may assume from the start that the interval I is of the form I0(η∗).

3.1. The initial scale. The initial step of the MPMSA induction consists in estab-
lishing properties DS(m, p0, k, I, n), for k = 0 and for n = 1, . . . , N .

Lemma 3.1. Fix any p0 > 0 and integers N, d ≥ 1. There exists η∗0 > 0 such that
DS(m, p0, 0, I, n) holds true for all n ∈ [[1, N ]] with the interval I0(η∗).

The assertion of Lemma 3.1 follows directly from [20, Theorems 2.2.3, 3.3.3] and
is omitted from the paper. It is instructive to observe that the proofs in [20] do not
rely upon a single-particle structure of the potential and can be easily adapted to
multi-particle Hamiltonians.

3.2. The scaling step inequality. Lemma 3.2 below is based on a construction al-
ternative to [15, Section 4, Lemma 4.2] but uses the same basic idea and serves the
same purpose. The proof can be found in [7].

Definition 3.1 (E-complete non-resonance). Given E ∈ I and v ∈ Znd, the n-particle
cube CL(v) is called

(i) E-nonresonant (E-NR) if

(3.1) dist
(
E, σ(HCL(v))

)
≥ e−Lβ

,

and E-resonant (E-R) if the opposite inequality holds;
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(ii) E-completely non-resonant (E-CNR) if CL(v) is E-NR and does not contain any

E-resonant cube C
(n)
ℓ (w) with ℓ ≥ L1/α.

Definition 3.2 (Discretized Green function). Given cubes C = CL(u), value E ∈
R \ σ(HC) and vectors v, w ∈ B := C∩ZNd, we now denote

(3.2) DL,u(v,w;E) = ‖1C1(v) GC(E)1C1(w)‖.

We call function B×B ∋ (v,w) 7→ DL,u(v,w;E) the discretized Green function for
HC. The same definition is applicable for Cℓ(u) yielding a function

Bℓ(u) × Bℓ(u) ∋ (v,w) 7→ Dℓ,u(v,w;E), where Bℓ(u) := Cℓ(u) ∩ ZNd.

Lemma 3.2. Given n = 1, . . . , N , m > 0, M > 0 and integer J ≥ 1, consider an
n-particle box CL(u). There exists an integer L∗

scal = L∗
scal(m,M, J) with the following

property. Suppose that the conditions (A)–(C) are satisfied:

(A) CL(u) is E-CNR;
(B) there exists a family {Ai} of at most J disjoint annuli Ai = Cli+ri(u) \Cli(u) of

total width
∑
ri ≤ML1/α such that any box Cℓ(v) ⊂ CL(u) \ (∪iAi) is NS;

(C) L ≥ L∗
scal.

Then box CL(u) is NS:

(3.3) max
|x−u|≤L1/α

max
y∈Cout

L (u)∩ZNd
|DCL(u)(x,y;E)| ≤ e−γ(m,L,n).

3.3. The inductive step. The inductive step of the MPMSA induction consists in
deducing, for a given value k ≥ 0, property DS(m, p0, k + 1, I,N) from properties
DS(m, p0, k, I, n) assumed for all n = 1, . . . , N and properties DS(m, p0, k + 1, I, n)
assumed for all n = 1, . . . , N − 1. Let us summarise:

Theorem 3.1. Fix any integers N, d ≥ 1. There exist values L∗
+ > 0, η∗+ > 0 and two

functions

(3.4) m : (0, η∗] → R+, p0 : (0, η∗] → R+, with p0(η) ր +∞ as η → 0,

with the following property:
Set I0(η) = [E0, E0 + η] with η ∈ (0, η∗0) and suppose that for some k ≥ 0 and

L0 ≥ L∗
+

• property DS(m(η), p0(η), k, I
0(η), n) holds for all n ∈ [[1, N ]];

• property DS(m(η), p0(η), k + 1, I0(η), n) holds for all n ∈ [[1, N − 1]].

Then DS(m(η), p0(η), k + 1, I0(η), N) also holds.

The rest of the Sections 3–6 is devoted to the proof of Theorem 3.1. Observe that
once this proof is completed, Theorem 2.3 and hence assertion (i) Theorem 1.1 will be
established.

From now on, parameter p0 will be considered as depending on η, but for simplicity
of notation, the argument η will be omitted when it does not cause confusion.

3.4. Interactive cubes. The assertion of Theorem 3.1, i.e., the deduction of property
DS(m, p0, k + 1, I,N) from DS(m, p0, k, I,N) and DS(m, p0, k + 1, I, n) with n =

1, . . . , N−1 is done separately for the three types of pairs of separable boxes C
(N)
Lk+1

(u),

C
(N)
Lk+1

(v), according to their position relative to the ‘interaction strip’ in RNd.
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Recall: r0 ∈ (0,+∞) is the interaction radius (cf. (E1)). Consider the following
subset in Rnd, n = 1, . . . , N :

(3.5) D(n) =
{
x = (x1, . . . , xn) ∈ Rnd : max

1≤j1, j2≤n
|xj1 − xj2 | ≤ Nr0

}

It is plain that

(3.6) ∀x ∈ Rnd \ D(n) ∃ (∅ 6=)J ( [[1, N ]] : min
j1∈J

min
j2 6∈J

|xj1 − xj2 | > r0.

