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Differences in masses inferred from dynamics, such as velocity dispersions or x rays, and those inferred

from lensing are a generic prediction of modified gravity theories. Viable models, however, must include

some nonlinear mechanism to restore general relativity (GR) in dense environments, which is necessary to

pass Solar System constraints on precisely these deviations. In this paper, we study the dynamics within

virialized structures in the context of two modified gravity models, fðRÞ gravity and Dvali-Gabadadze-

Porrati (DGP). The nonlinear mechanisms to restore GR, which fðRÞ and DGP implement in very

different ways, have a strong impact on the dynamics in bound objects; they leave distinctive signatures in

the dynamical mass-lensing mass relation as a function of mass and radius. We present measurements

from N-body simulations of fðRÞ and DGP, as well as semianalytical models that match the simulation

results to surprising accuracy in both cases. The semianalytical models are useful for making the

connection to observations. Our results confirm that the environment and scale dependence of the

modified gravity effects have to be taken into account when confronting gravity theories with observations

of dynamics in galaxies and clusters.
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I. INTRODUCTION

Gravity, as described by general relativity (GR), is re-

markably weakly constrained in the present day on scales

larger than a few astronomical units. Though measure-

ments from binary pulsar timing to the cosmic microwave

background (CMB) and big bang nucleosynthesis are all

consistent with GR, there is still room for order unity

deviations in the cosmos today, on scales of kpc and larger.

Thus, testing gravity on cosmological scales is an interest-

ing frontier and the focus of much current research [1–11].

Any gravity theory that attempts to be complete has to

satisfy stringent Solar System constraints and has to locally

match the predictions of GR to within one part in 105 there.
Only a few consistent models that modify gravity appreci-

ably on large scales, but restore GR locally, are known.

Two of them will be the subject of this study: fðRÞ gravity
[12–15] and the DGP model [16]. Within certain bounds

placed by the CMB and expansion history measurements in

addition to Solar System tests, both theories can be made to

satisfy all current constraints on gravity (including the

observation of an accelerating expansion). In both models

there exists a nonlinear mechanism to restore GR in high-

density environments: the chameleon effect for fðRÞ, and
the Vainshtein mechanism for DGP. Furthermore, all cur-

rently known consistent modifications of gravity on large

scales include some variant of either of these mechanisms.

In order to be able to constrain these models with cosmo-

logical data, it is crucial to correctly include the nonlinear

mechanisms. Recently, N-body simulations of fðRÞ [17]
and DGP [18–20] have been done, which self-consistently

solve the nonlinear field equations together with the growth

of structure (see also [21] for the first study of the DGP

case, using a different approach). In principle, it has be-

come possible with these simulations to unlock the wealth

of observations available on nonlinear scales to probe

gravity, albeit in a necessarily model-dependent way.

It is well known that the additional degrees of freedom

present in modified gravity theories generically affect the

dynamical potential, which governs the propagation of

nonrelativistic bodies, differently than the lensing poten-

tial, which governs the propagation of massless particles

such as light (e.g., [22]). Thus, comparing dynamical with

lensing mass estimates is an interesting and quite generic

probe of modifications to gravity. In this paper, we study

the signatures of fðRÞ and DGP in dynamical observables

such as velocity dispersions, compared to lensing, which

measures essentially the ‘‘true’’ mass (i.e. the integral over

the rest-frame density) in both models.

Constraints on the difference between dynamical and

lensing potential are often phrased in terms of the post-

Newtonian parameter �PPN [Eq. (5) below], in analogy to

Solar System tests. In general, however, the departures

from GR cannot be encapsulated by a single parameter

but are functions of scale, time, and the local environment.

In particular, this is the case for both fðRÞ and DGP. Hence,
we introduce a more generally applicable quantity g

[Eq. (3)], which is defined directly via the modified forces,

and is well suited for predictions in the context of fðRÞ and
DGP as well as for constraints from observations.

Velocities of extragalactic objects are measured through

their redshifts z, which receive a contribution j�zj ¼ vk=c
from the line-of-sight velocity vk. In the cosmological

context, there are two regimes where the dynamics of

matter can be understood fairly easily: on very large scales,

linear perturbation theory in the matter density is valid,

simplifying the theoretical predictions. Large-scale veloc-

ity fields can be measured through the redshift distortion of
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the power spectrum, which thus offers a probe of the

dynamical potential [23,24]. On small scales, most of the

observable matter lies in gravitationally bound dark matter

halos. In this regime, for relaxed systems, the velocity

distribution of collisionless objects such as dark matter,

galaxies, or stars is related to the dynamical potential by

the virial theorem. For collisional particles such as diffuse

gas, this relation is given by hydrostatic equilibrium. The

virial or thermal velocities can be observed as velocity

dispersion of stars in galaxies, galaxies in clusters, or as

x-ray or Sunyaev-Zeldovich signal from diffuse gas in

clusters. Also, the redshift-space matter power spectrum

on small scales is a probe of virial velocities [23,25].

This paper is concerned with the latter regime, and our

goal is to study the dynamics of matter in halos. Since these

are highly nonlinear systems, rigorous results can be ob-

tained only via N-body simulations. We therefore present

measurements from the modified gravity simulations of

fðRÞ and DGP [17,18,20]. However, for many practical

purposes including comparison with observations, it is

necessary to go beyond the simulation results that have

limited resolution and cover only a few points in the

parameter space of the models. Thus, a sufficiently accu-

rate semianalytic model of the dynamics in modified grav-

ity is desirable to bridge the gap with observations.

Fortunately, we can make some justified assumptions

that simplify the problem greatly: first, since we are con-

cerned with subhorizon scales, we employ the quasistatic

approximation, neglecting time derivatives and assuming

the halos are in steady state. Further, we assume spheri-

cally symmetric halos. While certainly not realistic, devia-

tions from spherical symmetry are not expected to affect

the results qualitatively. Throughout, we will assume a

Navarro-Frenk-White (NFW) [26] profile, although all

derivations can easily be generalized to different profiles.

The problem is then reduced to finding the solution of the

field equations for a spherically symmetric mass and cal-

culating the modified gravitational force. The accuracy of

this simplified model can then be benchmarked with the

simulation results.

The paper is structured as follows. In Sec. II, we intro-

duce our main observable, the modified gravitational force

strength, and present the theoretical expectations and semi-

analytic models for fðRÞ and DGP. Section III contains the
simulation results and comparisons with the theoretical

models. We then discuss the application to observations

in Sec. IV. We conclude in Sec. V.

II. THEORETICAL EXPECTATIONS

In this section, we derive theoretical expectations for the

modified gravitational forces and virial quantities mea-

sured in the simulations in Sec. III and connected to

observations in Sec. IV. Gravitational forces are given by

the gradient of the dynamical potential �, defined via the

perturbed Friedmann-Robertson-Walker metric in

Newtonian gauge:

ds2 ¼ �ð1þ 2�Þdt2 þ a2ðtÞð1þ 2�Þdx2: (1)

As a reference point, we consider GR in the Newtonian

limit, where the dynamical potential satisfies the Poisson

equation

r2� ¼ r2�N ¼ 4�G��; (2)

where �� ¼ �= �� is the total matter overdensity. Assuming

spherical symmetry, which we will throughout, we can

define a parameter g:

g ðrÞ � d�=dr

d�N=dr
; (3)

which quantifies the strength of the gravitational force in

modified gravity relative to that which would be measured

in GR given the same density field. g ¼ 1 corresponds to

unmodified forces. Here we have suppressed the depen-

dence of g on the scale factor a; unless otherwise stated, we
will always assume a ¼ 1.
In the models we consider, the lensing potential satis-

fies1

�� � 1
2
ð���Þ ¼ �N : (4)

Hence, g can be probed, for example, by comparing dy-

namical to lensing mass estimates of a given object. Such

comparisons in the Solar System [27] or for distant gal-

axies [28] are often phrased in terms of the post-Newtonian

parameter �PPN:

�PPN ¼ ��

�
¼ 2

��
�

� 1¼BD 2g�1 � 1: (5)

The last equality relating �PPN to our g parameter [where

we have used Eq. (4)] is valid only when the force mod-

ifications are scale independent, such as in Brans-Dicke

(BD) type scalar-tensor theories. Note that the parame-

trized post-Newtonian (PPN) parameter is formally defined

via the potentials, while our g parameter is derived in terms

of forces. Only forces, or more generally derivatives of the

potentials�,�� are observable, and a specific solution of

the potentials (e.g., the Schwarzschild metric) is used to

infer �PPN. However, in the models we consider g is

generally scale dependent; i.e. the scalar degrees of free-

dom do not follow the same scaling with distance as the

GR potentials. Hence, it is advantageous to define a pa-

rameter based directly on the forces, rather than �PPN,

which is not immediately linked to observables.

