
Dynamical Mean-Field Theory within the Full-Potential Methods: Electronic

structure of Ce-115 materials

Kristjan Haule, Chuck-Hou Yee, Kyoo Kim
Department of Physics, Rutgers University, Piscataway, NJ 08854, USA

(Dated: January 11, 2022)

We implemented the charge self-consistent combination of Density Functional Theory and Dy-
namical Mean Field Theory (DMFT) in two full-potential methods, the Augmented Plane Wave
and the Linear Muffin-Tin Orbital methods. We categorize the commonly used projection methods
in terms of the causality of the resulting DMFT equations and the amount of partial spectral weight
retained. The detailed flow of the Dynamical Mean Field algorithm is described, including the
computation of response functions such as transport coefficients. We discuss the implementation of
the impurity solvers based on hybridization expansion and an analytic continuation method for self-
energy. We also derive the formalism for the bold continuous time quantum Monte Carlo method.
We test our method on a classic problem in strongly correlated physics, the isostructural transition
in Ce metal. We apply our method to the class of heavy fermion materials CeIrIn5, CeCoIn5 and
CeRhIn5 and show that the Ce 4f electrons are more localized in CeRhIn5 than in the other two,
a result corroborated by experiment. We show that CeIrIn5 is the most itinerant and has a very
anisotropic hybridization, pointing mostly towards the out-of-plane In atoms. In CeRhIn5 we sta-
bilized the antiferromagnetic DMFT solution below 3K, in close agreement with the experimental
Néel temperature.

PACS numbers: 71.27.+a,71.30.+h

I. INTRODUCTION

One of the most active areas of condensed matter the-
ory is the development of new algorithms to simulate and
predict the behavior of materials exhibiting strong cor-
relations. Recent developments in the dynamical mean-
field theory (DMFT)1, a powerful many-body approach,
hold great promise for more accurate and realistic de-
scriptions of physical properties of this challenging class
of materials.

The crucial step towards realistic description of
strongly correlated materials was the formulation of
DFT+DMFT2–4, a method formed by the combination
of density functional theory (DFT) and DMFT (for a
review see Ref. 5). To date, this method already has
substantially advanced our understanding of the physics
of the Mott transition in real materials and demonstrated
its ability to explain phenomena including the structural
phase diagrams of actinides6–8, phonon response9, optical
conductivity10,11, valence and x-ray absorption12–14 and
transport15 of archetypal strongly correlated materials.

At present, much effort is devoted to the development
of a robust and precise implementation of DFT+DMFT
using state of the art DFT electronic structure codes16–20

and advanced impurity solvers21–24. This article de-
scribes in detail the implementation of this method
within full-potential codes. There are three major is-
sues that arise in DFT+DMFT implementations: i) qual-
ity of the basis set, ii) quality of the impurity solvers,
and iii) choice of correlated orbitals onto which the full
Green’s function is projected. Modern DFT implemen-
tations largely resolve the first issue, recent development
of new impurity solvers21–23,25–27,29 have focused atten-
tion on the second, while the third is rarely discussed in

the literature. Many DFT+DMFT proposals in the lit-
erature are based on downfolding to low energy model
Hamiltonians2,19,20,28, which requires an atomic set of
orbitals and treats the kinetic operator on the level of
an effective tight binding model. In contrast, we avoid
the ambiguities of downfolding and instead keep the ki-
netic part of the Hamiltonian and electronic charge ex-
pressed in a highly accurate full potential basis set. The
advantage of our method is its ability to perform fully
self-consistent electronic charge calculations. We con-
centrate here on the Linear Augmented Plane Wave basis
(LAPW)30 as implemented in the Wien2K code31 and the
LMTO basis as implemented in LmtArt32, in combina-
tion with the impurity solvers based on the hybridization
expansion21,23–25.

The first half of the article introduces the basic steps of
implementing the DFT+DMFT algorithm and provides
a pedagogical introduction to the method. Section II is
devoted to a crucial element of the DFT+DMFT formal-
ism, namely the projection of the full electronic Green’s
function to the correlated subset. We show that the pro-
jection used in the LDA+U method leads to non-causal
DFT+DMFT equations, while the projection on to the
solution of the Schrödinger equation within the Muffin-
Tin (MT) spheres misses electronic spectral weight. We
propose a new projection that leads to causal DMFT
equations and captures all electronic spectral weight.
Section III derives the DFT+DMFT equations from a
Baym-Kadanoff-like functional formalism. Section IV
provides a detailed flowchart of all the steps of the al-
gorithm. In section V we discuss the necessary changes
to the tetrahedron method when used in the context of
DMFT. Section VI described the algorithm to compute
transport properties within DFT+DMFT. Section VII
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describes the impurity solvers based on the hybridiza-
tion expansion, the One Crossing Approximation (OCA),
and the Bold continuous time quantum Monte Carlo al-
gorithm (b-CTQMC). Finally, section VIII discusses a
new algorithm for analytic continuation of the self-energy
from the imaginary to real axis.
In the second half of the article, we describe the re-

sults obtained by applying our new implementation of
DFT+DMFT to several correlated materials. As a first
test of the algorithm, in section IX we present its appli-
cation to elemental cerium. Section X is devoted to a
class of heavy fermion materials, CeRhIn5, CeCoIn5 and
CeIrIn5, dubbed Ce-155 materials. We show the differ-
ence in the electronic structure among these three mate-
rials and demonstrate that the Ce 4f electrons are most
localized in CeRhIn5 and order antiferromagnetically be-
low TN ≈ 3K, in agreement with experiment, while the
Ce 4f electrons are most itinerant in CeIrIn5. We ex-
plain the origin of the subtle difference between the three
Ce-115 compounds from the electronic structure point of
view.

II. PROJECTION ON TO CORRELATED

ORBITALS WITHIN FULL-POTENTIAL

METHODS

DFT+DMFT contains some aspects of band theory,
adding a “frequency-dependent local potential” to the
Kohn-Sham Hamiltonian. It also contains some aspects
of quantum chemistry, carrying out an exact local con-
figuration interaction procedure by summing all local di-
agrams, which requires the definition of an “atomic-like”
or “local” Green’s function. The operation of extracting
the local Green’s function G(r, r′) from the full Green’s
function G(r, r′) is called projection (or truncation). The
reverse operation of expressing the local time-dependent
potential Σ(ω), derived from the solution of the atomic
problem in the presence of a mean-field environment, is
called embedding. The various DFT+DMFT implemen-
tations differ not only in the choice of basis set, but also
in the choice of the projection-embedding step. These
ingredients are sketched schematically in Fig. 1. The
projection-embedding step connects the atomic and solid
state physics, and its proper definition is a conceptual is-
sue of DFT+DMFT method.
In the current formulation of DFT+DMFT5,33,34,

one must define the correlated orbitals to which
the Coulomb correlation is applied, i.e., Σ(r, r′) =∑

ξξ′ χξ(r)Σξξ′χ
∗
ξ′(r

′), where χξ(r) is a localized or-
bital. Usually, this is achieved by transforming
the DFT Hamiltonian to a set of localized Wannier
orbitals. These Wannier orbitals are then identi-
fied as the local correlated orbitals of DMFT. Var-
ious choices of these orbitals were proposed in the
literature, including tight-binding LMTO’s2,3, non-
orthogonal LMTO’s16, Nth-order Muffin-Tin orbitals35,
numerically-orthogonalized LMTO’s36, and maximally-

FIG. 1: Schematic diagram of the projection-embedding
step in the DFT+DMFT algorithm. The full Green’s func-
tion of the solid G(r, r′) is truncated to its local counterpart

P̂G = GLL′ . The impurity solution delivers an effective local
potential, which is embedded (Ê) into the Dyson equation
of the solid. The DMFT self-consistency condition (DMFT-
SCC) connects the two.

localized Wannier orbitals20,37. The basis functions must
fully respect the symmetries of the problem and be atom-
centered, rather than bond-centered. Hence maximally-
localized Wannier functions38 are not a good starting
point for DMFT.
Localized basis sets are a better starting point for our

purposes, but the non-orthogonality of these sets pose
a serious challenge. Straighforward orthogonalization
mixes the character of the orbitals, resulting in mixed the
partial occupancies and partial density of states, leading
to incorrect partial electron counts. For example, within
modern DFT implementations, cerium metal has approx-
imately one 4f electron. Näıve orthogonalization results
in a considerably higher 4f electron count, leading to an
unphysical DMFT solution.
Even more challenging is the formulation of the good

localized orbitals in full-potential basis sets. Here, mul-
tiple basis functions are used to obtain more variational
freedom. To implement DMFT in such basis sets, the
group of orbitals representing the correlated electrons
in the solid must be contracted to form a single set of
atomic-like heavy orbitals, i.e., one 4f orbital per Ce
atom, one 3d orbital per Fe atom, etc.
A straighforward projection on to the orbital angular

momentum eigenfunctions Ylm ≡ YL leads to non-causal
DMFT equations, which result in an unphysical auxiliary
impurity problem. The second often-employed choice
is the projection on to the solution of the Schrödinger
(Dirac) equation inside the MT sphere ul(Eν , r)YL(r̂).
While this choice is certainly superior to the straighfor-
ward projection, it does not take into account the contri-
butions due to the energy derivative of the radial wave
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function u̇l(Eν , r)YL(r̂) and the localized orbitals (LO)
at other energies ul(E

′
ν , r)YL(r̂), and hence misses some

electronic spectral weight of the correlated orbital. Alter-
native choices are possible which simultaneously capture
all spectral weight and obey causality. We implemented
one of them and we believe it is superior to other choices
in the literature.
The central objects of DMFT are the local Green’s

function and the local self-energy of the orbitals within
the correlated subset. We specify the projection scheme
by the projection operator P (rr′, τLL′), which defines
the mapping between real-space objects and their orbital
counterparts (r, r′) → (L,L′) (see Fig. 1). The operator

P̂ acts on the full Green’s function G(r, r′) and gives the
correlated Green’s function Gτ

LL′

5,16

Gτ
LL′ =

∫
drdr′P (rr′, τLL′)G(rr′). (1)

The integrals over r and r′ are performed inside the
sphere of size S around the correlated atom at position
τ . The subscript L can index spherical harmonics lm,
cubic harmonics, or relativistic harmonics jmj , depend-
ing on the system symmetry. We always choose the basis
which minimizes the off-diagonal elements of the corre-
lated Green’s function in order to reduce the minus-sign
problem in Monte-Carlo impurity solvers. In general, P̂
is a multidimensional tensor with one pair of indices in
the space of local correlated orbitals (τLL′) and the other
pair in the space of the full basis set, which can be ex-
pressed in a real space (rr′) or Kohn-Sham (k, ij) basis,
where i and j are band indices.
The inverse process of embedding Ê, i.e. the mapping

between the correlated orbitals and real-space (L,L′) →
(r, r′), is defined by the same four-index tensor. How-
ever, instead of integrals over real-space, its application
is through a discrete sum over the local degrees of free-
dom,

Σ(r, r′) =
∑

τLL′∈H

P (r′r, τL′L)Στ
LL′ (2)

Here LL′ ∈ H means to only sum over correlated or-
bitals. In actinides, the sum would run over 5f orbitals,
in lanthanides over 4f and in transition metals over 3d
orbitals. τ runs over all atoms in the solid and r over the
full space. Note that within the correlated Hilbert sub-
space, the embedding and projection should give unity
P̂ Ê = I, i.e.,
∫
drdr′P (rr′, τL1L2)P (r

′r, τ ′L3L4) = δL1L4
δL2L3

δττ ′ ,(3)

while the projection from the full Hilbert space to the cor-
related set, followed by embedding, gives the correlated
local Green’s function in real space ÊP̂G(rr′) = G(r, r′)

G(r, r′) = (4)
∑

τLL′∈H

P (r′r, τL′L)

∫
dr1dr2P (r1r2, τLL

′)G(r1r2)

which is the central object of the functional definition of
the DMFT described below. In general, the two opera-
tors P̂ and Ê could be different, but they must satisfy
the condition Eq. (3).
The two simplest projections, namely, the projection

on to the orbital angular momentum functions YL, and
the projection on to the solution of the Schrödinger equa-
tion, can be explicitly written as

P 0(rr′, τLL′) = YL(r̂τ )δ(r − r′)Y ∗
L′(r̂

′
τ ) (5)

P 1(rr′, τLL′) = YL(r̂τ )u
0
l (rτ )u

0
l′(r

′
τ )Y

∗
L′(r̂

′
τ ) (6)

where rτ = r − Rτ is the vector defined with the ori-
gin placed at the atomic position Rτ , and u0l (r) is the
solution of the radial Schrödinger equation for angular
momentum l at a fixed energy Eν .
In the following, we will show that the projection P 0,

used in some implementations of DMFT17, captures the
full spectral weight of the correlated character L, but
leads to non-causal DMFT equations. On the other hand
P 1 gives causal DMFT equations, but misses some spec-
tral weight.
In our view, a good DFT+DMFT implementation

should satisfy the following conditions

(1) Correct correlated spectral weight : The projected
density of states, computed from the projected
Green’s function,

ρL(ω) =
1

2πi
[G†

LL(ω)− GLL(ω)], (7)

should capture the partial electronic weight in-
side a given MT sphere at all frequencies, i.e.,

ρL(ω)
!
= ρLDA

L (ω). In particular, GLL′ must include
the electronic weight contained in u̇l and local or-
bitals. Projection should not include any weigh of
other character, nor miss correlated weight.

(2) DMFT equations are causal : For any causal self-
energy Σ, the DMFT self-consistency condition

1

ω − Eimp − Σ−∆
=

∑

k

Pk[(ω + µ−HDFT
k

− EkΣ)
−1] (8)

should give a causal hybridization function ∆(ω).
Here we used projections Pk in momentum space as
opposed to their real-space definitions in Eqs. (1)
and (5), (6).

(3) Sufficient accuracy of the hybridization function:
The hybridization function is usually very sensi-
tive to the choice of the projector. Therefore, we
require that in the relevant low energy region, the
hybridization function is similar to its DFT coun-
terpart. Explicitly, ∆(ω) = ω − Eimp − (PG0)

−1

must be sufficiently close to its DFT estimate,
∆(ω) = ω−Eimp−(P 0G0)

−1. Here G0(r, r
′) stands
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for the full Green’s function G(r, r′) when Σ = 0.
The choice of Σ = 0 is dictated by the fact that
the hybridization ∆, computed by P 0 is not well
behaved for Σ 6= 0, as we will show below. The
motivation for using P0 in the above equation is
that we want to project the full Hilbert space to
a correlated subset with pure angular momentum,
either f or d, but not to a mixure of characters.

(4) Good representation of kinetic energy and elec-

tronic density : Finally, it is crucial to faithfully
represent the kinetic energy operator ∇2 and elec-
tronic density in real space, a feat most modern
DFT implementations achieve. The DFT+DMFT
implementation should not reduce the precision al-
ready achieved in DFT underlying code.

Downfolding to only a few low energy bands clearly vi-
olates the condition number (3), since the hybridization
outside the downfolded window vanishes. A more severe
problem is that downfolding approximates the kinetic en-
ergy operator by expressing it in a small atomic-like basis
set, hence condition (4) is violated. Therefore, we will fo-
cus our discussion on DFT+DMFT implemented within
full-potential basis sets where all bands are kept at each
stage of the calculation. Downfolding to a sufficiently
large energy window may sometimes be helpful due to
its conceptual simplicity, but this approach can not com-
pute the electronic charge self-consistently, as is possible
in our implementation. Moreover, the localized orbitals
chosen in the downfolding procedure combined with the
limited number of hoppings retained often cannot faith-
fully represent the original Kohn-Sham bands.
To be more concrete, we will give the proofs of the

“weight loss problem” and “causality problem” within the
full-potential LAPW basis. The equivalent derivation is
possible for the full-potential LMTO basis. Inside the
MT spheres, the full-potential LAPW basis functions can
be written30

χk+K(r) =
∑

Lτκ

Aτκ
k+K,Lu

τκ
l (rτ )YL(r̂τ ) (9)

where κ = 0 corresponds to the solution of the
Schrödinger equation ul(Eν , rτ ) at a fixed energy Eν ,
κ = 1 to the energy derivative of the same solution
u̇l(Eν , rτ ), and κ = 2, 3, . . . to a localized orbitals at ad-
ditional linearization energies E′

ν , E
′′
ν , . . .. Here τ runs

over the atoms in the unit cell.
The Kohn-Sham states ψik(r) are superpositions of the

basis functions

ψik(r) =
∑

K

Ck

iK χk+K(r) (10)

and take the following form inside the MT spheres:

ψik(r) =
∑

τLκ

Aτκ
iL (k)u

τκ
l (rτ )YL(r̂τ ) (11)

where Aτκ
iL (k) =

∑
K
Aτκ

k+K,LC
k

iK, or equivalently,∫
dr̂τY

∗
L (r̂τ )ψik(r) =

∑
κ Aτκ

iL (k)u
τκ
l (rτ ).