Definition 3.3 (Interactive cubes). Let C
(n)
L (u) be an n-particle cube. We say that

C
(n)
L (u) is fully interactive (FI) when C

(n)
L (u) ∩ D(n) 6= ∅, and partially interactive

(PI), otherwise.

The term ‘fully interactive’ simply means that the respective n-particle system can-
not be decomposed into a union of two or more non-interacting subsystems, while such
a decomposition is guaranteed for the ‘partially interactive’ cubes. It will be conve-
nient to fix one such decomposition (referred to as canonical), for each PI
box:

(3.7) C
(N)
L (u) = C

(n′)
L (uJ ) × C

(n′′)
L (uJ c), n′ = |J | ≥ 1, n′′ = |J c| ≥ 1.

(The actual choice is irrelevant for our arguments.)
The three types of pairs of separable boxes considered below are as follows.

(I) Both cubes C
(N)
Lk+1

(u), C
(N)
Lk+1

(v) are PI.

(II) Both C
(N)
Lk+1

(u), C
(N)
Lk+1

(v) are FI.

(III) One of C
(N)
Lk+1

(u), C
(N)
Lk+1

(v) is FI, while the other is PI.

These three cases are treated in Sections 4, 5 and 6, respectively. The end of proof of
Theorem 3.1 is achieved at the end of Section 6.

Throughout Sections 3–6 , we work with a fixed bounded interval I ⊂ R and variable
n = 1, ..., N .

We conclude this section by describing one of important technical tools used below.

3.5. Resolvent inequality. Using the so-called Geometric Resolvent Inequality for
Schrödinger operators in Euclidean spaces, one can establish the following statement:

(DGRI) Discretized geometric resolvent inequality: Given cubes Cℓ(v) ⊂ CL−3(u),

∀ y ∈ Cout
L (u) and E ∈ I \

(
σ(HCℓ(u)) ∪ σ(HCL(u ))

)
,

(3.8) DL, u(v,y;E) ≤ C(0)
∑

w∈Cout
ℓ (v)∩ZNd

Dℓ,v(v,w;E)DL,u(w,y;E).

Our task in the remaining part of the paper will be essentially reduced to the analysis
of decay of functions DLk,u(v,w;E) for E ∈ R \ σ(HCLk

(u)), when vectors v and w

are distant apart (viz., v is ‘deeply’ inside CLk
(u) whereas w is near the boundary of

CLk
(u); see below).

4. Case I: Pairs of partially interactive singular cubes

In this section, we will be able to derive property DS(m, p0, k + 1, I,N) for a pair

of PI separable cubes C
(N)
Lk+1

(u), C
(N)
Lk+1

(v) without referring to DS(m, p0, k, I,N).

However, we will use properties DS(m, p0, k + 1, I, n) for n = 1, . . . , N − 1.



12 V. CHULAEVSKY, A. BOUTET DE MONVEL, AND Y. SUHOV

Let C = C
(N)
Lk+1

(u) be a PI-cube where u = (u1, . . . , uN) ∈ ZNd. Let J ⊂ {1, . . . , N}

be a proper subset figuring in Eqn (3.6). Write u = (u′,u′′) where u′ = uJ =
(uj)j∈J ∈ (Zd)J and u′′ = uJ c = (uj)j /∈J ∈ (Zd)J

c

are the corresponding sub-
configurations in u. Let n′ = |J | be the cardinality of J and n′′ = N − n′. We write
the respective cube C as the Cartesian product

C = C′ ×C′′, where C′ = C
(n′)
Lk+1

(u′), C′′ = C
(n′′)
Lk+1

(u′′).

The Hamiltonian H
(N)

C
(N)
Lk+1

(u)
can be represented as

(4.1) H
(N)
C = H

(n′)
C′ ⊗ I(n′′) + I(n′) ⊗ H

(n′′)
C′′ .

Here I(n′) and I(n′′) are the identity operators on L2(C
′) and L2(C

′′), respectively.

Definition 4.1 ((I,m)-partial tunneling). Fix a number m > 0 and an interval I ⊂ R.

(i) An n-particle cube C
(n)
Lk+1

(u), with n < N , is (I,m)-tunneling ((I,m)-T) if there

exists E ∈ I and two separable n-particle cubes C
(n)
Lk

(vj) ⊂ C
(n)
Lk+1

(u), j = 1, 2

which are (E,m)-S.

(ii) An N -particle PI cube C
(N)
Lk+1

(u) is (I,m)-partially tunelling ((I,m)-PT) if at

least one of the cubes C
(n′)
Lk+1

(uJ ), C
(n′′)
Lk+1

(uJ c) figuring in its canonical decom-

position

C
(N)
Lk+1

(u) = C
(n′)
Lk+1

(uJ ) × C
(n′′)
Lk+1

(uJ c),

is (I,m)-tunneling. Otherwise, it is called (I,m)-non-tunneling ((I,m)-NT).

Lemma 4.1 (Cf. Lemma 5.2 from [7]). Fix an interval I ⊂ R and consider an N -

particle cube C
(N)
Lk+1

(u). Assume that C
(N)
Lk+1

(u) is PI, (I,m)-NT for some m > 0, and

E-CNR for some E ∈ I. Then, for L0 large enough, the cube C
(N)
Lk+1

(u) is (E,m)-NS.