In many practical cases, one is interested in a weighted

average of g over an object or region of space,

1In fðRÞ, there are corrections of order �fR, and j �fRj � jfR0j �
10�4 for the models we consider; this is negligible compared to
the Oð0:1Þ effects we will discuss.
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�g w ¼
R
r2wðrÞgðrÞdr
R
r2wðrÞdr ; (6)

where w is a weighting function depending on the precise

observable considered (we will turn to this in Sec. IV). The

key point is that given a prediction for gðrÞwe can estimate

any such weighted average (as long as spherical symmetry

is a sufficiently good approximation). In the next section,

we will introduce one such averaged force modification

that is relevant for comparison with simulations. We will

then review the Newtonian potential and scaling relations

for a dark matter halo with a NFW profile, before studying

the same case for fðRÞ and DGP gravity.

A. Virial theorem and velocity dispersion

For the comparison with our dark matter-only simula-

tions, it is useful to consider a collisionless system in virial

equilibrium. In that case, the virial theorem states that

W ¼ �2T; where (7)

W � �
Z

d3x�ðxÞx � r�ðxÞ; (8)

T � 1

2

Z

d3x�ðxÞ�2
v;3DðxÞ; (9)

denote the trace of the potential energy tensor and potential

energy, respectively. Here �2
v;3D ¼ 3�2

v;1D is the three-

dimensional velocity dispersion (see Eq. (57) for our prac-

tical definition in terms of dark matter particles). Since the

virial theorem is derived from the collisionless Boltzmann

equation, and is thus a consequence of energy-momentum

conservation, it is unchanged in any metric theory of

gravity, and hence also in the models we consider. The

modification enters through the modified relation between

the potential � and the matter distribution.

Note that in the cosmological context, we are not dealing

with strictly isolated systems, so that Eq. (7) does not hold

precisely. Nevertheless, the validity of W ¼ �T for simu-

lated dark matter halos has been shown to hold to high

accuracy [29–31]. Here, the constant � depends on the

mass and radius definition chosen for the halos.

In the spherically symmetric case, we can use the defi-

nition of g [Eq. (3)] to relate the potential energy tensor

and kinetic energy in modified gravity to the Newtonian

values WN , TN:

Wmod:gr

WN

¼ Tmod:gr

TN

¼ �gvir; (10)

where �gvir is given by Eq. (6) with a weighting function

wvirðrÞ ¼ �ðrÞr d�N

dr
: (11)

The gradient of the Newtonian potential appearing here is

uniquely determined by the density �ðrÞ, assuming that

external tidal fields are negligible.

B. Newtonian potential of a halo

Let us consider the GR case first. We can integrate

Eq. (2) to obtain

d�N

dr
¼ G�Mð<rÞ

r2
; (12)

�Mð<rÞ � 4�
Z r

0
dr0r02��ðr0Þ: (13)

Note that �M is defined in terms of the enclosed over-

density ��. Imposing the condition �Nðr ! 1Þ ¼ 0, we
can integrate again and obtain

�NðrÞ ¼ �
Z 1

r
dr0

G�Mð<r0Þ
r02

: (14)

Let us now consider an NFW halo with mass M�, defined

as the mass contained within a radius R� so that the

average density within R� is ��� (note that � here is

arbitrary and does not have to correspond to a certain

‘‘virial’’ overdensity). The NFW profile has been shown

to be a good match even to the halos in modified gravity

simulations [20,32]. We define the corresponding concen-

tration as c� ¼ R�=rs. We will consider an untruncated

profile here; while this overestimates the exterior mass

somewhat, it is closer to the profiles measured in simula-

tions than the other simple choice, a truncated profile.

Then, the density profile is given by

�ðrÞ ¼ 4�sfNFWðr=rsÞ; (15)

fNFWðyÞ ¼
1

yð1þ yÞ2 ; (16)

where �s ¼ �ðrsÞ is chosen so that the mass within R� is

M�, and we have

�Mð<rÞ ¼ M�

Fðc�r=R�Þ
Fðc�Þ

�

1� Fðc�Þðr=R�Þ3
Fðc�r=R�Þ�

�

; (17)

FðyÞ ¼ � y

1þ y
þ lnð1þ yÞ: (18)

The correction in square brackets in Eq. (17) is usually

neglected since it is smaller than ��1, and we will do so

here as well in order to simplify the analytical expressions.

From this, we get

d�N

dr
¼ ��

R�

R2
�

r2
Fðc�r=R�Þ

Fðc�Þ
; (19)

where the potential scales with �� defined by

�� � GM�

R�

: (20)
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We can integrate to obtain the potential for an isolated

NFW halo:

�NðrÞ ¼ ���E

�
r

R�

; c�

�

; (21)

Eðx; cÞ � ð1þ cÞ lnð1þ cxÞ
ð1þ cÞx lnð1þ cÞ � cx

: (22)

Eð0; cÞ � 5–12 (for c� 4–30) gives the central depth of

the potential well for an isolated NFW halo with concen-

tration c in units of��. Note that in reality, the depth of the

potential well will depend on the large-scale environment,

so that Eq. (21) will only give a rough scaling.�� in turn is

given by

�� ¼ ðGM�H0Þ2=3
�
1

2
�m�

�
1=3

(23)

¼
�

M�

6:26� 1022M�=h

�
2=3

�
1

2
�m�

�
1=3

(24)

¼ 1:79� 10�5

�
M�

1015M�=h

�
2=3

; (25)

where for the last equality we have assumed �m ¼ 0:25

and � ¼ 200. Note the scaling of �� with M2=3
� , because

M� and R� are linked through the fixed overdensity �.
Throughout, unless otherwise stated, we use the concen-

tration relation of [33]:

cðM; zÞ ¼ 9

1þ z

�
M

M�ðzÞ

��0:13
: (26)

Here, M� 	 3:2� 1012M�=h for our fiducial �CDM cos-

mology. Recently, more accurate expressions for the con-

centration have been found [34,35]. However, our results

are not very sensitive to the concentration; hence we deem

Eq. (26) sufficient. At the very highest masses M� *

1015M�=h; however, Eq. (26) underpredicts the concentra-
tion significantly (e.g., [35,36]). As a simple remedy, we

take c ¼ maxf4; cðMÞg in place of cðMÞ from Eq. (26).

Finally, the weighted gðrÞ quantifying the modification

to the potential and kinetic energy [Eq. (10)] can be written

as

�g vir ¼
R
1
0 dxxFðc�xÞfNFWðc�xÞgðxR�Þ
R
1
0 dxxFðc�xÞfNFWðc�xÞ

; (27)

where x ¼ r=R�.

C. fðRÞ
fðRÞ gravity (see [15] for a review) is a modified action

theory where the Einstein-Hilbert Lagrangian R=16�G is

replaced with ½Rþ fðRÞ
=16�G. Throughout this section

R denotes the Ricci scalar. fðRÞ models correspond to

scalar-tensor theories, where the scalar degree of freedom

is given by fR � df=dR and mediates the relation between

density and space-time curvature. In order for the theory to

be stable under perturbations, it is necessary that fR < 0
[37].

In the smooth background, the scalar field assumes a

value of �fR � fRð �RÞ, where �R / H2 is the scalar curvature

of the background. In this paper, we only consider models

with j �fRj � 10�4 and will thus drop higher order terms in

the fR field, which simplifies the expressions. In the quasi-

static regime, the fR field and the dynamical potential are

then determined from the density field by the following

coupled equations:

r2�fR ¼ 1
3
½�RðfRÞ � 8�G��
; (28)

r2� ¼ 16�G

3
��� 1

6
�RðfRÞ: (29)

Here, � stands for perturbations from the background

value: �fR � fR � �fR and �R � R� �R. R and �R are

nonlinear functions of the field fR; hence Eqs. (28) and

(29) are difficult to solve in general. However, there are

two limiting cases that can be solved easily.

First, consider the case where �fR is much larger than

typical potential wells in the universe. In that case, �fR
sourced by the right-hand side (rhs) of Eq. (28) is always

much less than �fR, and we can linearize the �R term:

�R 	 1

fRRð �RÞ
�fR; (30)

where fRR ¼ d2f=dR2. Equation (28) then becomes an

equation for a massive scalar field with m�2
fR

� �2
C ¼

3fRRð �RÞ. We call the inverse mass �C of the field in the

background the Compton wavelength. In this limit, �R �
�R on scales smaller than �C. Equation (29) then tells us that

� ¼ 4=3�N; i.e. gravitational forces are increased by 4=3
within the range of the fR field given by �C.