The projectors (5) and (6) can be expressed in the
Kohn-Sham basis:

Pk(ij, τLL
′) =

∫
drdr′ψ∗

ik(r)P (rr
′, τLL′)ψjk(r

′). (12)

Hence, projector P 0 takes the form

P 0
k
(ij, τLL′)

=

∫
drdr′ψ∗

ik(r)YL(r̂τ )δ(r − r′)Y ∗
L′(r̂

′
τ )ψjk(r

′)

=
∑

κκ′

Aτκ∗
iL (k)Aτκ′

jL′(k)〈uτκl |uτκ′

l′ 〉 (13)

Using projector P 0, we get the following expression for
the partial density of states

DτL(ω) =
∑

κκ′ki

Aτκ∗
iL (k)Aτκ′

iL (k)〈uτκl |uτκ′

l 〉δ(ω + µ− εki)

(14)
which exactly coincides with the DFT partial DOS.
Hence P 0 satisfies the condition number (1). However, it
does not lead to causal DMFT equations.

To show that, consider the limit of a diverging self-
energy, Σ → −i∞, as is relevant for the Mott insulators.
Despite the diverging Σ, the projection must still produce
a finite hybridization. In the case when all the bands at
the energy of the pole are correlated, the hybridization
should vanish. In this limit, the DMFT self-consistency
condition (8) takes the form

(Στ +∆)−1
LL′

=
∑

kij

Pk(ji, τLL
′)

[
∑

L2L3τ ′

Pk(::, τ
′L2L3)Σ

τ ′

L3L2

]−1

ij

(15)

where :: stands for the two band indices constituting a
matrix in ij to be inverted. Since ∆ is finite while Σ
diverges, we neglect ∆ to obtain the condition for causal
projection,

δLL′′ =
∑

kij,τL′

Pk(ji, τLL
′)Στ

L′L′′ ×

×
[
∑

L2L3τ ′

Pk(::, τ
′L2L3)Σ

τ ′

L3L2

]−1

ij

. (16)

This equation must be satisfied for any matrix form of the
self-energy Σ. Moreover, it has to be satisfied for each L
and L′′. We will show below that Eq. (16) is satisfied for
a separable projection (see Eq. 19 for a definition), while
for a non-separable projection, it likely is not. One can
check explicitely that P 0 violates the condition Eq. (16).
Only after applying an additional trace over LL′′ will the
two matrices PΣ cancel. However, for any given choice of
LL′′, P 0 does not satisfy the causality condition. Instead
a pole in the self-energy results in a diverging ∆, with
the imaginary part having the wrong sign. The projec-
tion P 0 is implemented in the qtl package39 of Wien2K31.
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The LDA+U implementation within Wien2K40 also uses
P 0, but this does not cause any causality issues since the
problem is unique to DFT+DMFT. Additionally, simple
impurity solvers such as Hubbard-I (Ref. 17) do not in-
corporate a true hybridization so they also avoid issues
with causality.
Finally, let us mention an attractive feature of P 0.

Within this scheme, the self-energy is independent of the
radial distance from the atom rτ , having only angular
dependence in the form Σ(r̂, r̂′). This matches the con-
ceptual fact that the impurity solver within the DMFT
framework can not determine the radial dependence of
the self-energy. The impurity solver can only be used to
obtain the angular dependence of Σ by determining the
expansion coefficeints ΣLL′ . In the absence of any knowl-
edge of the radial dependence of Σ, the natural choice
is a constant function, independent of radius rτ . Since
Σ(r, r′) is a function of two vectors, a radial delta func-
tion would be an obvious choice. However, issues with
causality preclude the use of this projection.
The second projection P 1 of Eq. (6) takes the following

form in the Kohn-Sham basis:

P 1
k
(ij, τLL′) =

∑

κκ′

Aτκ
iL (k)A

τκ′∗
jL′ (k)〈uτκl |u0l 〉〈u0l′ |uτκ

′

l′ 〉. (17)

The partial density of states computed from the corre-
lated Green’s function using P 1 is

DτL(ω) = (18)∑

κκ′ki

Aτκ
iL (k)A

τκ′∗
iL (k)〈uτκl |u0l 〉〈u0l |uτκ

′

l 〉δ(ω + µ− εki)

Comparing Eq. (18) with (14), we notice that 〈uτκl |uτκ′

l 〉
is replaced by 〈uτκl |u0l 〉〈u0l |uτκ

′

l 〉, which leads to incorrect
spectral weight. In particular, for κ = 1, the original
overlap in Eq. (14) is 〈u̇τl |u̇τl 〉, while the overlap obtained
by P 1, vanishes.

Causality is not violated for any projection P , which
is separable, i.e., can be cast into the form

Pk(ij, τLL′) = Ukτ
iL U

kτ∗
jL′ . (19)

The condition Eq. (16) can then be expressed as

1 =
∑

k

Ukτ†(UkτΣτUkτ†)−1UkτΣτ (20)

which is clearly satisfied when Ukτ†Ukτ is invertible ma-
trix because U †(UΣU†)−1UΣU†U(U †U)−1 = 1. This is
satisfied when the Kohn-Sham Hilbert space is of larger
dimension than the correlated Hilbert space. The projec-
tion P 1 leads to causal DMFT equations, and therefore is
a better choice than P 0. However, some spectral weight is
lost at energies away from the linearization energy Eν . To
this end, we also implemented an alternative projection
within Wien2K package31, which preserves both causal-
ity and spectral weight. This projector is given by

P 2(rr′, τLL′) =
∑

ijkκκ′

ψik(r)Aτκ
iL (k)〈uτκl |uτ0l 〉〈uτ0l′ |uτκ

′

l′ 〉Aτκ′∗
jL′ (k)ψ∗

jk(r
′)×

√√√√
( ∑

κ1κ2
Aτκ1

iL Aτκ2∗
iL 〈uτκ1

l |uτκ2

l 〉∑
κ1κ2

Aτκ1

iL Aτκ2∗
iL 〈uτκ1

l |uτ0l 〉〈uτ0l |uτκ2

l 〉

)( ∑
κ1κ2

Aτκ1∗
jL′ Aτκ2

jL′ 〈uτκ1

l′ |uτκ2

l′ 〉
∑

κ1κ2
Aτκ1∗

jL′ Aτκ2

jL′ 〈uτκ1

l′ |uτ0l′ 〉〈uτ0l′ |uτκ2

l′ 〉

)
. (21)

Here index L runs over the local basis in which the green’s
function is minimally off-diagonal (cubic harmonics or
relativistic harmonics).
The projector is separable, as postulated in Eq. (19),

and the transformation U is

Ukτ
iL =

∑

κ

Aτκ
iL (k)〈uτκl |uτ0l 〉Sτ

iL (22)

with

Sτ
iL =

√ ∑
κ1κ2

Aτκ1

iL Aτκ2∗
iL 〈uτκ1

l |uτκ2

l 〉∑
κ1κ2

Aτκ1

iL Aτκ2∗
iL 〈uτκ1

l |uτ0l 〉〈uτ0l |uτκ2

l 〉 (23)

Hence the DMFT equations are causal. Moreover,

P 2
k
(ii, LL) is identical to P 0

k
(ii, LL) and hence the par-

tial density of states DL(ω), obtained by P 2, is identical
to Eq. (14). Hence the projection correctly captures the
partial spectral weight. Knowledgeable reader would no-
tice that the projection is slightly non-local because Sτ

iL
is weakly momentum dependent. At energies where u̇
or local orbital substantially contribute to the spectral
weight (away from the Fermi level), we give up locality
in expense of correctly capturing the spectral weight.

All projection schemes lead to slightly non-
orthonormal correlated Green’s function. This is
because the interstitial weight is not taken into account
and because the full potential basis is overcomplete. To
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have an orthonormal impurity problem, we compute
the overlap

∑
ii P

2(ii, τLL′) = Oτ
LL′ and renormalize

P 2(ij, τLL′) →∑
L1L2

( 1√
O
)LL1

P 2(ij, τL1L2)(
1√
O
)L2L′ .

Finally, we remark that the segment of our code which
builds projections P 0, P 1 and P 2 within Wien2K31 is
based on the qtl package of Pavel Novak39.
Similar projections within LDA+DMFT method were

proposed before. In particular the method by B. Amadon
et.al.20 proposed to construct the Wannier functions for
the correlated subset only, while the DMFT equations
were solved in the Kohn-Sham basis, restricted to some
subset of low energy bands. The local orbitals used
for the projection were either all-electron atomic partial
waves in the PAW framework, or pseudo-atomic wave
functions in mixed-basis pseudopotential code. Hence,
in the language of projectors, the method was similar to
choosing the projector to be P = |χR

km >< χR

km|, where
χR

km is the the partial waves or pseudo-atomic wave func-
tion. While this method is clearly causal, it looses spec-
tral weight of the correlated angular momentum charac-
ter. Moreover, the implementation of the method did
not allow the self-consistent evaluation of the electronic
charge. The method of Anisimov et.al.28 also proposed a

construction of the Wannier functions using an arbitrary
set of localized orbitals. In their work, the LDA Hamil-
tonian was truncated to Wannier representation for the
purpose of obtaining the DMFT self-energy. This sim-
plifies the self-consistent DMFT problem, but makes it
impossible to implement the charge self-consistency. Fi-
nally, Savrasov et.al.16 proposed a projector particular to
LMTO basis set, for which causality was not proven.

III. DFT+DMFT FORMALISM

To derive the DFT+DMFT equations, we define a
functional of the correlated Green’s function G(r, r′) and
extremise it. The correlated Green’s function G(r, r′) is
defined by Eq. (4), and the functional to be extremise is

Γ[G, ρ] = −Tr ln(G−1)− Tr[ΣtotG] + Φ[G, ρ], (24)

where Tr runs over all space (orbitals,momenta) and time
(frequency). The quantities apprearing in the above func-
tional are

G−1
ω (r, r′) =

[
iω + µ+∇2 − Vext(r)

]
δ(r− r′)− Σtot

ω (r, r′) (25)

Σtot
ω (r, r′) = [VH(r) + Vxc(r)] δ(r− r′) + [Σω(r, r

′)− EDCδ(r− r′)] Θ(r < S) (26)

Φ[G, ρ] = ΦH [ρ] + Φxc[ρ] + ΦDMFT [G]− ΦDC [G] (27)

ρ = T̃r[G]

where T̃r is trace over time only (not space), Vext is the
potentials due to ions, VH , VXC are the Hartree, and
exchange-correlation potential, respectively. ΦDMFT [G]
is the sum of all local two particle irreducible skeleton di-
agrams constructed from G, and the Coulomb repulsion

Û (screened by orbitals not contained in G), and ΦDC is
the double counting functional.

We assume that the Coulomb interaction Û has the
same form as in the atom, i.e.,

Û =
∑

La,..Ld,,m,σσ′

2l∑

k=0

4πF k
{l}

2k + 1
〈YLa

|Ykm|YLc
〉〈YLb

|Y ∗
km|YLd

〉f†Laσ
f†Lbσ′fLdσ′fLcσ (28)

however, the Slater integrals are reduced due to screening
effects. Typically, we renormalize F 2 · · ·F 6 by 30%, from
their atomic values, while F 0, being renormalized more,
can be estimate by constraint LDA or constraint RPA41.

To extremize the functional Eq. (24), we take G and ρ
as independent variables, and use the following functional
dependence: Σ[G], ΦDMFT [G], EDC [G], ΦDC [G] are func-
tionals of G. Consequently, G is also a functional of G,

i.e., G[Σ[G]]. On the other hand, VH [ρ], Vxc[ρ], ΦH [ρ],
Φxc[ρ] are functionals of the total electron density, hence
G is also a functional of ρ since G[VH [ρ]+Vxc[ρ]]. Finally
it is easy to check that

Tr[ΣtotG] = Tr[(VH + Vxc)ρ] + Tr[(Σ− EDC)G].
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With the above functional dependence in mind, mini-
mization with respect to G gives

Σ− EDC =
δΦDMFT [G]

δG − δΦDC [G]
δG ,

and minimization with respect to ρ leads to

VH + Vxc =
δΦH [ρ]

δρ
+
δΦxc[ρ]

δρ
.

Hence the Hartree and exchange-correlation potential are
computed in the same way as in DFT method (note how-
ever ρ is electron density in the presence of DMFT self-
energy), while the DMFT self-energy is the sum of all lo-
cal Feynman diagrams, constructed from G and Coulomb
interaction Û .

To sum up all local diagrams, constructed from G and
screened Coulomb interaction Û , we solve an auxiliary
quantum impurity problem, which has G = Gimp as the
impurity green’s function, and Σ as the impurity self-
energy Σimp = Σ. The impurity Green’s function is
Gimp = 1/(iω − Eimp − Σimp − ∆), hence the DMFT
self-consistency condition reads

P̂ (iω+µ−HDFT −ÊΣ))−1 = (iω−Eimp−Σimp−∆)−1.
(29)

where Σ ≡ Σ − EDC , and EDC is the interaction in-
cluded in DFT (double counting). The self-consistency
condition takes the explicit form

∫

(r,r′)<Sτ

drdr′P (rr′, τLL′)

{
[
iω + µ+∇2 − VKS(r)

]
δ(r− r′)−

∑

L1L2∈H

P (r′r, τL1L2)Σ
τ

L2L1

}−1

=
[(
iω − Eτ

imp − Στ −∆τ
)−1
]
LL′

(30)

where VKS = Vext + VH + Vxc and S is the muffin-tin
radius.
For efficient evaluation of the DMFT self-consistency

condition Eq. (30), we choose to work in the Kohn-Sham
(KS) basis. At each DFT+DMFT iteration, we first solve
the KS-eigenvalue problem

[
−∇2 + VKS(r)

]
ψki(r) = ǫkiψki. (31)

Then we express the projection P̂ in KS basis,
Pk(ij, τLL

′), where i, j run over all bands. We then per-
form the embedding of the self-energy, i.e., transforming
it from DMFT base to the KS base

Σk,ij(ω) =
∑

τ,L1L2

Pkτ (ji, τL2L1) Σ
τ

L1L2
(ω) (32)

In KS-base, we can invert the Green’s function Eq. (30),
to obtain the practical form of the self-consistency con-
dition

Gτ
LL′ =

∑

kij

Pkτ (ij, LL
′)
[(
iω + µ− ǫk − Σk(ω)

)−1
]
ji
(33)

Gτ
LL′ =

[
1

iω − Eτ
imp − Στ (ω)−∆τ (ω)

]

LL′

(34)

This is of course equivalent to Eq. (30). Finally we solve
this self-consistency equation for a given self-energy Σ(ω)
to obtain the hybridization function ∆τ and the impurity
levels Eτ

imp.

We note in passing that the self-energy Σ(ω) is a
complex function, and its imaginary part is related to
the electron-electron scattering rate, which is very large
in correlated materials. In Mott insulators, it is even
diverging. Hence the DMFT ”effective Hamiltonian”
ǫk+Σk(ω) can not be diagonalized by standard methods
to obatin a set of eigenvalues, i.e., bands. The eigen-
values are complex and hence only the spectral weight

A(k, ω) = (G†
k
(ω)−Gk(ω)/(2πi) is a well defined quan-

tity. The absence of well defined bands in correlated ma-
terials makes computational techniques more challeng-
ing. For example, the calculation of the chemical poten-
tial is far more demanding because one can not assign
a unity of charge to each fully occupied band. Rather
all complex eigenvalues, even those which are far from
the Fermi level, need to be carefully considered. This
point will be addressed below in section IV, item 5. Fur-
ther, the tetrahedron method44, a very useful technique
to reduce the number of necessary momentum points in
practical calculation, is not applicable since it needs real
eigenvalues. We address the necessary generalization of
this method is chapter V.

