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Dynamical Mean Field Theory of the Antiferromagnetic Metal
to Antiferromagnetic Insulator Transition

R. Chitra and G. Kotliar
Serin Physics Laboratory, Rutgers University, Piscataway, New Jersey 08855

(Received 11 November 1998)

We study the zero temperature antiferromagnetic metal to antiferromagnetic insulator transition using
dynamical mean field theory and exact diagonalization methods. We find two qualitatively different
behaviors depending on the degree of magnetic correlations. For strong correlations combined with
magnetic frustration, the transition can be described in terms of a renormalized Slater theory, with a
continuous gap closure driven by the magnetism but strongly renormalized by correlations. For weak
magnetic correlations, the transition is weakly first order.

PACS numbers: 71.30.+h
The correlation driven metal insulator transition (MIT)
or Mott transition is one of the central problems of con-
densed matter physics. Recently, a great deal of progress
has been made in understanding the MIT using the dy-
namical mean field approach (DMFT), a method which
becomes exact in the well-defined limit of infinite lattice
coordination [1,2]. However, all studies so far have been
confined to the paramagnetic metal (PM) to paramagnetic
insulator (PI) transition. In this Letter, we use DMFT to
study the transition from the antiferromagnetic metal (AM)
to an antiferromagnetic insulator (AI) at zero temperature.
The motivation for this work is twofold. Experimentally,
the interaction or pressure driven MIT in V2O3 [3,4] and
NiS22xSex [4,5] takes place between magnetically ordered
states. The Néel temperatures are much smaller than the
respective characteristic electronic energy scales. We in-
terpret this as a sign of reduced effective magnetic correla-
tions as compared to estimates obtained from a simple one
band Hubbard model. Close to the MIT, the behavior of
physical quantities like the specific heat coefficient is, how-
ever, different in these two materials. Furthermore, mea-
surements of the magnetic moment seem to indicate that
the magnetism in V2O3 is much weaker than in NiS22xSex

[6]. This suggests that the strength of the magnetic cor-
relations influences the MIT. We would therefore like to
understand how magnetic correlations, which control the
scale at which the spin entropy is quenched, affect the MIT
and hence, various physical quantities. While we are still
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far from a realistic modeling of these materials (in this
work we consider only commensurate magnetic order and
ignore orbital degeneracy and realistic band structure), we
present a simple model which, we believe, captures the
generic effects of the magnetic correlations on the MIT.

We consider a simple one band Hamiltonian,
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t1 and t2 are nearest and next nearest neighbor hoppings,
respectively, and U is the onsite Coulomb repulsion. The
hoppings are parametrized as t2

1 � �1 2 a�t2 and t2
2 �

at2, where a is the degree of frustration. A nonzero t2
is required to obtain an AM-AI transition, because the per-
fect nesting present in bipartite hypercubic lattices when
t2 � 0, always leads to a PM-AI transition [7,8]. J is a
ferromagnetic spin coupling that [9] tunes the strength of
the magnetic exchange between neighboring spins. J is in-
dependent of U and t2�t1 and simulates reduced magnetic
correlations which could stem from different physical pro-
cesses like orbital degeneracy in V2O3 [10] or lattice struc-
ture and competing four spin interactions in NiS22xSex .

Within DMFT, in the presence of magnetic order, the
single particle Green’s functions on the A and B Neel
sublattices have the following form:
G21
s �

∑
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2e1�k� ivn 1 m2s 2 e2�k� 2 SBs

∏
; (2)
e1,2�k� are the dispersions corresponding to t1 and t2. s �
1, 2 refer to the spin up and down states, m the staggered
magnetization, and ms � �m 2 U