The proof can be found in [7].

Lemma 4.2. Given m > 0, p0 > 0, a bounded interval I ⊂ R and n = 1, . . . , N − 1,
suppose that property DS(m, p0, k + 1, I, n) holds for some k ≥ 0. Then, for any
u ∈ Znd,

(4.2) P
{

C
(n)
Lk+1

(u) is m-PT
}
≤

1

2
|C

(n)
Lk+1

(u)|2×L
−2P (n,k,p0)
k =

1

2
L
−2P (n,k,p0)/α+2Nd
k+1 .

Proof. Combine DS(m, p0, k+1, I, n) with a straightforward upper bound 1
2 |C

(n)
Lk+1

(u)|2

for the number of pairs of cubes C
(n)
Lk

(yj) ⊂ C
(n)
Lk+1

(u), j = 1, 2, centered at lattice

points. �

Lemma 4.3. Suppose m > 0 and a bounded interval I ⊂ R have been given. Let

C = C
(N)
Lk+1

(u) be an N -particle PI-cube. Then for any p0 > Ndα there exists η∗PT ∈

(0,+∞) and b > 0 such that if η ∈ (0, η∗PT), then

(4.3) P {C is m-PT } ≤
1

4
L
−2p0(1+b)k+1

k+1 .

Proof. By Definition 4.1, C with canonical decomposition C = C′ ×C′′ of the form

(3.7) is m–PT if and only if at least one of its canonical projections, C′ = C
(n′)
L (uJ )
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or C′′ = C
(n′′)
L (uJ c), is m-T. By Lemma 4.2, Eqn (4.2) holds for both n = n′ and

n = n′′, with the exponent in the RHS of Eqn (4.2) bounded as follows:

2P (N, k + 1, p0)

α
− 2Nd ≥

2p0(1 + b)k4N−(N−1)

α
− 2Nd > 2p0(1 + b)k+1,

with b > 0, provided that

(4.4) p0(1 + b)k > p0 >
Ndα

4 − α
; b <

4 − α

α
−
Nd

p0
.

The left-hand group of inequalities in Eqn (4.4) follows from the condition p0 > Ndα
while the right-hand group holds by inspection for b = 1/3 and α = 3/2 (again with
the help of p0 > Ndα). �

Lemma 4.4. Given L0 ≥ 1, m > 0, q > 0, p0 > Ndα and a bounded interval I ⊂ R,
assume that

• the bound (4.3) holds true,
• for all n = 1, . . . , N − 1 the bound (4.2) holds,
• the bound (2.7) with n = N (i.e., property W2(N)) is satisfied,
• L0 is sufficiently large.

Then, for any k ≥ 0 and any pair of separable, PI cubes C
(N)
Lk

(u) and C
(N)
Lk

(v),

(4.5) P
{
∃E ∈ I : C

(N)
Lk+1

(u),C
(N)
Lk+1

(v) are (E,m)-S
}
≤

1

2
L
−2p(1+b)k

k+1 + e−L
β/2
k+1 .

Proof. Set C(u) = C
(N)
Lk+1

(u) and C(v) = C
(N)
Lk+1

(v). Lemma 4.1 implies

(4.6)
P { ∃E ∈ I : C(u) and C(v) are (E,m)-S }
≤ P {C(u) or C(v) is -PT } + P {∃E ∈ I : C(u) and C(v) are not E-CNR }.

The assertion now follows from the assumptions of Lemma 4.4 and from the statement
of Lemma 4.3. �

Theorem 4.1. Given p∗ > Ndα, there exist m∗
PI > 0, η∗PI > 0 and a positive L∗

PI <
+∞ with the following property. Take L0 ≥ L∗

PI. Then, ∀ k ≥ 0, DS(m, p0, k+1, I,N)

holds for all separable pairs of N -particle PI-cubes C
(N)
Lk+1

(u), C
(N)
Lk+1

(v) with m = m∗
PI,

p0 = p∗ and the interval I of the form I0(η∗PI) = [E0, E0 + η∗PI].

Proof. The claim is an immediate corollary of Theorem 2.1 and Lemma 4.4. �

For future use, consider the following

Definition 4.2. Given an E-CNR N -particle cube C = CLk+1
(u), introduce the

following quantities:

• νPI(C;E) = the maximal number of pairwise separable (E,m)-S PI cubes
CLk

(x) ⊂ C, x ∈ ZNd;

• ν̃PI(C;E) = the minimal number of cubes of radius 4N(L+r1) needed to cover
all PI (E,m)-S cubes CLk

(x) ⊂ C, x ∈ ZNd;
• νFI(C;E) = the maximal number of pairwise separable FI (E,m)-S cubes

CLk
(x) ⊂ C, x ∈ ZNd;

• νS(C;E) = the minimal number of cubes of radius 4N(L+r1) needed to cover
all (E,m)-S cubes CLk

(x) ⊂ C, x ∈ ZNd.
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Clearly,

(4.7) νS(C;E) ≤ ν̃PI(C;E) + νFI(C;E).

It is worth noting that there might be several families of pairwise separable cubes
in C (resp., PI pairwise separable, or FI pairwise separable) which are (E,m)-S for
a given E. By νPI(C;E) and νPI(C;E) we mean the maximal cardinalities of such
collections of cubes. These maxima are well-defined since diamC <∞.