Note that generalization of the projector and the
LDA+DMFT formalism to cluster-DMFT is very
straightforward. One needs to increase the unit cell to in-
clude more sites of the same atom type. The self-energy
and the Green’s function become matrices in index τ ,
i.e., Σττ ′

LL′ , Gττ ′

LL′ . The transformation P̂ is also straight-
forwardly generalized to matrix form Pk(ij; τLτ

′L′). The
only difference in the definition of the projector Eq. (21)
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is that Aτ
L′ is replaced by Aτ ′

L′ (Aτ
L remains unchanged),

which amounts to the integral over two different spheres
around two atoms of the same type. Finally, in cluster-
DMFT case, the self-energy in KS-basis Eq. (32) has
to be summed over both τ and τ ′, and self-consistency
condition Eq. (34) becomes a matrix equation in τ, τ ′.
The challenging part of the cluster-DMFT formalism is
in solving the cluster-impurity problem. In combination
with impurity solvers based on the hybridization expan-
sion (discussed below) the computational effort grows ex-
ponentially with the number of correlated sites. In the
weak coupling impurity solvers, the computational effort
grows as a power-law, however, these techniques usually
can not reach the interesting regime of strong correlations
and low temperatures.
The major bottleneck in evaluating the DMFT self-

consistency condition in our method is the multiplication
of the projector Pkτ (ij, LL

′) with Σ in Eq. (32) and mul-
tiplication of projection with Green’s function Gk,ji in
Eq. (33). Since projection P 2 is separable, one can write
the operation in terms of matrix products. Still, these
sums run over all k-points (typically few thousands) and
all frequency points (typically few hundreds).
For the efficient implementation of the set of Eqs. (32)

and (33), we first notice that the transformation P (or its
separable part U) is very large and is not desirable to be
written to the computer hard disc. Hence we generate it
only for one k-point at a time, and evaluate both prod-
ucts at this particular k-point. Non-negligible amount of
time is necessary to generate the transformation Eq. (21),
and because this transformation does not depend on fre-
quency, it needs to be used for all frequencies in Eqs. (32)
and (33). Hence paralization over frequency is not im-
plemented, while paralization over k-points is.
Note that because of the sum over atoms (τ) in

Eq. (32), the transformation for all atoms needs to be
computed first, and only then the sum in Eq. (32) can
be evaluated and the self-consistency condition Eq. (34)
can be inverted.
To optimize the sum in Eqs. (32) and (33), one can no-

tice that local quantities like self-energy and local green’s
function possess a large degree of symmetry when written
in proper basis (real harmonics, relativistic harmonics):
many off-diagonal matrix elements vanish, and many ma-
trix elements are equivalent. For example, in a d sys-
tem with cubic symmetry, one has only two types of self-
energy t2g and eg. Hence, instead of summing over 10×10
matrix elements in Eq. (32), one can rewrite the sum over
two matrix elements t = (0, 1), i.e.,

Σk,ij(ω) =
∑

τ,t

Σ
(τ)
t (ω)Pkτ (ji, t) (35)

where Pkτ (ji, t) =
∑

Σ(L1,L2)=Σ(t) Pkτ (ji, L2L1) and the

indices L1, L2 here stand for the real harmonics rather
than spheric harmonics. The later transformation is in-
dependent of frequency, while the sum Eq. (35) needs to
be performed for all frequencies, hence the compact form
of the transformation saves a lot of computer time.

IV. THE ALGORITHM

The implementation of the DFT+DMFT algorithm is
done in the following few steps:

1) ρ(r): We converge the LDA/GGA equations to get
the starting electronic charge ρ(r). We use the non-
spin polarized solution as starting point. In the
ordered state, the DMFT self-energy is allowed to
break the symmetry, while typically the exchange-
correlation potential is not allowed to break the
symmetry (LDA rather than LSDA).

In this preparation step we also obtain good esti-
mates for the Coulomb repulsion U (which is rep-
resented by Slater integrals F 0, F 2, F 4 and F 6).
Slater integrals are computed by the atomic physics
program of Ref. 42, and they are scaled down by
30% to account for the screening in the solid. The
F 0 terms is very different from the atomic F 0 and
is obtained by constraint LDA calculation, or con-
straint RPA calculation41.

2) ψki(r): We solve the DFT KS-eigenvalue problem

(−∇2 + VKS(r))ψki(r) = ψki(r)ε
DFT
ik

to obtaine KS eigenvectors, core, and semicore
charge, and linearization energies Eν .

3) ΣLL′ : We start with a guess for the lattice self-

energy correction Σ(ω) = Σ̃(ω) + Σ∞ − Edc (here

Σ̃ is the dynamic part of the self-energy with the

property Σ̃(∞) = 0). A reasonable starting point

is Σ̃(ω) = 0 and Edc = 〈Σ∞〉. The potential in the
first DMFT iteration is thus the DFT potential.

4) Σk,ij : Next we embed the DMFT self-energy

Σ
(τ)

LL′(ω) (shifted by double counting) to Kohn-
Sham base by the transformation Eq. (32) to obtain
Σk,ij(ω).

5) µ: Using the current DMFT self-energy Σ(ω), and
the current DFT KS-potential VKS , we compute
the current chemical potential. This is done in the
followin steps:

– Complex eigenvalues εkl(ω) of the full Green’s
function are found in the large enough energy
interval (at least [−2U ,2U ]) by solving

∑

j

[εDFT
ki δij +Σkij(ω)]C

k

jl(ω) = Ck

il(ω)εkl(ω).

Here Cji are DMFT eigenvectors expressed in
KS base. The DMFT eigenvalues outside this
interval are set to DFT eigenvalues. We need
only eigenvalues in this step, but not eigenvec-
tors.
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– The chemical potential is determined using
precomputed complex and frequency depen-
dent eigenvalues εkl,ω. On imaginary axis we
solve

Nval = T
∑

kl,ωn

1

iωn + µ− εkl(iωn)

and on real axis we solve

Nval = − 1

π
Im
∑

kl

∫
f(ω)dω

ω + µ− εkl(ω)

If enough k-points can be afforded, we use
special point method, otherwise the “complex
tetrahedron method” can be used (see chap-
ter V).

For numerical evaluation of the real axis den-
sity, we discretize the integral

Nval = − 1

π
Im
∑

i

f(ωi)
∑

kl

∫ bi

ai

dω

ω + µ− εkl(ωi)

with ai = (ωi + ωi−1)/2 and bi =
(ωi+1 + ωi)/2. When using the special point
method, the integral over frequency is evalu-
ated analytically, and the terms of the form
log(ai + µ− εkl(ωi)) are summed up. Alter-
atively, we sometimes use the complex tetra-
hedron method, where the four-dimensional
integral is evaluated analytically (see chap-
ter V)

When DMFT is done on imaginary axis (using
imaginary time impurity solvers), we evaluate

N =
∑

kl

f(ε0
kl − µ) +

2T
∑

0<ωn<ωN

∑

kl

[
1

iωn + µ− εkl(iωn)
− 1

iωn + µ− ε0
kl

]

− 1

π
arctan

(
ε∞
kl − µ

ωN

)
+

1

π
arctan

(
ε0
kl − µ

ωN

)
(36)

Here ε0
kl is the real part of the eigenvalue at

arbitrary frequency. We choose the lowest or
the last Mastubara point. Again, the tetrahe-
dron method can be used for momentum sum.

For Mott insulators, the above described method is
not very efficient, because even a small numerical
error in computing Nval places chemical potential
at the edge of the Hubbard band, either upper or
lower. This instability usually does not allow one to
reach a stable self-consistent solution. We devised
the following method to remove this instability:

– The diagonal components of the self-energy
were fitted by a pole-like expression ΣLL′ =
Σ∞ + WL

iω−PL+iΓL
.

– Next, we neglected broadening of the pole
(ΓL), which should be small in the Mott in-
sulating state. We computed a quasiparticle
approximation for the Green’s function Gqp

k
,

i.e.,

(Gqp
k
)−1
ij = iω−εDFT

ki −Σ∞,ij−Ukτ
iL

√
WL

1

iω − PL

√
WLU

kτ∗
jL

(37)
where Ukτ

iL is part of the projector
Pk(ij, τLL′) = Ukτ

iL U
kτ∗
jL′ defined above.

– The above Green’s function formulae can be
cast into a block form

Gqp
k

=

[
iω −

(
εDFT
k

+Σ∞ Ukτ
√
W√

WUkτ† P

)]−1

≡ (iω −Hqp
k
) .

(38)
Here Hqp

k
is the quasiparticle Hamiltonian

which can be diagonalized to obtain the quasi-
particle bands. We notice that the num-
ber of quasiparticle bands of the Mott insu-
lator is larger then the number of Kohn-Sham
bands because Mott insulators have at least
two Hubbard bands. The quasiparticle bands
are not very accurate away from the Fermi
level, however they are sufficiently acurate at
low energy and allow one to identify gaps at
the Fermi level. Once a gap in the spectra
of Hqp

k
is identified, the charge is computed

using the full DMFT density matrix to verify
the neutrality of the solid. If the solid is neu-
tral when chemical potential is in the gap, the
chemical potential is set to the middle of the
gap.

6) ∆: Impurity hybridization function ∆(ω) and im-
purity levels Eimp are computed in this step.

We use equation (33) to get G(τ)
LL′ and we use the

high frequency expansion of both equations (33)
and (34) to determin impurity levels

EimpLL′ = −EDCδLL′ +
∑

ki

Pkτ (ii, LL
′)εDFT

ki

7) Σimp: Impurity solver uses ∆LL′(ω), Eimp, and
Coulomb repulsion U (which is represented by
Slater integrals F 0, F 2, F 4 and F 6) as the input
and gives the new self-energy ΣLL′(ω) as the out-
put.

Currently we integrated the following impurity
solvers: OCA (see chapter VIIB), Non-crossing
approximation (NCA), Continuous time quantum
Monte Carlo (CTQMC)23. The latter is imple-
mented on imaginary axis, and the former two on
real axis.

Before the impurity solver is run, we exactly diag-
onalize the atomic problem in the presence of crys-
tal fields, to obtain all atomic energies Em and the
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matrix elements of electron creation operator in the
atomic basis 〈m|f†α|n〉. Since the impurity levels
can change during the iteration, the crystal field
of the atomic problem can change as well. In case
of f -systems, the crystal field splittings are small
and one can assume that they do not change sub-
stantially from their DFT value. Hence the exact
diagonalization can be done only once at the be-
ginning. For the d-systems, the crystal field split-
tings are larger, and this approximation is in gen-
eral not necessary satisfactory, hence the exact di-
agonalization needs to be repeated in the charge
self-consistent cycle. A special care needs to be
taken here when using CTQMC. To speed up the
convergence of CTQMC solver, we typically start
simulation with the status of the kink distribution
from previous DMFT step. Since exact diagonal-
ization can reorder eigenstates, these kinks need to
be properly renumbered, to efficiently restart sim-
ulation.

8) Σ∞: It is very hard to achieve reasonably pre-
cise self-energy at high frequency with impurity
solvers based on hybridization expansion. How-
ever, to correctly compute electronic charge, it is
crucial that the self-energy at high frequency ap-
proaches its Hartree-Fock value and the impurity
Green’s function and self-energy at large frequency
properly behave. Hence we correct Σ∞ at each it-
eration. This is quite straighforward, given the fact
that impurity solvers determine the impurity den-
sity very precisely. This steps only corrects the high
energy tails of the impurity green’s function and
impurity self-energy, while we make sure that the
low energy part, which is computed very precisely
by these methods, is not altered.

In the case of CTQMC solver, we compute the
atomic Green’s function using CTQMC probabil-
ities for each atomic state (see Ref. 23 for details).
The high-frequency tails of the self-energy can then
be computed. These analytic tails are then used in-
stead of noisy QMC data.

In OCA and NCA impurity solvers, we project out
very high excited atomic states. This has negligible
effect on the low energy physics, however, it results
in a missing weight at high frequency, and hence
wrong self-energy at infinity. To correct for this
deficiency, we add two lorentzians to the impurity
Green’s function

G(ω) =
∫
A(x)dx

ω − x
+

a1
ω − ǫ1 + iΓ

+
a2

ω − ǫ2 + iΓ

typically with ǫ1 < −U and ǫ2 > U . Here we omit-
ted the subscript LL′ for the impurity Green’s func-
tion GLL′ for clarity. The parameters a1, a2, ǫ1, ǫ2
are determined by the following constraints:

– normalization: m0 + a1 + a2 = 1, where m0 is
the integral of A(x).

– density : n + a1 = nexact, where n =∫
A(x)f(x)dx and nexact is the impurity den-

sity determined by the impurity solver in an
alternative, more precise way (from pseudo-
particle density).

– Σ∞: m1 + a1ǫ1 + a2ǫ2 = Eimp + Σ∞, where
m1 is the first moment m1 =

∫
xA(x)dx.

Once the following three constrains are satisfied,
the self-energy at high frequency approaches its
Hartree-Fock value, and the spectral function re-
spects the total impurity density.

9) Σ: Using the new impurity self-energy, we deter-

mine the new lattice self-energy Σ(ω) = Σ̃(ω) +
Σ∞−EDC , where EDC = U(n−1/2)−J(n/2−1/2),
with n the correlated nominal occupancy.

10) goto 4 : If the convergence of charge is hard to
achieve, we iterate the DMFT loop a few times.
We call this loop the DMFT loop. If the DMFT
loop is to be iterated, jump to 4.

11) µ, ρ(r): The eigevalue problem is solved for all mo-
mentum and frequency points,

∑

j

[εDFT
ki δij +Σkij(ω)]C

ω,R
kjl = Cω,R

kil εklω.

Here we evaluate both, eigenvalues and eigenvec-
tors. Since this is a non-hermitian eigenvalue prob-
lem, the left and right eigenvectors are not complex
conjugates of each other. We use notation CωR

kil for
the right and CωL

kil for the left eigenvector.

Using the DMFT eigenvalues, we recompute the
chemical potential as in 5.

We then recompute the electronic charge from the
DMFT eigenvectors

ψklω(r) =
∑

i

ψki(r)C
ω
kil

where ψki are Kohn-Sham eigenvectors (solutions
of the LDA eigenvalue problem). The electronic
valence charge on real axis is

ρval(r) = − 1

π
Im
∑

kl

∫
ψR
klω(r)

f(ω)dω

ω + µ− εklω
ψL
klω(r)

and on imaginary axis is

ρval(r) = T
∑

kl,ωn

ψR
klωn

(r)
1

iωn + µ− εklωn

ψL
klωn

(r).

We compute the electronic charge using similar
technique as used above to compute the chemical
potential. The electronic charge is

ρval(r) =
∑

kij

ψki(r)ψ
∗
kj(r)W

DMFT
kij .
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The weights WDMFT
k,ij on real axis are combuted as

WDMFT
k,ij =

∑

lp

C
ωpR
kil C

ωpL
kjl wklp

with

wklp = − 1

π
f(ωp)Im

∫ bp

ap

dω
1

ω + µ− εklωp

and ap = (ωp + ωp−1)/2, bp = (ωp+1 + ωp)/2.

On imaginary axis we evaluate the weights by the
following expression

WDMFT
k,ij = T

∑

ωn,l

(
CωnR

kil CωnL
kjl

iωn + µ− εklωn

−
Cω0

kilC
ω0∗
kjl

iωn + µ− εklω0

)

+
∑

l

Cω0

kilC
ω0∗
kjl f(εklω0

− µ)

Note that the DMFT density matrix WDMFT
k,ij is

a hermitian matrix in Kohn-Sham band indeces i
and j. Hence, we can use eigenvalue techniques for
hermitian matrices to decompose W into

WDMFT
k,ij =

∑

l

Uk,ilwk,lU
∗
k,jl.

The LDA+DMFT electronic charge can then be
evaluated by rotated Kohn-Sham vectors, and
DMFT weights wk,l by

ρval(r) =
∑

k,l

[
∑

i

Uk,ilψki(r)

]
wk,l


∑

j

ψ∗
kj(r)U

∗
k,jl


 .

Hence, the code to compute the LDA charge can
be simply converted to compute the DMFT charge
by just replacing the Kohn-Sham LDA weight by
DMFT weight wk,l, and by rotating the Kohn-
Sham eigenvectors by the above computed eigen-
vectors Uk.

Finally, the DFT core and DFT semicore charge
is added to the valence charge, and the resulting
total charge is renormalized in the standard way,
such that the charge neutrality is satisfied to high
accuracy.

12) Etot:The total energy is computed on the output
density ρ(r), using the low temperature limit of the
functional Eq. (24) evaluated on the DFT+DMFT
solution:

Etotal = Tr[(−∇2+Vext)G]+
1

2
Tr[ΣG]+EH+Exc−ΦDC

For computation, the formula is cast into the fol-
lowing form

Etotal = Tr[(−∇2 + VKS)G]−
∫
(VH(r) + Vxc(r))ρ(r)dr

+ EH + Exc +
1

2
Tr[ΣG]− ΦDC

and evaluated by

Etot =
∑

i

εDFT
ki WDMFT

k,ii −
∫
(VH(r) + Vxc(r))ρ(r)dr

+ EH + Exc + Eimp
potential − ΦDC

where WDMFT
k

is the DMFT density matrix de-
fined above, and

Eimp
potential =

1

2
T

∑

ωn,τLL′

Σ
(τ)
LL′(ωn)G(τ)

L′L(ωn) (39)

is the impurity potential energy, which can be com-
puted very precisely by most impurity solvers, such
as CTQMC or OCA. For example, in CTQMC we
sample probability for each atomis state Pm. Us-
ing these probabilities, we can evaluate Eimp

potential =∑
m PmE

atom
m −

∑
LL′ E

imp
LL′ n

imp
L′L .