2 1 �21�sJm� is the
shifted chemical potential. S are the self-energies which
are momentum independent within this approximation.
The local Green’s functions Giis depend on the sublat-
tices (A and B) and obey GA1 � GB2 � G1�ivn�, GA2 �
GB1 � G2�ivn�. Similarly, SA1 � SB2 � S1�ivn� and
SA2 � SB1 � S2�ivn�. The S and G are obtained from
an Anderson impurity model
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describing an f electron hybridizing with a bath of con-
duction electrons d, via the spin-dependent hybridization
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functions
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where vn are the Matsubara frequencies. The Ds obey
self-consistency conditions that can be expressed in terms
of the noninteracting density of states [2], G1 and G2
(which are also the impurity Green’s functions). Here, we
restrict ourselves to the Bethe lattice with a noninteracting
density of states, D�e� �

2
pD2

p
D2 2 e2 where D �

p
2 t

is the half bandwidth. The self-consistency conditions take
the following simple form
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Note that (5) is independent of the sign of t2. We
consider only the half-filled case, which due to a special
particle hole symmetry of the impurity problem: d

y
ls !

dl2s , dls ! d
y
l2s , fs ! fy

2s , f
y
ls ! f2s , and with

�e, V �ls ! 2�e, V �l2s requires that m � U�2.
To obtain G1 and G2, we use the algorithm of Ref. [11]

which uses the zero temperature Lanczos method to com-
pute the Green’s functions of the impurity model given by
(4) and iterate the model until the self-consistency given
by (5) is achieved. Though the results to be presented
were obtained for the case where the bath was represented
by N � 5 sites, several of them were checked for N � 7
to establish the results seen for N � 5. The typical num-
ber of iterations for robust convergence varied between
50 65. Below, we discuss the substantially different be-
haviors seen in the cases of strong and weak magnetic
correlations (induced by J).

Strong magnetic correlations: J � 0.—This is the
case where the system has substantial antiferromagnetic
correlations despite being magnetically frustrated. This
frustration arises from the next nearest neighbor antifer-
romagnetic exchanges generated by t2. For small U, the
system is in the paramagnetic phase. As U increases be-
yond a critical Ucm, antiferromagnetic moments develop
and the spin up and down spectral functions rs�v� �
�21�p� ImGs�v� are no longer equal. r1 has more spec-
tral weight in the upper Hubbard band than in the lower
Hubbard band and vice versa for r2. The low frequency
Kondo-like resonance in rs�v� is no longer centered
around v � 0 but is split into two peaks centered around
some 6v0 with a minimum at v � 0. This can be at-
tributed to the fact that the effective staggered magnetic
field generated when antiferromagnetism develops, splits
the quasiparticle bands. Moreover, unlike in the paramag-
netic case, the height of the resonance is not pinned at the
value of the noninteracting density of states but decreases
with increasing U. As U approaches a critical UMIT , the
density of states rs�v � 0� ! 0. For U $ UMIT , a gap
opens continuously and the system becomes insulating.

A plot of the staggered magnetization m versus U is
shown in Fig. 1. U is in units of t in all the figures. m
increases monotonically with U. It seems to increase as
FIG. 1. The magnetization m, z and the normalized density of
states at the Fermi level r�0��r0�0� versus U for t2�t1 � 0.57
(a � 0.25) with UMIT � 3.0t.

�U 2 Ucm�1�2 close to Ucm and does not exhibit any spe-
cial feature at the MIT. Note that though m is quite large
at the MIT and increases with increasing t2�t1, it saturates
only when one is well into the insulating phase. Unlike
the paramagnetic case where ImS diverges as �ivn�21 at
the MIT, in the presence of antiferromagnetism, the self-
energy does not show any anomalous behavior across the
MIT. To obtain an insight into the nature of the MIT, we
use the following low energy parametrization of Ss

S1,2�ivn� � 6h 1

µ
1 2
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z

∂
ivn , (6)

where h is the staggered field generated by the interactions.
In the magnetic case, the factor z (which is the quasiparticle
residue in the paramagnetic case and goes to zero at the
PM-PI transition), is nonmonotonic and remains nonzero
even in the insulating phase (cf. Fig. 1). In terms of the
local Green’s functions, Ss is determined by the following
expression on the Bethe lattice