Lemma 4.5. Given 0 < η < min
[
η∗0 , η

∗
PI

]
, L0 ≥ 1, q > 0, p0 ≥ Ndα and a bounded

interval I ⊂ R, assume that

• the bound (4.3) holds true,
• for all n = 1, . . . , N − 1 the bound (4.2) holds,
• the bound (2.7) with n = N (i.e., property W2(N)) is satisfied,
• L0 is sufficiently large.

Then the following inequality takes place:

(4.8) P { ∃E ∈ I : νPI(C;E) ≥ 2 } ≤
1

2
L2Ndα

k

(
L
−8p0(1+b)k

k + e−L
β/2
k

)
.

Proof. If νPI ≥ 2, then there exist at least two separable singular cubes CLk
(x),

CLk
(y). The number of possible pairs (x,y) is bounded by 1

2L
2Nd
k+1 , while for a given

pair CLk
(x), CLk

(y) Lemma 4.4 applies. This leads to the assertion of Lemma 4.5. �

5. Case II: Pairs of fully interactive singular cubes

Recall, the definition of an FI-cube was related to r0 ∈ (0,+∞), the range of in-
teraction. Further, the notion of a separable cubes CL(u), CL(v) was related to the
constant r1, the diameter of support of the bump functions, and included the condition

dist (CL(u),CL(v)) > 2N(L+ r1)

(see Definition 2.1). Before we proceed further, let us state a geometric assertion (see
the proof in Appendix A):

Lemma 5.1. Let L > r0 be an integer. Let CL(u′) and CL(u′′) be two separable
N -particle FI-cubes, where u′ = (u′1, . . . , u

′
N), u′′ = (u′′1 , . . . , u

′′
N). Then

(5.1) ΠCL+r1(u
′) ∩ ΠCL+r1(u

′′) = ∅.

Lemma 5.1 is used in the proof of Lemma 5.2 which, in turn, is a part of the proof
of Lemma 5.4, instrumental in establishing Theorem 5.1.

Let an interval I ⊂ R and a numberm > 0 be given. Consider the following assertion
which is a particular case of DS(m, p0, k, I,N) (cf. Eqn 2.14):

FIS(k, p0, N, I): For any pair of separable N -particle FI-cubes C
(N)
Lk

(u) and C
(N)
Lk

(v)

(5.2) P
{
∃E ∈ I : C

(N)
Lk

(u) and C
(N)
Lk

(v) are (E,m)-S
}
≤ L

−2P (N,k,p0)
k .

Lemma 5.2. Let k ≥ 0 be given. Assume that property FIS(k, p0, N, I) holds true.

Let C = C
(N)
Lk+1

(u) be an N -particle cube. Then, for any ℓ ≥ 1,

(5.3) P {∃E ∈ I : νFI(C;E) ≥ 2ℓ } ≤ L
2ℓ(2+dα)
k · L

−2ℓP (N,k,p0)
k .
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The proof can be found in [7]; it is fairly straightforward and based on the indepen-
dence of the operators HC relative to separable FI-cubes.

In the proof of Lemma 5.4 we use the following simple geometric fact which follows
from Lemma 2.1.

Lemma 5.3. Let n ∈ [[1, N ]] and consider an n-particle cube C = CLk+1
(u). If, for a

given E ∈ R, νPI(C, E) < 2 then there exist a collection of cubes C2N(L+r1)(x
(i)), i =

1, . . . , J , where J ≤ κ(n) + 1 such that any PI cube CLk
(y) ⊂ CLk+1

(u) disjoint from

all C2N(Lk+r1)(x
(i)) is (E,m)-NS. Consequently, ν̃PI(C, E) ≤ κ(n) + 1. Respectively,

if all (E,m)-S PI cubes cannot be covered by a family of κ(n) + 1 cubes of radius
2N(Lk + r1), then νPI(C, E) ≥ 2.

Lemma 5.4 (Cf. Lemma 6.3 from [7]). Given k ≥ 0, let C = C
(N)
Lk+1

(u) be an N -

particle cube. Consider a bounded interval I ⊂ R and assume that the conditions of
Lemma 4.5 are fufilled and property FIS(k, p0, N, I) holds true. Then, for any ℓ ≥ 1,

P { ∃E ∈ I : νS(C;E) > 2ℓ+ κ(N) + 1 }

≤ L2Ndα
k · L

−2P (N,k,p0)
k + L

2ℓ(2+dα)
k · L

−2ℓP (N,k,p0)
k .(5.4)

Proof. Suppose that νS(C;E) > 2ℓ + κ(N) + 1. Then, owing to Lemma 5.3, either
νPI(C;E) ≥ 2 or νFI(C;E) ≥ 2ℓ. Therefore,

P {∃E ∈ I : νS(C;E) > 2ℓ+ κ(N) + 1 }

≤ P { ∃E ∈ I : νPI(C;E) ≥ 2 } + P { ∃E ∈ I : νFI(C;E) ≥ 2ℓ }

≤ L2Ndα
k · L

−2P (N,k,p0)
k + L

2ℓ(2+dα)
k · L

−2ℓP (N,k,p0)
k ,

by virtue of (4.8) and (5.3). �

An elementary calculation gives rise to the following

Corollary 5.1. Under assumptions of Lemma 5.4, with ℓ ≥ 2, p0(η) large enough and
for L0 large enough, we have, for any integer k ≥ 0,

(5.5) P { ∃E ∈ I : νS(C;E) ≥ 2ℓ+ 2 } ≤ L
−2P (N,k,p0)−1
k+1 .