In the opposite limit, both terms on the rhs of Eq. (28)

are much larger than the left-hand side (lhs)� �fR=r
2 on the

scales of interest. Since the field perturbation is limited in

magnitude to be less than j �fRj, �fR has to adjust itself so

that the two terms on the rhs cancel to a high degree; in

other words,

�RðfRÞ 	 8�G��: (31)

Hence, the GR expression is restored, and Eq. (29) yields

� ¼ �N accordingly. This is called the chameleon regime

[38].

In order to determine the transition between these two

regimes, we consider the solution for a spherically sym-

metric mass. Formally, we can write the solution for �fR as

�fRðrÞ ¼
2

3

G�Meffð<rÞ
r

; (32)

�MeffðrÞ ¼ 4�
Z r

0
dr0r02��effðr0Þ; (33)
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��effðrÞ ¼ ��ðrÞ � �RðrÞ
8�G

: (34)

With these definitions, the modified dynamical potential

satisfies

r2� ¼ 4�Gð��þ 1
3
��effÞ: (35)

Equations (33) and (34) state that �Meff � �M. If the

perturbation �fR is small for all r (which in general is

only true far away from the body), we can neglect the �R
term in Eq. (34). Then, �Meff ¼ �M and we have

j�fRðrÞj ¼ 2=3j�Nj. However, the maximal value �fR
can achieve is j �fRj, in which case the fR field becomes 0.

Thus, we arrive at the following condition:

jfR0j � 2
3
�N : (36)

If the value of �N for the body is larger than this, the field

must enter the chameleon regime. Then, ��eff is nonzero

only outside of the radius where Eq. (36) is met. �Meff is

thus given by the mass outside of this radius, which can be

thought of as forming a thin shell. For this reason, Eq. (36)

is also called the thin-shell criterion. Since cosmological

potentials range from 10�6 to 10�5, we expect that the

chameleon mechanism will operate for background field

values & 10�5.

This general picture holds for any viable functional form

of fðRÞ. However, in order to evaluate the effect on the

dynamics quantitatively and to compare with the N-body

simulations, we have to adopt a specific model. The func-

tional form used in the simulations [17,32,39] is the one of

[37] with n ¼ 1, i.e.

fðRÞ ¼ �2�
R=Rc

R=Rc þ 1
; (37)

parameterized by the two constants � and Rc. If the

present-day background curvature �R0 is much greater

than Rc, which will be the case for the fðRÞ models

considered here, we can expand Eq. (37) to first order in

Rc=R and define a new parameter fR0 ¼ fð �R0Þ so that

fðRÞ ¼ �2�� fR0
�R2
0

R
: (38)

The first term supplies an effective cosmological constant

yielding accelerated expansion of the background. The

second term, controlled by fR0 � 1, determines the depar-

tures from GR and yields corrections to the background

expansion of order fR0. Since wewill consider models with

jfR0j � 10�4, the background expansion is essentially in-

distinguishable from �CDM. Taking the derivative of

Eq. (38), we obtain the relation between the scalar field

and the local curvature at the present day:

fR ¼ fR0
�R2
0

R2
: (39)

Furthermore, the Compton wavelength �C / ffiffiffiffiffiffiffiffi
fRR

p /
R�3=2.

Simulations were performed for a range of background

field values jfR0j ¼ 10�6, 10�5, 10�4. From our discussion

above, we expect that the chameleon mechanism will

operate in the intermediate and small field cases, while it

will be essentially absent for the large field (10�4). In

addition to the fðRÞ simulations, ordinary �CDM simula-

tions were performed using the same expansion history and

initial conditions. The cosmological parameters used in the

simulations are summarized in Table I.

Given a density field such as that for an isolated NFW

profile, one can solve Eq. (28) numerically. We have done

so for the spherically symmetric case using a one-

dimensional relaxation algorithm (in fact, we solve for u
defined by fR ¼ expðuÞ to avoid overshooting to fR > 0
[17]). While only an approximation of the physical reality,

the spherically symmetric case allows for a much higher

resolution (at much smaller computing time) than achiev-

able in the full 3D cosmological simulations. The boundary

conditions are given by dfR=dr ¼ 0 at r ¼ 0, and �fR ¼ 0
at the outer edge of the grid, chosen here to be rmax ¼
50 Mpc=h. We use 4096 equally spaced grid points in r.
Once �fR is known, Eqs. (33)–(35) can be evaluated using

�Rð�fRÞ, and the modified forces are given by

g fðRÞðrÞ ¼ 1þ 1

3

Meffð<rÞ
Mð<rÞ : (40)

Figure 1 shows the ‘‘effective density’’ ��eff , which

sources the perturbation �fR to the field, for a halo of

mass 2� 1014M�=h and different values of fR0. For large
values of jfR0j * 2� 10�5, the thin-shell condition is

never met, so that ��eff ¼ �� everywhere (except at

very large r where the field decays due to its finite �C).

For smaller field values, we can see that a ‘‘thin shell’’

develops. For jfR0j ¼ 10�5 it is quite broad, while it

narrows considerably for a small field of jfR0j ¼ 10�6.

TABLE I. Parameters of the simulated fðRÞ and DGP cosmol-

ogies. For each model, GR simulations with identical expansion

history and initial conditions were also performed.

fðRÞ sDGP nDGP-1 nDGP-2

�m 0.24 0.258 0.259 0.259

�� (eff.) 0.76 0 0.741 0.741

lgjfR0j �4, �5, �6 � � � � � � � � �
rc [Mpc] � � � 6118 500 3000

�ða ¼ 1Þ � � � �1:15 1.21 2.25

H0 [km=s=Mpc] 73.0 66.0 71.6 71.6

100�bh
2 2.23 2.37 2.26 2.26

ns 0.958 0.998 0.959 0.959

109Asð0:05 Mpc�1Þ 2.24 2.02 2.11 2.11

�8ð�CDMÞa 0.796 0.657 0.789 0.789

aLinear power spectrum normalization today of a �CDM model
with the same primordial normalization.
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Note that the transition to �eff ¼ 0 within the shell is very

sharp, owing to the much smaller Compton wavelength

within the body (recall �C / R�3=2).

Figure 2 shows gfðRÞðrÞ for jfR0j ¼ 10�5 and different

halo masses. The 1013M�=h halo is unscreeened, showing

the 4=3 force enhancement throughout. The 2�
1014M�=h halo is partially screened, while the 1015M�=h
halo is screened to a large extent within R300. For the latter

two cases, we also indicate the screening radius rscr where,
going from the outside in, the thin-shell condition Eq. (36)

is first met. This radius serves as an indication of whether a

given mass is screened, and roughly to what extent. As

Eq. (36) shows, the screening radius depends on the depth

of the potential well, which is influenced by the large-scale

environment. To investigate this effect, we have added an

external large-scale density field to the NFW profile,

roughly matched to the halo profiles in our simulations

[32] at large radii:

��hþextðrÞ
��

¼ max

�
��NFW

��
; 30

�
r

R�

��1:46
�

; (41)

where ��NFW is the halo overdensity given by the NFW

profile, and the external density is smoothly cut off at

�40 Mpc=h. ��hþext is shown as a dash-dotted line in

Fig. 1. The resulting gfðRÞ including the external density

field is shown in Fig. 2 for the intermediate mass halo.

Clearly, the field is screened at somewhat larger radii in

this case, and gfðRÞ is smaller than that predicted for the

NFW profile alone by about 0.04 in the transition region.

Since halos can reside in a variety of environments, we

expect significant scatter in the strength of the modified

forces within halos in the fðRÞ case, halos in overdense

regions being screened more strongly than those in average

or underdense regions. Further, we expect that the environ-

ment dependence will be more significant for lower mass

halos than for massive halos ( * 1014M�=h), since the

former can be affected by a massive halo nearby, while

the latter usually dominate their environment. We also

investigated the effect of varying the halo concentration

by �20%; the impact on gfðRÞ is small in comparison with

the effects of the large-scale environment, however.