13) mix : The total electronic charge is mixed with the
charge from previous iterations using multi-secant
mixing of Marks and Luke43.

14) DFT : In this step, we recompute the DFT poten-
tial (hartree, exchange-correlation potential), the
Kohn-Sham orbitals and linearization energies.

15) goto 11 : If the self consistency is hard to achieve,
jump to 11 and determine the best electronic charge
ρ(r) on the current impurity self-energy Σ. We call
this loop the LDA loop.

16) goto 6 If the electronic charge and self-energy are
not converged, jump to 6. We call this loop the
charge loop.

V. COMPLEX TETRAHEDRON METHOD

The calculation of the electronic density, as well as
the correlated Green’s function, requires precise eval-
uation of integrals, which contain diverging poles. In
systems with many atoms per unit cell, one can not af-
ford enough k-points to get hybridization function ∆(ω)
smooth on a scale of temperature T without introduc-
ing artifical broadening larger than T . Hence, to avoid
artifical broadening larger than the low energy scale, we
need to use alternative summation over momentum. The
tetrahedron method44 is used in this case. In the con-
text of DFT+DMFT, an aditional complication is that
the eigenvalues are complex numbers. Although the ana-
lytic formulas for the integration over a tetrahedron can
straighforwardly be evaluated, and are given in appendix
A, a more severe problem is the interpolation of the mul-
tidimensional complex functions ǫik in momentum space.
Below we give details on a method to overcome this dif-
ficulty.
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Computation of the Green’s function requires the eval-
uation of the following integral

g =
∑

k

Cik

ω − ǫikω
,

which can be rewriten as

g =
∑

t

∫

t

d3k
Cik

ω − ǫikω
,

where the sum runs over all tetrahedrons t, and integral
needs to be performed over the particular tetrahedron
t. i is the band index. The linear interpolation of Cik

and linear interpolation of ǫikω in momentum space leads
to analytic formulas for the weight functions w(i,k, ω)
(given in appendix A), which can be used to evaluate g
to higher precision by g =

∑
k
w(i,k, ω)Cik.

Similarly, the electron density is computed by

Nval =
∑

ik

∫
dωf(ω)

ω + µ− ǫikω
.

We take a frequency mesh, which is sufficiently dense at
zero freqeuncy that it can resolve the fermi function f(ω),
and we approximate

Nval = − 1

π
Im
∑

t,i,j

f(ωj)

∫

t

d3k

∫ (ωj+1+ωj)/2

(ωj+ωj−1)/2

dω

ω + µ− ǫikω

= − 1

π
Im
∑

k,i,j

f(ωj)wii(k,
ωj+1 + ωj

2
,
ωj + ωj−1

2
)(40)

Here the integral
∫
t
is the integral over a particular tetra-

hedron t. The weights can again be computed analyti-
cally and are give in Appendix A.
To evaluate the integral over a tetrahedron t, which

has corners in momentum points k1, k2, k3, k4, we need
to interpolate the eigenvalues ǫi1k1

, ǫi2k2
, ǫi3k3

, ǫi4k4
inside

the volume of the tetrahedron. Since there are many
crossing bands (index i), it is not at all simple to find a
good interpolation of ǫik inside the tetrahedron.

In the standard tetrahedron method, where eigen-
values are real numbers, one sorts the eigenvalues at
each k-point, to get the vector of increasing energies
ǫ1,k, ǫ2,k, · · · , and then one linearly interpolates each
sorted component of the vector ǫi,k1

, ǫi,k2
, ǫi,k3

, ǫi,k4
in-

side the tetrahedron. Hence all crossings are avoided. It
is however important that no artifical crossings are ob-
tained in the interpolation, because a crossing gives a
diverging contribution to the integral.
Complex eigenvalues, which appear in DFT+DMFT,

can not be sorted. Hence the interpolation is not at all
simple. A reasonable attempt would be to sort eigen-
values according to their real parts, and just neglect
their imaginary parts when sorting. It turns out that
in strongly correlated regime, where the self-energy be-
comes very large at some frequency points, the error in
tetrahedron method is so large that the hybridization

function can become non-causal in such points. Due to
this non-adequate interpolation, the Green’s function has
a lot of noise, superimposed on a smooth curve. How-
ever, hybridization function, which is many times more
sensitive than the Green’s function, has unbearable large
error, which cause enormous error in the solution of the
impurity problem.
To overcome this problem, we implemented a special

type of smooth interpolation, based on the idea that the
absolute value of the energy should not change much from
one k-point to its neighboring k-point. For each tetrahe-
dron, we minimize the following functional

∑

i

∑

(α,β)∈pairs

|ǫi,kα
− ǫi,kβ

|2 = min (41)

where the 6 pairs of the tetrahedron corners are:
(1, 2), (1, 3) · · · (3, 4), and i runs over all bands. We min-
imize the functional with respect to the order of eigen-
values in all corners of the tetrahedra.
To minimize the above functional, we can choose an

arbitrary order of bands in the first k-point k1, and then
we have to permute the components of the other three k-
points (k2,k3,k4). Hence the number of all possible trial
steps is (n!)3, where n is the number of bands, and is
typically of the order of few hundred. Obviously, not
all arrangements of the eigenvalues can be tried. Our
algorithm for sorting the eigenvalues is

1 Sort the eigenvalues according to their real parts.

2 Use Metropolis Monte Carlo method (for T = 0)
to flip components of a vectors ǫk,i ⇐⇒ ǫk,j . Try
to flip components in any of the momentum points
k2, · · · , k4.

The trial steps are chosen in such a way that the probabil-
ity for flipping two eigenvalues, which have very different
real parts, is very small. We typically choose an expo-
nential distribution function with probability P (|i−j|) ∝
exp(|i− j|/5).

VI. TRANSPORT CALCULATION USING

DFT+DMFT

In this section, we will give the efficient algorithm
to compute the DC conductivity within DFT+DMFT.
The higher order transport coefficients can be computed
along the similar lines, although the computation be-
comes more technically involved.
The DC-conductivity can in general be expressed by

σµν = lim
ω→0

1

ω
χ

′′

µν(ω + iδ) (42)

where the current-current correlation function χ is ex-
pressed diagrammatically through the electron Green’s
functions and the current vertex function by
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χµν(iωn) = −T
∑

kσνm,p1,p2,p′

1
,p′

2

vkµp1p2
G

p′

1p1

kσ (iνm)G
p2p

′

2

k
(iνm − iωn)Γ

σν
p′

2
p′

1
(kνm, ωn). (43)

Here Γ(kνm, ωn) is the current vertex function, which satisfies the integral equation

Γσν
p′

2
p′

1
(kνm, ωn) = vkνp′

2
p′

1
− T

∑

k′σ′ν′

m,p′

3
,p′

4
,p3,p4

Iσσ
′

p′

1
p′

2
p′

3
p′

4
(kνm,k

′ν′m;ωn)G
p4p

′

4

k′σ′ (iν
′
m)G

p′

3p3

k′σ′ (iν
′
m − iωn)Γ

σ′ν
p3p4

(k′ν′m, ωn)(44)

and I(kνm,k
′ν′m;ωn) is the particle hole irreducible ver-

tex, whose limit at zero frequency and Fermi momenta is
the Landau interaction function. vkν are velocities, given
by

vkνp1p2
= − ie

2m
〈ψkp1

|∇ν |ψkp2
〉.

All quantities are expressed in a Bloch-basis, for example
the Kohn-Sham basis, which diagonalizes the static part
of the action.
In general, the two particle vertex function is very dif-

ficult to compute. In some cases, the vertex corrections
vanish and the transport quantities can be computed
from the lowest order bubble diagram.
If self-energy is momentum independent, and the single

band approximation is appropriate, the vertex correction
vanish, as shown by Khurana45. In multiband system,
the following set of conditions are sufficient for the vertex
correction to vanish:

1) The irreducible vertex function is local, i.e.,
I(kν,k′ν′;ωn) does not depend on k or k′.

2) Velocities are odd functions of momentum, i.e.,
v−k = −vk

3) Green’s function is even functions of momentum,
i.e., G−k = Gk.

Under the above conditions, it is clear from Eq. (44) that
only the zeroth order term remains and vertex is un-
renormalized Γ(k) = vk. Consider the first order term∑

k′ I Gk′Gk′vk
′

in Eq. (44) or the second order term∑
k′k′′ I Gk′Gk′I Gk′′Gk′′vk

′′

in Eq. (44). The func-
tion being summed is odd in k′ and k′′, respectively, and
hence the terms vanish.
Under which circumstances the above three conditions

are met? The first condition is exact in the limit of infi-
nite dimensions. Thus in Dynamical Mean Field Theory,
the irreducible vertex is local. For many three dimen-
sional systems, it is believed to be an excellent approx-
imation. However, the velocities are not necessary odd
functions of momentum, in particular, they are obviously
nonzero in strict atomic limit, thus violating the condi-
tion (2). Finally, the third condition is obviously satis-
fied in single band theories with local self-energy, where
Gk(ω) = 1/(ω + µ − ǫk − Σ(ω)) because ǫ−k = ǫk. In

Dynamical Mean Field Theory the self-energy operator is
approximated by a purely local quantity. However, the
local approximation is made in a localized basis. The
self-energy in the Kohn-Sham basis is given by Eq. (32),
and is obviously momentum dependent. In general case,
the resulting self-energy εk+P̂kτΣ is not an even function
of momentum, and hence G−k 6= Gk.
Due to difficulties in computing the two particle vertex

function to high accuracy on real axis, the vast majority
of theoretical calculations ignore the vertex corrections
to conductivity. At present it is not clear how impor-
tant the vertex corrections to optical conductivity and
transport are in correlated electron materials. They are
likely small because they vanish at low energy, where
an effective single band approximation is possible. And
they are also small at intermediate energies where the
interband transitions give major contribution to optical
conductivity. However, a thorough investigation of the
vertex corrections and consequently appearance of exci-
tons in correlated materials is a very interesting avenue
for future research.
In the absence of vertex corrections, the current-

current corelation function Eq. (43) becomes

Imχµν(ω) =
πe20
V0

∑

k

∫
dy[f(y − ω)− f(y)]×

Tr
(
ρk(y)v

kµρk(y − ω)vkν
)

(45)

where ρk = (G† − G)/(2πi). Both spectral density ρk
and velocity vk are matrices in orbital indices and trace
is taken over the orbitals and spins in Eq. (45). Finally,
the real part of the DC conductivity is given by

σ′µν =
πe20
V0

∑

k

∫
dy

(
− df

dy

)
Tr
(
ρk(y)v

kµρk(y)v
kν
)
.(46)

The dynamic self-energy is computed by an impurity
solver, which is implemented either on the real or imag-
inary axis. The most precise impurity solvers, such as
CTQMC, are implemented on imaginary axis, hence we
would like to formulate the method also for the case of
imaginary axis self-energy. Since the DC transport is
sensitive to the behaviour of the self-energy at low fre-
quency, we take the power expansion for Σ(iω) and we
determine the coefficients directly on imaginary axis

Σ(ω) = Σ(0) + (1− Z−1)ω − iω2B + · · · . (47)
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For the DC conductivity, the expansion to the quadratic
order is quite accurate. However, for the thermoelectric
power, the truncation at quadratic order is not sufficient
since the qubic terms in the self-energy expansion (the
asymmetry of the scattering rate) is crucial even at low
temperature (see Ref.46).
We first embed the quasiparticle renormalization am-

plitude Z and scattering rate B to the Kohn-Sham basis
using Eq. (32), i.e., Z−1

k
= P̂kτZ

−1 and Bk = P̂kτB.
Then we can express the low energy electron Green’s
function in the Kohn-Sham basis as

Gk(ω) = (ωZ−1
k

+ µ− Σ(0)− εk + iω2Bk)
−1 (48)

Here Z and Zk are hermitian matrices, while Σ(0) has
both real and imaginary parts and is a complex non-
hermitian matrix.
Next we compute the square root rk ≡

√
Zk through

the eigensystem of Zk. We thus have

Gk(ω) = rk(ω − rk(−µ+Σ(0) + εk − iω2Bk)rk)
−1rk(49)

We first solve the non-hermitian eigenvalue problem

[rk(εk − µ+Σ(0))rk]A
R
k
= AR

k
Ek (50)

AL
k
[rk(εk − µ+Σ(0))rk] = EkA

L
k
, (51)

and compute the scattering rate in the eigenbase

AL
k
rkBkrkA

R
k
= Γk. (52)

to get

Gk(ω) = rkA
R
k

1

ω − Ekω
AL

k
rk (53)

Here we used Ekω = Ek−iω2Γk. Next we insert Eq. (53)
into (46) and we neglect the off-diagonal components of
the scattering rate ( (Γk)pq ∼ Γkpδp,q), since the scatter-
ing between quasiparticles is subleading at low tempera-
ture. We thus obtain

σ′ = − e20
2πV0

Re
∑

kpq

[
Ck

pqS
k

qp −Dk

pqR
k

qp

]
(54)

where

Ck

pq = (AL
k
rkv

µ
k
rkA

R
k
)qp(A

L
k
rkv

ν
k
rkA

R
k
)pq (55)

Dk

pq = (AL
k
rkv

µ
k
rkA

L†
k
)qp(A

R†
k
rkv

ν
k
rkA

R
k
)pq (56)

Sk

qp =

∫
dx

(
− df

dx

)
1

(x− Ekxp)(x− Ekxq)
(57)

Rk

qp =

∫
dx

(
− df

dx

)
1

(x− E∗
kxp)(x− Ekxq)

(58)

The integrals Sk and Rk have multiple poles and need to
be treated by care. We first rewrite Sk and Rk in terms

of the following functions

P1(z) =

∫
dx

(
− df

dx

)
1

x− z
(59)

P2(z, γ) =

∫
dx

(
− df

dx

)
1

|x− z + ix2γ|2 (60)

Q2(z, γ) =

∫
dx

(
− df

dx

)
1

(x− z + ix2γ)2
(61)

If p = q, we have

Sk

pp = Q2(Ekp,Γkp) (62)

Rk

pp = P2(Ekp,Γkp) (63)

and if p 6= q we approximate

Sk

qp =
P1(Ekp)− P1(Ekq)

Ekp − Ekq
(64)

Rk

qp =
P1(Ekp)− P1(Ekq)

E∗
kp − Ekq

. (65)

Here we neglected the term proportional to x2Γ in the
denominator, since the derivative of the fermi function
constrains |x| ≪ 1 and since the interband transition
give subleading contribution to the Drude peak.
A special care needs to be taken to compute the inte-

grals P1, P2 and Q2 to high enough precision and avoid
divergencies. We give details on their evaluation in Ap-
pendix B

VII. IMPURITY SOLVERS BASED ON

HYBRIDIZATION EXPANSION

The impurity solvers based on the hybridization ex-
pansion have a long history and were often employed to
solve the problem of a degenerate magnetic impurity in a
metallic host47–53. In the past, most of calculations were
limited to the lowest order self-consistent approximation,
called the Non-crossing approximation (NCA). Recently,
many generalization of the approach were studied25,54–56,
to overcome the difficulty of the NCA at low tempera-
ture, below the Kondo temperature. It is well known
that the NCA approximation fails to recover the Fermi
liquid fixed point at low temperature and low energy.
Typically there are three types of problems with NCA: i)
the Kondo temperature is correct when only one type of
charge fluctuations is dominant (like N → N−1, which is
equivalent to the limit of U = ∞). When more than one
charge fluctuation needs to be considered (N → N + 1
and N → N − 1) the Kondo temperature is severely un-
derestimated and hence the Kondo peak is too narrow.
ii) The asymmetry of the Kondo-Suhl resonance and its
height is exaggerated in NCA. iii) At very low temper-
atures T ≪ TK an additional spurious peak at zero fre-
quency appears.
For DMFT applications, the problem iii) is not very

severe, while the other two are. The first problem can
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be corrected by a very moderate computational expense.
Adding the first subleading Feynman diagrams25,54,
named One crossing approximation (OCA)5,54 cures the
problem of the low energy scale. It also substantially im-
proves the asymmetry of the Kondo peak as well as its
width. Not surprisingly, in the context of DMFT, the
OCA approximation gives correct critical U of the Mott
transition in the Hubbard model, while NCA severely
underestimates it. In contrast to other higher order con-
serving approximations25,55, the OCA approximation is
relatively straighforward to generalized to the arbitrary
impurity problem. Due its attractive features, OCA was
used in many DMFT applications, such as unraveling the
mixed valence state in Pu57, the coherence-incoherence
crossover in Ce-115 materials58, the transport properties
in titanides15, the α to γ transition in Ce, etc. Com-
pared to exact solution, as obtained by CTQMC, the
OCA approximations typically gives very precise proba-
bility for all atomic states59 (the histogram), quite pre-
cise coherence scale, and the quasiparticle renormaliza-
tion amplitude (the width of the Kondo peak), which is
typically only slightly underestimated. At temperatures
below the coherence scale, the OCA method, however,
still suffers from slight overestimation of the height of the
Kondo peak, and hence causality violation in the context
of DMFT. Hence, the OCA approximation has to be used
with care, especially in the systems with high coherence
scale, and the systems with only moderate correlations.