Now, if two N -particle cubes C
(N)
Lk+1

(u′) and C
(N)
Lk+1

(u′′) are separable, then property

W2(N) (i.e., Eqn (2.7) with n = N) implies the following bound:

P
{
∀E ∈ I, either C

(N)
Lk+1

(u′) or C
(N)
Lk+1

(u′′) is E-CNR
}

≥ 1 − L2Ndα
k+1 e−Lβ′

k > 1 − e−Lβ′

k /2.

The main result of this section is the following

Theorem 5.1. For any p∗ > Ndα, there exist m∗
FI > 0, η∗FI > 0 and L∗

FI ∈ (0,+∞)
such that the following property holds true. Given L0 ≥ L∗

FI and k ≥ 0, assume that
property FIS(k, p0, N, I) holds with m = m∗

FI, p0 = p∗ and the interval I0(η∗FI) =
[E0, E0 + η∗FI]. Then property FIS(k + 1, p0, N, I) also holds, again with m = m∗

FI,
p0 = p∗ and the interval I = I0(η∗FI).

Proof. Let m > 0, u,v ∈ ZNd and assume that C
(N)
Lk+1

(u) and C
(N)
Lk+1

(v) are separable

FI-cubes. With an interval I0(η) of the form [E0, E0 + η], consider the following two
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events:

B =
{
∃E ∈ I0(η) : C

(N)
Lk+1

(u) and C
(N)
Lk+1

(v) are (E,m)-S
}
,

D =
{
∃E ∈ I : neither C

(N)
Lk+1

(u) nor C
(N)
Lk+1

(v) is E-CNR
}
.

The argument that follows assumes that parameters m, η, p and L0 are adjusted in
the way specified in the conditions of Theorem 5.1. Owing to property W2(N) (cf.

Eqn (2.7), with n = N), we have: P {D } < e−Lβ′

k /2. Moreover, P {B } ≤ P {D } +
P {B ∩ Dc }. So, it suffices to estimate the probability P {B ∩ Dc }. Within the event

B ∩ Dc, for any E ∈ I, either C
(N)
Lk+1

(u) or C
(N)
Lk+1

(v) must be E-CNR. Without loss

of generality, assume that for some E ∈ I, C
(N)
Lk+1

(u) is E-CNR and (E,m)-S. By

Lemma 3.2, if L0 (and, therefore, any Lk) is sufficiently large, for such value of E,

νS(C
(N)
Lk+1

(u);E) ≥ K + 1, with K as in Lemma 3.2. Now let K = κ(N), where κ(N)

is the constant from Lemma 2.1. We see that

B ∩ Dc ⊂
{
∃E ∈ I : νS(C

(N)
Lk+1

(u);E) ≥ κ(N) + 1
}

and, therefore, by Lemma 5.4 and Corollary 5.1,

�(5.6) P {B ∩ Dc } ≤ P
{
∃E ∈ I | νS(C

(N)
Lk+1

(u);E) ≥ κ(N) + 1
}
≤ L

−2P (N,k,p0)
k .

6. Mixed separable pairs of singular cubes

It remains to derive property DS(m, p0, k+1, I,N) in case (III), i.e., for mixed pairs
of N -particle cubes (where one is FI and the other PI).

A natural counterpart of Theorem 5.1 for mixed pairs of cubes is the following

Theorem 6.1. For any p∗ > Ndα, there exist m∗
MI > 0, η∗MI > 0 and L∗

MI ∈ (0,+∞)
guaranteing the following property. Given L0 ≥ L∗

FI and k ≥ 0, assume that property
DS(m, p0, k, I,N) holds, with m = m∗

MI, p0 = p∗ and the interval I of the form
I0(ηMI) = [E0, E0 + η∗MI],

• for any pair of separable PI-cubes C
(N)
Lk

(x), C
(N)
Lk

(y), x,y ∈ ZNd,

• for any pair of separable FI-cubes C
(N)
Lk

(x̃), C
(N)
Lk

(ỹ), x̃, ỹ ∈ ZNd.

Then property DS(m, p0, k + 1, I,N) holds for all mixed pairs (of separable cubes).

Proof. Assume that C
(N)
Lk+1

(u), C
(N)
Lk+1

(v) is a separable pair where cube C
(N)
Lk+1

(u) is

FI and C
(N)
Lk+1

(v) PI. Consider the following three events:

B =
{
∃ E ∈ I : C

(N)
Lk+1

(u) and C
(N)
Lk+1

(v) are (E,m)-S
}
,

T =
{
CLk+1

(v) is (I,m)-PT
}
,

D =
{
∃ E ∈ I : neither C

(N)
Lk+1

(u) nor C
(N)
Lk+1

(v) is E-CNR
}
.