Finally, using the results for gfðRÞðrÞ we can evaluate

Eq. (27). Figure 3 shows gvir;fðRÞ as a function of mass for

different values of the background field fR0. The thick lines
and points show the numerical results from the relaxation

code. For the strongest field, only the most massive halos

(more massive than found in our limited volume simula-

tions) are chameleon screened. For the weakest field, all

halos above M� 1013M�=h are expected to be screened,

while for the intermediate field the transition scale is

FIG. 2 (color online). gfðRÞ as a function of the scaled radius

r=R300 for jfR0j ¼ 10�5 and different halo masses, from the

numerical spherically symmetric solution. The low-mass halo is

unscreened, showing the 4=3 force enhancement throughout,

while higher mass halos are partially screened. The arrows for

the two more massive halos indicate at which r the condition

Eq. (36) is first met. For the 2� 1014M�=h halo, we also show

gfðRÞ including an external density field [dash-dotted line; see

Fig. 1 and Eq. (41)].

FIG. 1 (color online). ��eff [Eq. (34)] divided by the mean

matter density ��, determined from the numerical solution of the

fðRÞ field equation for an NFW halo with M300 ¼ 2�
1014M�=h for different values of fR0. Also shown is the matter

density ��= �� of the halo itself (dotted line almost matching the

10�4 field curve). The dash-dotted line shows a density profile,

which matches that measured in simulations, including an addi-

tional external overdensity [Eq. (41)].

FABIAN SCHMIDT PHYSICAL REVIEW D 81, 103002 (2010)

103002-6



around 1014:5M�=h, relevant for galaxy clusters. We will

compare the predictions for both gðrÞ and �gvir with simu-

lation results in Sec. III.

As a simple analytic model for the numerical results, we

make the assumption that all mass of the halo outside of

rscr contributes to �Meff . This results in the following

simple prescription:

g fðRÞðrÞ 	 1þ 1

3

Mð<rÞ �Mð<rscrÞ
Mð<rÞ

¼ 1þ 1

3

�

1� Fðc�rscr=R�Þ
Fðc�r=R�Þ

�

: (42)

We then form the same average via Eq. (27). As shown in

Fig. 3 (thin black lines), this approximation predicts the

onset of the chameleon screening quite well, though the

predicted transition between unscreened and screened re-

gimes is somewhat too sharp. Nevertheless, this simple

model can be useful in interpolating the numerical results

for different values of fR0.

D. DGP

In the DGP braneworld scenario [16], matter and radia-

tion live on a four-dimensional brane in five-dimensional

Minkowski space. The action is constructed so that on

scales larger than the crossover scale rc, gravity is five

dimensional, while it becomes four dimensional on scales

smaller than rc. This model admits a homogeneous cos-

mological solution on the brane, which obeys a modifed

Friedmann equation [40]:

H2 � H

rc
¼ 8�G½ ��þ �DE
: (43)

The sign on the lhs is determined by the choice of embed-

ding of the brane. The negative sign is called the self-

accelerating branch, since it allows for accelerated expan-

sion even in the absence of a cosmological constant. The

positive sign is called the normal branch, which does not

exhibit self-acceleration. Here, we consider models of both

branches (see [18,20,41]): a self-accelerating model with-

out a � term (�DE ¼ 0), sDGP, where rc � 6000 Mpc is

adjusted to best match CMB and expansion history con-

straints [42] (note that this model is in �4� 5� conflict

with current data); and normal-branch models with a dark

energy component �DE adjusted so that the expansion

history is exactly �CDM [20]. In that case, rc is a free

parameter, and we chose values of 500 Mpc (nDGP-1) and

3000 Mpc (nDGP-2). The remaining cosmological pa-

rameters are summarized in Table I. For both sDGP and

nDGP models, we have also performed ordinary GR simu-

lations employing the same expansion history and initial

conditions as for the DGP simulations.

On subhorizon scales, and scales smaller than the cross-

over scale rc, DGP braneworld models can be accurately

described as scalar-tensor theory [43], where the brane-

bending mode ’ mediates an additional attractive (normal

branch) or repulsive (self-accelerating branch) force.

Gravitational forces in DGP are governed by

r� ¼ r�N þ 1
2
r’: (44)

The’ field is sourced by matter overdensities similar to the

usual GR potentials, but has quadratic self-interactions that

suppress the field once density contrasts become nonlinear.

The full equation for the ’ field is (assuming a ¼ 1; see
e.g. [44])

r2’þ r2c
3�

½ðr2’Þ2 � ðrirj’Þðrirj’Þ
 ¼ 8�G

3�
��:

(45)

Here � is determined by the expansion rate HðaÞ via

�ðaÞ ¼ 1� 2HðaÞrc
�

1þ
_HðaÞ

3H2ðaÞ

�

; (46)

where the positive (negative) sign is valid for the normal

(self-accelerating) branch. The present-day values for �
are given in Table I.

While analytical solutions to Eq. (45) do not exist in the

general case, the case of a spherically symmetric mass is

solvable in terms of closed expressions [44,45]. In particu-

FIG. 3 (color online). Averaged modified gravitational force
�gvir;fðRÞ for NFW halos as a function of halo mass for different

values of jfR0j. The points and thick lines show the numerical

results from the 1D relaxation code. The thin black lines show

the predictions of a simplified model Eq. (42). The behavior with

mass is similar in the different models, with the transition mass

between unscreened and screened regimes shifting as expected

by simple estimates.
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lar, one obtains the following equation for the gradient of’
[41]:

d’

dr
¼ G�Mð<rÞ

r2
4

3�
g

�
r

r�ðrÞ

�

; (47)

gð	Þ ¼ 	3ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 	�3
q

� 1Þ: (48)

r�ðrÞ in Eq. (47) is the r-dependent Vainshtein radius

defined as

r�ðrÞ ¼
�
16G�Mð<rÞr2c

9�2

�
1=3

: (49)

Note that r=r� is a function of the average overdensity

��ð<rÞ within r. Specifically, scaling to a halo with mass

M� and radius R� determined by a fixed overdensity� and

neglecting the small difference between M and �M, we

have

r

r�ðrÞ ¼ ð"�Þ�1=3x

�
Mð<xÞ
M�

��1=3
; (50)

where x ¼ r=R� and the quantity " is determined by the

background cosmology:

" ¼ 8

9�2
ðH0rcÞ2�ma

�3: (51)

At a ¼ 1, " ¼ 0:32 for sDGP, and 0:002=0:023 for

nDGP-1=nDGP-2, respectively. Using Eq. (3), (44), and

(47), we then have

g DGPðrÞ ¼ 1þ 2

3�
g

�
r

r�ðrÞ

�

: (52)

On large scales where ��ð<rÞ � ��, r is much larger than

r� so that gð	Þ ! 1=2 and d’=dr becomes simply propor-

tional to d�N=dr. In this limit, gDGP ¼ gDGP;lin ¼
1þ 1=ð3�Þ. This is the same expression one would obtain

by simply neglecting the nonlinear terms in Eq. (45). On

small scales where r � r�, modified forces are suppressed

by ð" ��Þ�1=2, where �� ¼ ��ð<rÞ= �� is the average over-

density within r.
Note that the specific tensorial structure of the nonline-

arities in Eq. (45) is crucial to recover the linearized

expression gDGP;lin. It is possible to simplify Eq. (45) by

neglecting the tensorial structure, resulting in a Poisson

equation for ’ with a source term given by a nonlinear

function of �� [21]. However, this simplification qualita-

tively changes the large-distance behavior of the

Vainshtein mechanism [21,41]. Thus, it will turn out to

be crucial that the simulations solve the full Eq. (45) for

our comparison with the theoretical predictions from

Eqs. (47) and (52).

Note that in the Vainshtein limit,

’ðr � r�Þ 	 C
G�Mð<rÞ

r�
/ �NðrÞ

r�
r
; (53)

whereC is a constant of order unity [41]. Hence, the’ field

itself is suppressed less than the modified forces by a factor

of ðr=r�Þ1=2. However, only the forces are observable. This
shows that in theories with nonlinear interactions such as

DGP, quantifying departures from GR in terms of forces

are more appropriate than the parameter �PPN defined in

terms of the potentials [Eq. (5)].

For a mass profile with constant density (‘‘tophat’’), the

force enhancement in Eq. (52) is independent of radius; for

more general profiles, however, this is not the case (see also

[41] for a detailed discussion). Figure 4 shows the relative

force enhancement gðrÞ as a function of radius r=R� in the

case of an NFW halo, for the different DGP models (see

[18,20], Table I). We also show the (r-independent) line-
arized value gDGP;lin for the nDGP models, which is recov-

ered only at very large scales when the average density

becomes & "�1 (for sDGP, gDGP;lin 	 0:76 is beyond the

range of the plot).

Since gDGP depends on only the average overdensity

��= ��, which is completely determined by � and c�, the
force enhancement does not directly depend on the halo

mass. Also, it is insensitive to the large-scale environment

of the halo. These are two crucial distinctions from the

fðRÞ case.