The OCA equations for the one band problem were
given by many authors25,54, and their generalization to
multiband situation was briefly discussed in the review
Ref. 5, the generalized equations were however, not yet
given, hence we will give them for the general multiorbital
impurity problem, as relevant in the electronic structure
calculations in section VIIB.

Recently, a renewed interest in the hybridization ex-
pansion arouse, once it was shown21,22 that the Feynman
diagrams can be efficiently sampled by Monte Carlo im-
portance sampling. The current implementation of this
algorithm, as applied to realistic material problems, was
discussed in plenty of detail recently23,24, and it will not
be repeated here.

Here we will rather outline an alternative Monte Carlo
sampling approach, which was not yet discussed in the
literature nor implemented. It is natural to ask if there
exists an alternative regrouping of diagrams in Monte
Carlo sampling, such that NCA approximation would be
the lowest order contribution in the hybridization expan-
sion, i.e., the two kinks approximation. We detail the
method below in section VIIA, and show results of a
simplified implementation, which truncates the sampling
at a finite order (up to fifth order in hybridization).

A. Towards Bold-CTQMC

The CTQMC21,23 solver is the most efficient exact
solver for electronic structure problems (see for example

Ref. 59 and Ref. 60). On the other hand, the OCA im-
purity solver is very accurate in many correlated systems
with narrow bands. For example, it gives correct criti-
cal U in Hubbard model, correct Kondo scale in Kondo
lattice model, etc.
The current implementation of CTQMC is equivalent

to pseudoparticle formulation of the expansion around
the atomic limit, however, with bare pseudoparticle prop-
agators. It is thus natural to expect that the dressed
pseudoparticle propagators would make the algorithm
more efficient, since the two kinks approximation is
equivalent to NCA, and the four kinks approximation
to OCA.
The basic idea of the bold CTQMC algorithm is to

sample the skeleton Feynman diagrams, with propaga-
tors being dressed61. The Monte Carlo importance sam-
pling samples all such diagrams, with the probability pro-
portional to their Luttinger-Ward functional Φ. Hence
contributions to all pseudoparticle self-energies can be
straighforwardly sampled within this approach.
Although the formalism of hybridization expansion on

real axis was developed long ago (see for example Ref.62),
its imaginary axis counterpart was not yet given. To
our knowledge, the NCA equations have not yet been
implemented on imaginary axis, because of the problems
with diverging term in the projected Dyson equation (see
Eq. (79) below).
In the hybridization expansion, the pseudoparticles are

introduced to diagonalize the atomic part of the Hamil-
tonian. The impurity problem is cast into the form

H =
∑

m

|m〉Em〈m|+
∑

ki

εkic
†
kicki (66)

+
∑

mn,kαi

Vkiα|m〉〈m|f†α|n〉〈n|cki + h.c.

where we used completeness
∑

m |m〉〈m| = 1 for atomic
states |m〉. Each atomic state is represented by corre-
sponding pseudoparticle a†m|vacuum〉 = |m〉, and the
completness of atomic basis gives a constraint for pseu-
doparticles → ∑

m a†mam ≡ Q = 1. The Hamiltonian is
then given by

H =
∑

m

Ema
†
mam +

∑

ki

εkic
†
kicki (67)

+
∑

mn,kαi

Vkiαa
†
man〈m|f†α|n〉cki + h.c.+ λ(Q− 1)

and the action is

S =
∑

m

∫
dτa†m(

∂

∂τ
+ Em + λ)am (68)

+
∑

nn′mm′

(Fα†)mn(F
β)n′m′ ×

×
∫
dτdτ ′a†m(τ)an(τ)∆αβ(τ − τ ′)a†n′(τ

′)am′(τ ′)

where (Fα†)mn = 〈m|f†α|n〉. We also define H = H0 +
λQ.



16

Any physical quantity has to be evaluated in the Q = 1
subspace. This is achieved by letting λ→ ∞, to separate
the spectra of Q = 0, Q = 1, Q = 2, · · · . Then we use
the Abrikosov’s trick to pick out the Q = 1 subspace.
The expectation value, which we want to compute is

〈A〉Q=1 =
TrQ=1(Ae

−βH)

TrQ=1(e−βH)
, (69)

while accesible quantities are 〈A〉 =∑Q TrQ(Ae
−βH)/Z.

If operator A vanishes in the absence of impurity (in
Q = 0 subspace), the physical expectation value can be
computed by

〈A〉Q=1 = lim
λ→∞

〈A〉
〈Q〉 . (70)

This is clear from expansion

Z〈A〉 = TrQ=1(Ae
−βH0−βλ) + TrQ=2(Ae

−βH0−2βλ) + · · ·
Z〈Q〉 = TrQ=1(e

−βH0−βλ) + TrQ=2(2e
−βH0−2βλ) + · · ·

Z = TrQ=0(e
−βH0) + · · · (71)

Notice also that in the λ→ ∞ limit

〈Q〉eβλ =
TrQ=1(e

−βH0)

TrQ=0(e−βH0)
= e−βFimp (72)

can be used to obtain impurity free energy.
In more general case, when 〈A〉 does not vanish in

Q = 0 subspace, Eq. (70) should be replace by 〈A〉Q=1 =

limλ→∞
〈AQ〉
〈Q〉 .

The Green’s functions for pseudoparticles obey the
Dyson equation,

Gm =
1

ω − λ− Em − Σm(ω)
. (73)

where the energies of all pseudoparticles are shifted by
λ compared to atomic energies Em, due to λQ term in
the Hamiltonian. In general, the Green’s functions for
pseudoparticles are off-diagonal. The states which corre-
spond to the same superstate, defined in Ref. 23, obey
a matrix analog of the above Dyson equation. However,
here we will give equations for diagonal case, since the
generalization is less transparent, but straighforward.
The numeric limit of λ → ∞ is very untractable for

computer. Since bold-CTQMC is implemented in imagi-
nary time, we thus want to analytically project the pseu-
doparticle equations on imaginary time axis.
Before the limit λ → ∞ is taken, the pseudoparticle

Green’s functions are given by

Gm(τ) =

{ ∫
dx
π f(−x)e−xτG

′′

m(x) τ > 0

−
∫

dx
π f(x)e

−xτG
′′

m(x) τ < 0
. (74)

The poles of the Green’s function Gm are at large fre-
quencies, comparable to λ, while G

′′

m vanishes for x≪ λ.

Hence G(τ < 0) vanishes because f(x)G
′′

m(x) vanishes.
We thus have

Gm(τ < 0) = 0 (75)

Gm(τ > 0) = e−λτ

∫
dx

π
e−xτG

′′

m(x+ λ). (76)

This equations demonstrate the well known fact that the
pseudoparticles can not propagate back in time.
To derive a set of well posed projected equations, we

introduce projected Green’s functions, which remain well
behaved in the limit λ → ∞, and are used for numeric
implementation

G̃m(τ) = eλτGm(τ) (77)

Of course, these projected propagators vanish for τ <
0. The projected propagators are analogous to the well
known projected functions on the real axis (see Ref. 62)

G̃m(x) = G
′′

m(x+ λ)/f(−x) since

G̃m(τ) =

∫
dω

π
e−ωτf(−ω)G̃m(ω) (78)

is the usual τ ↔ ω transformation between the imaginary
time and real frequency.
Our goal is to write all equations in terms of projected

G̃ and analogous Σ̃ functions, which do not contain λ
and are numerically well behaved. The problem however
is that the projected quantities do not have fermionic nor
bosonic character, and hence can not be represented on
imaginary frequency axis. The Dyson equation Eq. (73)
can be expressed in terms of projected functions by

G̃(τ) = T
∑

iω

e−(iω−λ)τ

iω − λ− E −
∫ β

0
dτ ′e(iω−λ)τ ′Σ̃(τ ′)

(79)

but its evaluation is far from straightforward. For conve-

nience, we drop the index m from Em, G̃m, and Σ̃m.
We need to evaluate this formula in the limit λ → ∞.

It is however not possible to perform the limit numer-
ically because the exponential factors grow as exp(λβ)
while the poles are in infinity on the real axis.
For the implementation of the bold-CTQMC, it is cru-

cial to find numerically tractable form of the projected
Dyson equation. To this end, we perform expansion in

powers of Σ̃, to get

G̃(τ) = T
∑

iω

e−(iω−λ)τ

iω − λ− E

(
1 +

S

iω − λ− E

+
S2

(iω − λ− E)2
+ · · ·

)
(80)

where S =
∫ β

0
dτ ′e(iω−λ)τ ′

Σ̃(τ ′). The summation over
imaginary frequency can now be performed, to obtain
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G̃(τ) = −
∞∑

n=0

1

n!

dn

dEn

[∫ τ

0

dτ1Σ̃(τ1)

∫ τ−τ1

0

dτ2Σ̃(τ2)

∫ τ−τn−1−···−τ1

0

dτnΣ̃(τn)e
−E(τ−τ1−τ2−···−τn)

]
(81)

Note that the limits of integration are constraint to
the phase space of forward propagating pseudoparticles.
Namely, the limit of λ → ∞ does not allow the time
difference in the exponent to be negative.
To evaluate the projected Dyson equation in a stable

way, we first evaluate the following moment-functions

Sn(τ) =
1

n!

∫ τ

0

dτ ′Σ̃(τ ′)e−E(τ−τ ′)(τ − τ ′)n, (82)

and then we convolve the moment-functions with Σ̃. The
Eq. (81) is hence implemented by

G̃(τ) = −e−Eτ + S1(τ)− (Σ̃ ∗ S2)(τ) (83)

+ (Σ̃ ∗ (Σ̃ ∗ S3))(τ)− · · ·+ (Σ̃ ∗ (Σ̃ ∗ · · · ∗ Sn))(τ)

where

(Σ̃ ∗Q)(τ) =

∫ τ

0

dτ ′Σ̃(τ − τ ′)Q(τ ′) (84)

Note that all terms in the expansion have the same sign

(note Σ̃ < 0), hence the expansion converges quite fast,
and we typically need between 30-50 terms for numeri-
cally sufficient precison.
Convolutions can be evaluated by standard method

of Fourier transforms, or, they can be cast into the

form of matrix multiplications, once the matrix Σ̃τ,τ ′ =

Σ̃(τ−τ ′)dτ ′ is precomputed and used for all terms in the
expansion.
It is instructive to check the formula in two simple

limits: i) Σ̃ = Σ0δ(τ), evaluates to G̃(τ) = −e−(E+Σ0)τ ;

ii) Σ̃ = σ0 = const and E = 0 evaluates to G̃(τ) =
− cosh(τ

√
σ0).

The latter limit is very instructive because it shows

that G̃ can exponentially grow at low temperature and
finite τ . This is well known problem from implementing

the NCA equations on real axis. To keep G̃(τ) finite,

and peaked around the origin on real axis (G̃(τ) roughly
constant in τ), one needs to shift all pseudoparticle ener-
gies Em → Em+λ0 to sufficiently positive energies, such

that
∑

m −G̃m(β − 0+) = const, where const is of the
order unity. Namely, in grand canonical ensemble, the
pseudoparticle charge 〈Q〉, defined in Eq. (72), is

〈Q〉 =
∑

m

Gm(β − 0+) = e−βλ
∑

m

G̃m(β − 0+) (85)

indeed vanishes in the physical Q = 1 subspace. Once
the projection is done, the physical quantities in Q = 1
subspace are invariant with respect to shift of all pseu-
doparticle energies by the same amount. If we introduce

a finite shift Em → Em + λ0 (which is equivalent to
λ → λ + λ0), charge 〈Q〉 will decrease for e−βλ0 while
the product 〈Q〉eβλ0 = e−βFimp will remain the same.
Similarly, all physical quantities are invariant, while the
projected pseudoparticle quantities are not. Hence, for
numerical stable evaluations, it is crucial to choose the
shift λ0 such that pseudoparticle propagators are finite.
A large λ0 will make them exponentially small, while van-

ishing λ0 will cause G̃m to diverge at β. We thus need
to fix the value of λ0 properly. Two possible choices are∑

mGm(β − 0+) = const or Gm−gs(β − 0+) = const,
where m− gs is the pseuodoparticle, which corresponds
to the ground state of the atom.
The basic idea for the bold-CTQMC is to sample

self-energies for all pseudoparticles as well as the local
Green’s function. This is easiest to achive by defining
the probabilty to be proportional to the absolute value
of the Luttinger-Ward functional |Φ[G,∆]|, and the self-
energies then become

Σmm′ =
δΦ[G,∆]

δGm′m
(86)

Gαβ =
1

〈Q〉
δΦ[G,∆]

δ∆βα
(87)

where the first equation is contribution to the pseudopar-
ticles self-energies, and the second is contribution to
the real-electron Green’s function (the impurity Green’s
function).
The second identify might be less obvious, but it fol-

lows from the fact that the impurity Green’s function is
the T-matrix for the conduction electrons
(

1

g−1
k − Σc

)

ki,k′j

= gkiδki,jk′ + gkiV
∗
kiαGαβVk′jβ . (88)

We have seen above that Gmm′ carries a factor of e−λβ ,
and we will show below that Φ also carries the same fac-
tor e−λβ , hence the pseudoparticle self-energy Σmm′ is of
the order of unity. On the other hand, the conduction
electron self-energy Σc is proportional to δΦ[G,∆]/δ∆,
and hence vanishes as e−βλ. Therefore both Σc and Gαβ

are proportional to e−βλ. The expansion of the equa-
tion Eq. (88) in powers of e−βλ shows that i) conduc-
tion electron propagator gk is unrenormalized in this the-
ory (or equivalently the bare hybridization ∆ appears
in functional Φ[G,∆]); ii) the impurity Green’s func-
tion, evaluated in the grand-canonical ensemble Gαβ is
equal to δΦ[G,∆]/δ∆, which vanishes as e−βλ. However,
the physical quantities like the electron Green’s function
must be evaluated in Q = 1 subspace, using Eq. (70).
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The resulting ratio is of order unity and is invariant with
respect to shift of λ0, as explained above.
The Luttinger-Ward functional Φ[G,∆] for the lowest

order contribution (two kinks), known under the name
NCA, is given by

Φ0[G,∆] =

∫ β

0

dτGmm′(τ)Gn′n(β − τ)∆αβ(−τ)

×(Fα)nm(F β†)m′n′ (89)

Note that if integration variable is shifted to τ → β − τ ,
additional minus sign can appear. In case of regular
fermions and bosons, this minus sign is automatically
taken care of by the antiperiodicity of fermionic Green’s
functions G(β − τ) = −G(−τ). The pseudoparticle
Green’s functions however vanish at negative times, and
one needs to add β to the negative argument, and add
an overal minus sign when β is added to the fermionic
Green’s function.
The corresponding pseudoparticle self-energies are

Σnn′(τ) = (−1)f
δΦ0[G,∆]

δGn′n(β − τ)
(90)

where (−1)f is +1 (-1) if n corresponds to pseudo-boson
(pseudo-fermion). Again, this minus sign is because neg-
ative times are not allowed for pseudoparticles.
Each pseudoparticle propagator carries an exponent

e−λ∆τ , and the sum of exponents is always e−βλ. This
holds for all diagrams composed of exactly one loop of
pseudoparticles. These are the only diagrams that give
contribution to the physical quantities.