G21
s 1 Ss � ivn 1 ms 2

t2
1

2
G2s 2

t2
2

2
Gs . (7)

Using (6) in (7) and continuing to real frequencies, we
obtain the low frequency spectral functions

r1,2�v� � r�0�
∑
1 6
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, (8)

where r�0� is the density of states at the Fermi level and
is given by

r�v � 0� �
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Note that r�0� does not depend on z. Since h increases
monotonically with U, r�0� decreases with increasing U
in the magnetically ordered phase. This yields a critical
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value hc � aD where r�0� ! 0 and a gap opens con-
tinuously. This is the point at which the MIT occurs. We,
therefore, see that the MIT is of a very different nature and
there are no Kondo resonances which disappear discon-
tinuously at the MIT. Our results indicate that in the vi-
cinity of UMIT , h increases linearly with U, implying that
r�0� vanishes as �UMIT 2 U�1�2 as we approach the tran-
sition from the metallic side.

Using Eqs. (6), (8), and (9), the linear coefficient of the
specific heat g is found to be

g

g0
�

2
z

s
1 2

h2

D2a2 , (10)

where g0 � pk2
B

3D with 2g0 being the specific heat coeffi-
cient of the noninteracting problem. We see that the ba-
sic physics controlling the behavior of the specific heat
in the antiferromagnetic phase is the competition between
the increase of m� ~ �1 2

≠S�ivn�
≠ivn

� � z21 (m� is the ef-
fective mass in the paramagnetic case) and the decrease
of the density of states r�0�. Though m� initially in-
creases, its increase is cut off by the staggered magneti-
zation (cf. Fig. 1). When the staggered magnetization m
is large the decrease in r�0� is the dominant effect, whereas
the first effect dominates when the magnetism is weak.
The latter is true in the case of the paramagnetic MIT,
where m� and g are both ~ z21 and diverge as z ! 0 at
the transition. This divergence is related to the fact that
there is a residual entropy in the insulating phase result-
ing from the spin degeneracy at every site. However, this
degeneracy is lost in the case where the insulator is also
an antiferromagnet. Consequently, z remains nonzero and
g ! 0 as �UMIT 2 U�1�2 at the MIT. As anticipated, we
see in Fig. 2 that g increases with U for small m and de-
creases for larger moments.

We can generalize the above argument to a lattice with a
realistic dispersion Ek � e1�k� 1 e2�k�. The Fermi sur-

FIG. 2. The linear coefficient of the specific heat g plotted
in units of g0 (defined in the text) vs U for t2�t1 � 0.57
(a � 0.25, UMIT � 3.0t).
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face of the noninteracting system is defined by EkF � 0.
When U is turned on, the dispersions of the quasiparticles
change and are given by the poles of the Green’s func-
tion given by (2). From the preceding analysis, we can
say that the main effect of interactions is to modify the
band dispersion in the following manner: Ek � z�e2�k� 6p

e1�k�2 1 h2 �. In the noninteracting case (h � 0 and
z � 1), the two bands overlap and there is no gap at the
Fermi surface. For small U, in the paramagnetic phase,
there is no gap in spectrum but the bands are slightly renor-
malized by the factor z. When antiferromagnetism sets in,
the nonzero h changes the band curvature and the renor-
malized bands start moving away from each other, reduc-
ing the Fermi surface area. This reduction in the area is
given by r�0��r0�0� (Fig. 1). For small h, there are re-
gions where the bands overlap and there is no gap in the
system. At a critical value h � hc, a gap opens up in the
spectrum as the Fermi surface shrinks to zero, signaling
the MIT.

Weak magnetic correlations: J fi 0.—The previous
scenario was characterized by relatively weak electron cor-
relations, in the sense that the quasiparticle residue z near
the transition was at most 0.65, indicating that a relatively
high fraction of the spectral weights remain coherent. This
can be understood in simple qualitative terms. When the
magnetic correlations are strong, the relatively large an-
tiferromagnetic exchange produces a large magnetization,
which in turn reduces the double occupancy. All the spin
entropy is quenched by the spin ordering, and the pres-
ence of a hopping in the same sublattice favors coherent
quasiparticle propagation. To access the strongly corre-
lated regime, where z is small and most of the spectral
function is incoherent, we turn on a nonzero J. Its effect
is only through the ms term in (7) and is equivalent to a
shift h ! h 2 Jm, which reduces m and hence increases
UMIT as suggested by (9).