FIG. 4 (color online). gDGPðrÞ [Eq. (52)] as a function of the

scaled radius r=R� for an NFW halo, for the DGP models. The

thin horizontal lines show the linearized expression gDGP;lin ¼
1þ 1=ð3�Þ, while the thin lines deviating at small r show the

results when using a capped density profile with rcap ¼
0:125 Mpc=h (see Sec. III B). In all cases, we assumed � ¼
200 and a concentration of c� ¼ 5. For nDGP-1, we also show

the effect of varying the concentration by �20% (dotted lines).

Note that gDGP is independent of the halo mass.
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Figure 5 shows �gvir;DGP defined in Eq. (27) as a function

of the overdensity � (keeping rs fixed at a value expected

for a 1014M�=h halo), and the halo concentration. Clearly,
�gvir;DGP does depend somewhat on the halo profile and the

overdensity criterion chosen. The general trend is that

more concentrated halos lead to a stronger suppression of

the modified forces, since they have higher average density

at small radii. The same holds when increasing �. The
dependence on c and � is strongest for nDGP-1, which

also shows the strongest evolution of gDGPðrÞ. The depen-
dence on the density profile has to be taken into account

when comparing with simulation results (Sec. III B), as

well as for the comparison with observations that measure

the dynamical mass within different R� (Sec. IV).

III. COMPARISON WITH SIMULATIONS

In order to benchmark our theoretical expectations, we

will now compare them to the results of the self-consistent

N-body simulations of fðRÞ gravity presented in [17,39]

and of DGP [18,20]. For each model, we have simulated

several box sizes. The number of runs for each model and

box size, as well as the grid resolution, are summarized in

Table II. Halos are identified using a spherical overdensity

halo finder as described in [32,41]. The halo finder returns

the center-of-mass position as well as massM� of the halo

as determined from the particles within R�, such that

M�=ð4�=3R3
�Þ ¼ ���. Our choice of � is the one adopted

in [32,41]:� ¼ 300 for the fðRÞ simulations, and� ¼ 200
in the DGP case. Our particle-mesh simulations are of

limited resolution, and we can only use the best-resolved

halos for our study, i.e. massive halos in the two smallest

boxes. This limits our statistical sample of halos.

First, in order to measure gðrÞ as a function of the radius,
we select the most well-resolved halos whose radii R� are

at least 10 grid cells, which is only satisfied for halos in our

smallest box, Lbox ¼ 64 Mpc=h. For this box, this corre-
sponds to a minimum mass of �1:6� 1014M�=h, which
depending on the model results in a very small sample of

2–40 halos. For each halo, we then measure contributions

to the potential energy WðrÞ in spherical shells around the

center-of-mass via

WðrÞ ¼ 1

N

X

jri�rj��r

ðxi � xhÞ � r�ðxiÞ; (54)

where the sum runs over particles whose distance ri ¼
jxi � xhj from the center of mass of the halo is within

the radial bin, and N is the number of contributing parti-

cles. The derivative of the potential is evaluated at the

position of each particle in the same way as it is done in

the particle propagation of the N-body simulation (bilinear

interpolation). In addition to WðrÞ derived from the dy-

namical potential �, we also measure the corresponding

Newtonian quantityWNðrÞ, where the Newtonian potential
�N is determined from Eq. (14) using the same density

field. The ratio of the two is our estimated force enhance-

ment:

g measðrÞ ¼
WðrÞ
WNðrÞ

: (55)

To some extent, resolution effects can be expected to

cancel out in Eq. (55). Below we will show profiles down

to r ¼ rcell, though one should keep in mind that the g

profiles cannot be considered reliable below r� 4rcell.
Because of the resolution requirements and small sam-

ple size, we cannot study any evolution with mass in the

TABLE II. Number of runs for each box size and minimum

mass cuts for �2
v and �gvir measurement.

Lbox (h�1 Mpc)

Model 400 256 128 64

No. of runs fðRÞa 6 6 6 6

sDGP 6 6 6 6

nDGPb 3 3 3 6

Mh;min (1014M�=h) 63.5 16.7 2.08 0.26

rcell (h
�1 Mpc) 0.78 0.50 0.25 0.125

aFor each value of jfR0j.
bFor nDGP-1 and nDGP-2 each.

FIG. 5 (color online). Averaged force deviation �gvir [Eq. (27)]
for DGP models as a function of the overdensity � (top panel)

and the halo concentration c200 for an NFW halo (bottom panel).

For the top panel we have scaled the concentration with R� to

keep rs fixed (corresponding to c200 	 5:8). The thin lines in the

bottom panel show the results for a density profile capped at

rcap ¼ 0:125 Mpc=h for comparison with simulation results

(assuming M200 ¼ 1014M�=h; see Sec. III B).
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gðrÞ profiles. The stringent resolution requirements can be

relaxed somewhat if we measure only an average force

enhancement, for example, �gvir. Assuming a scaling fol-

lowing the virial theorem, we can either measure an aver-

age of x � r�, related to the trace of the potential energy

tensor W [Eq. (7)], or we can measure the velocity disper-

sion, related to the kinetic energy given by Eq. (9). The first

approach has the advantage that we can measure �gvir on a

halo-by-halo basis, by calculating W using both the modi-

fied potential � and the Newtonian potential �N [similar

to what was done for �gmeasðrÞ]. The estimator of �gvir for a
given halo is then defined by

�g vir;meas ¼

P

ri<R�

ðxi � xhÞ � r�ðxiÞ
P

ri<R�

ðxi � xhÞ � r�NðxiÞ
; (56)

where the sum runs over particles within the halo radius

R�. Note that the sum over particles automatically results

in a density weighting of g. Again, we expect that in this

ratio resolution issues cancel to a certain extent. Some

effects of the finite resolution will become apparent when

comparing with the theoretical predictions below.

The second approach, measuring the halo velocity dis-

persions, is also interesting since it gives an independent

estimate of the modified forces. Specifically, we define the

(one-dimensional) velocity dispersion of particles in a halo

as follows:

�2
v ¼ 1

3Np

X

jx�xhj<R�

ðvi � vhÞ2; (57)

v h ¼
1

Np

X

jx�xhj<R�

vi; (58)

where the sum runs over particles within the halo radius

R�, Np is the number of those particles, and vi � vh

denotes the velocity of the particle with respect to the

center of mass of the halo. Note that in our normalization

of �v, the kinetic energy Eq. (9) is given by T ¼
3=2M��

2
v. From the results of Sec. II A, we expect that

when averaged over many halos,

�2
v;MG

�2
v;GR

¼ �gvir; (59)

where �2
v;MG is the velocity dispersion measured in the

modified gravity simulations, while �2
v;GR is measured in

the corresponding GR simulations. Note that in this mea-

surement, we can only compare the average of many halos

in the modified gravity simulations to that in GR, rather

than calculating g on a halo-by-halo basis. Hence, Eq. (59)

results in a noisier measurement of �gvir than Eq. (56).

However, the particle velocity dispersion, which has gone

through the relaxation and virialization process, is much

more closely related to observables than the averaged

gravitational force strength Eq. (56), which can never be

measured directly in reality. Thus, it is worthwhile to cross-

check our results obtained from Eq. (56) with the halo

velocity dispersions.

In order to determine for which halos we can reliably

measure Eqs. (56) and (57), we calculate the velocity

dispersion of halos in the standard GR simulations and

compare it to the expected virial scaling. Figure 6 shows

the measured velocity dispersion scaled as �2
v=M

2=3
� , as a

function of the halo radius R300 in grid cells, for the differ-

ent simulation boxes. Since the virial theorem has been

found to hold in simulated halos [31], �2
v=M

2=3
� should be

independent of the halo mass (Sec. II). We see that, within

the significant scatter, this is approximately true for halos

that are sufficiently resolved. We thus place a radius cut of

R�  5:4 grid cells. Since M� ¼ ð4�=3Þ� ��R3
�, this cor-

responds to a fixed mass cut for a given simulation box

size, which is listed in Table I. Fortunately, the statistics are

then sufficient to study �gvir and �2
v as functions of mass.

A. fðRÞ
We begin with the measurement of gfðRÞ for the well-

resolved halos. Figure 7 shows the simulation measure-

ments and predictions of the spherical relaxation code, for

the strong field (jfR0j ¼ 10�4) and the weak field (10�6).

As expected from Fig. 3, the halos in this mass range

(M300 	 1:6–7� 1014M�=h) are unscreened in the strong

FIG. 6 (color online). Velocity dispersion �v scaled to the

virial expectation (�2
v / M2=3), measured for halos in the GR

simulations, as a function of the halo radius in grid cells.