If we take out the exponential factors, the NCA func-
tional takes the form

Φ0[G,∆] = e−βλ

∫ β

0

dτG̃mm′(τ)G̃n′n(β − τ)∆αβ(−τ)

×(Fα)nm(F β†)m′n′(91)

If we denote Φ̃[G,∆] = eβλΦ[G,∆], we see that

Σ(τ) =
δΦ

δG(β − τ)
=

δΦ̃

δG̃(β − τ)
e−λτ = Σ̃(τ)e−λτ ,

hence

Σ̃nn′(τ) =
δΦ̃[G̃,∆]

δG̃n′n(β − τ)
(92)

The projected Φ̃[G̃,∆] has exactly the same form as

Φ[G,∆], we only need to replace G → G̃. The NCA
diagram hence becomes

Φ̃0[G̃,∆] =

∫ β

0

dτG̃mm′(τ)G̃n′n(β − τ)∆αβ(−τ)

×(Fα)nm(F β†)m′n′ (93)

From Eqs. (92) and (93) it is clear that we achieved
the goal of expressing all equations in terms of projected
quantities, which do not depend on variable λ, and are
numerically well behaved.
The projected second order diagram, which correspond

to OCA approximation, is given by

Φ̃1[G̃,∆] =

∫ β

0

dτ4

∫ τ4

0

dτ3

∫ τ3

0

dτ2

∫ τ2

0

dτ1G̃m0m′

0
(τ1 − τ4 + β)G̃m1m′

1
(τ2 − τ1)G̃m2m′

2
(τ3 − τ2)G̃m3m′

3
(τ4 − τ3)

(Fα†)m′

1
m0

∆αβ(τ1 − τ3)(F
β)m′

3
m2

(Fα′†)m′

2
m1

∆α′β′(τ2)(F
β′

)m′

0
m3

(94)

The projected pseudoparticles vanish at negative times
and are well behaved at positive times. For the purpose
of properly evaluating the Feynman diagrams in time,
we can extend them to negative times without any loss
of generality. The pseudo-bosons hence become periodic,
and the pseudo-fermions antiperiodic. The annoying mi-
nus signs (−1)f can then be eliminated. However, the
projected pseudoparticles can not be Fourier transformed
to imaginary frequency, and they do not obey the usual
Dyson equation, but rather a more complicated type of
Dyson equations derived in Eq. (81). The pseudoparti-
cles can be analytically continued to real frequencies, and
all pseudoparticles satisfy fermionic-type of continuation,
given in Eq. (78).

Finally, the Monte Carlo algorithm must generate any

skeleton diagram of any order. The probability to accept

the diagram is proportional to its |Φ̃[G̃,∆]|. The contri-
bution to pseudoparticle self-energy is then Σmm′(τ) =
〈sign(Φ)/Gm′m(−τ)〉, where 〈〉 means the average in the
Markov proces, where weights are proportional to |Φ|.
Similarly, the impurity Green’s function can be sam-
pled by Gαβ(τ) = 〈sign(Φ)/∆βα(−τ)〉/〈Q〉. The sam-
pled self-energies will only be proportional to the exact
self-energies. The renormalization factor can easily be
found knowing the probability for NCA diagram, and its
value.

The requirement to sample the skeleton diagrams pro-
hibits us to combine many diagrams into determinant
of hybridization functions ∆, as it was achieved in the
algorithm by Werner et.al.21. Similar type of trick of
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combining the diagrams into determinant of ∆’s would
substantially improve the efficiency of the algorithm. It
is however not clear how to eliminate non-skeleton dia-
grams from determinant, and keep the updating formulas
efficient.

To test the above described algorithm, and to check
its performance and convergence, we implemented a sim-
plified version of the bold-ctqmc for the canonical An-
derson impurity model. We sampled all diagrams up to
certain order starting with first order (NCA), second or-
der (OCA) and up to fifth order. The fifth order takes
only minutes on a typical personal computer. We first
found the topology of all diagrams of certain order, the
prefactor and the sign of each diagram. In Fig. 2 we
plotted the diagrams for the first few orders (second -
Φ(2), ... fouth - Φ(4)). We colored the diagrams accord-
ing to their sign, positive with black and negative with
red. There are four NCA diagrams, two OCA diagrams,
8 third order diagrams (4 positive and 4 negative), 44
forth order diagrams (24 positive and 20 negative), 320
fifth order diagrams (128 positive and 192 negative). We
evaluated exactly the NCA and OCA diagrams, and we
used Metropolis algorithm to sample the time arguments
for higher order diagrams. The probability for the ac-
ceptance of a set of imaginary times was taken to be
proportional to the value of the total |Φ(n)(τ1, τ2, ...τ2n)|,
hence at fifth order 320 diagrams were evaluated at each
Monte Carlo step. While this algorithm can not be used
at very high orders in perturbation theory due to expo-
nential growth in the number of diagrams, its advantage
is in large improvement of the sign problem. Namely,
the diagrams of the same order and the same time argu-
ments tend to cancel at higher orders. Since we evaluate
all of them at each Monte Carlo step, the sign problem
is almost completely eliminated.

The non-interacting limit U = 0 is the hardest case
for the hybridization expansion algorithm, because the
coherence temperature is infinite. Here we present test
of the algorithm in the case of half-filled non-interacting
Hubbard model on the Bethe lattice within DMFT. We
want to emphasize that the algorithm becomes more ef-
ficient and faster converging in strongly interacting limit
U >> 0, a case which will be presented elsewhere.

In Fig. 3(a) we show the impurity Green’s function on
imaginary axis (at 1/T = 100) when the perturbation
theory is truncated at certain order. We also display the
exact result by the dashed line. While the NCA curve
clearly deviates from the exact result, the higer order
approximations are hardly distinguished from the exact
curve on this plot. In Fig. 3b we show separately the con-
tributions to the Green’s function from different orders in
perturbation theory. As expected the contribution from
the lowest two orders is large, while the higher order con-
tributions are smaller. This shows why OCA approxima-
tion is so successful in many realistic situations. The fifth
order contribution is on average only 3×10−3, and never
exceeds 6× 10−3.

In Fig. 4 we zoom-in the exponential drop of the

FIG. 2: All diagrams of the second, the third, and the
fourth order in hybridization strength which contribute to the
Luttinger-Ward functional. The pseudoparticle-propagators
run across the ring, while the crossing lines stand for the
hybridization ∆. The full line represents spin-up, and the
dashed lines the spin-down hybridization. The black diagrams
(both diagrams in Φ(2), first four in Φ(3), and first 24 in Φ(4))
give positive contribution to Φ, and the red give negative con-
tribution. Some diagrams seems to appear multiple times.
This is because different pseudoparticles appear in the ring.
Since we do not use different line for each pseudoparticle, some
diagrams seem equivalent. However, it is very straighforward
to deduce the pseudoparticle propagators knowing the type
and the direction of the conduction electron propagators.

Green’s function at short times. We see that the conver-
gence with the perturbation order is very encouraging.

For efficiency of the bold-ctqmc, it is important to
monitor the sign of each individual diagram. In Fig. 5 we
show separately the contribution to the impurity Green’s
function from the diagrams with positive Φ and those
with negative Φ, together with the sum of the two. At
the third order, the sum is around 70% of the positive
contribution, while at the forth and fifth order, the sign
drops to 0.2 and 0.07, respectively. As explained above,
the current implementation of the method, which groups
together all diagrams of a certain order in perturbation
theory, does not have a substantial minus sign problem.
However, this method becomes expensive at high orders,
and thus one needs to resort to sampling of individual di-
agrams, which can be performed to arbitrary high order.
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FIG. 3: (a) The comparison of the finite order perturbation
theory result with the exact impurity Green’s function. (b)
The contributions to the impurity Green’s function up to the
fifth order, plotted separately order by order.

FIG. 4: The same as in Fig. 3, but we zoom in the short time
behaviour.

In the latter case, there will be a minus sign problem, as
estimated here.

B. The One crossing approximation

In this section we will give the most general formulas
for the One crossing approximation, and we will explain
the crucial steps in implementing the algorithm.
We start with lowest order approximation, which is the

Non-crossing approximation. When evaluating these di-
agrams, we have to consider only two Hilbert subspaces
of constant N at once, i.e., N and N + 1. The first
step is to compute all eigenvalues and eigenvectors of the
atom in the subspace N and N + 1. We then group to-
gether the atomic eigenstates, which are degenerate, i.e.,

FIG. 5: The three panels show the contribution to the impu-
rity Green’s function at 3rd, 4th and 5th order in perturbation
theory. We show separately the contribution from the terms
with positive Φ and the terms with negative Φ.

have the same atomic energy Em. In the next step we
check which of these degeneracy’s survive in the presence
of the crystal field environment (impurity hybridization
∆), and which off-diagonal propagators need to be con-
sidered. We evaluate the following matrix elements

Cαα′

b2,b1 =
∑

f∈deg,(α,α′)∈deg and ∆αα′ 6=0,

(Fα′

)b2f (F
α†)fb1(95)

Here b runs in the Hilbert subspace of N and f in
the Hilbert supspace of N + 1. The matrix elements
(Fα)bf = 〈b|fα|f〉 and (Fα†)fb = 〈f |f†α|b〉 where fα is
electron destruction operator. The sum runs only over
the f states which are degenerate and over one electron
states α which are also degenerate and for which ∆αα′

is nonzero in the considered crystal field symmetry. The
resulting matrix elements Cb2,b1 have the same symmetry
as the propagators of the pseudoparticles Gb2b1 . Clearly,
in high symmetry crystal environment, most of the off-
diagional matrix elements vanish and the degeneracy of
Gbb is high, but in low symmetry environment and in the
broken symmetry state, many of the off-diagonal propa-
gators become crucial.
Once the symmtry of the propagators is known, we

determine all nonvanishing bubbles (NCA diagrams) and
the matrix elements for each bubble. The NCA matrix
elements are

Cαα′

b1b2f1f2 =
∑

(f1,f2),(b1,b2),(α,α′)∈deg

(Fα′

)b2f1(F
α†)f2b1 ,(96)

where we sum only over degenerate states f, b and degen-
erate crystal field components α. The Luttinger-Ward
functional and the self-energy corrections are depicted in
Fig. 6. We associate a factor (Fα†)fb to each vertex that
marks the creation of electron in bath α. Accordingly, we
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FIG. 6: The NCA Luttinger-Ward functional and the self-
energies within NCA.

FIG. 7: The Luttinger-Ward functional for the One Crossing
Approximation (OCA).

add a factor (Fα)bf for each vertex of electron anhilation.

In the next step, we precompute the matrix elements of
the one-crossing diagrams, which are depicted in Fig. 7.
Here we need to select three different Hilbert subspaces:
N − 1, N , and N + 1 to compute

Dαα′ββ′

f1f2f3f4b1b2a1a2
=

∑

deg

(F β′

)b2f3(F
α′

)f4a1
(F β†)a2f1(F

α†)f2b1 (97)

Here b, f , a run over the states with N −1, N and N +1
number of particles, respectively. We add only the most
important crossing corrections, for which the particle
number N is in the Hilbert subspace of the ground state
of the atom. We also select fi to be only the ground state
multiplet of the atom, or the atomic states with energy
very close to the ground state energy. We compute the
matrix elements C and D only once in the DMFT self-
consistent loop and we save them into the input file for
OCA impurity solver. The matrix elements C, D do need
to be updated in the outer LDA+DMFT charge loop. We
typically update them every three to four charge steps,
since the relative crystal field splittings usually change
very little during LDA+DMFT iterations. The atomic
energies Em change much more (due to the chemical po-
tential shift), and need to be updated at every step.
The NCA diagrams on the real axis can be evaluated

with conventional techniques, and after the projection,
they take the following form

Σb2b1(ω) =
∑

f1f2αα′

−(Fα′

)b2f1(F
α†)f2b1

∫
dy

π
f(y)∆

′′

αα′(y)Gf1f2(ω + y) (98)

Σf2f1(ω) =
∑

b1b2αα′

−(Fα′

)b2f1(F
α†)f2b1

∫
dy

π
f(−y)∆′′

αα′(y)Gb1b2(ω − y) (99)

Aimp
α′α (ǫ) =

1

eβλ〈Q〉f(−ǫ)
∑

b1b2f1f2

∫
dye−βy(Fα′

)b2f1(F
α†)f2b1G

′′

b1b2(y)G
′′

f1f2(y + ǫ)

whereG
′′

= ImG. The pseudoparticle propagatorsG and
the pseudoparticle self-energies are related by the Dyson
equation. The Eq. 67 shows that G = 1/(omega − E −
λ− Σ).

Many of the pseudoparticle propagators and hybridiza-
tion functions are degenerate, hence in practice we do not
need to sum over all possible b, f and α indices, but we
rather use the precomputed matrix elements Cαα′

b1b2f1f2
,

which make sure that no equivalent diagram (a diagram
which has the same frequency dependence) is not com-

puted multiple times.

To take care of the diverging exponential factors, we

work with the projected quantities G̃(ω) = G
′′

(ω)/f(−ω)
and Σ̃(ω) = Σ

′′

(ω)/f(−ω), as explained above. The
pseudoparticles have typically very sharp almost diverg-
ing structure near the treshold energy, which is not easy
to Fourier transform. Hence we can not use the Fourier
transform for convolutions. We rather cast the above
equation into the form for matrix multiplication, for
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which fast linear algebra packages such as BLAS, exist.
We use the logarithmic mesh to resolve the fine structure
of the pseudoparticle green’s functions.
It is important to realize that the number of baths α

is quite small (of the order of 2(2L + 1) for correlated
orbital of angular momentum L), while the number of
atomic states is much bigger. Hence we precompute the
integral and the first moment of functions ∆

′′

(ω)f(ω)

and of ∆
′′

(ω)f(−ω) for all αα′. Within trapezoid rule,
the values and the first moments of these quantities are
enough to compute the above convolutions with matrix
multiplications on any given mesh.
To see that, lets consider an arbitrary convolution

C(z) =

∫
g(x)f(x− z)dx (100)

Here the function g(x) is defined on a certain mesh {xi},
on which it is well resolved, i.e., g(xi) ≡ gi. The function
f(y) is defined on another mesh {yi}, i.e., f(yi) ≡ fi.
The convolution can be safely calculated on the union of
both mashes {xi, yj + z}. One of the meshes should be
shifted for z, thus for each outside frequency, a different
union of the two meshes should be formed and only then
the convolution can be safely evaluated. This is very time
consuming and not done in practice.
When a certain f function needs to be convolved with

many other functions (like ∆
′′

(ω)f(ω) in our example
above), we use the followin trick. We first precompute
the integral and the first moment of the function

F1(ǫi) =

∫ ǫi

−∞
f(u)du (101)

F2(ǫi) =

∫ ǫi

−∞
uf(u)du (102)

(103)

We then calculate the convolution without building a new
inside mesh. Let’s use the mesh {xi} which resolves func-
tion g. Then, in the spirit of trapezoid rule, we can lin-
early interpolate g between the points

C(z) =
∑

i

∫ xi+1

xi

[
gi +

gi+1 − gi
xi+1 − xi

(x− xi)

]
f(x− z)dx.

(104)
This integral can be expressed by the above defined func-
tions. To show that, let us rewrite the convolution and
expressed it by the new function 〈f〉i which is defined on
the same mesh as g and with which the covolution is a
simple scalar product

C(z) =
∑

i

gi

[∫ xi+1−z

xi−z

xi+1 − z − u

xi+1 − xi
f(u)du

+

∫ xi−z

xi−1−z

z + u− xi−1

xi − xi−1
f(u)du

]

≡
∑

i

gi〈f〉izdhi. (105)

Thus 〈f〉iz is

〈f〉iz = 2

[
(xi+1 − z)[F1(xi+1 − z)− F1(xi − z)]− F2(xi+1 − z) + F2(xi − z)

(xi+1 − xi−1)(xi+1 − xi)
− (106)

− (xi−1 − z)[F1(xi − z)− F1(xi−1 − z)]− F2(xi − z) + F2(xi−1 − z)]

(xi+1 − xi−1)(xi − xi−1)

]
(107)

Hence the convolution of f with many functions gm can
be computed at once C(m, z) = gm ∗ f by the following
matrix product C(m, z) =

∑
i gmi〈f〉izdhi.

Once the NCA contributions are evaluated, we add

the second order diagrams, which correspond to OCA
approximation and are depicted in Fig. 7. They take the
explicit form
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Σb2b1(ω) = −
∑

f1f2f3f4a1a2αβα′β′

(F β′

)b2f3(F
α′

)f4a1
(F β†)a2f1(F

α†)f2b1 × (108)

×
∫
dy

π
f(y)∆

′′

ββ′(y)Gf3f4(ω + y)

∫
dx

π
f(x)∆

′′

αα′(x)Gf1f2(ω + x)Ga1a2
(ω + x+ y)

Σa2a1
(ω) = −

∑

f1f2f3f4b1b2αβα′β′

(F β′

)b2f3(F
α′

)f4a1
(F β†)a2f1(F

α†)f2b1 × (109)

×
∫
dy

π
f(−y)∆′′

αα′(y)Gf3f4(ω − y)

∫
dx

π
f(−x)∆′′

ββ′(x)Gf1f2(ω − x)Gb1b2(ω − x− y)

Σf2f1(ω) = −
∑

f3f4a1a2b1b2αβα′β′

[
(F β′

)b2f3(F
α′

)f4a1
(F β†)a2f1(F

α†)f2b1 + (Fα)b2f1(F
β′

)f2a1
(Fα′†)a2f3(F

β†)f4b1

]
×

×
∫
dy

π
f(−y)∆′′

αα′(y)Gb1b2(ω − y)

∫
dx

π
f(x)∆

′′

ββ′(x)Ga1a2
(ω + x)Gf3f4(ω + x− y) (110)

Aimp
β′β (ǫ) = −

∑

αα′f1f2f3f4b1b2a1a2

[
(F β′

)b2f3(F
α′

)f4a1
(F β†)a2f1(F

α†)f2b1 + (Fα′

)b2f1(F
β′

)f2a1
(Fα†)a2f3(F

β†)f4b1

]
×(111)

× 1

eαλ〈Q〉f(−ǫ)

∫
dye−αy

∫
dx

π
f(x)∆

′′

αα′(x)Im {Gb1b2(y)Gf1f2(x+ y)} Im {Gf3f4(ǫ+ y)Ga1a2
(ǫ+ x+ y)}

In practice, we do not sum over all f , b and a indices.
As explained above, we precompute the matrix elements

Dαα′ββ′

f1f2f3f4b1b2a1a2
for the most important processes. We

take only the low lying atomic states into account (only
f ’s which are part of the ground state multiplet or with
energy very close to the ground state). We also take
into account the degeneracy of all atomic states and the
degeneracy of baths α, in order to avoid computing the
equivalent diagram mutliple times. Finally, the convolu-
tions for the OCA approximation can also be cast into
the form of matrix multiplication, once the first moment
and integrals of a few functions are precomputed.