By virtue of (4.3),

P {T } ≤
1

4
L
−2P (N,k,p0)
k+1 ,

and by Theorem 2.1,

P {D } ≤ L2Nd
k+1e

−L
β/2
k+1 ≤ e−

1
2L

β/2
k+1 ,
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provided that L0 is large enough. Further,

P {B } ≤ P { T } + P {B ∩ T c } ≤
1

4
L
−2P (N,k,p0)
k+1 + P {B ∩ T c }.

Thus, we have

P {B ∩ T c } ≤ P {D } + P {B ∩ T c ∩ Dc } ≤ e−
1
2L

β/2
k+1 + P {B ∩ T c ∩ Dc }.

Next, within the event B∩ T c∩Dc, either C
(N)
Lk+1

(u) or C
(N)
Lk+1

(v) is E-CNR. It must be

the FI-cube C
(N)
Lk+1

(u). Indeed, by Lemma 4.1, had cube C
(N)
Lk+1

(v) been both E-CNR

and (I,m)-NT, it would have been (E,m)-NS, which is not allowed within the event

B. Thus, the cube C
(N)
Lk+1

(u) must be E-CNR, but (E,m)-S. Hence,

B ∩ T c ∩ Dc ⊂
{
∃ E ∈ I : C

(N)
Lk+1

(u) is (E,m)-S and E-CNR
}
.

However, applying Lemma 3.2, we see that

{∃E ∈ I : C
(N)
Lk+1

(u) is (E,m)-S and E-CNR}

⊂ {∃E ∈ I : νS(C
(N)
Lk+1

(u);E) ≥ 2ℓ+ κ(N) + 1}.

Therefore,

P {B ∩ T c ∩ Dc } ≤ P
{
∃E ∈ I : νS(C

(N)
Lk+1

(u);E) ≥ 2ℓ+ κ(N) + 1
}

≤ 2L−1
k+1 L

−2P (N,k,p0)
k+1 .(6.1)

Finally, we get for sufficiently large L0:

P {B } ≤ P {B ∩ T } + P {D } + P {B ∩ T c ∩ Dc }

≤
1

2
L
−2P (N,k,p0)
k+1 + e−

1
2L

β/2
k+1 + 2L−1

k+1L
−2P (N,k,p0)
k+1 ≤ L

−2P (N,k,p0)
k+1 ,(6.2)

This completes the proof of Theorem 6.1. �

Therefore, Theorem 3.1 and the assertion (i) of Theorem 1.1 are also proven.

7. From MPMSA bounds to dynamical localization

In this section we establish assertion (ii) of Theorem 1.1. To this end we adapt a
well-known scheme used earlier in the single-particle context; cf. the original papers
[16,17] and the monograph [20]. Recall again that all cubes appearing in our arguments
are centered at lattice points u ∈ ZNd; this makes it possible to use some standard
combinatorial estimates.

7.1. Step 1. Probability of ‘bad’ samples. In thsi subsection we assume the prop-
erty DS(m, p0, k, I, n) proven for a given N ≥ 1 and a given ???bounded??? interval
I ⊂ R and all k ≥ 0. ??? Interval I for the time being can be general, but in due
course will take form I0(η) assumed in Theorem 1.1. ??? Parameter P (N, k, p0) grows
with k, therefore for k large enough, we can make the value of P (N, k, p0) arbitrarily

large. Hence, changing if necessary the scales by setting L̃k = Lk+k◦
with k◦ large

enough, we can use the bound DS(m, p0, k, I, n) for the new scales L̃k and with an
arbitrarily large p0 > 0.1 For notational brevity, we set below p = P (N, 0, p0) = p0.
Recall that the assertion (ii) of Theorem 1.1 (see Eqn (1.16)) is claimed for any s > 0.

1This is the main place where we benefit from making parameter P (n, k, p0) growing with k.
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To prove this fact, we first fix a value s > 0 for which we want to establish (1.16) and
then choose p obeying

(7.1) 2p > 3Ndα2 + αs,

changing the scales Lk if necessary. Next, for each j ≥ 1 consider the event

Sj = {ω : ∃E ∈ I ∃y, z ∈ CLj+1(0) such that
CLj−1(y),CLj−1(z) are separable and (m,E)-singular}.

Further, for k ≥ 1 denote

Ω
(bad)
k =

⋃

j≥k

Sj .

Lemma 7.1. ∃ a constant c(1) = c(1)(d,N, p) ∈ (0,+∞) such that ∀ k ≥ 1:

P
{

Ω
(bad)
k

}
≤ c(1)L

−(2p−Ndα2)
k .

Proof. The total number of pairs of cubes centered at lattice points, of radius Lj , inside
CLj+1(0) (including separable ones) is, obviously, bounded by |CLj+1(0)|2/2, so that
we can apply the bound (2.14) and write

P {Sj } ≤ c (2Lj+1 + 1)
2Nd

L−2p
j−1 ≤ c′ L−2p+2Ndα2

j−1

where c and c′ are constants depending on d, N and p. Therefore,

Ω
(bad)
k ≤ c′ L−2p+2Ndα2

k

∑

i≥0

(
Lk+i

Lk

)−2p+2Ndα2

.

By assumptions, 2p−Ndα > 0 and L0 ≥ 2, so that the assertion of Lemma 7.1 follows

from the inequality L−1
k Lk+i ≥ 2αk+i−αk

(where α = 3/2). �

7.2. Step 2. Centers of localization. Denote by Φl = Φl(ω) the normalized eigen-
functions of operator H(N)(ω), for ω ∈ Ω1, for which the corresponding eigenvalues
El = El(I, ω) ∈ I, l = 1, 2, . . ., with, say, E1 ≤ E2 ≤ . . .. For each l and ω ∈ Ω1 we
call a center of localization for function Φl any point zl = zl(ω) ∈ ZNd such that

‖ 1C1(zl) Φl‖ = max
y∈ZNd

‖ 1C1(y) Φl‖.