Velocity dispersions are only reliably measured for the most

well-resolved halos with R300  5:4 grid cells (indicated by the

vertical line).
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field simulations, gfðRÞ ¼ 4=3, and screened in the weak

field, gfðRÞ ! 1. In the latter case, there is a regime around

1–3 R300 where the screening is not complete. At larger

distances, the Yukawa suppression again becomes notice-

able (�C 	 3 Mpc for jfR0j ¼ 10�6). The numerical re-

sults for the spherically symmetric case match the overall

behavior well for both field values, although there is a hint

that it slightly overestimates the screening in the weak field

case.

The results for the intermediate field value jfR0j ¼ 10�5

are shown in Fig. 8; this case is most interesting since the

few� 1014M�=h halos are in the transition region between

the screened and unscreened limits (Fig. 3). Hence we have

split the halo sample into a lower mass sample around 2�
1014M�=h and a high mass sample with two halos around

7� 1014M�=h. Clearly, the scatter in the modified force

profiles is significant. Nevertheless, the stronger screening

effect in the higher mass halos is noticeable. The spherical

relaxation results (Sec. II C), which were calculated sepa-

rately for the mean halo mass of each sample, match the

full simulation profiles remarkably well. At small radii, the

transition to the fully screened values is apparently too

steep. A possible explanation for this is that the halos in the

N-body simulations are not truly spherical, but in general

triaxial. A triaxial halo will have a somewhat shallower

potential well, reducing the chameleon screening effect.

Furthermore, the screening will happen at different radii

along the different axes, so that a potentially sharp tran-

sition in the spherical case is washed out over a certain

radius range. In addition, the innermost Newtonian poten-

tial well is not as deep in the simulations as predicted for a

perfect NFW halo due to the finite resolution. We also

reiterate that the profiles only become reliable at r�
ð0:3–0:4ÞR300 for these halos.

Next, we look at �gvir;meas in the larger sample of halos.

Figure 9 shows the results for the three field values and the

predictions of �gvir;fðRÞðMÞ from the spherical relaxation

code. We again see a very good match for all field values

and over the entire mass range probed by this halo sample,

3� 1013M�=h <M300 < 3� 1015M�=h. For the inter-

mediate field value, which again shows the most interesting

behavior in this mass range, we see that the screening

effect is slightly overpredicted in the spherically symmet-

ric approximation. Again, this could be due to halo triax-

iality and to resolution effects that reduce the value of �N

in the inner parts of the halo.

For the intermediate field, some outliers are seen in

Fig. 9. These halos, especially around 3–8� 1013M�=h,
show a stronger screening of the modified forces than the

large majority of halos at that mass, and stronger than

predicted for isolated spherical NFW halos. This would

seem consistent with halos being screened by a larger scale

potential well in which they are situated. To test this

hypothesis, we have selected halos in the intermediate field

simulations, which have a more massive neighboring halo

in their immediate vicinity. More precisely, we ask that

FIG. 8 (color online). Same as Fig. 7, but for the intermediate

field value jfR0j ¼ 10�5. We have separated the halo sample into

lower mass halos with M300 ¼ 1:6–2:5� 1014M�=h and two

higher mass halos with M300 ¼ 6–7� 1014M�=h.

FIG. 7 (color online). gfðRÞðrÞ measured using Eqs. (54) and

(55) (thin lines), for the most well-resolved halos (R300 > 10 grid
cells) in the fðRÞ simulations, for the strong field jfR0j ¼ 10�4

and weak field jfR0j ¼ 10�6. The mass range of the halos shown

here is M300 ¼ 1:6–7� 1014M�=h. The thick lines show the

results of the relaxation code (for M300 ¼ 3� 1014M�=h).
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dN � jxN � xhj
R�;N þ R�;h

< 1; (60)

where h denotes the halo itself and N denotes the closest

neighboring halo2 with M�;N >M�;h. These halos make

up less than 5% of the whole sample and are circled in

Fig. 9. In fact, three of the outliers have a close massive

neighbor, which is strong evidence for the hypothesis of

environmental effects as cause for the enhanced screening

(the fourth most obvious outlier has dN 	 1:2).
Finally, we can look at the effect of the modified forces

on the particle velocity dispersion of halos, a noisier mea-

surement but one that probes the effect after the reprocess-

ing through gravitational collapse and virialization.

Figure 10 shows the scaled velocity dispersion �2
v=M

2=3,

for the same halos as in Fig. 9 and scaled to values expected

from Sec. II, as a function of mass. We show the results for

GR simulations as well as the weak (jfR0j ¼ 10�6) and

strong field (jfR0j ¼ 10�4) fðRÞ cases. After fitting a con-

stant to the GR simulations, we multiply the theoretical

predictions by this constant. Albeit noisy, the results of the

halo-by-halo measurement of �gvir;fðRÞ are confirmed: for

the strong field, all halos are in the linearized field regime

where forces, and hence �2
v, are enhanced by a factor of

4=3. For the weak field, all halos except at the very lowest

masses probed by the simulations are in the chameleon

regime. In case of the intermediate field (jfR0j ¼ 10�5),

Fig. 11 shows that the transition between screened and

unscreened regimes at few� 1014M�=h is indeed seen in

the halo velocity dispersions as well. These results confirm

that the theoretical predictions for the modified gravita-

tional force can in principle be probed by observable

quantities such as velocity dispersions (see Sec. IV).

B. DGP

The force modifications in DGP are, to first order, inde-

pendent of the halo mass and environment. However, they

do depend on the detailed halo profile. Before comparing

the predictions from Sec. II D with the simulation results,

we have to take into account the effects of the finite

resolution. While the NFW profile we used throughout

Sec. II is a very good match to high-resolution simulations,

in our fixed-grid simulations the density profile is, in fact,

softened on scales of a grid cell. This softening of the

density profile will affect gDGPðrÞ through the average

overdensity within r. Thus, for comparison with the simu-

lation results we assume a ‘‘capped’’ density profile instead

of NFW all the way to r ¼ 0. More precisely, we cap the

density profile at a constant value of �cap ¼ �NFWðrcapÞ

FIG. 10 (color online). Scaled velocity dispersion �2
v=M

2=3

measured in GR and fðRÞ simulations. The measurements

were scaled to values expected for NFW halos (Sec. II): �2
0 ¼

1:79� 10�5c2, M0 ¼ 1015M�=h. The dotted black line shows a

constant fit to the GR results. Solid and dashed lines show the

predictions of the model of Sec. II C scaled by the GR value.

FIG. 9 (color online). �gvir measured via Eq. (56) for well-

resolved halos (R300 > 5:4 grid cells) in the fðRÞ simulations

(points). The results confirm the theoretical predictions from

Sec. II C, shown as lines (spherical relaxation results from

Fig. 3). The circled points are halos that have a more massive

halo in their immediate vicinity (see text).

2This criterion formally says that the halos are overlapping.
Such an overlap is unavoidable when defining halos via spherical
overdensities. In our halo finding algorithm, the particles in the
overlap region are not double counted, but counted toward the
more massive halo.
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for r < rcap.
3 For the halos measured in the smallest box, a

natural choice is rcap ¼ rcell ¼ 0:125 Mpc=h (Table II).

Figure 4 shows the effect of this softened density profile

on gDGPðrÞ. In particular, it increases the force modification

since the inner density is suppressed, thus artificially weak-

ening the Vainshtein mechanism.

Figure 12 shows the measured gDGPðrÞ from the simu-

lations, together with the predictions using the capped

density profile. First, it is evident that the scatter in g is

much smaller in DGP than it is for fðRÞ, due to the locality
of the Vainshtein mechanism. For all three models, the

agreement of the simple spherically symmetric NFW

model with the simulations is impressive. Note that we

have not adjusted any parameters to match the simulation

results; this measurement thus also constitutes a nontrivial

test of the DGP simulations. At r� R200, the theoretical

prediction slightly underestimates the suppression of the

force modification (by 1%–3%), which is presumably due

to slight differences in the actual density profiles from the

one assumed in the predictions (pure spherical NFW pro-

file). The large scatter at r * 2R200 is due to the effect of

gravitationally unbound ambient matter in the environment

of the halos, which dominates �� at these distances. Note

that, in particular, for nDGP-1, the Vainshtein mechanism

does not completely suppress the force modifications

within halos even on scales as small as �100 kpc.

We now turn to �gvir as measured from Eq. (56) in the

halo sample with R200  5:4 grid cells. Figure 13 shows

the measurements for the three DGP models. As expected,
�gvir;DGP is approximately constant as a function of mass.