We studied the case t2
1 � 0.95t2 and t2

2 � 0.05t2

(t2�t1 � 0.22). For J � 0, this system shows the usual
band MIT discussed in the previous section, in the vicinity
of U � 2t. By choosing a J�U�, cf. inset of Fig. 4, such
that the magnetic moment remains very small for a large
regime of U as shown in Fig. 3, we move the MIT to U �
3.8t. In the antiferromagnetic metallic phase, the Kondo-
like resonance discussed earlier, persists in the spectral
function up to U � 3.8t and disappears suddenly at the
transition. We also find that the slope, z, decreases to
values much smaller than was seen in the band transition
picture as shown in Fig. 3. z decreases until the moment
becomes sufficiently large and stops its reduction. In the
insulator, which still resembles the band insulator, the
self-energy is analytic and one can define a z.

We find that z and m jump at the transition. This jump
in conjunction with the discontinuous disappearance of
the resonance mentioned earlier, is reminiscent of a first
order transition. On retracing the insulating solution as a
function of decreasing U, we find that there is coexistence.
The insulator survives down to U � 3.4t and there is a
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FIG. 3. m (bold line) and z (dashed line) vs U for the case
of small frustration t2�t1 � 0.2 (a � 0.05) with J varying as a
function of U. UMIT � 3.8t in this case. The subscript coex
denotes the coexistent solution.

MIT of the pure band kind at that point and the solution
goes over to one which is a metallic antiferromagnet but
with a much higher value of the moment m and a much
larger z. This metallic solution disappears around U �
2.4t, i.e., it becomes unstable to ferromagnetism. We find
that the features discussed above persist for constant J if
it is comparable to the antiferromagnetic exchange in the
vicinity of the MIT. In addition, J should be chosen such
that m is small in the metal and that it does not make the
system unstable to ferromagnetism. We have calculated
the double occupancies in both these solutions and find
that the metal with the smaller moment has higher double
occupancy. In this weak magnetic correlation regime,
we find that the specific heat coefficient g is strongly
enhanced; cf. Fig. 4. This scenario is reminiscent of the
behavior seen in V2O3 [3]. Note that at the MIT, there is
a finite gap which is much smaller than the Hubbard gap.
Also, coherent quasiparticle peaks survive albeit with very
small weight. These coherent peaks are asymmetric about
v � 0 in both G1 and G2. Close to U � 4.1t these peaks
vanish completely and one is left only with the incoherent
Hubbard band structures. In the coexistent solution, as U
is reduced, the gap closes continuously and the weight of
these two coherent peaks increases continuously.

To summarize, the character of the AM-AI transition is
very different from the PM-PI. We find that the strength
of the magnetic correlations controls the nature of the
MIT. In the limit of strong magnetic correlations, the
transition takes place as a renormalized Slater transition,
i.e., up to a multiplicative factor which remains finite at the
transition, a gap opens continuously and g ! 0 continu-
ously, as the MIT is approached from the metallic side.

This is similar to the observations reported in NiS22xSex

[5,12] where the moment close to the MIT on the metallic
FIG. 4. g vs U for the case of small frustration t2�t1 � 0.2
with J varying as a function of U (UMIT � 3.8t). The inset
shows J vs U.

side is sufficiently large so as to make the transition
smooth. On the other hand, when antiferromagnetism in
the metallic phase is suppressed, a new scenario emerges:
the gap from the insulating side remains finite at the
MIT, and a substantial enhancement of the specific heat is
observed when the MIT is approached from the metallic
side. Our results indicate that the transition is weakly
first order. This scenario is reminiscent of V22yO3 [3]
where the moment is very small and g is large and nonzero
at the transition. Our results are consistent with our
interpretation that the magnetism in V2O3 is weaker than
in NiS22xSex . The simple model presented here captures
some of the most important features of the transitions seen
in many compounds and could be developed further to
interpret other experimental observations [4].
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