VIII. THE ANALYTIC CONTINUATION

METHOD

The Monte Carlo impurity solvers are implemented on
imaginary axis where the quantity being sampled is real
and many times even “sign-free”. The results obtained in
this way are exact, except for the statistical noise. How-
ever, even a tiny statistical error on imaginary axis pre-
cludes the analytic continuation by Pade type of meth-
ods. The standard method, to overcome the difficulty of
the singularity of the kernel, is the Maximum Entropy
Method (MEM). The basic idea of this method is to
find a function on the real axis, which is very close to
Monte Carlo data on imaginary axis (within statistical
error), and is smooth function on real axis, locally not

very different from a chosen model function. This ap-
proach works very well for analytical continuation of the
Green’s function G(τ) to obtain spectral function on real
axis, i.e., to solve the integral equation

G(τ) = −
∫
f(−x)e−τxA(x)dx

for A(x).
Knowing the spectral function, it is however not possi-

ble to obtain the momentum resolved spectra, or optical
conductivity, or transport coefficients. To compute these
properties, it is essential to analytically continue the self-
energy, rather then the Green’s function. The self-energy
of correlated materials is however very hard to analyti-
cally continue with maximum entropy method, because
the self-energy typically has very sharp feature or even
poles, which separate the low energy part of the spec-
tra (the quasiparticle peak) from the high energy part
of the spectra (the Hubbard bands). Due to the max-
imum entropy method requirements of smoothness, the
analytically continued self-energy at low energy is typ-
ically polluted with the near-by poles, which appear in
the self-energy at the intermediate energy.
A successful analytic continuation method for self-

enery needs to met the following conditions:

• imaginary axis self-energy is equal to Monte Carlo
data within the statistical error

• real axis self-energy function must be locally
smooth
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• the power-expansion around zero frequency should
match the quantum Monte Carlo data on both, real
and imaginar axis.

While the first two conditions are met by MEM, the last
is not.
We developed an alternative method, which mets the

above conditions and was very successfully used in com-
bination with CTQMC for pnictides11, cuprates64, VO2

and other materials. Although the method has many pa-
rameters, which needs to be choosen appropriately, we
can always check its accuracy by recomputing the spec-
tral function of the lattice, using analytically continued
self-energy, and comparing the spectral function to the
maximum entropy continued spectra.
We expand the self-energy in terms of modified Gaus-

sians L, and we add a polynomial function around zero
frequency

ΣM (z) =
∑

n

cnL(En, z) + f0(z) (112)

The modified Gaussians

L′′

(En, ω) =
1

b|En|
√
π
e−b2/4−(log(ω/En)/b)

2

(113)

have a unique peoperty that they are peaked at En, with
the width of approximately En, while they exponentially
vanish at zero frequency. They are asymmetric with slow
decay away from zero and very fast decay towards zero
frequency. We choose the modified Gaussians centered
on a logarithmic mesh of En = ±πTwn with w ∼ 1.5.
The modified Gaussians functions were used in connec-
tion with constructing the NRG spectral function65. We
typically take the parameter b to be ∼ 0.8.

Since the modified Gaussians all vanish at zero fre-
quency, we add a polynomial function around zero fre-
quency. The coefficients of the polinomial are determined
by fitting the imaginary axis self-energy, i.e.,

Σ(ωn) = Σ0 + (−b1 + ia1)ωn + (−a2 − ib2)ω
2
n (114)

which can be analytically continued to

Σ(ω) = Σ0 + (a1 + ib1)ω + (a2 + ib2)ω
2 (115)

The polynomial has to drop-off sufficiently fast at high
frequency, hence we choose the following function

f
′′

0 (ω) =

{(
Σ

′′

0 + ωb1 + ω2b2

)
/
(
1 + (ω2b2/Γ

2)2
)

Σ
′′

0 Γ2/(ω2 + Γ2)
(116)

where the upper choice is made for metals and the lower
choice for insulators and very bad metals. In the FL
regime, we have b1 ≪ 1, |Σ′′

0 | ∝ Z2π2T 2. The coefficient
Γ is determined by the condition f0(ω = 1) ≪ 1

For speed, we precompute L(En, iω) and L′

(En, ω) by

L(En, z) = − 1

π

∫
dxL′′

(En, x)

z − x
. (117)

Similarly, we also precompute f0(iω) and f
′

0(ω). Also the

integral of the functions In =
∫
dxL′′

(En, x) and I0 =∫
dxf

′′

0 (x) are precomputed.

The coefficients cn in expansion Eq. (112) are deter-
mined by minimizing the following functional

χ =
∑

ωn∈sampled

|ΣM (iωn)− ΣQMC(iωn)|2 + α1|I(ΣM )− ID|2 + α2|ΣM (0)− Σ0|2 (118)

+α3

∣∣∣∣
dΣM (0)

dω
− (a1 + ib1)

∣∣∣∣
2

+ α4

∣∣∣∣
d2ΣM (0)

dω2
− 2(a2 + ib2)

∣∣∣∣
2

(119)

Here ωn in the first term runs over the imaginary fre-
quencies which are sampled by QMC (and not over the
analytically added tail). The second terms imposes the
correct value of the integral of the self-energy. The inte-
gral of the expansion (112) is

I(ΣM ) =
∑

n

cnIn + I0,

which needs to match the 1/(ωn) tail of the QMC data

ID = π lim
ωn→∞

ωnΣ
′′

QMC(ωn)

Finally, the last three terms ensure that the value, and
the first two derivatives of the analytically continued self-
energy at zero frequency match the derivatives on imag-
inary axis. For minimization, we use the L-BFGS-B al-
rorithm of Ref. 66.

IX. CERIUM α-γ TRANSITION

To test our implementation of DFT+DMFT within
Wien2K method, we show in Figs. 8 and 9 results for
cerium α to γ transition.
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FIG. 8: Total and partial density of states of elemental cerium
metal in both phases, α and γ phase. We used OCA impurity
solver.

FIG. 9: The same data as in Fig. 8, but obtained by continu-
ous time quantum Monte Carlo solver, and analytical contin-
uation method.

At a temperature less than 600K and pressure less
than 20 kbar, elemental cerium undergoes a transition
between two isostructural phases: a high pressure phase
or α phase and a low pressure γ phase. In α-Ce the
f electron is delocalized while in γ-Ce the f electron is
localized. The transition is well accounted for by phe-
nomenological Kondo Volume Collapse picture68–70.
We treat only the Ce 4− f electrons as strongly corre-

lated thus requiring full energy resolution, while all other
electrons such as Ce spd are assumed to be well described
by the GGA. We choose U = 5.5 eV and J = 0.68 eV for
the Coulomb interaction. The value of U was obtained
by constraint DFT calculation71 and J was computed us-
ing the atomic physics program of Ref. 42 and reduced

FIG. 10: The hybridization function of the jz = 5/2 subshell
within LDA and within DMFT in both phases.

FIG. 11: Optical conductivity of α-Ce and γ-Ce within
LDA(Wien2K)+DMFT method. Note the shoulder in α-Ce
conductivity, which is due to excitations across the two quasi-
particle peaks (4f : 5/2 and 4f : 7/2) clearly visible in figure
8, and also measured by experiment of Ref. 67.

by 30% to account for the screening in the solid. Both
phases of Ce have fcc unit cell with quite different vol-

umes, Vα = 28.06Å
3
and Vγ = 34.37Å

3
. The results were

converged with 5000-k points, we use the GGA functional
for the DFT part and use OCA and CTQMC impurity
solver to solve the auxliliary impurity problem.
The results in Fig. 8 (obtained by OCA) and Fig. 9

(obtained by CTQMC) are practically identical and very
similar to previous LDA(LMTO)+DMFT results72. One
can clearly see the broad quasiparticle peak in α-Ce, split
by the spin-orbit coupling ∼ 0.3 eV. The lower peak has
mostly 5/2 character and the upper peak mostly 7/2-
character. The system is in good Fermi liquid regime
at the temperature of 150K used in the calculation.
The second phase with larger volume is in local moment
regime with no visible Kondo peak at the Fermi level,
but enhanced Hubbard bands.
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It is instructive to examine the hybridization function
∆ = ω−Eimp −Σ− 1/G as computed by LDA and self-
consistent DMFT (see Fig. 10). It turns out that in Ce,
the low energy hybridization function is substantially re-
duced compared to its LDA value. The two large peaks
at −0.4 eV and 0.7 eV are absent in DMFT hybridization.
Since the coherence scale is exponential function of hy-
bridization, the coherence scale is lower in DMFT than it
would be in so called one-shot DMFT. It is known from
the early days of the Kondo volume collapse theory69,
that the LDA hybridization in a one-shot calculation was
too big and had to be renormalized by phenomenological
parameter73. DMFT reduces the hybridization through
the collective screening effects and hence is able to give
correct coherence scale of the problem.
Finally, let us show optical conductivity, as imple-

mented in LDA(Wien2K)+DMFT method. The overal
agrement with previous LDA+DMFT results10 is very
good. The new computational results are in even slightly
better agreement with experiment of Ref. 67, since they
both clearly display a shoulder around 0.3 eV in α-Ce,
which we can now clearly identify as excitations across
the split quasiparticle peak. The splitting is due to spin-
orbit coupling in Ce.

X. HEAVY FERMION 115 MATERIALS

The heavy fermion 115 materials have a chemical for-
mula CeXIn5, where X is either Co, Rh or Ir. They crys-
tallize in layered tetragonal structure shown in Fig. 12,
composed of Ce-In layers and X-In layers.
At high temperature, the low energy electronic states

are composed of mainly the broad spd bands of In and
Ce. The Ce-4f electrons are localized and their spectra
is mostly contained in Hubbard bands, which are more
than 2 eV away from the Fermi level. These electrons
behave as local magnetic moments. As the temperature
is reduced, the moments combine with the conduction
electrons to form a fluid of very heavy quasiparticles,
with masses that are two or three orders of magnitude
larger then the mass of the electrons.
The low temperature physics of 115 materials is very

puzzling. The heavy fermion physics comes primarily
from the Ce-In layer. Indeed, the related material CeIn3
has only the Ce-In layers (no X-In layer), and also dis-
plays a similar heavy fermion properties with supercon-
ductivity at very low temperature. However, 115 mate-
rials are very sensitive to the substitution of the transi-
tion metal ion in the X-In layer although Co, Rh and
Ir ions have the same valence (they are isovalent). In-
deed the three 115 materials have dramatically different
low energy properties: CeCoIn5 is a superconductor with
Tc ∼ 2.3K, CeRhIn5 is antiferromagnet with TN ∼ 3.5K,
while CeIrIn5 is superconductor with Tc of only 0.4K. A
fundamental question arises: Why are the low energy
properties of 115 materials so different?
A hint to the resolution of this problem was given in

FIG. 12: Crystal structure of CeXIn5. Red, yellow and gray
spheres correspond to Ce, X, and In atoms, respectively.

Ref. 58, where the DFT+DMFT calculation for CeIrIn5
indicated that the Ce 4f electrons hybridize stronger to
the out of plane In-p electrons, than the in-plane In p
electrons. Here we carried out the DFT+DMFT calcula-
tion for all three 115 materials and we show the difference
in electronic structure between the three materials. We
used the code based on LDA-LMTO code of Ref. 32 as
well as the new LAPW code based on Wien2K31 code.
The results obtained by our DFT+DMFT method in the
two codes are almost indistinguishable. For the impu-
rity solver, we used both OCA (described above) and
CTQMC23. The analytic continuation of CTQMC re-
sults was performed with the method described in chap-
ter VIII.

Fig. 13A shows the total density of states (DOS) and
the partial Ce-4f DOS for all three materials at low tem-
perature of 7K. The transition metal ion DOS is peaked
around binding energy 2eV, where the difference of DOS
is large. The partial Ce-4f DOS of the three compound
is very similar, except at the very low energy. Fig. 13B
zooms-in the low energy part of the spectra. We see that
CeIrIn5 compound has the largest quasiparticle peak, the
CeCoIn5 follows, while the CeRhIn5 has substantially
smaller quasiparticle peak at the same temperature of
7K.

Our view on the localization-itinerancy in 115 materi-
als is sketched in Fig. 14. Rh compound is most local-
ized, while Ir compound is most itinerant. Co compound
is similar to Ir compound, but slightly less itinerant than
Ir-115.

It is well known from the pressure experiments74,75

that Rh compound is more localized then Co compound.
Namely, under pressure of 1 GPa the Rh compound
becomes superconducting, and at pressure of ∼ 2GPa
reaches similar maximum TC as is the maximum TC

of Co compound76. Hence the pressure of the order of
GPa sufficiently increases the Ce-4f hybridization that
it overcome the difference between localization of the
electrons in the two compounds. Experimentally it is
a bit less clear what is the relation between Ir and
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FIG. 13: Total density of states (full lines) and partial Ce-
4f density of states (dashed lines) for CeCoIn5, CeRhIn5 and
CeIrIn5 materials. The lower pannel show the low energy part
of the Ce-4f density of states for all three compounds. We
used OCA solver.

Co compound, since both compounds are superconduc-
tors at low T. Ir compound has somewhat smaller spe-
cific heat coefficient in normal state than Co compound
(750 mJ/(molK2) for Ir-115 versus 1000 mJ/(molK2) for
Co-115)77,78. Ir compound has also somewhat lower resis-
tivity in the normal state79. Moreover, nuclear quadrupol
resonance (NQR) measurements of 1/(T1T )

80 suggest
that Ir-compound might be more itinerant than other Ce-
compound. Indeed pressurizing the CeIrIn5

81 along the
crystallographic c-direction, which increases itinerancy82,
decreases TC . Furthermore, it was shown that Cd-doping
acts as reverse pressure in 115’s83. Since higher Cd-
doping is necessary for appearance of antiferromagnetic
phase in CeIrIn5 than in CeCoIn5, this is also suggestive
of more itinerant nature of Ir-compound.