The model predictions from Sec. II D are shown as gray

bands. Here, we have used the concentration relation

Eq. (26) (more precisely, c ¼ maxf4; cðMÞg), and the width
of the band reflects a �20% spread in concentration. We

again assumed a capped NFW profile with rcap ¼
0:125 Mpc=h, the effects of which are noticeable as a

slight increasing trend of �gvirðMÞ in going toward the

low-mass end for nDGP-1. Note that here we have included

halos from different simulation box sizes Lbox ¼
64–256 Mpc=h, though the majority comes from the

smallest box. Hence, one might wonder whether different

values of rcap are required for different box sizes. However,

within the limited statistics the measurements of �gvir from
halos in different box sizes are in agreement. Hence, the

data do not seem to require such a correction. We conclude

that, within the uncertainties due to the halo density pro-

files, the measured values of �gvir;DGP are entirely consistent

with the predictions. Furthermore, the scatter in the mea-

sured �gvir appears consistent with that expected for intrin-

sic variations of halo density profiles (�c=c� 0:2).
The results for �gvir;DGP are confirmed by the particle

velocity dispersions of halos. Figure 14 shows the scaled

velocity dispersion �2
v=M

2=3 in nDGP-1 and the corre-

FIG. 12 (color online). gDGPðrÞ measured using Eqs. (54) and

(55) for the most well-resolved halos (R200 > 10 grid cells) in the
DGP simulations (thin lines). The thick lines show the prediction

of Eq. (52), using a capped NFW profile with rcap ¼
0:125 Mpc=h (see text). The thin horizontal lines show gDGP;lin

for each model. The halos shown here have masses M200 ¼
1:6–7� 1014M�=h.

FIG. 11 (color online). Same as Fig. 10, but for the intermedi-

ate fðRÞ field value jfR0j ¼ 10�5.

3Note that the halo radius for a given mass is slightly increased
when using the capped density profile, in order to match the fixed
overdensity � ¼ 200.
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sponding GR simulations. For comparison, we also show

the result for the linearized DGP simulations, which use

the scale-independent (but redshift-dependent) force en-

hancement obtained when linearizing the DGP equations

[18,20]. Within the significant scatter in the �v measure-

ment, we found no significant evolution of the force en-

hancement with mass, as expected given the small trends

with mass in Fig. 13.

In order to quantitatively compare the simulation results

with model predictions, we determined the mean of

�2
v=M

2=3 for each simulation type. In each case, the error

on this mean is obtained by dividing the rms scatter by
ffiffiffiffiffiffiffiffiffiffiffiffi
Nhalos

p
. The measured ratio of the scaled velocity disper-

sion in the DGP simulations to that in the GR simulations is

found to be

�g virðfull DGP, measÞ ¼ 1:212� 0:014: (61)

This is indeed close to the range of the theoretical predic-

tions (for a capped NFW profile), 1.18–1.2 (Fig. 13). As

expected, the ratio measured in the linearized DGP simu-

lations, �gvirðlin: DGP, measÞ ¼ 1:288� 0:014 is in excel-

lent agreement with the predicted value of

1þ 1=ð3�Þ ¼ 1:276. Similar conclusions hold for the ve-

locity dispersions measured in the sDGP and nDGP-2

simulations, although the results are less constraining due

to the smaller force modifications j �gvir � 1j in those

models.

IV. APPLICATION TO OBSERVATIONS

Observables linked to dynamical masses can be broadly

classified into two categories. First, one can measure the

velocity distribution of collisionless ‘‘tracer particles,’’

such as galaxies within galaxy clusters or stars within

galaxies. For a dynamically relaxed system, the kinetic

energy T inferred from the velocity distribution is propor-

tional to the potential energy W (Sec. II A), which can be

converted into a mass estimate M�;dyn (we again assume a

mass definition in terms of an average interior density ���).
Several assumptions have to be made in order to obtain the

mass estimate. First, one has to assume the galaxies or stars

are unbiased tracers of the full matter velocity field (in-

cluding dark matter). Since member galaxies of a cluster

generally reside in overdense substructure (subhalos) of the

cluster halo, their velocities might differ systematically

from that of the overall matter. Simulation studies

[46,47] have shown that this velocity bias is expected to

be on the order of �10% or less, depending on how

galaxies are selected. Further, one has to make assumptions

about the density profile shape, and the anisotropy of the

velocity distribution, since only the line-of-sight compo-

nent of the velocity is observed. Nevertheless, our idealized

measurement of the dark matter velocity dispersion in the

simulations shows that at least in principle, �2
v is indeed a

good tracer of the modified force �gvir.

FIG. 14 (color online). Scaled velocity dispersion �2
v=M

2=3

measured in GR and nDGP-1 simulations (�0 and M0 are as

defined in Fig. 10). The black dotted line shows the average

value measured for the GR simulations. The red line shows this

value multiplied by �gvir;DGPlin ¼ 1þ 1=ð3�Þ. The shaded band

shows the corresponding prediction for �gvir;DGP from Fig. 13.

FIG. 13 (color online). �gvir;DGP measured using Eq. (56) for

well-resolved halos (R200 > 5:4 grid cells) in the DGP simula-

tions (points). The shaded bands show the model predictions

from Sec. II D with a variation in the halo concentration by

�20%. We assumed capped NFW profiles with rcap ¼
0:125 Mpc=h.
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Another set of observations linked to dynamical masses

is measurements of the hot ionized gas in galaxy clusters.

One technique is to detect the thermal bremsstrahlung in

x rays; another is to measure the upscattering of CMB

photons off the hot electrons via the Sunyaev-Zeldovich

(SZ) effect. In both techniques, one measures a line-of-

sight integral of the electron pressure, with an additional

weighting by the electron density in the case of x rays

(since the rate of bremsstrahlung emission is / nenp ¼
n2e). With some assumptions on the density profile for the

baryons, x-ray and SZ signals can be converted into a

measurement of the electron pressure as a function of r.
Instead of the virial theorem that holds for a collisionless

system, we now use hydrostatic equilibrium, which is a

good assumption at least for dynamically relaxed systems:

dP

dr
¼ �gas

d�

dr
; (62)

where P is the total pressure and �gas is the mass density of

the gas, respectively. The difficulty observationally is in

measuring the left-hand side of Eq. (62): only the thermal

contribution to P, Ptherm � ngaskT, is directly measurable,

while nonthermal contributions from e.g. cosmic rays, bulk

flows, and magnetic fields are much harder to estimate.

Nevertheless, with appropriate systematic error bars,

Eq. (62) is a probe of the gravitational force d�=dr.
In summary, a variety of observations lead to estimates

of certain weighted averages of the gravitational force,

Wobs ¼
Z

d3x�obsðxÞx � r�ðxÞ; (63)

where �obs is an effective weight function. In case of x-ray

and SZ measurements, it is related to �2
gas and �gas, re-

spectively, but will be modified by instrumental effects

such as the limited instrument aperture. Similarly, for

galaxy velocity dispersions in clusters, �obs is proportional

to the number density of observed galaxies (again, with

observational weights and boundaries folded in).

Now we can use Eq. (10) together with the fact that� /
M2=3

� , so that W / M5=3 [Eq. (8)]. Then, if the observatio-

nal mass estimate is done based on ordinary gravity, so that

in GR the mass estimate equals the true mass M�, the

resulting mass estimate M�;dyn in modified gravity is, in

fact,

M�;dyn ¼ �g
3=5
obsM�: (64)

Here �gobs is a weighted integral using Eq. (11), with �
replaced by the effective weight �obs. Note that in general
�gobs will depend on the true mass M� itself.

Since the true mass can in principle be obtained from

weak or strong lensing, a comparison of lensing mass with

the dynamical mass Eq. (64) can be used to measure the

modified forces in fðRÞ or DGP. Again, it is important to

take into account the unavoidable observational weighting

that is being done in the measurements of both M�;dyn and

M�.

Recently, the SLACS sample of elliptical galaxies acting

as strong lenses [48] has been used to constrain deviations

from GR [28,49]. Furthermore, using a similar argument as

the thin-shell condition Eq. (36) (Sec. II C), [49] has shown

that these measurements constrain the fðRÞ model consid-

ered here at the level of jfR0j & 2� 10�6. For these con-

straints one has to make some assumptions on the potential

well of the lens galaxy, for example, that it is dominated by

the density distribution of the inner few kpc, thus neglect-

ing any larger scale potential well. As we have seen, the

magnitude of the force modification in fðRÞ can depend

somewhat on the environment. In particular, we found that

a subset of halos around 3–8� 1013M�=h (at the low-mass

end of the range accessible to the simulations) is screened

much more strongly than expected for isolated halos, con-

sistent with an effect of the large-scale environment.