Since Φl ∈ L2(RNd), such a center always exists. Moreover, owing to the normalization
‖Φl‖ = 1, the number of centers of localization for a given l must be finite. We will
assume below that for each considered eigenfunction Φl, precisely one center
of localization zl has been chosen (in a unique, but otherwise arbitrary way).

Lemma 7.2 (Cf. Sect. 3.4 from [20]). Given m > 0, there exists k0 with the following
property. Let k ≥ k0 and suppose that for some l the center of localization zl lies in a
cube CLk

(x). Then the cube CLk+1
(x) is (m,El)-S.

7.3. Step 3. Annular regions. Fix k0 from the Step 2 and set Ω
(good)
k = Ω1 \Ω

(bad)
k .

Lemma 7.3. There exists j0 = j0(m,α, d) large enough such that for j ≥ j0, j ≥ k
and zl ∈ CLj (0)

‖(1 − 1CLj+2
(0))Φl‖ ≤ 1

4 .
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Proof. Let k0 be the value from Lemma 7.2. Fix j ≥ k0 and divide the complement
ZNd \ CLj+2(0) into annular regions

(7.2) Mi ≡ Mi(0) := ZNd
⋂(

CLi+1(0) \ CLi(0)
)
, i ≥ j + 2.

Thus, we have

‖(1 − 1CLj+2
(0) Φl‖

2 =
∑

i≥j+2

‖ 1Mi Φl‖
2 ≤

∑

i≥j+2

∑

w∈Mi

‖ 1CLi−1
(w) Φl‖

2.

By Lemma 2.1 (cf. (2.9)), any cube CLi−1(w) ⊂ Mi, i ≥ j + 2, is separable from
CLi−1(0), since |w| > 2(N+2)(Li−1 +r1). Furthermore, xi ∈ CLj (0) ⊂ CLi−2(0), and
by Lemma 7.2, the cube CLi−1(0) must be (m,El)-S. The cubes CLi−1(w),CLi−1(0)

are separable, so for any ω ∈ Ω
(good)
k , the cube CLi−1(w) is (m,El)-NS. Therefore,

‖ 1CLi−1
(w) Φl‖

2 ≤ e−2mLi.

Since the cardinality of annulus Mi grows polynomially in Li, the assertion follows. �

7.4. Step 4. A combinatorial bound.

Lemma 7.4 (Cf. Sect. 3.4 from [20]). There exist ζ ∈ (0,+∞) and c(2) ∈ (0,+∞)

such that ∀ ???k ≥ 1???, ω ∈ Ω
(good)
k and j ≥ k:

(7.3) card
{
l : zl ∈ CLj+1(0)

}
≤ c(2) Lαζd

j+1.

7.5. Step 5. The bound for ‘good’ samples of potential.

Lemma 7.5. Given L0 large enough and m > 0, ∃ an integer k1 = k1(m,L0) such

that ∀ k ≥ k1, ω ∈ Ω
(good)
k and x from the annular region Mk+1 (cf. Eqn (7.2)) the

following bound holds true:

(7.4) ‖ 1CLk
(x) ξ(H(ω)) 1CLk

(0) ‖ ≤ e−mLk/2‖ξ‖∞.

Here ξ is a (measurable) bounded function R → R.

Proof. It suffices to prove (7.4) in the particular case where ‖ξ‖∞ ≤ 1, which we
assume below. First, the operator norm ‖ 1CLk

(x) ξ(H(ω)) 1CLk
(0) ‖ in the LHS of

(7.4) is upper-bounded by

(7.5)

∑

El∈I

|ξ(El)| ‖ 1CLk
(x) Φl‖ ‖ 1CLk

(0) Φl‖

≤
∑

El∈I
zl∈CLk+1

‖ 1CLk
(x) Φl‖ ‖ 1CLk

(0) Φl‖

+
∑

j≥k+1

∑

El∈I
zl∈Mj

‖ 1CLk
(x) Φl‖ ‖ 1CLk

(0) Φl‖.

Observe that if point x lies in the annulus Mk+1 = ZNd
⋂ (

CLk+2
(0) \ CLk+1

(0)
)
, then

|x| > 2(N + 2)(Lk + r1), and by Lemma 2.1 (cf. (2.9)), cubes CLk
(x) and CLk

(0) are
separable. In turn, this implies that one of these cubes has to be (m,El)-non-singular,
so we can write

∑

El∈I
zl∈CLk+1

‖ 1CLk
(x) Φl‖ ‖ 1CLk

(u) Φl‖ ≤ c(2)Lαζd
k+1 e

−mLk ,
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taking into account the upper bound for the number of points zl obtained in Step 4.
If zl ∈ Mj with j ≥ k + 1, then by Lemma 7.2, CLj−1(zl) is (m,El)-S. Since

|zl| > 2(N + 2)(Lj−1 + r1), the cube CLj−1(0) must be (m,El)-NS. Consequently, we
have the upper-bounds for the norms:

‖ 1CLk
(0) Φl‖ ≤ ‖ 1CLj−1

(0) Φl‖ ≤ c(3)e−mLj−1

where c(3) ∈ (0,+∞) is a constant, c(3) = c(3)(d,N). Using again Lemma 7.4, we see
that for k ≥ k1,

∑

j≥k+1

∑

zl∈Mj

‖ 1CLk
(x) Φl‖ ‖ 1CLk

(0) Φl‖ ≤ c(3)
∑

j≥k+1

e−mLj−1Lαζd
j ≤

1

2
e−mLk/2.