Our results are thus consistent with the resistivity
experiments79, NQR experiments80 and recent pressure
experiments81, and indicate that Ir compound is on the

FIG. 14: The sketch of the itinerancy/localization of the
three 115 compounds. In our view, the Ir compound is most
itinerant, while the Rh compound is most localized. The Co
compound is not localized enough to develop magnetic order
at low temperature, while it is nor a good metal. It is thus
conceivable that it would show tendency towards supercon-
ductivity. This phenomena is however beyond our current
theoretical method - the single site DMFT calculation. We
also show the bond distances between Ce and In atoms, and
the angle between Ce and out-of-plane In atom. None of
these parameters can explain the actual order of the com-
pounds, hence the structure itself can not explain the trend
of localized to itinerant transition in these compounds.

itinerant side of the phase diagram. Hence the low super-
conducting transition temperature might be connected
with too itinerant nature of carriers.
We further analize the difference in itinerancy by plot-

ting the hybridization function at zero frequency ∆(ω =
0)LL resolved in crystal field basis. The 14 dimensional
matrix of hybridizations has a 6 dimensional j = 5/2
component and a 9 dimensional j = 7/2 component.
The itinerancy (the quasiparticle peak) is almost entirely
from the j = 5/2 component, hence we will not analize
j = 7/2 part. The degeneracy of the 5/2 shell is lifted in
tetragonal crystal environment and hybridization splits
into Γ−

7 , Γ+
7 and Γ6 components. The Γ6 corresponds

to jz = ±1/2, while Γ+
7 and Γ−

7 correspond approxi-
mately to jz = 3/2 and jz = 5/2, respectively. In Fig. 15
we plot the hybridization (−Im[∆(0)]/π) in polar coor-
dinates with Ce atom in the center and In atoms around.
The plot is the cut in xz direction. The three dimensional
orbitals that correspond to the three crystal fields are
plotted in the lower pannel of Fig. 15 together with the
real space positions of In and Ce atoms. In this decom-
position, hybridizations Γ+

7 and Γ−
7 are pointing towards

out of plane In (In2) and in-plane In (In1), respectively.
The third component, Γ6 is pointing towards transition
metal ion.
When comparing hybridization of the three 115 com-

pounds, the Ir compound has all three components of
the hybridization larger than the other two compounds.
In Co-115 all three hybridizations are slightly smaller,
while in Rh-115 all three hybridizations are substantially
smaller.
Furthermore, comparing the strength of the three com-

ponents of the hybridization, one can notice that in Ir
compound the Γ+

7 component, pointing towards out-of
plane In, is largest. This is consistent with the exper-
imental finding of Oeschler et al.82 that the Grüneisen
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FIG. 15: The Ce-4f Weiss field hybridization function |∆
′′

|/π
decomposed into crystal field components of tetragonal field.
All quantities are in units of eV. The upper plot shows the
2D projection of the three relevant orbitals, while the lower
pannel shows their 3D shapes (blue dots mark the position of
the in-plane In atoms, while the red dots the position of the
out-of-plane In atoms). The radial extend of the orbitals in
the polar plot of the upper panel is proportional to the value

|∆
′′

|/π at zero frequency. The full/dashed/dotted lines corre-
spond to CeIrIn5/CeCoIn5/CeRhIn5. While all three compo-
nents of hybridization Γ−

7 , Γ
+
7 , and Γ6, are largest (smallest)

in CeIrIn5 (CeRhIn5) compound, Γ+
7 takes the largest value

and also changes more than the other two components.

parameters in c-direction is 2.5 times bigger that in a
direction, resulting in larger effective coherence scale in
c-direction.

In Co-compund the Γ+
7 and Γ6 components have simi-

lar strength, while Γ−
7 is smaller, hence the hybridization

in c-direction is still more important than in ab-plane,
consistent with Grüneisen parameter measurements82. It
was shown in Ref. 58 that the double peak structure of
the optical conductivity is directly related to the strength
of the two hybridizations. The hybridization gap in one
part of the momentum space is larger, and is primarily
due to out of plane In, and the hybridization gap in some
other part of momentum space, controled mainly by the
in-plane In, is smaller, resulting in double peak structure
of the mid-infrared optics peak. Optical measurements
on CeCoIn5 of Singley et al84 demonstrated very clearly
that the mid-infrared peak is split into two peaks, one at
250 cm−1 and one at 630 cm−1, which can hint towards
substantial difference in the two types of hybridization.

Finally, in contrast to Ir and Co compound, Rh com-
pound has largest Γ6 hybridization, followed by Γ+

7 and
Γ−
7 .

FIG. 16: The frequency dependence of the three most im-

portant hybridization functions ∆
′′

(ω)/π in all three 115 com-
pounds: CeCoIn5, CeRhIn5 and, CeIrIn5. The frequency is
in units of eV.

In Fig. 16 we show the frequency dependent hybridiza-
tion function −Im∆(ω)/π to demonstrate that the retar-
dation effects in heavy fermion materials are very non-
trivial and that the buildup of the quasiparticle peak in
spectral function usually results in a sharp peak in hy-
bridization, on the background of the depleted region of
hybridization. The peak is sometimes called the collec-
tive hybridization, because it arises from the lattice ef-
fects. Namely, the Ce-4f electrons on neighboring atoms
also become delocalized, enhancing the hybridization at
low energy. However, the spd-electrons need to screen
many Ce-4f moments, and therefore the effective spd hy-
bridization is actually slightly reduced, resulting in deple-
tion away from the Fermi level, sometimes called Kondo
hole.
Our results demonstrate that the degree of itinerancy

is controlled by the collective hybridization, encoded into
the Weiss mean field hybridization ∆(ω) within DMFT.
But what is the origin of the difference between the three
compounds? In Fig. 14 we show the parameters of the
lattice structure, namely the Ce-In(1) distance, the Ce-
In(2) distance and the angle between the CeIn3 plane
and out of plane In (In2). From these numbers, it is
clear that none of the three quantities follows the trend
of itinerancy. Hence the difference in the lattice structure
is likely not the key element.
To demonstrate that the difference in the lattice struc-

ture is not the driving force, we performed the DMFT
calculation for the three compounds using the same lat-
tice structure of CeIrIn5. The results were very similar
to the results plotted in Fig. 13, with only slight increase



29

in itinerancy of Rh compound. This demonstrates that
the chemistry of the transition metal ion (difference be-
tween 3d, 4d and 5d orbitals) is the driving force of the
itinerancy, and not the diffrence in the crystal structure.
The latter are the secondary effects.

FIG. 17: Temperature dependence of the magnetic moment
of the comensurate AFM Neel state in CeRhIn5.

Since CeRhIn5 remains in local moment regime down
to very low tempeture of the order of the RKKY inter-
action, it is worth trying to stabilize a magnetic solution
within DMFT. To this end, we doubled the unit cell and
allowed the comensurate antiferromagnetic ordering with
the wave vector (1/2, 1/2, 1/2). Experimentally, the or-
der is a helical spiral with wave vector (1/2, 1/2, 0.298)
and TC of 3.8K. The broken symmetry solution can be
stabilized below T ∼ 3K as shown in Fig. 17. The mag-
netization has a typical mean field form, as expected for
a theory with spatial mean-field character like DMFT.
An interesting question is how does the large moment

antiferromagnetic solution change the emerging quasipar-
ticle peak. We have shown in Fig. 13 that even in more
localized CeRhIn5 a peak starts to develop at the Fermi
level by decreasing temperature, hence coherence starts
to develop at quite high temperature similar to the other
two compounds. However, the height of the quasipar-
ticle peak is smaller and the scattering rate of Ce-4f
orbital (imaginary part of the self-energy) is higher in
CeRhIn5. The long range order state develops from a
state with a partially screened moment. In Fig. 18 we
show the density of states of the two phases, the para-
magnetic state and the Neel state. The latter has no
quasiparticle peak left and only a very broad background
of the f spectral weigh remains at the Fermi level. The
lower panel of Fig. 18 compares a very coherent quasi-
particle peak of CeIrIn5 with the partially screened state
of CeRhIn5 above TNeel and in the ordered state below
TNeel, to emphasize the dramatic difference in the den-
sity of state at low energy. Because the full coherence of
quasiparticles is not reached to very low temperature in

FIG. 18: Total and partial Ce-4f density of states for Rh-
115 below and above the AFM transition. Above the Neel
temperature, there is a signature of Kondo effect, wich par-
tially screenes magnetic moment at elevated temperatures,
even though the system develops the long range order below
3K. The quasiparticle peak is however much smaller than the
same peak in CeIrIn5 material. Once in the ordered state, the
quasiparticle peak dissapears.

CeRhIn5, and the non-local RKKY interaction is strong
enough, it interrupts the formation of coherent quasi-
particles. Within DMFT, this is reflected in two stable
solutions of DMFT equations, the paramagnetic and the
magnetic solution. We note that we did not prove the
stability of the magnetic solution compared to the para-
magnetic solution, because this would require a compar-
ison between free energies, a task beyond our current
capabilities. However, our experience from model calcu-
lations suggests that when the magnetic DMFT solution
can be stabilized, it usually has lower free energy than
the nonmagnetic solution.
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XI. CONCLUSION

In the first part of the article, we discussed in de-
tail the implementation of DFT+DMFT in full potential
methods. We defined the central object of the DMFT,
the local Green’s function using a projection operator.
We showed that the projector used in LDA+U imple-
mentations leads to non-causal DMFT equations and
that the straightforward projection to the solution of the
Schrödinger equation within the Muffin Tin sphere leads
to spectral weight loss. We suggested an alternative pro-
jection that resolves these shortcomings.
We sketched the algorithmic steps within an implemen-

tion of DFT+DMFT in the full potential methods, using
a formulation which avoids the ambiguities of downfold-
ing or Wannier orbital construction. Hence, the kinetic
energy operator and electron density are not approx-

imated by a tight-binding parameterization, which al-
lowed us to carry out a charge density self-consistent cal-
culation.
In the second part of the article, we concentrated on

impurity solvers based on the hybridization expansion.
We derived the equations for the bold continuous time
quantumMonte Carlo (CTQMC) method, which samples
the dressed propagators, as opposed the bare propagators
sampled in current CTQMC methods. We showed a few
test results for simplified implementation of the method.
In this part of the article we also gave detailed formulas
for the impurity solver called the One-crossing approxi-
mation, which can be viewed as the four kink approxi-
mation within the bold CTQMC.
Finally we give details on a new analytic continua-

tion method, which can continue the self-energy from the
imaginary to the real axis. This step is crucial when com-
puting the response functions within DMFT, as done in
section VI for transport coefficients.
In the third part of the article, we presented the test

results of our DFT+DMFT implementation on a classical
problem of strong correlations, the isostructural transi-
tion of elemental cerium from its γ phase at high tem-
perature to its α phase at low temperature.
In the last part of the article, we applied the

DFT+DMFT method to a group of heavy fermion com-
pounds, namely CeIrIn5, CeCoIn5 and CeRhIn5, collec-
tively dubbed the Ce-115s. Although the isovalent sub-
stitution of a transition metal ion does not substantially
alter the Ce-In planes, which are believed to be respon-
sible for the heavy mass in these compounds, the ground
state properties of these materials are very different.
We analyzed the electronic structure of the three Ce-

115 materials and showed that the Ce-4f electrons in
CeRhIn5 are more localized that those in the other two
115 compounds, in agreement with experiments. Be-
low 3K, an antiferromagnetic DFT+DMFT solution in
CeRhIn5 is stable, while CeCoIn5 and CeIrIn5 remain
paramagnetic (the AFM solution is not stable) down to
the lowest temperature T = 1.5K explored in our calcu-
lation.

The hybridization in CeIrIn5 is very anisotropic with
the largest component pointing towards the out-of-plane
In. The hybridization is slightly smaller in CeCoIn5,
hence we believe CeIrIn5 to be more itinerant than the
other two compounds.
We speculate that the reason CeCoIn5 exhibits the

highest superconducting TC is due to the fact that it is
at the border between itinerancy and localization, while
CeIrIn5 is on the itinerant side of the phase diagram
and CeRhIn5 is on the localized side. The position of
CeRhIn5 in the phase diagram is clear from the pres-
sure experiments, while the position of CeIrIn5 is less
obvious. We believe that recent uniaxial pressure exper-
iments81 confirm our view, since the c-axis compression,
which makes CeIrIn5 more itinerant, decreases the super-
conducting Tc.

XII. ACKNOWLEDGEMENT

We thank Gabriel Kotliar for careful reading of the
manuscript and numerous usefull suggestions from the
early stage of the project till its completion. We are
grateful to Jim Allen and David Pines for fruitful dis-
cussion. K.H was supported by Grant NSF NFS DMR-
0746395 and DMR-0806937, and Alfred P. Sloan fellow-
ship. C.H.Y was funded by NSF DMR-0806937 and K.K.
by Petroleium Research Fund 48802-DNI10.
Note added: As the writing of this work was be-

ing completed, we became aware of a related work of
M. Aichhorn et al. (arXiv: 0906.3735) also reporting on
an implementation of LDA+DMFT in a LAPW code.
However, in contrast to our implementation, the authors
used downfolding method to obtain a tight-binding model
Hamiltonian, and hence could not compute electronic
charge self-consistently. In the process of downfolding,
the authors used projection P 1 defined in section II.
Furthermore, the impurity solver did not take into ac-
count the full Coulomb interaction Eq. (28). Only the
density-density part of the interaction was considered by
M. Aichhorn et al. (only the z component of the Hund’s
coupling) which allows substantial simplification of the
impurity solver, but leads to improper description of the
multiplet structure of the correlated atoms.

Appendix A: Complex Tetrahdron Method

The formulas for tetrahedron integral in case of com-
plex eigenvalues are very similar to the case of real eigen-
values. However, a special attention needs to be payed
to choose the right branch-cut in logarithms, such that
all terms in the sum are causal.
First step in tetrahedron method consists of dividing

the first Brillouin zone into tetrahedra which fill up whole
space. Each thrahedra has four corners. The energy is
thus interpolated ε = ε1+a(ε2− ε1)+ b(ε3− ε1)+ c(ε4−
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ε1), where a, b and c run between 0 and 1 when visiting
corners of tetrahedra.
For the Green’s function we need integral of the form

∑

k

Ck

ω − εk
→
∑

k

w(k, ω)Ck (A1)

and for the electron density and the chemical potential
we need

∑

k

∫ ω2

ω1

dω
Ck

ω − εk
→
∑

k

wi(k, ω)Ck (A2)

The integral is first written as the sum over all tetra-
hedra and the integral in the interior of tetrahedra:

∑

k

Ck

ω − εk
=
∑

t

∫

t

d3k
Ck

ω − εk
=
∑

t

4∑

ki=1

w(ki, ω)Cki

(A3)
The latter is evaluated analytically using linear interpo-
lation inside the volume of the tetrahedra for both the
nominator and denominator

w(ki, ω) = 6

∫ 1

0

dc

∫ 1−c

0

db

∫ 1−b−c

0

da× (A4)

(1− a− b− c)δki,1 + aδki,2 + bδki,3 + cδki,4

ω − ε1 − a(ε2 − ε1)− b(ε3 − ε1)− c(ε4 − ε1)

Here we used a short notation εki
≡ εi

The integrals are analytic and a closed expression for
computing the green’s function is

w(ki, ω) =
∑

j 6=i

ω − εj∏
l 6=i,j(εl − εj)

lv (ω − εj , εj − εi)

where

lv(x, y) =
x

y

{
1− x

y
[log(x+ y)− log(x)]

}
(A5)

and l 6= i, j means l 6= i and l 6= j. Notice that only
log(x+ y) and log(x) can appear in lv(x, y) (not log(y))
to ensure causality. Namely, imaginary part of all εi is
strictly negative, hence the expression lv (ω − εj , εj − εi)
contains log(ω − εj) and log(ω − εi), which both have
imaginary part in the interval [0, π].

Similarly, the formulas for the integral over frequency∫ ω2

ω1
w(ki, ω)dω are

wi(ki, ω2, ω1) =
∑

j 6=i

ilv(ω2 − εj , εj − εi)∏
l 6=i,j(εl − εj)

−
∑

j 6=i

ilv(ω1 − εj , εj − εi)∏
l 6=i,j(εl − εj)

(A6)

where

ilv(x, y) =
1

4
y2 { u4[log(x)− log(x+ y)] + log(x+ y)

+ u3 +
1

2
u2 − u} (A7)

and u = x/y
Appendix B: Transport integrals

To compute the transport coefficients, we need to eval-
uate to high precision the following integrals

P1(z) =

∫
dx

(
− df

dx

)
1

x− z
(B1)

P2(z, γ) =

∫
dx

(
− df

dx

)
1

|x− z + ix2γ|2 (B2)

Q2(z, γ) =

∫
dx

(
− df

dx

)
1

(x− z + ix2γ)2
(B3)

The integrals need to be carefully implemented and
special care needs to be taken for the two case: a) |z| ≫ 1

and b) |z′′ | ≪ 1 and |γ| ≪ 1.

The first integral of Eq. (B1) is computed numerically,
except in the following cases

P1(z) =

{
−(1/z + c0/z

3 + c1/z
5 + c2/z

7 + c3/z
9) |z| > 10

w0(z
′) + iπ df

dx (z
′) |z′′ | ≪ 1

where

w0(x) = P

∫ df
dt (t)dt

t− x

is precomputed on a fine mesh and interpolated using
cubic spline interpolation. The constants ci are

c0 =
π2

3
, c1 =

7π4

15
, c2 =

31π6

21
, c3 =

127π8

15
(B4)

The second integral of Eq. (B2) is computed numeri-

cally, except in the following cases i) |z′′ | ≪ 1, γ| ≪ 1: In

this limit it becomes P2(z, γ) ∼ π
|z′′ |

df
dx (z

′

), ii) |z| > 14:

In this case, the power expansion in terms of |z|2 is per-
formed and all terms are analytically evaluated.

Similarly we treat integral Eq. (B3). For |z′′ | ≪ 1,

|γ| ≪ 1 we approximate Q2(z, γ) ∼ d2f
dx2 (a)− iπ

4
sinh(a/2)
cosh3(a/2)

and for |z| > 8 we perform the power expansion in terms
of z2 and analytically evaluated the resulting integrals.
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