Nevertheless, strong lens galaxies offer a quite powerful

probe of gravity on kpc scales, if the environmental effects

can be understood.

On larger scales, the comparison of dynamical and

lensing masses of massive galaxy clusters can be interest-

ing since they dominate their local environment, so that

environmental effects should be negligible. Also, for

cluster-scale masses we were able to validate our theoreti-

cal models for �gvir directly with the modified gravity

simulations (Sec. III). However, for clusters it is preferable

to measure the dynamics and lensing at large scales: first,

the deviations from GR quickly shrink close to the cluster

core owing to the chameleon and Vainshtein mechanisms;

second, baryonic effects on the observables and the density

profile, such as cooling and active galactic nuclei feedback,

are expected to be less significant at greater distances from

the cluster center.

It is also possible to use dynamic mass estimates of

clusters by themselves, without direct comparison to lens-

ing masses. As shown in [50–55], the abundance of mas-

sive clusters is a sensitive probe of the growth of structure

as well as gravity. When comparing the observed cluster

mass function measured using a dynamical mass measure

with modified gravity predictions, it is necessary to take

into account the effect of the modified forces on the mass

estimates as well. In order to estimate the effect on the

observed mass function, we use Eq. (64), setting �gobs ¼
�gvir, the idealized quantity we have modeled and calibrated

with simulations. Dynamical mass measures (i.e. velocity

dispersions) in our simulations are noisy (Sec. III); thus we

have simply rescaled the mass of each halo in the modified

gravity simulations by our theoretical model of �gvirðMÞ for
the given cosmology.

Figure 15 shows the relative enhancement of the mass

function in fðRÞ gravity with respect to �CDM, when

measured using lensing masses (i.e. true M300) and dy-
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namical masses, for4 jfR0j ¼ 10�4 and 10�5. Clearly, the

observed abundance of halos is further enhanced when

measured in terms of dynamical masses. In the mass range

where halos are unscreened, the mass function enhance-

ment is boosted by a factor of 2 or more. This is because

the dynamical mass estimate is a factor of ð4=3Þ3=5 	 1:19
higher than the lensing mass in fðRÞ gravity in the

unscreened case, in conjunction with the steeply falling

mass function. Constraints on fðRÞ gravity from x-ray

clusters could thus be significantly improved by using the

dynamical mass function instead of the true or lensing

mass function that was used in [54]. Note the sharp turn-

over in the mass function enhancement for the intermediate

field value. This transition due to the onset of the chame-

leon mechanism is already present in the lensing mass

function [32]. Since �gvir transitions from 4=3 to 1 in this

mass range as well, the effect is enhanced in the dynamical

mass function.

The shaded bands in Fig. 15 show the spherical collapse

predictions presented in [32]. These are based on the linear

fðRÞ matter power spectrum together with the Sheth-

Tormen prescription, using two sets of collapse parameters

derived for limiting cases of spherical collapse in fðRÞ
(enhanced forces throughout, and unmodified forces). We

rescaled the predictions in terms of lensing mass given in

[32] to the dynamical mass via

nlnM�;dyn
� dn

d lnM�;dyn

¼ d lnM�

d lnM�;dyn

nlnM�
: (65)

As expected, the predictions in terms of dynamical mass

perform equally well as those for the lensing mass. Since

our prediction for �gvir includes the chameleon mechanism,

the predictions for the intermediate field value show a

corresponding transition at approximately the right mass.

Still, the predictions do not match the simulation results

completely due to the shortcomings of our simple spherical

collapse model [32].

Figure 16 shows the corresponding results for the two

normal-branch DGP models nDGP-1 and nDGP-2. The

effect is less dramatic on the DGP mass function, since
�gvir in DGP is generally smaller than in fðRÞ. Nevertheless,
the impact, especially for nDGP-1, is significant, implying

an abundance boost of �50% at high masses. The shaded

bands in Fig. 16 again show a spherical collapse model

[41], which uses the analytical solution for the modified

forces in DGP in the spherically symmetric case as one

limiting case of spherical collapse in DGP. The other limit

is given by using the linearized expression for the modified

forces. Again, the spherical collapse model performs

FIG. 16 (color online). Same as Fig. 15, but for the DGP

models nDGP-1 (top panel) and nDGP-2 (bottom panel). The

simulation results for the dynamical mass (red triangles) have

been displaced horizontally for clarity. The shaded band shows

the spherical collapse model of [41].

FIG. 15 (color online). Mass function enhancement in fðRÞ
relative to a �CDM cosmology with the same expansion history,

nlnMðfðRÞÞ=nlnMð�CDMÞ � 1, for jfR0j ¼ 10�4 (top panel) and

10�5 (bottom panel). The points show simulation results, while

the shaded bands show spherical collapse predictions [32] (see

text). Results are shown for the mass function nlnM�
in terms of

the lensing mass and nlnM�;dyn
in terms of the dynamical mass (see

text; � ¼ 300 in both cases).

4Since all halos above �1013M�=h are screened for the small
field jfR0j ¼ 10�6, the dynamical mass function is essentially
equal to the lensing mass function for most of the mass range and
is not repeated here (see [32]).
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equally well for the mass function in terms of dynamical

mass as for the lensing mass function.

V. CONCLUSIONS

In this paper, we have studied the dynamics of matter

within bound cosmic structures, i.e. dark matter halos, in

fðRÞ and DGP. The potential governing matter dynamics

can differ from the lensing potential by 20%–30% in these

models. These unique signatures of modified gravity can

be observed by comparing dynamical and lensing mass

estimates of clusters or galaxies. Furthermore, they

strongly influence the observed abundance of massive

clusters when measured via dynamical mass proxies such

as x rays or the SZ effect. For example, the enhancement of

the cluster abundance in fðRÞ (with respect to �CDM) at a

fixed dynamical mass can be roughly twice that measured

if the mass is based on lensing measurements. These

signatures in the dynamics are also relevant for large-scale

structure observations, such as the redshift-space power

spectrum or correlation function on small scales.

However, since halos are highly nonlinear objects, the

peculiar chameleon and Vainshtein mechanisms play a

crucial role, as they are necessary in order to restore

general relativity in high-density environments. Thus, the

dynamics in these models can only be rigorously studied

through N-body simulations that include the nonlinear

mechanisms of fðRÞ and DGP consistently.

In the case of fðRÞ, the chameleon mechanism is trig-

gered once the depth of the potential well is comparable to

the background value of the scalar field. The suppression of

the force modifications within a halo thus depends not only

on the halo mass but also its environment. Consequently,

we found significant scatter from halo to halo in the force

modification g measured in the fðRÞ simulations.

Furthermore, we identified a subset of halos which are in

the close vicinity of massive neighbors, and which show a

much stronger suppression of the force modifications than

expected for isolated halos. In the majority of cases, how-

ever, the simulation results confirm the basic expectation

that halos are ‘‘unscreened’’ below a certain threshold

mass determined by the potential well and the field value,

whereas GR is restored at higher masses. Furthermore, a

simple model based on the spherically symmetric solution

of the field equations provides a good match to the scale as

well as mass dependence of the force modifications in

fðRÞ.
In DGP, the nonlinear suppression of the force modifi-

cations through the Vainshtein mechanism is much less

dependent on halo mass and details of the large-scale

environment. Instead, the crucial quantity is the average

mass density within a given radius. Thus, uncertainties in

the semianalytic predictions for DGP are mainly due to the

density profile and are already quite small. When taking

into account the force resolution of the simulations, our

predictions provide an excellent fit to the simulation mea-

surements. Since the basic assumptions of the model, in

particular, spherical symmetry, seem to hold well, we

expect that force modifications can be predicted very ac-

curately in DGP, provided the density profile is known

sufficiently well.

Given that our semianalytic models appear to capture the

mass and scale dependence of the modified forces correctly

for both fðRÞ and DGP, they can be useful in extending

predictions beyond the limits of resolution and parameter

space of the simulations. This will be necessary, in par-

ticular, for the comparison with observations.

While this study is specific to fðRÞ and DGP, it shows the
qualitative features expected in observations of dynamics

from viable modified gravity models, which employ a

nonlinear mechanism to restore GR locally. In the outer

regions of massive clusters, as well as in lower mass

objects, these models generally predict order unity devia-

tions from GR. Observations in this regime thus offer the

perspective of closing the last remaining loopholes for

significant modifications to gravity on large scales.
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