Combined with (7.5), this estimate gives the assertion of Lemma 7.5. �

7.6. Step 6. The overall bound.

Lemma 7.6. ∃ a constant c(4) = c(4)(d,N, p) ∈ (0,+∞) with the following property.
Let k1 be as in Step 5. Then for k ≥ k1 and x ∈ Mk+1, we have:

E
[
‖ 1CLk

(x) ξ(H(ω)) 1CLk
(0) ‖

]
≤ c(4) ‖ξ‖∞L

−2p+2Ndα2

k .

Proof. For ω ∈ Ω
(bad)
k we can estimate the norm by ‖ξ‖∞ ≤ 1, while for ω ∈ Ω

(good)
k

we apply Lemma 7.5. Using Lemma 7.1, we see that the above expectation is bounded
by

(
P

{
Ω

(bad)
k

}
+ e−mLk/2P

{
Ω

(good)
k

})
≤ C(α, d, p)L−2p+2Ndα2

k (1 + o(1))

�

7.7. Step 7. Conclusion. Fix a compact K ⊂ RNd and find k ≥ k1 such that
K ⊂ CLk−1

(0). Then

E [‖Xs ξ(H(ω))1K ‖] ≤ cdL
s
k +

∑

j≥k

E
[
‖Xs 1Mj ξ(H(ω))1K ‖

]

≤ c(k) +
∑

j≥k

cdL
s
j+1

∑

w∈Mj

E
[
‖ 1CLk

(w) ξ(H(ω))1CLk
(0) ‖

]

≤ C



1 +
∑

j≥k

Lαs
j LNdα

j L−2p+2Ndα2

j



 <∞,

since 2p− 3Ndα2 − αs > 0 by assumption (7.1), and Lj = (L0)
αj

grow fast enough.

This completes the proof of dynamical localization. ??? Vitya: at what point
in Section 7 do we have to assume that I is of the form I0(η)???

Appendix. Geometric separability.

In physical terms, the condition of separability can be elucidated as follows: let cube

C
(n)
L (x) be J -separable from C

(n)
L (y) and consider two quantum n-particle systems, in

C
(n)
L (x) and C

(n)
L (y) (i.e., with Hamiltonians H

C
(n)
L (x)

and H
C

(n)
L (y)

). Then the first

system contains a ‘detached’ subsystem, formed by particles with labels from J , with

the following property. ∀ u = (u1, . . . , un) ∈ C
(n)
L (x) and v = (v1, . . . , vn) ∈ C

(n)
L (y),

the collection of random variables Vs from the random field V contributing to the
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external potential sum
∑

j∈J

V (xj ;ω) is disjoint from similarly defined collections, for

sums
∑

j 6∈J

V (xj ;ω) and
∑

1≤j≤n

V (x′j ;ω). This implies independence of sum
∑

j∈J

V (xj ;ω)

and the pair of sums
∑

j 6∈J

V (xj ;ω) and
∑

1≤j≤n

V (x′j ;ω) and provides enough ‘randomness’

to produce satisfactory estimates.

Proof of Corollary 2.1. Assume that the assertion is wrong and consider κ(n)+1 cubes
CL(yj) ⊂ A2j−1(x), 1 ≤ j ≤ κ(n) + 1, which are not separable from CL(x). Since

dist(CL(yj),CL(yj+1)) ≥ dist(Aj(x),Aj+1(x)) − 2(L+ r1) > 4n(L+ r1),

these κ(n) + 1 cubes cannot be enclosed in κ(n) cubes of radius 2n(L+ r1), in contra-
diction to the first assertion of Lemma 2.1. �

Proof of Lemma 5.1. If CL(u′) is FI, then there exists a permutation σ of order N
such that, for all j = 1, . . . , N−1, |u′j −u

′
j+1| ≤ r0. Otherwise, the set {u′j}1≤j≤N ⊂ Zd

could be decomposed into two or more non-interacting subsets. Therefore,

diam{u′j}1≤j≤n ≤ (N − 1)r0; similarly, diam{u′′j }1≤j≤n ≤ (N − 1)r0.

Further, suppose that for some i, j ∈ {1, . . . , n}, we have

Πi CL+r1(u
′) ∩ Πj CL+r1(u

′′) 6= ∅.

Then |u′i − u′′j | ≤ 2(L+ r1), and, therefore, for any k = 1, . . . , n

|u′k − u′′k| ≤ |u′k − u′i| + |u′i − u′′j | + |u′′j − u′′k|

≤ (N − 1)r0 + 2(L+ r1) + (N − 1)r0 ≤ 2N(L+ r1).

This is incompatible with the inequality dist(CL(u′),CL(u′′)) > 2nN(L+r1), since in
the latter case there must exist some k such that |u′k − u′′k| > 2(L+ r1). �
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